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a b s t r a c t

Timely fault identification is important for safe and reliable operation of the electric valve system. Many
research works have utilized different data-driven approach for fault diagnosis in complex systems.
However, they do not consider specific characteristics of critical control components such as electric
valves. This work presents an integrated shallow-deep fault diagnostic model, developed based on sig-
nals extracted from DN50 electric valve. First, the local optimal issue of particle swarm optimization
algorithm is solved by optimizing the weight search capability, the particle speed, and position update
strategy. Then, to develop a shallow diagnostic model, the modified particle swarm algorithm is com-
bined with support vector machine to form a hybrid improved particle swarm-support vector machine
(IPs-SVM). To decouple the influence of the background noise, the wavelet packet transform method is
used to reconstruct the vibration signal. Thereafter, the IPs-SVM is used to classify phase imbalance and
damaged valve faults, and the performance was evaluated against other models developed using the
conventional SVM and particle swarm optimized SVM. Secondly, three different deep belief network
(DBN) models are developed, using different acoustic signal structures: raw signal, wavelet transformed
signal and time-series (sequential) signal. The models are developed to estimate internal leakage sizes in
the electric valve. The predictive performance of the DBN and the evaluation results of the proposed IPs-
SVM are also presented in this paper.
© 2020 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

One of the most important safety-critical components in a nu-
clear power system that has received increased safety verification is
the electric valve. DN 50 electric valve is a key component that
performs critical isolation and safety functions. In complex systems
such as nuclear power plant, DN50 valves are extensively used for
isolation, regulation, and discharge of the working fluid to achieve
the balance of plant. Nuclear power plant valves operate in a high-
temperature, high-pressure and radioactive environment, and the
performance of the valves directly affects the reliable operation of
other systems. Given the safety functions performed by the valve,
and to ensure valve availability, it is important to develop a robust,
high-fidelity monitoring and fault diagnosis system, dedicated to
the valve.
uclear Safety and Simulation
y, Harbin, 150001, China.

by Elsevier Korea LLC. This is an
The conventional approach to electric valve monitoring is via
visual examination and a simple threshold. This approach is slow
and prone to error. With the availability of a large amount of
operational data, research effort is being directed to the develop-
ment of data-driven fault diagnostic systems for industrial com-
ponents. Such research efforts have yielded some data-driven
algorithms developed into fault diagnostic systems [1,2]. Such al-
gorithms span from shallow architectures, utilized for knowledge-
based operator support systems [3] to deep architecture for heat
exchanger leak rate monitoring [4]. Deep learning has many ad-
vantages that shallow architectures do not have, including the
ability to process high-dimensional, nonlinear data, and approxi-
mate complex functions. In recent years, a deep feed-forward
neural network such as convolution neural network, deep belief
network (DBN), long short termmemory (LSTM) and encoders have
made rapid development in nuclear fuel assembly defect detection
[5], pipe thinning model development [6], nuclear reactor pres-
surizer water level prediction [7] and steam generator tube flaw
classification [8]. However, there is no expert consensus on the
choice of one model or architecture over another.
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In principle, support vector machines (SVM) have shallow ar-
chitectures. Since Vapnik proposed the support vector machine
(SVM), the method has gained a lot of traction and improvement
within the machine learning research community. SVM has ad-
vantages in dealing with small data size, nonlinear and high-
dimensional problems. SVM has been applied to predict nuclear
plant process measurement drift [9] and for predictive mainte-
nance of nuclear infrastructure [10]. However, SVM hyper-
parameter selection and optimization issues result in the below-
optimal model [11]. To solve the SVM hyperparameter optimiza-
tion issue, some research works integrate other soft computing
algorithms such as genetic algorithm [12], sequential feature se-
lection, and particle swarm optimization (PSO). The PSO optimi-
zation algorithm is used to search and optimize the SVM
parameters to find the best combination of parameters and
improve the accuracy of fault diagnosis. The PSO algorithm is a
global search method. However, the algorithm suffers from the
local optimal issue and may not be a suitable optimization algo-
rithm for SVM if used directly. In the literature reviewed, the local
optimal issue is not addressed before the application of PSO.

Moreover, a major weakness in the application of data-driven
techniques to diagnose faults in the electric valve is that charac-
teristic vibration and acoustic signals used for diagnosis are usually
weak. This signal is corrupted by interference and background
noise from other coupled components. To address this issue, Yang
et al. [13] proposed a total variation denoising method to filter
noise mixed in the nuclear plant sensors. Jinyang et al. [14]. also
proposed a hierarchical discriminating sparse codingmethod to de-
noise acoustic signals and isolate interference. However, these
methods have not been verified in real electric valve systems. Also,
the complexity of the methods makes it unattractive for real-world
applications.

Furthermore, in most application of the data-driven diagnostic
system in complex systems such as nuclear power plants, thewhole
diagnosis is being performed by a single algorithm. Where a hybrid
algorithm is used, the result relies on other qualitative reasoning
approaches that are inadequate to handle the complexity involved
in industrial systems [15]. Application of such model in complex
systems such as nuclear power plants results in weak models with
high false alarm [16]. Also, most of the research work on nuclear
plant fault diagnosis focused on the whole plant diagnosis or fault
isolations in other components, with no consideration for the
specifics that are peculiar to DN50 electric valves. Further, it is also
common knowledge that the credibility of the training dataset is
critical to the performance of data-driven models. In most appli-
cations, the data used to train the models are synthetic and are not
representative of the actual signal from real valves.

Consequently, to address the weaknesses identified above, this
paper proposes an integrated shallow-deep architecture for the
DN50 electric valve fault diagnosis system using vibration and
acoustic signals. In this paper, based on the reported effectiveness
in the real-world application of vibration and acoustic signal for
fault diagnosis [17,18], we experimented with three different
structural data acquisition/signal processing techniques in the
development of the shallow and deep models. Towards the
implementation of a robust shallow-deep intelligent fault diag-
nostic system, these experiments are conducted to verify which
data structure best fits the model, and which data-driven archi-
tecture best solves the problem of fault detection and fault size
estimation in the electric valve. The acoustic signals are acquired in
raw form, sequential form (time series), and transformed (using
wavelet packet technique.)

The shallow architecture is implemented with an improved
particle swarm-support vector machine (IPs-SVM). The developed
(IPs-SVM) model is trained with the wavelet transformed vibration
signal. The deep architecture is implemented with deep belief
network (DBN). The developed DBN model is evaluated on the
three signal structures and the results are presented in this paper.
The novelty in this paper is summarized below:

1. The local optimal issue of particle swarm optimization algo-
rithm is solved by optimizing the weight search capability, the
particle speed and position update strategy to achieve an
improved particle swarm optimization algorithm.

2. The hyperparameter selection problem of SVM is solved by
integrating the improved particle swarm optimization algo-
rithm to obtain improved particle swarm-support vector ma-
chine (IPs-SVM).

3. It is observed that different data structure is used to develop
data-driven models. For broader applicability, we experimented
with three different kinds of data structures: raw data, time
series (sequential) data and wavelet packet transformed data.

4. To solve the high false alarm problem in the implementation of
data-driven models in complex systems, we split the fault
diagnostic task into two: fault detection and classification is
done with the IPs-SVM model, while fault size estimation is
done with deep belief network (DBN).

5. The resulting IPs-SVM model’s enhanced classification capa-
bility is used to classify phase imbalance and damaged valve
fault. Phase imbalance anomaly and damaged valve packing
experiments are conducted in a real DN50 electric valve, and the
vibration signal from the valve is obtained and transformed
using a wavelet packet reconstruction technique to reduce the
effect of background noise and interference.

6. The DBN is utilized to estimate internal leakage size in the DN50
electric valve using the acoustic signal. The acoustic signal is
obtained from six (6) different internal leakage size experiments
conducted on the DN50 electric valve.

Considering the importance of the training data to any data-
driven algorithm, we obtained real DN50 electric valve vibration
and acoustic signals in an environment that closely represents the
valve operation in the industry.

2. Background

2.1. Wavelet packet decomposition

Orthogonal wavelet packets are a set of functions by which
standard orthogonal base in space can be constructed. A given
signal can be divided into many frequency bands by a set of
orthogonal filters combined with a low-pass and a high-pass filter.
The energy of the signal f ðtÞ can be expressed as:

kf ðtÞk2 ¼
ð∞

�∞

jf ðtÞj2dt (1)

The energy is orthogonally transformed onto the adjacent fre-
quency band without overlapping by the wavelet packet transform.
The sum of the squares of the coefficients obtained by the wavelet
packet decomposition is equal to the energy of the original signal in
the time domain, expressed as:

Ej ¼
XN
i¼1

knik2 (2)

Where j denotes the corresponding frequency band, N is the
number of data points, and ni is the wavelet packet decomposition
reconstruction coefficient. When there is a fault in the component,
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the energy of each frequency band in the signal changes. Therefore,
the ratio of the energy of each frequency band after decomposition
to the total energy can be selected as the characteristic parameter
for fault diagnosis. Then the wavelet packet decomposition energy
ratio is defined as:

pj ¼ Ej

,Xk
j¼1

Ej (3)

Where k is the number of the frequency band.
Fig. 1. The flow chart of the PSO algorithm.
2.2. Particle swarm optimization (PSO) and improved particle
swarm optimization (IPSO)

(a) Particle swarm optimization (PSO)

The PSO algorithm treats each particle in the swarm population
as a particle with no size andmass. They search in space at a certain
speed and dynamically update the flight speed based on the current
flight experience of the population and the individual.

In a j-dimensional search space, if there are m particles in the
population, then xij is the position vector of the particle i, and vij is
the velocity vector of the particle i. In the standard PSO algorithm,
the speed and location of the particles in search are updated as
follows:

vijðtþ1Þ¼uðtÞ�vijðtÞþc1�randðÞ�
�
pbjðtÞ�xijðtÞ

�
þc2�randðÞ

�
�
gbjðtÞ�xijðtÞ

�
(4)

xijðtþ1Þ¼ xijðtÞ þ vijðtþ1Þ (5)

Where u is called inertia weight; c1 and c2 are called acceleration
factors; rand() is a random number uniformly distributed in the
interval [0,1]; pbj is the best positionwhich the current particle ever
fly through; gbj is the best position of the entire population inwhich
the particle is located, which is the best position experienced by the
current iteration of the entire population.

Equation (4) consists of three parts [19]: the first part is the
product of the current flight speed and inertia weight in the current
iterative process of the particle, and this product reflects the par-
ticle’s inheritance from its current motion state. The particles
perform inertial motion according to their flight speed. The second
part represents the learning cognitive mode of the particle itself.
The last part is the influence of the social model of the population,
indicating the exchange and cooperation of the particles in the
population.

In Equation (5), the particles are adjusted in the searching
process by mutual influence and mutual learning. The particle
swarm algorithm flow chart is shown in Fig. 1.

(b) IPSO

While PSO is running, each particle is regarded as a feasible
solution to the optimization problem in the search space and the
flight behavior of the particles can be treated as the search process
of all individual particles. However, since the convergence depends
on a random search, the algorithm cannot be guaranteed to
converge to a local optimum [20]. The standard PSO algorithm
introduced above belongs to the global PSO algorithm because its
speed updating is based on its historical optimal value and the
global optimal value of the particle population. The updating speed
of the local particle is based on its historical optimal value and the
optimal value of the particles in its neighborhood. The global PSO
algorithm converges faster, but it is easier to get the local best, and
the local PSO algorithm converges slower than the global PSO al-
gorithm, but it is not easy to obtain the local best. Hence, for the
standard PSO algorithm, it is easy to fall into the local optima [19].
This constraint is addressed by developing an improved PSO algo-
rithm, which combines the global PSO searchmethodwith the local
PSO algorithm. The PSO algorithm is improved in the following
aspects:

(c) Improvement of particle’s update strategy for velocity and
position based on the fusion of the global PSO algorithm and
the local PSO algorithm. The distance between the particle
and other particles in the iteration is calculated. If the ratio of
the distance between the particle and the maximum dis-
tance is less than a threshold, indicating that the particle
belongs to the neighborhood, the improved algorithm is
utilized to update the velocity and position of the particle; If
the ratio of the distance between the particle and other
particles equals, the standard PSO algorithm is used. Also, if
the ratio of the distance between the current particle and
other particles is less than the threshold, then the particle
updates its speed according to the particle’s historical
optimal value pbj, the optimal value lb of particles in the
adjacent area, and the global optimal value of the population
gbj.

For each iteration, the distance between the particles and the
remaining particles are computed, and the distance between any
two particles a and b are set to dab, the maximum distance is dmax,
and the ratio dab/dmax is obtained. The threshold x changes ac-
cording to the number of iterations, and it is expressed as :
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x¼0:3t þ 0:6tmax

tmax
(6)

Where t is the number of iterations, and tmax is the maximum
number of iterations. When x < 0.9, if the ratio dab/dmax<x, the
particle b is considered to belong to the neighborhood of the par-
ticle a. At this point, the speed and position of the particles are
updated as follow:

vijðtþ1Þ¼uðtÞ�vijðtÞþc1�randðÞ��
pbjðtÞ�xijðtÞ

�
þc2�randðÞ�

�
gbjðtÞ�xijðtÞ

�
þ c3�randðÞ

�
�
lbjðtÞ�xijðtÞ

�
(7)

xijðtþ1Þ¼ xijðtÞ þ vijðtþ1Þ (8)

Where t is the number of iterations; u is the inertia weight; c1, c2,
and c3 are learning factors.

If x > 0.9 or the ratio dab/dmax>x, the particle velocities are
updated as shown in equation (4).

(d) Improvement on the inertia weight search method

In the standard PSO algorithm, the weight u is linearly reduced,
which also gradually reduces the search step size, and converges
the iteration to the extreme point. The disadvantage of this method
is that the algorithm easily falls into local minima. To overcome this
constraint, the weight u is reduced by the sigmoid function to
ensure that the population searches at a faster speed in the early
stage of the search, and the search speed decreases rapidly in the
middle, making the particles to easily converge to the global
optimal value. In the last stage, the particles converge at a certain
speed until the final convergence. The expression of the weight in
the IPSO algorithm is:

u¼ umax � umin
1þ expð2e � t=tmax � eÞ þ umin (9)

Here, umax and umin are the maximum and minimum inertia
weights respectively; e is the control coefficient used to adjust the
speed.
2.3. IPs-SVM

The SVM algorithm diagnose faults by classifying sample data.
For multi-class implementation, different kinds of samples are
divided into different regions by the classification model, and the
corresponding state of the data is determined by the region that
each sample belongs [21].

For a classification problem, the SVM algorithm determines the
maximum distance between each class and a parametric hyper-
plane so that the distance between the data point and the hyper-
plane is as large as possible. Consider a linearly separable problem
having a sample set S ¼ fðxi;yiÞg; i ¼ 1;2; :::;N;x2R;yi2 f� 1;1g,
the classification hyperplane is defined as:

u � xþ b ¼ 0 (10)

Normalizing equation (8) to satisfy the sample set, we obtain:

yi½ðui � xÞþ b� �1 � 0i¼1;2; :::;N (11)

In Equation (11), u is the weight; b is the threshold; and N is the
total number of samples.

Here, the classification interval is 2/||u||. To maximize the
interval, ||u|| is minimized. Therefore, the classification surface that
satisfies equation (11) and minimizes u is the optimal classification
surface. The above process can be transformed into a constrained
minimum problem, including the objective function and the
restriction.8><>:min

1
2
kuk2

s:t:yi½ðu � xiÞ þ b� � 1 � 0
(12)

Where u is an independent variable, the objective function is a
quadratic function of u, and the restriction is a linear function of u.
This is a convex quadratic programming problem, which can be
solved by introducing a Lagrange multiplier. The new objective
function is:

Lðu;b;aÞ¼1
2
ðu;uÞ �

Xn
i¼1

aifyi½ðu � xiÞþ b� �1g (13)

Equating the derivatives of u and b respectively to zero (0), we
have:8>><>>:

v

vu
Lðu; b;aÞ ¼ 0

v

vb
Lðu; b;aÞ ¼ 0

(14)

From (14):8>>>><>>>>:
u ¼

XN
i¼1

aiyixi

XN
i¼1

yiai ¼ 0

(15)

Substituting (13) into (11) gives:8>>>>>><>>>>>>:
min

1
2

XN
i¼1

XN
j¼1

yiyjaiaj
�
xi � xj

��XN
i¼1

ai

s:t:
XN
i¼1

yiai ¼ 0;ai � 0; i ¼ 1;2; :::;N

(16)

Where ai is the Lagrangian multiplier corresponding to sample i.
Then the optimal classification function expression is:

f ðxÞ¼ sgnfðu � xÞþ bg¼ sgn

 XN
i¼1

yiaiðxi; xÞþ b

!
(17)

Where sgnð �Þ is the function sign, and the classification of sample x
can be determined by the positive or negative value of the function.

For samples that are not linearly separable, a slack variable
xi � 0ði¼ 1;2; :::;NÞ is introduced. That is, a small amount of error is
allowed to exist, such that the restriction in equation (12) becomes:

yi½ðu � xiÞþ b� �1� xi (18)

Then the optimization problem becomes:8>><>>:
min

1
2
kuk2 þ C

XN
i¼1

xi

s:t:yi½ðu � xiÞ þ b� � 1� xi; xi � 0; i ¼ 1;2; :::;N

(19)

Where C is the penalty factor. Constructing the Lagrangian equation
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results in the following dual Lagrangian operator:8>>>>>><>>>>>>:
min

1
2

XN
i¼1

XN
j¼1

yiyjaiaj
�
xi � xj

��XN
i¼1

ai

s:t:
Xn
i¼1

yiai ¼ 0i;0 � ai � C; i ¼ 1;2; :::;N

(20)

Here, the solution process of the optimal classification hyper-
plane is the same as the linearly separable case.

The nonlinear case can be solved by utilizing non-linear map-
ping. The original samples are mapped to a linearly separable
higher-dimensional feature space, and the best classification hy-
perplane is constructed in the high-dimensional feature space. In
this case, the inner product operation ðxi; xjÞ in the linear case needs
to be changed to ð4ðxiÞ;4ðxjÞÞ.

According to the Hilbert-Schmidt principle, the kernel function
satisfies the Mercer condition: for any function g(x), whenR b
a g2ðxÞdx is limited, Kðxi; xjÞ is the inner product of space ð4ðxiÞ;
4ðxjÞÞ, and the optimization problem becomes:

min
1
2

XN
i¼1

XN
j¼1

yiyjaiajK
�
xi; xj

��XN
i¼1

ai (21)

The classification decision function is:

sgn

 XN
i¼1

yiaiKðxi; xÞþ b

!
(22)

In the utilization of IPSO and development of IPs-SVM, the first
step is that the parameters that need to be optimized, such as the
SVM penalty factor C and parameters g of the RBF kernel function,
are taken as the values of the elements of the particle position
vector. Secondly, the fitness of the particles and the accuracy of the
cross-validation results are computed. The IPs-SVM algorithm
flowchart is shown in Fig. 2.

2.4. Deep belief network (DBN)

The DBN is a generative neural network consisting of several
Restricted Boltzmann Machine (RBM). An RBM consists of a hidden
layer and a visible layer. The hidden layer consists of hidden cells,
and the visible layer consists of visible cells. Both the visible unit
and the hidden unit are binary variables whose state is 0 or 1. The
units between adjacent layers have connections, and the units in
the same layer are not connected [22]. The RBM unit stack and
structure is shown in Fig. 3. The state of the bottom unit is the
visible input data vector, and the output of the hidden unit is the
input of the visible layer unit of the next RBM unit.

The training of DBN is generally divided into two processes:
unsupervised pre-training and supervised fine-tuning. If the DBN is
used for classification, the training of the DBN is first performed in
an unsupervised manner to help the DBN effectively mine the fault
features in the input data. Then the network can be supervised
using back-propagation approach. In the unsupervised pre-training
phase, also known as the feature learning phase, the basic purpose
is to calculate the hidden layer output corresponding to the input
signal v, that is, the hidden layer feature signal h, so as to maximize
the joint probability distribution P(v, h). In a more intuitive
expression, it is a process of reconstructing the visible layer signal
through the hidden layer feature signal h, making the error be-
tween v and bv minimal [23]. When the input signal and parameters
of the network are given, the parameter initialization network
model between layers is [24]:
8>><>>:
h � Pðhjv;W; a;bÞ ¼ 1

PðvÞ � Z � eðbT�hþvT�W�hÞ

bv � Pðvjh;W; a;bÞ ¼ 1
PðhÞ � Z � eðaT�vþvT�W�hÞ

(23)

Where v is the input of the visible layer, h is the output of the
hidden layer,W is the connectionweight matrix of the visible layer
to the hidden layer, a is the offset of the visible layer, and b is the
offset of the hidden layer. In practical application, parametersW, a,
b are initialized, and the equation relating the hidden layer h to the
visible layer v is:

� PðhðiÞ ¼ 1jvÞ ¼ s
�
vT �Wi þ bi

�
PðhðiÞ ¼ 0jvÞ ¼ 1� s

�
vT �Wi þ bi

� (24)

Here, sð �Þ is the activation function, which is usually a sigmoid
function, h(i) is the output value of the node i of the hidden layer,
Wi is the connection weight, and bi is the offset of the hidden layer
node. The equation for calculating the visible layer v according to
the hidden layer h is:�
PðbvðjÞ ¼ 1jhÞ ¼ s

�
Wj � hþ aj

�
PðbvðjÞ ¼ 0jhÞ ¼ 1� s

�
Wj � hþ aj

� (25)

The parameters are updated according to the error between v
and bv, and the updated relation for the parameter q ðW ; a; bÞ is:8>><>>:

qðtþ1Þ ¼ qðtÞ þ h
vlog PðvÞ

vq
j
q
ðtÞ ¼ qðtÞ þ h� DqðtÞ

vlog PðvÞ
vq

¼ Chðv� bvÞD (26)

Where h is the learning rate or step size; t is the number of itera-
tions; Chðv�bvÞD is the mean value of the product between the
maximized probability of visible layer v’ and its corresponding
hidden feature vector.

3. The proposed IPs-SVM/DBN fault diagnosis system

To solve the problems identified in section 1, the following steps
are implemented to develop a robust IPs-SVM model for fault
detection and DBN model for fault size estimation.

Step1. (a): In the signal acquisition and feature extraction phase,
the vibration signal and the acoustic emission signal from the
electric valve is collected. The vibration signal obtained is based on
the phase imbalance in the valve motor drive and damage valve
packing faults simulated using the experimental setup described in
Section 4. To reduce the interference and background noise from
other components, the signal is processed using the wavelet packet
decomposition approach. The energy ratio of the transformed
signal is then utilized to train the proposed IPs-SVM used for fault
detection.

(b) The acoustic signal obtained is based on six different internal
leakage faults simulated on the experimental setup. The
acoustic emission signal is used for detecting the occurrence
of the leakage fault in the valve and predicting the leakage
rate. The collected signal is extracted using three different
processes: raw signal extraction, time series (sequential)
signal extraction and wavelet packet transformed signal
decomposition. We experimented with these three signal
structures by training three different DBNmodels using each
of the signal structure.



Fig. 2. The flowchart of IPs-SVM algorithm.

Fig. 3. The structure of DBN
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Step 2. In the model training phase, the data samples comprising
the characteristic parameters are partitioned and used as themodel
training samples and test samples. The samples obtained in Step
1(a) is used to train the IPs-SVM model utilized for fault detection
and classification. The samples obtained in Step 1(b) is used to train
the DBN fault size estimation models for leak degree evaluation.

Step3. The performance of the proposed IPs-SVM for fault
detection is evaluated against the conventional support vector
machine (SVM) and a hybrid of (un-improved) particle swarm
optimization algorithm with the conventional SVM (PSO-SVM).
Moreover, the result of the fault size estimation (DBN models)
developed using different signal structure is analyzed. The pro-
posed method for the electric valve fault diagnosis is shown in
Fig. 4.
3.1. Experimental testbed for data acquisition

3.1.1. Experimental setup
To implement a functional representation of the DN50 electric

gate valve obtainable in the real valve operation, an experimental
testbed is set up. The experimental equipment is a set of simple
water circulation circuit with the electric valve. The purpose of the
experiment is to collect the operation data of the electric valve
under normal and fault conditions, used to verify the feasibility of
the intelligent method. The mechanical vibration and acoustic
signals contain the information that can reflect the working state
and fault condition of the equipment. Two kinds of sensors area
arranged to collect the comprehensive valve operation information
which lays the foundation for the subsequent analysis.

The testbed consists of a vertical circulating power centrifugal
pump, pressure sensor, electromagnetic flowmeter, differential
pressure transmitter, and the Z941He25P electric gate valve. The
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schematic diagram of the testbed and the actual laboratory layout
are shown in Fig. 5 and Fig. 6 respectively. As shown in Fig. 5, the
main circulation pipe has a diameter of 50 mm, three electric gate
valves are arranged in parallel on the pipeline, and a static pressure
transmitter is installed in each of the upstream and downstream
circuits of the valve. On the total circuit downstream of the valve, a
differential pressure transmitter and an electromagnetic flowmeter
are also installed. The above sensors can measure the pressure
before and after the valve, the pressure difference and the circu-
lating flow of the circuit.

The range of the pressure sensor is 0e2.5 MPa, the range of the
differential pressure sensor is 0e500 KPa, and the range of the
electromagnetic flowmeter is 0.2~5 m3/h. The centrifugal pump
speed used in the experiment can be controlled by the frequency
converter. The centrifugal pump pumps water from the water tank
for circulation. The water tank is made up of two stainless steel
tanks in series with a volume of about 3m3. Only one parallel circuit
is enabled at a time during the experiment so that only one gate
valve is operated in the main channel. In the experimental setup,
the valve switch can be controlled at any time by the computer
system.

Also, two acceleration sensors are arranged orthogonally on the
motor drive of the valve tomeasure the vibration signal of the valve
during operation. One of the accelerometers is mounted on the
motor coil housing and the other is mounted on the gear reducer
housing. The two accelerometers used in the experiment are AD50T
self-amplifying accelerometers. The amplifiers have a frequency
range of 0.5e15000Hz, and a working temperature of �40e120 	C,
and there are special magnetic fixtures and acquisition cards of
MPS-060602 with two acquisition channels. The acceleration
sensor arrangement is as shown in Fig. 7.

The testbed uses the SR40 M acoustic emission sensor, with
dimensionF22� 36.8mm, a frequency range of 15e70 KHz, and an
Fig. 4. Flow chart of the
operating temperature of �20e120 	C. The acoustic emission pre-
amplifier uses a PA I broadband preamplifier. The bandwidth is
10 KHz~2.0 MHz, the working temperature is �20e65 	C; the
acoustic emission acquisition card is SAEU2S type acoustic emis-
sion acquisition card, USB interface, with two channels, the sam-
pling rate is 769 kHze10 MHz.There are many options for the
installation position of the acoustic emission sensor. The basis for
the selection is that the signal with a large amplitude and energy
can be obtained at this position. After consulting the literature, the
optimal measurement point for the leakage inside the valve is the
downstream flange. However, due to the largeweight of the electric
valve selected in the experiment, the bench beam shields the flange
surface during the installation process. Consequently, the acoustic
emission sensor is mounted on the valve base shell, as shown in
Fig. 8. The sensor mounting surface is smoothened with a sand-
paper toremove impurities. It is adhered to the specified position
with a special coupling agent and is reinforced with a tape.

3.1.2. Experimental procedure
The internal leakage of the valve is observed externally as fol-

lows: the valve position indicator shows that the valve is in the
closed position, the flowmeter has no obvious indication of ab-
normality, and there is still a small amount of working fluid flowing
through the closed valve, which is the internal leakage state of the
valve. The internal leakage produces a jet flow downstream of the
valve block. The impact of the jet flow on the valve causes the
molecular stress wave, which is the acoustic emission.

When the valve position is fully open, the frequency converter is
adjusted to control the rotation speed of the main pump at 15hz-
870rev/min. when the instrument is normal and the water circu-
lation has been established, the driving pressure of the working
medium is 0.26Mpa, and the local resistance of the gate valve is
very small. The two static pressure indications are initially
proposed method.



Fig. 5. Schematic diagram of the experimental setup.

Fig. 6. A picture of the real experimental testbed.
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0.00Mpa, the differential pressure manometer indicates
5.00kpae8.00kpa, and the total flow of the pipeline is 3.03m3/h. At
this time, the acoustic emission sensor does not receive any trig-
gering signal.

Due to the limitation of the experiment, the internal leakage
mode of this experiment is simulated with the sealing surface not
tightly closed. In this case, to work around the limitations of the
experiment, the total flow of the pipeline needs to be reduced to
less than 0.2m3/h. Then, the flowmeter no longer reads, and flow is
established by rotating the valve motor handwheel. The acoustic
emission signals and the internal leakage flow rate for different
internal leakage degree under stable pressure are obtained using
the following procedure:

① Push on the gear lever of the motor to make the handwheel
mesh with the reducer.

② Rotate the handwheel and observe the flowmeter at any time
until the flowmeter is slightly higher than 0.2m3/h.

③ Adjust the remaining valve position, for example, by turning
the handwheel 30	 at a time, and measure the flow and
acoustic emission signal at each time.

④ For flow measurement, the flow measurement valve is
opened first, and then the downstream manual ball valve is
closed. The outgoing working medium can be contained in a
water box. The quantity of the collected water is measured
for 1min, i.e. the internal leakage flow.
Fig. 7. Acceleration sensor installation.
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⑤ After measuring the leakage flow, the downstream manual
ball valve is then opened, while the flowmeasurement valve
is closed and the acoustic emission measurement starts.

Due to the gate valve design, there is stroke error. Also, the
flexible connection between stem and gate, plus the interference of
viscosity and surface tension of working medium constraintthe
valve handwheel from rotating in the opposite direction, so it must
move from the opening position to the closing position at a point.
Moreover, because the valve itself is only set with two scales, the
valve position cannot be determined through the scale, so the
measurementis taken to indirectly correspond to the leakage de-
gree of the valve through the flow under the leakage condition at
constant pressure.
3.1.3. Vibration signal processing
The experiment includes the vibration signal acquisition from

the valve motor drive during the normal operation, phase imbal-
ance in the valve motor, and damaged valve packaging fault. Phase
imbalance fault is simulated by connecting a 50U and a 25U
aluminum alloy resistor in parallel to the electric valve motor ter-
minal. The damaged valve filler is simulated by repeatedly adjust-
ing the hand-wheel switch valve. The experimental sampling
frequency is 100 KHz, the trigger voltage is 0.1V, and the sampling
time is 44s. The original vibration signal waveform of the motor
drive in the three states of the valve are shown in Fig. 9. The figure
shows the data points of the signal between 2se2.1s.

After many experiments, the db12 wavelet is chosen to obtain a
6-layer transformation of the valve vibration signal, and the signal
is decomposed into 26 ¼ 64 nodes. The frequency width of each
frequency band is 100=ð64*2Þ ¼ 0.78125 KHz,and the signal
waveform of the reconstructed node in the first 8 frequency bands
of the last layer of signal decomposition is drawn. The valve vi-
bration signal wavelet packet decomposition node reconstruction
signal of three valve states including the normal state, the valve
motor drive phase imbalance fault and the valve packing fault is
shown in Figs. 10�12.

Based on signal wavelet packet decomposition, the wavelet
packet transform coefficients of the reconstructed signal are used
to calculate the wavelet packet energy ratio of each band in the six
layer. The energy is mainly concentrated in the first 8 segments, so
Fig. 8. Acoustic sensor installation.
only the first 8 nodes are taken. The results are shown in Fig. 13
below:

3.1.4. Acoustic emission (AE) signal processing
The fast Fourier transform is performed on the acquired AE

signal, and it is found that the signal energy is mainly concentrated
at 0e100 KHz, and the peak appears at 20e30 KHz. In the AE
detection of the internal leakage of valves, optimumwavelet signal
decomposition characteristics are obtained using the db8 wavelet
[25]. The signal sampling frequency is 5MHz.The simulated leakage
rate of the valve are: 0.025 m3/h, 0.055 m3/h, 0.085 m3/h, 0.115 m3/
h, 0.145 m3/h and 0.175 m3/h. Taking an instance of the valve in-
ternal leakage AE signal with a leakage rate of 0.025 m3/h, we
selected 5000 data points, and make a 6-layer transformation with
a db8 wavelet. The original signal and wavelet packet decomposi-
tion node reconstruction signals are shown in Figs. 14 and 15.

Based on the wavelet packet decomposition in Fig. 15, the en-
ergy ratio of the wavelet packet nodes in each frequency band is
calculated, and the first 10 frequency bands are taken as the signal
characteristic vector. The characteristic parameters of the AE signal
extraction under six kinds of leaking rate are as shown in Fig. 16.

4. Results and analysis

4.1. Fault classification

In the experiment, the signals indicating the normal state, valve
motore drive phase imbalance fault, and damage of valve packing
are obtained. For training samples, 30 signals are taken for each
state, 15 of which are acquired when the valve is turned on, and 15
are acquired when the valve status is turned off. For the test sam-
ples, 12 samples are randomly selected for each signal. The
composition of the final sample is shown in Table 1 and the IPSO
algorithm parameter settings are shown in Table 2.

The range of the RBF function parameter g is [0.01, 200], and the
penalty factor C ranges from 0.1 to 500. In the process of training
the model, three-fold cross-validation is performed. The training
samples are randomly divided into three parts, one is randomly
selected as the evaluation set, and the remaining two are used as
training and testing sets. Consequently, the maximum fitness value
for all particles is obtained, and the training result of the IPs-SVM
model is shown in Fig. 17.

From Fig. 17, the training result is 96.25%. That is, the combi-
nation of the parameter values obtained by the optimization results
in a model with 96.25% predictive accuracy. The best penalty factor
C is 3.4783, and the best RBF kernel function parameter g is
52.9270. Using the test sample on the IPs-SVM model obtained
after the training, the model correctly identified 336 test samples
with 93.3333% accuracy.

To quantify the effect of the modifications implemented in IPs-
SVM, we conducted additional experiments to test whether there is
a significant change from the result obtained from using direct PSO-
SVM and just SVM algorithm without the PSO influence. For PSO-
SVM, the PSO algorithm is first used to find the optimal param-
eter combination, and the obtained PSO-SVMmodel training result
is shown in Fig. 18.

The fitness result of PSO-SVM model training is 95.97%, which
indicates that the obtained model has 95.97% classification accu-
racy. The penalty factor C is 3.6788, and the RBF kernel function
parameter g is 50.0000. Using the test sample on the PSO-SVM
model, the model correctly identified 335 test samples with an
accuracy of 93.0556%.

In the implementation of SVM only, we applied the general grid
search SVM parameter selection (enumeration) method. The main
idea is to set the range of the penalty factor C and the kernel



Fig. 9. The raw waveform of the motor drive vibration signal.

Fig. 10. Wavelet packet decomposition signal for valve normal state.
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function parameter g in advance, and iteratively adjust the values
to reach the optimum. Finally, the combination of parameters that
give the best classification accuracy is selected as the optimum
combination of parameters. Here, the grid searchmethod is applied
to optimize the parameters. The range of the penalty factor C and
the kernel function parameter g is set to [2�10, 210], and the index
step size is 0.8. The obtained parameter selection result is shown in
Fig. 19.

The optimal penalty factor C obtained by the grid search
method is 1.3195, and the kernel function parameter g is
111.4305. Using these parameters in the SVM model, the best
classification accuracy rate during training is 95.6944%, and the
test result is 91.9444%. The results of the three classifiers eval-
uated are shown in Table 3.

It can be seen from the table above that the classification
accuracy for the IPs-SVM model is the best for both training and
test sample. It was observed that in the grid search SVM model,
the penalty factor C and the kernel function g take a number in
the reported range at every discrete distance. This may account
for the failure to attain an optimal result. Conversely, the
accuracy of the training results and test results obtained by IPs-
SVM and PSO models is higher than that of the grid search SVM,
and the IPs-SVM algorithm has higher accuracy than the PSO-
SVM model, which shows that the IPs-SVM model is a more
intelligent, more efficient classifier and has a higher generaliza-
tion ability. As seen in Table 3, the parameter optimization effect
of the IPSO algorithm shows a modest percentage improvement
over that of the PSO algorithm. However, in the actual imple-
mentation, such modest improvement has a significant effect and
much obvious advantage in the rate of false alarm generated by
the model.

4.2. Fault degree assessment

Because the sampling frequency of the AE signal for valve
leakage is high and the signal size is huge, we train the DBN
network with the samples consisting of original signals to adap-
tively extract the signal characteristics and evaluate its prediction
accuracy. When the valve has internal leakages with different leak
rates, the valve AE signal parameters will also change, so the time



Fig. 11. Wavelet packet decomposition signal for valve motor drivephase imbalance.

Fig. 12. Wavelet packet decomposition signal for damaged valve packing.

Fig. 13. Results of feature extraction (a) Normal (b) Motor drive phase imbalance (c) Damaged packing.
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domain characteristic parameters of the AE signal are extracted as
the characteristic parameters of the sample. The details of the
signal acquisition, processing andmodel evaluation can be found in
Refs. [26]. The evaluation process involved and the result obtained
in the development of the DBNmodels using different data samples
is summarized as follow:
a. DBN performance on the original (raw) data

We utilized 500 data points from the original signal, and select
1800 samples for each leak rate. In each selected sample (1800),
1500 samples are used as training data, while 300 are used as test
data. The total number of training data from all leak samples is
9000 and the number of test data is 1800. The sample is normalized



Fig. 14. AE original signal for internal leakage fault.

Fig. 15. Wavelet packet decomposition node reconstruction signal.
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and used to develop the DBN network. First, we pre-train the
network using the unsupervised method. Then we fully train the
network with supervised learning. The network parameters uti-
lized during the two training processes are as shown in Table 4.

After training the network, the test samples are used to evaluate
themodel. The leak rate in the test samples is 0.025m3/h, 0.055m3/
h, 0.085 m3/h, 0.115 m3/h, 0.145 m3/h, 0.175 m3/h. The predicted
leak size by the DBN model is shown in Fig. 20, and the absolute
error is shown in Fig. 21.

In Fig. 20, the data points are the assessment result (leakage
rate) predicted by the DBNmodel, and the straight line is the actual
(simulated) leak rate. For best performance, the data points are
expected to cluster around the actual leak rate simulated. As
observed in Fig. 20, this is not the case, as the data points are
scattered. Hence, the evaluation result deviates from the actual leak
rate, especially when the leakage rate is between 0.055 m3/
h~0.175 m3/h, which shows that DBN model prediction is poor
when trained with the raw signal from the valve. In Fig. 21, the
maximum absolute error between the evaluation result and the
actual result is 0.149 m3/h, the mean value of absolute error is
0.0351 m3/h, and the mean squared error of the evaluation result is
0.018. To achieve better results, we obtained a fresh time-series
signal to train the DBN.

b. Time-series (sequential) signal characteristic parameter
samples

The six characteristic parameters of the AE signal including
amplitude, ringing count, rise time, energy, RMS and ASL with
different leakage levels are taken as the characteristic parameters
of the sample. In the preprocessing stage, 1800 samples were
selected for each leak rate, including 1500 training samples, 300
test samples, and the samples are normalized. The total number of
the training sample is 9000, and the number of test samples is
1800. We utilized a similar pre-processing and training method
used when the original sample was applied. The best performing
network parameters obtained are as shown in Table 5.

After training the network, the model is tested, and the pre-
dictive output for the leak severity in the DBN model is shown in
Fig. 22, and the absolute error is shown in Fig. 23.

As shown in Fig. 22, most of the data points are clustered around
the actual leak rate, indicating that the evaluation result is close to
the actual leak rate. For the sample with a leak rate of 0.025 m3/h,
the data point and the straight-line completely overlap, which
shows that the predicted leak rate is the same as the actual leak
rate. In Fig. 23, the maximum value of the absolute error between
the evaluation result and the actual result is 0.02891 m3/h, the
mean value of the absolute error is 0.0022 m3/h, and the mean
squared error of the model is 1.5087e-05. The model result shows a
significant improvement over the result derived from the original
raw data.

c. DBN developed with wavelet extracted characteristic parameter

The energy ratio of the wavelet packet reconstructed node is
extracted as demonstrated in section 3 and the characteristic
parameters of the samples are used in the training of the DBN.
Similar preprocessing and data sample sizes are also applied. The
number of training samples is 9000, and the number of test
samples is 1800. The network parameters obtained are as shown
in Table 6. The predicted leak rate of the DBN model is also
shown in Fig. 24, and the absolute error is shown in Fig. 25.

It is observed that the data points are scattered around the actual
leak rate line, and there is a significant deviation between the pre-
dicted results and the actual leak rate. In Fig. 25, the maximum ab-
solute error between the evaluation result and the actual result is
0.1523m3/h, themean value of the absolute error is 0.0290m3/h, and
the mean squared error of the evaluation result is 0.015. The evalua-
tion result shows that the model is weak.

In summary, for fault detection tasks on the DN50 electric
valve, the best performing model is found to be the IPs-SVM
model trained with wavelet packet transformed vibration
signal, using the parameter setting shown in Table 2. To estimate
fault size in the valve, the best performing model is the DBN
model trained with time-series signal, as indicated by the



Fig. 16. Energy ratio of AE signal wavelet packet decomposition node.

Table 1
Composition of training samples and test samples.

Valve status Number of training samples Number of test samples label

normal operation 240 120 1
Valve motor drive phase imbalance fault 240 120 2
Damaged valve packing 240 120 3
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prediction plot, absolute error, and mean squared error. From this
result, contrary to the perceived effectiveness of wavelet trans-
formed data for developing deep learning models, we observed
that the DBN fault size estimation model developed with wavelet
transformed data performed worse than the model developed
with the time-series signal.
5. Conclusion

This paper presents the development of a hybrid shallow-deep
data-driven architecture for robust fault diagnosis in the DN50
electric valve. The shallow architecture is implemented with
improved particle swarm support vector machine (IPs-SVM), while



Table 2
IPSO algorithm parameter settings.

Parameter Set value Parameter Set value

Learning factor c1 1.5 Maximum inertia weight 1.2
Learning factor c2 1.7 Minimum inertia weight 0.4
Learning factor c3 1.5 Number of iterations 100
total group number 20 Control coefficient (e) 8

Fig. 17. IPs-SVM model training result.

Fig. 18. PSO-SVM model training results curve.

Fig. 19. Grid search graph for hyper-parameter selection.

Table 3
Comparison of the results of three optimization methods.

Classifiers Training result Test Results Penalty factor C Kernel function parameter g

Grid search SVM 95.6944% 91.9444% 1.3195 111.4305
PSO-SVM model 95.9722% 93.0556% 3.6788 50.0000
IPs-SVM model 96.2500% 93.3333% 3.4783 52.9270

Table 4
DBN network parameter settings for the raw data sample.

Network structure 500-50-50

Unsupervised pre-training Learning rate 0.7
Momentum 0.01
Batch size 60
Number of training steps 150

Supervised training Network structure 500-50-50-1
Learning algorithm Elastic BP algorithm
Learning rate 0.6
Number of training steps 20

Fig. 20. Leakage assessment result.

Fig. 21. The absolute error of the assessment result.
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the deep architecture uses a deep belief network (DBN). For effi-
cient performance and to reduce false alarm rates, the model uti-
lizes both vibration and acoustic signals. To achieve a robust
diagnostic system, the IPs-SVM uses the vibration signal for fault
detection while the DBN utilizes an acoustic signal for fault size
estimation. From the model evaluation results, we reached the
following conclusions:

(1) The proposed IPs-SVM model solves the hyper-parameter
selection problems of SVM and the local optimal issue of
the conventional PSO. Themodel development using wavelet
transformed signals also gives better performance and
improved generalization and classification accuracy.
(2) For the DBN model, we observed that the model trained by
time-series characteristic parameter samples achieve the
minimum error and the best result. The model also shows



Table 5
DBN network parameter settings with time-series data.

Network structure 6-6-6

Unsupervised pre-training Learning rate 0.7
Momentum 0.7
Batch size 60
Number of training steps 15

Supervised training Network structure 6-6-6-1
Learning algorithm Elastic BP algorithm
Learning rate 0.6
Number of training steps 1500

Fig. 22. Leak severity assessment result.

Fig. 23. The absolute error of the assessment result.

Fig. 24. Leakage assessment result.

Fig. 25. The absolute error of assessment result.
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the capability to automatically extract the deep features of
the signal, basically escaping the dependence on the tradi-
tional signal processing method and reducing the signal
processing time.

(3) The experiment results show that this intelligent method
applies to industrial-scale fault diagnosis of electric valves.
Moreover, the accuracy of the classification results derived
from these models is higher than that of the traditional fault
Table 6
DBN network parameter settings on wavelet packet transformed data.

Network structure 10-8-6

Unsupervised pre-training Learning rate 0.7
Momentum 0.7
Batch size 100
Number of training steps 50

Supervised training Network structure 10-8-6-1
Learning algorithm Elastic BP algorithm
Learning rate 0.6
Number of training steps 1500
diagnosis method, which proves the feasibility and robust-
ness of the method.

This research lays the foundation for subsequent research and
engineering application of the technique in other industrial com-
ponents. Our future research would focus on expanding the fault
type and range, as well as integrating the shallow-deep model into
a single system that is implementable in an operator support
system.
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