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A B S T R A C T   

Global interest in advanced reactors has been reignited by recent investments in small modular reactors and 
micro-reactor design. The use of digital devices is essential for meeting the size and modularity requirements of 
small modular reactor controls. By fully digitizing the small modular reactor control systems, critical information 
can be obtained to optimize control, reduce costs, and extend the reactor’s lifetime. However, the potential for 
cyber-attacks on digital devices leaves digital control systems vulnerable. To address this risk, this study presents 
a novel wavy-attention network for sensor attack detection in nuclear plants. The wavy-attention network 
comprises stacks of batch-normalized, dilated, one-dimensional convolution neural networks, and sequential self- 
attention modules, superior to conventional single-layer networks on sequence classification tasks. To evaluate 
the proposed wavy-attention network architecture, the International Atomic Energy Agency’s Asherah Nuclear 
Simulator and a false data injection toolbox found in the literature, both implemented in MATLAB/SIMULINK, 
are utilized. This approach leverages changes in process measurements to identify and classify cyber-attacks on 
priority signals using the proposed wavy-attention network. Three false data injection attacks are simulated on 
the simulator’s pressure, temperature, and level sensors to obtain representative process measurements. The 
wavy-attention network is trained and validated with normal and compromised process variables obtained from 
the simulator. The performance of the wavy-attention network to discriminate between the reactor states using 
the test set shows 99% accuracy, as opposed to other baseline models such as vanilla convolution neural net
works, long short-term memory networks, and bi-directional long short-term memory networks with 90%, 77%, 
and 91% accuracy, respectively. An ablation study is also conducted to test the contribution of each component 
of the proposed architecture. The theoretical framework of the proposed wavy-attention network and its 
implementation for nuclear reactor digital sensor attack detection are discussed in this paper.   
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1. Introduction 

Recent investments in the design and development of small and 
micro-scale reactors indicate a major nuclear renaissance could be on 
the horizon. These advanced reactor designs aim to address some of the 
key challenges associated with traditional large-scale nuclear power 
plants, such as high capital costs, long construction times, and concerns 
over safety and waste management. Small modular reactors (SMRs) and 
micro-reactors are designed to be more flexible, scalable, and potentially 
safer than their larger counterparts. They can be manufactured in a 
factory setting and transported to desired locations, reducing on-site 
construction work and costs. Additionally, their smaller size and 
modular design allow for incremental capacity additions, which could 
make them more attractive to utilities and investors. 

The development of these smaller reactors is driven by the need for 
reliable, carbon-free baseload power to complement intermittent 
renewable energy sources. However, there are still significant technical 
and safety hurdles to overcome before these advanced reactor designs 
can be widely deployed. Firstly, while SMRs offer exciting potential 
benefits, their increased reliance on digital instrumentation and control 
systems and potential remote operation introduces new cyber security 
risks that must be carefully addressed. Unlike traditional analog sys
tems, modern digital controls utilize software, networks, and remote 
connectivity that could potentially be exploited by adversaries. Mali
cious cyber attacks against SMR systems could have severe conse
quences, ranging from unplanned shutdowns and equipment damage to 
environmental releases that threaten public safety. 

Secondly, the decentralized nature of SMR development and the 
proposed autonomous operation may also expose it to advanced 
persistent threats and other threat actors. Industrial control systems, 
including those used in nuclear reactors, face threats from cyberattacks 
aimed at compromising digital instruments. In fact, Stuxnet, the first 
major cyber weapon, was aimed at a nuclear facility’s digital control 
system. As SMR designs move toward higher levels of automation and 
remote operation, proactively designing effective cybersecurity mea
sures for these new reactor technologies from the outset will be crucial 
to ensuring their safe and secure operation. 

Advanced reactors mostly rely on cyber-physical sensors that are 
vulnerable to cyber-attacks on system frequencies (Aamoth et al., 2022). 
One of the most potent potential cyber-attacks for SMRs is false data 
injection attacks, (FDI), where adversaries introduce subtle corruptions 
to sensor measurements or other signals (Sundaram et al., 2022). Re
searchers have analyzed two scenarios in which threat actors could 
leverage false data injection attacks against advanced reactors specif
ically (Li et al., 2018). The first scenario involves attackers falsifying 
sensor outputs to give the appearance of abnormal conditions, poten
tially triggering unsafe control actions by the system. This kind of attack 
could potentially impact reactor priority signals that initiate reactor 
trips when critical safety parameters, such as neutron flux, coolant 
temperature, or pressure, exceed predefined limits. In an FDI attack 
targeting SMRs, an adversary could compromise the digital instrumen
tation and control systems to inject false data into the priority signals. 
For example, they could manipulate the reactor trip signal, preventing it 
from being triggered even when critical safety parameters are exceeded, 
potentially leading to an uncontrolled or unsafe reactor state. Similarly, 
they could alter the emergency safety features actuation signal, 
disabling crucial safety systems from activating during an accident 
scenario. 

The second scenario focuses on hackers manipulating the control 
logic itself to alter the system’s response to actual events or falsify 
process data without activating the conventional anomaly detection 
techniques (Li et al., 2018). FDI attacks on power control signals could 
cause the reactor to operate at unsafe power levels, risking damage to 
the core or other components. Corrupted coolant system signals could 
mislead operators about the actual cooling conditions, potentially 
resulting in inadequate cooling and overheating. False radiation 

monitoring signals could mask the presence of radioactive leaks or 
conceal abnormal radiation levels, posing health and environmental 
risks. For the attack described in these scenarios to be successful, espe
cially for an advanced persistent threat, there has to be an effective pre- 
attack stage referred to as a reconnaissance phase, where attackers 
gather valuable information about the target systems and their vulner
abilities. In the context of SMRs and advanced reactors, attackers would 
try to identify and map the various networks, systems, and components 
that make up the SMR’s instrumentation and control infrastructure, 
including the communication protocols and data flows. The reconnais
sance phase could also involve gathering information about the normal 
operating parameters, sensor readings, and control logic of the reactor 
systems. This knowledge would aid the attacker in crafting realistic false 
data that can bypass existing detection mechanisms. 

The consequences of successful FDI attacks on priority signals in 
SMRs could be catastrophic, ranging from equipment damage and un
planned shutdowns to potential radiological releases and severe acci
dents. Detecting and mitigating such sophisticated cyber attacks is a 
significant challenge, as the corrupted data may appear legitimate and 
within normal operating ranges, making it difficult to discern from 
genuine sensor readings, especially during the reconnaissance phase. 
Therefore, it is crucial to develop effective real-time cyber-attack 
detection methods that can accurately identify and mitigate potential 
threats. Moreover, incorporating cybersecurity measures into the design 
of an SMR’s control system is crucial to prevent expensive retrofits, 
avoid unnecessary delays, and minimize disruptions to plant operations. 

Towards a resilient Industrial Control System (ICS), several data- 
driven network monitoring, intrusion detection, and protection sys
tems have been proposed to address potential cyber-attacks on ICS 
(Ayodeji et al., 2020). Specifically, neural networks have been successful 
in identifying patterns and anomalies in complex and dynamic systems, 
such as nuclear plant abnormal event diagnosis (Lee et al., 2021), 
electric gate valves (Liu et al., 2020), and nuclear safety assessment 
(Ayodeji et al., 2022). Neural networks have also been used to detect 
attacks in critical industrial control systems (Nedeljkovic and Jakovl
jevic, 2021). 

The state-of-the-art deep learning methods offer different compara
tive advantages. For instance, the simple and easy-to-implement feed
forward network is good for problems with fixed-size input and output, 
while Convolution Neural Networks (CNN) are effective for grid-like 
data such as images due to spatial hierarchies. Autoencoders can 
compress data into a lower-dimensional space, useful in anomaly 
detection and data denoising, while Long-Short Term Memory (LSTM) 
networks can handle sequences of variable lengths, beneficial in tasks 
such as time series prediction, natural language processing, and speech 
recognition. However, the conventional deep learning model architec
ture is sub-optimal in terms of performance when applied to detect 
subtle, yet potentially dangerous attacks captured in network logs or 
dynamic and time-varying sequences in process measurement. 

In recent years, attention mechanisms have been used to improve the 
predictive performance of deep learning models. The attention layers, 
common in transformer architecture, allow for parallel processing of 
sequences and are effective in capturing long-range dependencies and 
context-aware representations. Unlike other approaches, the attention 
mechanism can model the dependencies between the target output and 
the input sequences. Attention modules enable deep learning models to 
handle variable-length sequences, which is useful in many time-series 
and sequential tasks (Ayodeji et al., 2109). However, many existing 
attention-based models are mostly designed for large language models, 
and the capability of attention-based models to learn attack patterns in 
nuclear plant control signals has not been extensively explored. This is 
largely a result of the lack of data that represents the behavior of process 
variables under cyber-attack (Ayodeji et al., 2020). 

This work builds upon our previous conference paper (Ayodeji et al., 
2023), where we initially proposed the wavy-attention network (WAN) 
method for cyber-attack detection task. In this paper, we discuss the 
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performance of the proposed novel WAN for real-time cyber-attack 
detection in a Pressurized Water Reactor (PWR) digital control system. 
The WAN is designed to capture the dynamic and periodic nature of the 
system by introducing a sequential self-attention layer, in a wavy ar
chitecture. This mechanism allows the model to extract important 
temporal and frequency features from the system’s signals and use them 
to detect cyber-attacks. Because the real-world log data from a nuclear 
plant is not available, and the process measurement could indicate a 
cyber-attack (Ayodeji et al., 2020), the WAN model is trained using the 
process data obtained from the Asherah Nuclear Simulator (ANS). The 
ANS, implemented in MATLAB/SIMULINK, is used to simulate the 
operating conditions of the plant in a steady state and under attack. 
First, High-Frequency Injection Attack (HFIA), High Slope Measurement 
Attack (HSMIA), and Restart Communication Attack (RCA) are simu
lated in the pressurizer pressure signal, the pressurizer level signal, and 
the reactor coolant system mean coolant temperature sensor signals 
respectively. These sensors are critical to ensure the safe operation of the 
reactor control system, and compromising these safety–critical sensors 
may have dangerous consequences. The simulated cyber-attacks are 
adopted from the false data injection toolbox, developed by Potluri et al. 
(Potluri et al., 2019). The resulting process variables that reflect the 
effect of the cyber-attack on the reactor are used to train, validate, and 
test the WAN classifier. 

This work significantly extends our previous conference publication 
(Ayodeji et al., 2023) by providing a comprehensive analysis and eval
uation of the proposed WAN for cyber-attack detection in SMR digital 
control systems. The key additions in this work are as follows:  

1. We present the complete graph and description of the proposed WAN 
model (in Fig. 2), enumerating all layer parameters to facilitate 
reproducible implementation. (Section 3.1).  

2. We simulate and demonstrate the process signature that defines the 
onset of a reconnaissance attack on reactor priority signals.  

3. We document the reactor signals used for the proposed WAN model 
evaluation and input representation, along with details of our data 
processing pipeline (Section 3.1.1).  

4. We provide an in-depth discussion of model training and evaluation, 
covering hyperparameters, hardware specifications, and software 
versions (Section 4.1).  

5. We conduct an extensive ablation study (Section 4.3) to isolate and 
analyze the impact of different model components on overall WAN 
performance. 

The remaining sections of the paper are arranged as follows: Section 
2 describes the state of the art in SMR cybersecurity, the Asherah Nu
clear Simulator used for cybersecurity evaluation, and background on 
deep learning architecture. Section 3 discusses the proposed WAN ar
chitecture, section 4 presents the evaluation results, and the last section 
concludes the study. 

2. Background 

2.1. Cybersecurity of small modular reactor control systems 

Several research works on attack detection techniques in nuclear 
plant instrumentation and control systems have been proposed for 
conventional nuclear power plants, which applies to other advanced 
reactor designs as well. However, SMRs, like all nuclear power systems, 
are inherently complex and have distinct safety and security re
quirements, resulting from their unique attributes such as remote and 
distributed siting, increased automation, modularity and design di
versity. Moreover, the integration with smart technologies increases the 
complexity of security management, introducing vulnerabilities through 
increased connectivity (Rodriguez, 2017). Further, the proposed remote 
operation of SMRs presents novel cyber vulnerabilities for the nuclear 
industry to address (Aamoth et al., 2022). 

Nevertheless, SMRs have unique advantages, which position them 
for better security architecture to be incorporated by design. These 
unique advantages also inform the recent drive for cybersecurity to be 
incorporated into the early phase of SMR-driven integrated energy 
systems projects (Eggers, 2023). The integration of cybersecurity by 
design, which involves embedding security features at the early stages of 
the architectural and design processes, prescribes the implementation of 
cybersecurity in instrumentation and control systems within SMRs to 
ensure that these systems are resilient from the ground up. Further, 
significant initiatives are currently underway to integrate cybersecurity 
measures into the entire systems engineering lifecycle. Approaches like 
cyber-informed engineering and security by design frameworks aim to 
identify and mitigate cybersecurity risks throughout the design, devel
opment, and implementation phases (Eggers, 2023). 

While these methods are valuable in promoting the importance of 
considering cybersecurity from the early stages of design to create more 
secure systems, they may not comprehensively address the full spectrum 
of digital risks (Eggers, 2023). Moreover, the future of SMRs is likely 
intertwined with their integration into broader renewable energy sys
tems, which poses unique cybersecurity challenges. For instance, the 
interaction between SMRs and smart grids would necessitate novel se
curity protocols that can handle dynamic and distributed energy net
works (Rodriguez, 2017). 

Research is ongoing into developing more comprehensive cyberse
curity frameworks that anticipate and mitigate potential breaches 
(Ayodeji et al., 2023). For instance, a recent study proposes a systematic 
mapping review that evaluates and validates new tools and methods for 
cybersecurity risk assessment specifically tailored for nuclear power 
contexts (De Brito and De Sousa, 2022). The criticality of the adoption of 
state-of-the-art cybersecurity technologies has also been emphasised by 
studies that review currently developing technologies, providing in
sights into both traditional cybersecurity measures and advanced digital 
solutions tailored for advanced reactors (Poresky et al., 2017). 

A growing body of literature has investigated the cybersecurity of 
SMRs, with significant advancements in regulatory frameworks, design 
methodologies, and technological innovations. However, the pace of 
technological development and the sophistication of cyber threats 
necessitate continuous research and evaluation of cybersecurity mea
sures. The ongoing commitment to integrating cybersecurity into all 
phases of SMR design and operation would be better supported by 
research that seeks to validate the security postures in every develop
mental phase. Further, there is a noted deficiency in empirical research 
that tests the theoretical models and frameworks proposed in the liter
ature. This emphasises the importance of developing flexible, low-cost 
testbeds where more case studies could be performed to validate the 
proposed cybersecurity measures under real-world conditions. This also 
emphasizes the need to adopt and adapt tools like the Asherah Nuclear 
Simulator. 

2.2. Asherah nuclear simulator for advanced reactors cybersecurity 
analysis 

The Asherah Nuclear Simulator (ANS) is a full-scope, open-source, 
modularized simulator of a 2700MWt pressurized water reactor devel
oped as part of an International Atomic Energy Agency (IAEA) Coordi
nated Research Project (CRP) (Silva et al., 2020). The ANS is a physics 
simulator that models the complete behaviour of a PWR system. 
Developed in the MATLAB/Simulink environment, the ANS is suitable 
for implementing a hardware-in-the-loop cybersecurity evaluation 
(Silva et al., 2020). It contains modules defining primary and secondary 
loop dynamics, the plant’s primary and secondary loop control and 
communication systems, and the reactor protection system. The 
communication module is implemented with the Modbus and open 
platform communication-universal architecture (OPC-UA) protocol. 
ANS possesses several key features that are essential for modelling and 
simulating nuclear power plant digital control system cyber-attacks. 
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These include simulated control interfaces such as valves, pumps, and 
actuators, as well as the separation of the process simulation model from 
the control system model. Additionally, ANS incorporates a solver that 
supports external data injection, cyber-attack scenario simulation and 
data acquisition, as well as the evaluation of computer security measures 
(Maccarone et al., 2023) (Busquim et al., 2021). These capabilities are 
crucial as they enable the control system components to be decoupled 
from the rest of the simulator and replaced with external controller 
models, facilitating the study and analysis of control system vulnera
bilities and attack scenarios in a hardware-in-the-loop setting (Maccar
one et al., 2023). 

The ANS’s capability to provide a realistic and detailed simulation 
environment for cybersecurity evaluation has been explored by different 
studies. The tool has been previously used in testing a localised cyber
attack detection kit designed to enhance the resilience of critical reactor 
equipment against cyber-attacks (Zhang and Coble, 2020). This kit in
cludes a cyber-attack detection model that identifies anomalies in key 
components like control system actuators and an inference model that 
can reconstruct compromised signals to maintain safe operations 
temporarily. The simulator has also been used to study manipulation 
attacks that alter process data presented to NPP operators (Lee et al., 
2021). The simulation involved scenarios where safety-related state data 
were manipulated and an adaptive Kalman filter was successfully 
employed to verify the reliability of displayed data and facilitate the 
correct safety response actions. The condensate tank water level sensor 
is also validated using the ANS in research that studies the safety and 
security impact of cyber-attacks against the nuclear reactor digital 
interface (Shin et al., 2021). 

Although the ANS is developed for PWR, it can be repurposed as a 
Hardware-in-the-loop cybersecurity testbed for advanced reactors and 
SMRs (Lee et al., 2019). The ANS has been repurposed to develop an 
Advanced Reactor Cyber Analysis and Development Environment (AR
CADE) that was integrated with a Small Modular Advanced High- 
Temperature Reactor (SmAHTR) model for cybersecurity applications 
(Rowland et al., 2022). The ANS is also instrumental in the security by 
design analysis of advanced reactors, providing a simulated platform to 
assess and improve the security features of reactor digital systems during 
the design phase (Hahn et al., 2022). In another application, the simu
lator is used to train nuclear facility operators in detecting and 
responding to cyber incidents (Song et al., 2020; Allison et al., 2023). 
This training aspect is crucial for enhancing the cybersecurity posture of 
nuclear power plants. The simulator also supports system-level cyber
security analysis, helping researchers understand the interactions be
tween different system components under cyber-attack scenarios. The 
tool was also used to test and validate a host-based intrusion detection 
system designed for modern PLCs (Kiranyaz et al., 2020). 

These ANS adaptations and applications underscore its role in pre
emptive security strategy development for SMRs and advanced reactors. 
Since SMR designs are relatively new and tools that mimic the industrial 
control system behavior are limited, using the ANS for SMR cyberse
curity research has several justifiable reasons: SMRs are characterized 
by their scalability and modular design, which can be effectively simu
lated in environments like ANS that are adaptable for various reactor 
sizes and configurations. The modular aspect of SMRs often involves the 
replication of standard units, and ANS can simulate the interconnected 
nature of these units under cyber-attack scenarios, providing insights 
into cascading effects within a multi-unit SMR site. Further, the ANS is 
equipped with features that allow for detailed cyber-physical interaction 
analysis, which is critical for both advanced reactors and SMRs. The 
adaptability of the ANS to SMR cybersecurity research is supported by 
the fundamental similarities between the reactor types, the versatility of 
the simulation tool, and the critical need for advanced cybersecurity 
solutions as nuclear technologies evolve. 

The ability to simulate complex cyber-attacks and their impact on 
digital interfaces and safety systems is crucial as SMRs will utilize more 
digital solutions than traditional reactors to accommodate size and 

modularity requirements, potentially increasing their vulnerability to 
cyber threats. Moreover, developing a new open-source simulator spe
cific to each SMR design could be resource-intensive and costly. 
Leveraging the ANS would conserve resources and minimize develop
ment time, making cybersecurity research more efficient and effective. 
As SMRs are still relatively new in the nuclear energy field, the use of a 
tried and tested simulator like ANS allows researchers and engineers to 
push the boundaries of what’s possible in SMR cybersecurity without the 
initial need for building a new simulation tool from scratch. This can 
accelerate the development of secure SMR designs by adapting existing 
tools to fit new contexts. In this work, the ANS is used to reproduce all 
relevant plant control network traffic, providing a representative pro
cess behaviour after a cyber-attack. This is then used to acquire and 
evaluate representative data used for the proposed deep learning model 
evaluation. 

2.3. Deep learning architecture 

2.3.1. 1-D convolution units 
Convolution neural networks (CNN) extract features from input data 

with different levels of abstraction and are sensitive to spatial infor
mation. While 2D convolution is commonly used for image and video 
processing, it is not suitable for one-dimensional signal processing due to 
computational complexity. One-dimensional (1D) convolution is a 
promising deep learning approach for limited-size, one-dimensional 
signals as it extracts features layer-wise in a signal and is less complex, 
trains faster, and generalizes better on 1D signals. It is also suitable for 
real-time and low-cost applications and has demonstrated superior 
performance in tasks with limited data and high signal variation (Kir
anyaz et al., 2019). 

Consider an adaptive 1D convolution neural network with a kernel 
size of 3 and a subsampling factor of 2. The basic operation performed in 
the hidden layer of the kth neuron can be described as the sum of the 
sequence of convolutions that passes through an activation function, 
denoted as f, used to extract the inherent features in the input. This is 
defined by the forward and backpropagation operations conducted from 
one layer to the another. For a 1D convolution neuron in layer l, with the 
previous layer and next layer defines as l − 1 andl + 1, respectively. The 
input of the kth neuron in layer l can be expressed as (Bahdanau et al., 
2016): 

xl
k = bl

k +
∑Nl− 1

i=1
conv1D

(
wl− 1

ik , sl− 1
i

)
, (1)  

where wl− 1
ik is the weight of the 1D kernel from the ith neuron at layer l − 1 

to the kth neuron at layer l, xl
k is the input to the kth neuron in layer l, Nl− 1 

is the number of neuron in the previous layer, bl
k is the bias term, and sl− 1

i 

is the output of the ith neuron at layer l − 1. For a network with input 
layer l, input vector p, output layer L, and the corresponding output 

vector 
[
yL

1,⋯, yL
NL

]
, the objective is to minimize the output Mean-Square- 

Error (MSE) expressed as: 

MSE = E
(

yL
1 ,⋯, yL

NL

)
=

∑NL

i=1
(yL

i − ti)
2 (2) 

The MSE of the kth neuron is therefore computed by finding the de
rivative of the error E in each input–output sequence with respect to the 
weight connected to the kth neuron (wl− 1

ik ) and the bias of the neuron bl
k. A 

simplified representation of the 1D propagation computation occurring 
in each internal neuron of a 1D CNN, and the computation propagation 
path has been fully discussed (Kiranyaz et al., 2019). In the current 
work, a six-layer 1D architecture composed of 1D convolution and 
attention mechanism is utilized, developed into four major branches: the 
input, filter, gating, and the output. The theoretical background of the 
attention mechanism used in this work is described in the next section, 
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and a full description of the proposed WAN is provided in Section 3. 

2.3.2. Attention mechanism 
The attention mechanism is employed to enhance the learning of 

long-range sequential knowledge and is effective in addressing a key 
drawback of fixed-length encoding of context vectors in sequence-to- 
sequence recurrent networks − compression and loss of information. 
In natural language processing, an attention vector estimates word 
correlation and sums up their weighted values as an approximation of 
the target. However, its use for multivariate prediction implementation 
is rare, as the network forgets the beginning after processing the input. 
Hence, it is combined with a 1D convolution network in this work. A 
sequence-to-sequence learning tasks can be modeled using a recurrent 
encoder-decoder network architecture. The encoder processes a series of 
input vectors x = (x1,⋯, xn) sequentially, updating its hidden state at 
each timestep t. After encoding the full sequence, it derives a context 
vector ĉ to summarize the inputs. The decoder then utilizes this context 
vector ĉ to generate relevant outputs. The hidden state updates in the 
recurrent encoder at each t can be represented as (Ayodeji et al., 2109): 

ht = f(xt, ht− 1) (3)  

The hidden state’s context vector is given by: 

ĉ = q({h1,⋯, hn} ) (4)  

where f and q are nonlinear functions. For the context vector and the 
previous sequence {y1,⋯,yt− 1}, the decoder predicts the next sequence 
yt , by decomposing the joint probability, such that: 

p(y) =
∏T

t=1
p(yt|{y1,⋯, yt− 1}, ĉ ) (5)  

where the decoder output vector y =
(
y1,⋯, ym

)
. In the context of 

attention mechanism, each conditional probability expressed in equa
tion (5) above is defined as: 

p(y1,⋯, yi− 1 , x) = g(yi− 1, ai, ĉi) (6)  

Where g is a nonlinear function, and st is the attention vector of the 
hidden state at time t, given as: 

st = f
(
st− 1,yt− 1, ĉt

)
= f(ĉt, ht) (7) 

Hence, the context vector ĉi computed as a weighted sum of the 
sequence of annotations ht = (h1,⋯,hn), is given by: 

ĉt =
∑J

j=1
αtjhj (8)  

In equation (8), αtj is the attention weight from the tth output to the jth 

input, and the encoder state for the jth input is hj. The attention weights 
assigning importance across input tokens are derived by mapping the 
inputs to an alignment score. This attention score etj for each token j at 
decoding timestep t determines the subsequent relevance distribution in 
the attention layer, and it is given as: 

αt,j =
exp

(
score(ht,hj

))

∑J
j′=1exp

(
score(ht,hj′

) (9) 

The alignment model measures the distance between input positions 
around t and the output position, and it is defined as etj = f(st− 1, hj). The 
function f scores the matching distance between input and output, and 
st− 1 represents the hidden state from the previous timestep. The atten
tion annotations are described in detail (Dong et al., 2021), and this 
work uses the Keras implementation of the self-attention mechanism, 
which calculates the alignment of hidden scores (ht,t′), the attention 
weight (at), the alignment model (et,t′), and the context vector (lt) as: 

ht,t′ = tanh
(
xT

t Wt + xT
t′ Wx + bt

)
(10)  

et,t′ = σ
(
Waht,t′ + ba

)
(11)  

αt= softmax(et (12)  

lt =
∑

t′
αt,t′xt′ (13)  

Where W’s and b’s are weights and biases to be learned, xt and xt′ are the 
input vectors at time t and t′ respectively, Wt and Wx are the weight 
matrices to be learned. In equation (11), Wa and ba are the weight matrix 
and bias for calculating the attention score et,t′. 

A recent analysis of deep self-attention networks comprised fully of 
stacked multi-head self-attention layers, uncovered an exponential 
convergence phenomenon. As more layers are added, the learned token 
representations rapidly approach identical, rank-1 matrices that map all 
tokens to the same representation (Van Den Oord et al., 2016). This 
trend suggests that extremely deep self-attention networks lose the ca
pacity to distinguish input details. Further examination of this behavior 
could inform enhanced self-attention architectures. 

3. Method 

3.1. Wavy-attention model development and architecture 

The wavy-attention network, inspired by the WaveNet architecture 
(El-Genk et al., 2021), is a specialized convolution architecture that 
systematically integrates dilated convolution layers. This design enables 
the network to learn temporal and spatial information inherent in 
datasets from complex engineering systems. The proposed wavy- 
attention network consists of a series of 1D causal convolution net
works with an enlarged receptive field, parametrized skip connection, 
residual connection, and activation units enhanced with a self-attention 
mechanism, as depicted in Fig. 1. 

This paper first adopts a padded convolution operation with a filter 
size of 16, and kernel = 1, based on experimental results, to map the 
inputs with the same feature dimension. This layer serves as the input 
preprocessing unit before channeling it to the dilated convolution layer, 
which is used as the network filter. The network filtering is accom
plished by a dilated convolution with a filter size of 32 and a filter width 
of 2. A similar dilated convolution module is implemented as the 
network gating branch. Hence, a network of multi-layer dilated convo
lution is constructed, where the dilation factor (Df) increases sequen
tially at each layer. To speed up training, a LeakyRelu and 
BatchNormalization module is introduced in each layer. To avoid model 
explosion and aggregate important information in each signal, a regu
larized self-attention module is added to the gating branch. 

Dilated layers are typically incorporated into networks to aggregate 
multi-scale spatial information. By expanding the receptive field 
without increasing parameters, they allow models to jointly capture 
both local fine details and global context. To effectively increase the 
receptive field, a dilation rate is introduced. By increasing the dilation 
rate at each layer, the network achieves the desired exponential rela
tionship between layer depth and receptive field size. Given a sequence 
of input x ∈ Rn, and filter f : {0,....k − 1}→R, dilation introduces a “hole” 
in the convolution without changing its weights (Kiranyaz et al., 2019). 

Dilated convolution expands a kernel’s receptive field without 
increasing the number of parameters. Dilated convolution achieves 
receptive field expansion by skipping input samples with a pre
determined dilation rate α when calculating the convolution. Effec
tively, the spatial span encompassed by the original kxk kernel is 
enlarged to α(k − 1)+1, through this strided sampling. As a result, the 
receptive field is grown to cover a wider context region, enabling ag
gregation of multi-scale visual details. 

The dilated convolution output in the WAN architecture splits into 
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two branches (filter and gating branch) and later recombines via 
element-wise multiplications. The skip connection is utilized to 
dynamically tune the layer numbers during training, benefiting model 
convergence and mitigating rank collapse. The skip connection enables 
the utilization of fewer layers and units while preserving the lower-level 
information from distortion. This also ensures that the network retains 
collections of feature output at all levels in the network hierarchy, as 
opposed to a singular set of complex feature outputs. Likewise, the re
sidual connections facilitate the propagation and aggregation of repre
sentation output from each layer to enable enhanced collective 

processing in deeper layers. This is also used to address the layer 
degradation and vanishing/exploding gradients problems in deep 
learning architecture. For some function f, which represents the model’s 
learned weight, the residual connection ensures the network output is 
mapped to the input as xout = f(xin) + xin, as opposed to the traditional 
xout = f(xin). The gated activation unit is used to facilitate the recom
bination of the dilated convolution output in the wavy-attention archi
tecture via element-wise multiplications. A similar gated activation unit 
in the conventional WaveNet is utilized in the wavy-attention network, 
mathematically expressed as: 

f

Fig. 1. The proposed WAN sub-structure.  

Fig. 2. The full graph of the proposed WAN.  
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z = tan h
(
Wf*x

)
⊙ σ

(
Wg*x

)
(14)  

Where f is the filter, g is the gate, * denotes the convolution operator, ⊙
is the element-wise multiplicative operator, W is the learnable convo
lution filter, σ is the sigmoid function branch (representing the learned 
gate that regulates the information flow from the filter), and x is the 
input. With input dimensions spanning hundreds or thousands of layers, 
as commonly seen in computer vision and image recognition models, 
these architectural innovations help overcome optimization difficulties 
and accuracy limitations that arise with extreme depth. However, they 
are sub-optimal for multivariate prediction on structured data. Conse
quently, the output of the gating function is optimized with a regularized 
self-attention. Fig. 2 below illustrates the full architecture of the pro
posed WAN. 

As seen in Fig. 2, the first layer defines the input layer of the model 
that accepts a 3D input tensor representing a sequence of feature vectors. 
Then the dilation_rate loop is constructed to iterate over different dilation 
rates and create multiple layers, each with a different field of view over 
the input sequence. This allows the network to integrate information 
from various time steps without increasing the number of parameters 
significantly. Before applying the dilated convolutions, the input is 
processed by a 1D convolutional layer with 16 filters and a kernel size of 
1. This layer can be considered as a time-distributed dense layer, 
allowing for feature extraction and transformation. It processes each 
time step individually while keeping the sequence length constant. A 
dilated 1D convolutional layer with n_filters and filter_width is applied to 
the preprocessed input. This layer uses causal padding, ensuring that the 
output at each timestep depends only on past inputs. 

The dilation rate is varied across iterations, allowing the model to 
capture patterns at different time scales. The filter applies a nonlinear 
transformation and uses dilated convolutions to capture long-range 
dependencies. The LeakyReLU and BatchNormalization are applied for 
non-linearity and to stabilize the learning. Another dilated 1D con
volutional layer is applied to the preprocessed input, followed by a 
sequence self-attention layer. This branch acts as a gating mechanism 
which controls the flow of information while learning to weigh the 
importance of different input features and timesteps. The gate applies a 
self-attention mechanism that allows the model to focus on different 
parts of the input sequence, which is critical for capturing complex 
patterns. The two sets of layers act as filters and gates and are inspired by 
the gated mechanisms in LSTMs and GRUs. 

Subsequently, the outputs of the filter and gating branches are 
combined using an element-wise multiplication. The filter output is 
passed through a tanh activation, while the gating output is passed 
through a sigmoid activation. This combination allows the model to 
selectively pass or block information based on the learned gating 
mechanism. The combined output is processed by another 1D convolu
tional layer with 16 filters and a kernel size of 1, which can be consid
ered as another time-distributed dense layer. The postprocessed output 
is added back to the original input, forming a residual connection. This 
technique helps mitigate the vanishing gradient problem and allows the 
model to learn residual mappings more effectively. 

The output of each dilation rate iteration is collected as a skip 
connection. These skip connections will be combined later, enabling the 
model to leverage information from different dilation rates. All the 
collected skip connections are summed together, and a ReLU activation 
is applied. This step integrates the information from different dilation 
rates and captures patterns at multiple time scales. The combined skip 
connection outputs are flattened, and a dense layer with 4 units and a 
softmax activation is applied. This final layer produces the model’s 
output, which could be used for tasks like classification or regression, 
depending on the problem. 

The model is compiled with categorical cross-entropy loss and the 
Adam optimizer with a specified learning rate. The accuracy metric is 
also included for evaluation purposes. In summary, this architecture 
combines dilated convolutions, gating mechanisms, self-attention, 

residual connections, and skip connections, enabling the model to 
effectively process sequential data and capture long-range de
pendencies. The dilation rates allow the model to learn patterns at 
different time scales, while the gating and attention mechanisms help 
the model focus on relevant features and timesteps. The residual and 
skip connections facilitate better gradient flow and information propa
gation throughout the network. 

3.1.1. False data injection attack simulation 
The digital control system in a nuclear plant is vulnerable to False 

Data Injection Attack (FDIA) directed at critical process sensors [33]. 
The FDIA generate false instructions for controlling various components 
and could compromise the plant operation. To acquire representative 
data for sensor attacks, this work utilizes the IAEA’s ANS simulator and 
the false data injection toolbox (Potluri et al., 2019). 

The false data injection toolbox contains different function blocks 
that represent various types of industrial control system attacks (Ayodeji 
et al., 2023). The toolbox enables the injection of manipulated attack 
values into plant signals for fast modelling and simulation of various 
attacks. This ranges from naive malicious injection attacks, which can 
capture and alter the network packet from server to client, to Complex 
Malicious Response Injection (CMRI) attacks that could mask the 
physical response necessary for the feedback control loop. In this work, 
three different CMRI-type attacks on the sensor measurements are 
simulated. The attacks are executed on priority sensor signals critical to 
reactor control. The simulated attacks are: 

i. High-frequency Measurement Injection: The HFMI attack obfus
cate the authentic physical behavior of the targeted system, 
thereby exerting a negative influence on the control system that 
supervises the cyber-physical system behavior. Specifically, these 
attacks manipulate the frequency of the measured process, 
causing it to deviate from its standard rate and appear as if it is 
operating within normal system parameters. This attack is 
simulated on the pressurizer pressure sensor of the reactor 
coolant system.  

ii. High Slope Measurement Injection: The HSMI is an attack method 
that involves sending identical process measurements repeatedly 
to conceal the actual state of the system. The measurements are 
fully recorded and then replayed to give the client the illusion 
that the system is functioning normally. The focus of this attack is 
on capturing and reproducing the sensor signal. The attack is 
simulated on the pressurizer level sensor signal of the reactor 
coolant temperature.  

iii. Restart Communication Attack: Restart communication occurs 
when data is sent from server to client and the transmission is 
interrupted. This interruption may cause data to be temporarily 
lost, resulting in delays in communication. During this time, 
default values may be used, and no communication takes place. 
These interruptions can significantly disrupt closed-loop feed
back control. The attack is simulated on the reactor mean coolant 
temperature signal, a priority signal for reactor control, pressur
izer pressure control, pressurizer level control, and the reactor 
protection system. 

These attacks could be introduced into small modular reactor con
trols via the supply chain or through a malicious insider. Implementing 
these attacks on sensor signals resulted in compromised signals without 
activating the reactor protection system. This makes the detection of the 
simulated attacks challenging for conventional intrusion detection sys
tems. Table 1 summarizes the simulated attack, their classification, and 
the sensors impacted. Figs. 3-5 also show the critical sensor signals in 
steady state and under attack. 

3.1.2. Dataset description 
The proposed WAN architecture is evaluated on a sensor signal 
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attack dataset obtained from the IAEA’s ANS simulator. The variables in 
the dataset define the dynamics of the reactor coolant system during 
normal operation and the stated attacks. The total data contains eight 
variables with 6005 timesteps of the reactor coolant system dynamics. 
For all logged variables, the input/output type is analog, and the 
MATLAB data type is single. The data is obtained by simulating each 
attack for 150 s. The training dataset comprises 70 % of the total data, 
with 15 % used as a validation set, and 15 % as the test set. A detailed 
description of the variables used as sensor attack indicators is presented 
in Table 2. 

4. Result and discussion 

4.1. Model training and evaluation 

This study employs the Keras API on Tensorflow to develop the WAN 
model. Experiments are conducted on an Intel Core i-7 workstation with 
an RTX 2060 s GPU. Additionally, comparison experiments in Section 
4.2 are carried out on the cloud-based platform, Google Colab. To 

facilitate reproducibility, annotated jupyter notebooks with code and 
trained models are provided in the first author’s GitHub repository.1 

To avoid overfitting, the early_stopping and checkpoint callback 
functions are implemented. The early_stopping function monitors the 
validation loss and stops model training once the loss does not improve, 
while the checkpoint saves the best model at the epoch with high vali
dation accuracy. The Adam optimizer and a fixed learning rate of 3e-5 
were used for all experiments. The metric used for model evaluation 
are the confusion matrix, precision, recall, and the f1_score. The model 
was trained with a batch size of 16, and the epoch was specified as 500. To 
demonstrate the performance of the proposed WAN, Fig. 6 illustrates the 

training and validation loss of the model. This figure shows the training 
and validation loss and accuracy curves for the proposed WAN model 
during the training process, demonstrating how the loss decreases and 
accuracy increases over epochs. Fig. 7 presents the graphical confusion 
matrix. This confusion matrix visualizes the performance of the WAN 
model on the test set, displaying the number of true positives, true 
negatives, false positives, and false negatives for each attack class and 
normal operation. 

The confusion matrix shown in Fig. 7 is the performance of the WAN 
model in classifying different types of reactor conditions. The matrix 
displays the true labels on the rows and the predicted labels on the 
columns. The diagonal values represent the correctly classified in
stances, while the off-diagonal values represent the misclassified in
stances. The figure shows that the model correctly classifies all instances 
of Normal reactor operation with a value of 1.0 on the diagonal. For 

Table 1 
simulated attack, classification, and affected sensors signal.  

S. 
No 

Attack Name Sensors Affected Attack 
class 

1 Normal NIL 0 
2 High Frequency Injection 

Attack (HFMI) 
Pressurizer pressure 1 

3 High Slope Measurement Attack 
(HSMI) 

Pressurizer level 2 

4 Restart communication Attack 
(RCA) 

Reactor mean coolant 
temperature 

3  

Fig. 3. (a) Normal pressurizer pressure − time curve. Fig. 3: (b) Pressurizer pressure–time curve under HFI attack.  

1 https://github.com/abiodun-ayodeji/Wavy-attention-network-for-cybersec 
urity. 
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HFIA and HSMI on pressurizer pressure and level, the model also 
correctly classifies all instances of these classes with a value of 1.0 on the 
diagonal. For RCA on reactor mean coolant temperature, the model 
correctly classifies most instances of this class with a value of 0.97 on the 
diagonal. However, there are some misclassified instances (0.03) that 
are incorrectly classified as Normal Operation. Overall, the confusion 
matrix indicates that the WAN model performs exceptionally well in 
classifying the different event types, with a very high accuracy for most 
classes. The only notable misclassification occurs for a small fraction 
(0.03) of the RCA_on_RX_MeanCoolTemp class, which is misclassified as 
“Normal Operation”. This confusion matrix suggests that the WAN 
model is highly reliable and accurate for classifying these types of events 
or conditions, with minimal confusion between the classes. 

Table 3 showcases the predictive performance of the model when an 
out-of-sample test set is used to evaluate the model. It is observed that 
the model achieved 100 % accuracy during training. Furthermore, this 
high accuracy is maintained in its predictions on the test set as well. The 
confusion matrix reveals that the model performs at 99 % accuracy on 
the test data. To further evaluate the model’s performance, Table 3 
presents the precision, recall, and the f1-score of the model. The model 
demonstrates 100 % performance for all plant conditions evaluated, 
except the restart communication injection attack, where it achieves a 
98 % accuracy. 

Fig. 8 shows the Receiver Operating Characteristic (ROC) curve for 
WAN, which classifies instances into four classes (class 0, class 1, class 2, 
and class 3). The ROC curve plots the true positive rate (sensitivity) 
against the false positive rate (1 − specificity) for different classification 

thresholds, and, in general, the closer the ROC curve is to the top-left 
corner of the plot, the better the classification performance. The diag
onal line represents a random classifier with no discriminative power. 
Based on the ROC curve, it is seen that the lines for all classes are close to 
the top left corner of the graph, indicating good performance for these 
classes. The high sensitivity and specificity values suggest that the model 
can effectively distinguish the classes from the other classes. 

4.2. Comparison with baseline models 

To properly account for the impressive performance achieved in this 
paper, Table 4 compares the WAN model with other baseline models 
that have been found to perform well on multivariate datasets. The 
compared models are the vanilla convolution neural network (vCNN), 
the long short-term memory network (LSTM), and the bidirectional 
LSTM (Bi-LSTM). All models are evaluated for 20 epochs. Table 4 dis
plays the comparison result of the baseline models with the proposed 
WAN model. 

Table 4 provides a comparison of four baseline models based on their 
average precision, average recall, average f1-score, and average test 
accuracy. The vCNN model has an average precision of 0.93, which 
shows that the model correctly identifies 93 % of the relevant instances 
among all the instances it identifies. The average recall of 0.90 indicates 
that the model correctly identifies 90 % of the relevant instances among 
all the actual instances. An f1-score of 0.90 demonstrates a balance 
between precision and recall, and the average test accuracy of 0.90 in
dicates that the model correctly predicts the class label on 90 % of the 

Fig. 4. (a) Normal pressurizer level − time curve. Fig. 4: (b) Pressurizer level − time curve under HSMI attack.  
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test instances. 
The LSTM model has an average precision of 0.83, which is lower 

than vCNN, suggesting a higher chance of identifying false positives. The 
average recall of 0.77 indicates that the model correctly identifies only 
77 % of the relevant instances, also lower than the vCNN. With an f1- 
score of 0.71, it is the lowest among all the models, highlighting an 
imbalance between precision and recall. Additionally, the average test 
accuracy of 0.77 is the lowest among all the models, signifying the 
highest error rate in predicting the class labels of the test instances. 

The Bi-LSTM model has an average precision of 0.91, which is higher 
than LSTM but lower than WAN. With an average recall of 0.93, it 
surpasses vCNN and LSTM, indicating that the model can correctly 
identify most of the relevant instances. The f1-score of 0.93 is the highest 

among all the models, which shows a good balance between precision 
and recall. The average test accuracy of 0.91 is also the second highest, 
indicating that the model can predict the class labels of the test instances 
with high accuracy. The proposed WAN model outperforms all others 
with the highest average precision, recall, f1-score, and test accuracy. Its 
average precision of 0.99 means the model can correctly identify almost 
all the relevant instances among all the instances it identifies. An 
average recall of 0.99 indicates that the model can correctly identify 
almost all the relevant instances among all the actual instances. The f1- 
score of 0.99 is also the highest, which is a good balance between pre
cision and recall. The average test accuracy of 0.99 is the highest among 
all models, demonstrating the model’s ability to predict the class labels 
of the test instances with the utmost accuracy. 

The above results demonstrate that the WAN model shows a signif
icant improvement over all other baseline models across all performance 
metrics. The most substantial enhancement is observed in the average 
f1-score, where the WAN model improves by 39.44 % compared to 
LSTM. The improved performance of the WAN model is directly linked 
to its optimized architecture and the inclusion of a self-attention gate. 
The sequential self-attention layer enables the model to focus on rele
vant parts of the input sequence and learn their representations. This 
attention mechanism assigns weights to the input sequence elements 
based on their relevance to the target task. By attending to relevant parts 
of the sequence, the model can capture long-term dependencies and 
effectively represent the input sequence for classification. 

The analysis above showcases the significant improvement enabled 
by the attention module of the proposed WAN. However, it is also 

Fig. 5. (a) Normal reactor mean coolant temperature − time curve. Fig. 5: (b) Reactor mean coolant temperature–time curve under RCA attack.  

Table 2 
Parameters used for WAN model evaluation.  

S. 
No 

Tag name Description Unit 

1 PZ_Press Pressurizer pressure (reactor hot leg 
pressure) 

Pa 

2 PZ_Temp Pressurizer temperature K 
3 PZ_Level Pressurizer level m 
4 RC1_PumpSpeed Reactor coolant pump 1 speed 100 % 
5 RC1_PumpFlow Reactor coolant pump 1 flow Kg/s 
6 RX_MeanCoolTemp Reactor mean coolant temperature K 
7 RC2_PumpSpeed Reactor coolant pump 2 speed 100 % 
8 RC2_PumpFlow Reactor coolant pump 2 flow Kg/s  

A. Ayodeji et al.                                                                                                                                                                                                                                 



Nuclear Engineering and Design 424 (2024) 113277

11

pertinent to mention a few limitations of this work. Firstly, the WAN 
model was trained exclusively using process measurements. In a real- 
world application, it is critical to fuse the process data with network 
packets for better decision-making. The authors are currently imple
menting a proof of concept, using the ANS. The concept involves pro
gramming and integrating a Siemens 1500 PLC into the simulator, in a 
hardware-in-the-loop configuration. The PLC reads tags from the OPC- 
UA server, implements the control logic, and writes in the server. Uti
lizing the OPC-UA communication module would enable network 
packets to be captured and analyzed using open-source tools such as 
Wireshark or tcpdump. Secondly, the ANS is a 2700MWth simulator, 
which is not an exact representation of a small modular reactor. 

Fig. 6. The WAN training and validation loss and accuracy curve.  

Fig. 7. WAN confusion matrix for attack prediction.  

Table 3 
Classification report for the proposed WAN network.   

Precision Recall F1-score Support 

0  0.98  1.00  0.99 447 
1  1.00  1.00  1.00 460 
2  1.00  1.00  1.00 453 
3  1.00  0.98  0.99 442 
accuracy    0.99 1802 
macro avg  0.99  0.99  0.99 1802 
weighted avg  0.99  0.99  0.99 1802  
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However, the ANS could be modified to reflect the power rating of a 
typical SMR. In subsequent work, these limitations will be addressed. 

4.3. Ablation study 

To account for the contribution of individual layers in the proposed 
WAN, this section presents four ablated versions of the proposed ar
chitecture. The ablations aim to isolate components and simplify the 
architecture to test their contribution. In the first ablated version (filter- 
only WAN), the gating branch that weights the outputs of the filter 
convolutions before combining them is removed. In the full model, the 
gating helps learn which filter outputs are most relevant. The second 
ablated version (Single-dilation model) uses only a dilation rate of 1, 
removing the dilated convolutions. The full model uses multiple dilation 
rates to capture multi-scale temporal patterns. The third ablated version 
(plain CNN) removes attention and the WaveNet-style structure, using 
just plain CNN layers. The fourth ablated version removes the gating 

branch and also changes the convolutions to use ’same’ padding to 
maintain sequence length instead of using causal padding. Table 5 shows 
the ablated versions and evaluation result. 

It is observed that simplifying the WaveNet-based architecture 
(WAN) to a plain convolution neural network (Plain-CNN) leads to a 
drop in performance across all evaluation metrics. Specifically, the 
Plain-CNN model achieves an average precision of 0.94, recall of 0.92, 
F1-score of 0.92, and accuracy of 0.92 on the tested dataset. This is likely 
because the Plain-CNN lacks components such as gated dilated convo
lution and residual connection which allow the WAN models to capture 
long-range dependencies in sequential data. Additionally, ablating the 
gating mechanism and replacing causal padding with same padding 
(Same-padded WAN) severely hampers model performance, resulting in 
very poor precision, recall, F1, and accuracy. This underscores the sig
nificance of both the gating component and causal padding in enabling 
the model to leverage useful context from the sequence history. 

On the other hand, using a single dilation rate instead of multiple 
(Single Dilation WAN) has a negligible impact on metrics, with this 
model achieving performance on par with the un-ablated WAN archi
tecture. This suggests that multi-scale feature extraction via dilated 
convolutions provides minimal benefits for the current dataset. Simi
larly, removing just the gating branches (Filter-only WAN) also barely 
impacts metrics, indicating they may be redundant in the presence of 
other structures that capture sequential dependencies. 

In summary, plain CNN stacks fail to model temporal relationships as 
effectively as specialized architectures like WANs for sequential data. 
Moreover, gating and causal padding are critical components, while 
attention and multiple dilations appear less important for model per
formance on this particular dataset. The results show that mechanisms 
that enable access to useful contexts, such as gating and causal padding, 
remain vital for strong performance. Further evaluation is required on 
more complex datasets to properly analyze the effect of each component 
of the model. 

5. Conclusion 

This paper presents the simulation and detection of subtle false data 
injection attacks on priority signals in a reactor digital control system 
using a MATLAB/Simulink-based Asherah Nuclear Simulator and a false 
data injection toolbox. The attack detection is achieved using a novel 

Fig. 8. ROC curve for the WAN.  

Table 4 
The comparison results of baseline models with the proposed WAN.  

Model Average 
precision 

Average 
recall 

Average f1- 
score 

Average test 
accuracy 

vCNN  0.93  0.90  0.90  0.90 
LSTM  0.83  0.77  0.71  0.77 
Bi- 

LSTM  
0.91  0.93  0.93  0.91 

WAN  0.99  0.99  0.99  0.99  

Table 5 
Performance evaluation of the ablated versions of WAN.  

Model Average 
precision 

Average 
recall 

Average f1- 
score 

Average test 
accuracy 

Plain-CNN  0.94  0.92  0.92  0.92 
Same-padded 

WAN  
0.06  0.24  0.09  0.25 

Single Dilation 
WAN  

0.99  0.99  0.99  0.98 

Filter-only 
WAN  

0.99  0.99  0.99  0.99  
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wavy-attention network (WAN) architecture that leverages spatio- 
temporal correlations in multivariate time-series data for real-time 
cyber-attack detection. The evaluation result of the WAN performance 
shows that the proposed WAN significantly outperforms conventional 
deep learning models on the challenging task of detecting subtle false 
data injection attacks on critical sensor signals in a reactor digital con
trol system. 

A key highlight of this work is the demonstration and detection of 
process signature that defines the onset of reconnaissance attack on 
priority reactor signals. Moreover, the WAN’s innovative integration of 
dilated convolutions with a self-attention mechanism enables it to 
effectively capture long-range dependencies and learn robust represen
tations of complex sequential patterns. The gating components and 
causal padding were also found to be crucial for strong performance 
through the ablation study. The implications of this work are far- 
reaching for enhancing cybersecurity resilience in safety–critical sys
tems in advanced reactors and SMRs. By providing accurate and timely 
detection of stealthy cyber-attacks, the WAN can trigger appropriate 
mitigation responses before significant damage occurs. Its high accuracy 
of 99 % demonstrates the potential to reliably safeguard digital instru
mentation and control systems. 

Looking ahead, the WAN architecture holds significant promise for 
applications across the entire nuclear fuel cycle beyond just reactor 
operations. For instance, it could monitor sensor data streams during 
enrichment, fuel fabrication, spent fuel storage and reprocessing to 
identify cyber threats targeting these facilities. The WAN’s generic 
sequence modelling capabilities make it readily adaptable to diverse 
data modalities. Moreover, the ability to detect anomalies in multivar
iate time-series data positions WAN as a powerful tool for predictive 
maintenance and condition-based monitoring across nuclear facilities. 
By learning normal operational patterns, it can promptly flag deviations 
indicative of emerging faults or degradation in critical equipment and 
processes. Integrating WAN into an attack-resilient control framework 
would be an interesting future research direction. 
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