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ABSTRACT
Although the fractional polynomials (FPs) can act as a concise
and accurate formula for examining smooth relationships between
response and predictors, modelling conditional mean functions
observes the partial view of a distribution of response variable, as
distributions of many response variables such as blood pressure
(BP)measures are typically skew. Conditional quantile functions with
FPs provide a comprehensive relationship between the response
variable and its predictors, such as median and extremely high-BP
measures that may be often required in practical data analysis gen-
erally. To the best of our knowledge, this is new in the literature.
Therefore, in this article, we develop and employ Bayesian variable
selectionwith quantile-dependent prior for the FPmodel to propose
a Bayesian variable selection with parametric non-linear quantile
regression model. The objective is to examine a non-linear relation-
ship between BP measures and their risk factors across median and
upper quantile levels using data extracted from the 2007 to 2008
National Health and Nutrition Examination Survey (NHANES). The
variable selection in themodel analysis identified that the non-linear
terms of continuous variables (body mass index, age), and categori-
cal variables (ethnicity, gender, and marital status) were selected as
important predictors in the model across all quantile levels.
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1. Introduction

Over the past three decades, the number of adults aged 30-79 with hypertension has
increased from648million to 1.278 billion globally [65]. Hypertension is a highly prevalent
chronic medical condition and a strong modifiable risk factor for cardiovascular disease
(CVD), as it attributes to more than 45% of CVD and 51% of stroke deaths [56]. The risk
of CVD in individuals rises sharply with increasing BP [10,16,20,38,39].

Continuous BPmeasurement has proven to be one of effective incident prevention. This
implies that BP is the essential physiological indicator of the human body. When the heart
beats, it pumps blood to the arteries resulting in changes in BP during the process. When
the heart contracts, BP in the vessels reaches its maximum, which is known as systolic BP
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(SBP). When the heart rests, BP reduces to its minimum, which is known as diastolic BP
(DBP).

Linear regression and polynomial regression analyses have been used in assessing the
association betweenBP and risk factors contributing to various diseases [28,35,59]. It is evi-
dent that the polynomial regression models fit the data accurately in some research studies
due to its adaptability of non-linearity property, yet face high-order polynomial approxi-
mation. The fractional polynomials (FPs), proposed by Royston and Altman [44], act as a
concise and accurate formulae for examining smooth relationships between response and
predictors, and a compromise between precision and generalisability. The FPs are para-
metric in nature and then intuitive for the interpretation of the analysis results. The FP
approach has clearly established a role in the non-linear parametric methodology, espe-
cially with application by clinicians from various research fields, such as obstetrics and
gynaecology [52], gene expression studies in clinical genetics [50] and cognitive function
of children [46], and other medical applications, see [21,40,55], and amongst others.

However, modelling conditional mean functions observes the partial view of a distri-
bution of response variable, as the distributions of many response variables such as the BP
measures are typically skew. Then, ‘average’ BP may link to CVD, yet extremely high BP
could exploreCVD insight deeply and precisely. So, existingmean-based FP approaches for
modelling the relationship between factors and BP cannot answer key questions in need. It
is attractive to model conditional quantile functions with FPs that accommodate skewness
readily. Quantile regression, introduced by Koenker and Bassett [27], provides compre-
hensive relationships between the response variable and its predictors, which are useful for
median and extremely high BP measures in practical data analysis generally.

Zhan et al. [64] suggested quantile regression with FP as a suitable approach for an
application, such as age-specific reference values of discrete scales, in terms of model con-
sistency, computational cost and robustness. This approach is also used to derive reference
curves and reference intervals in several applications [7,8,11,12,15,30,36], and amongst
others, which allow quantiles to be estimated as a function of predictors without requiring
parametric distributional assumptions. This is essential for data that do not assume nor-
mality, linearity and constant variance. Recently, reasonable amount of non-linear quantile
regression analyses have been conducted in medical data analysis, see [25,37,57], and
amongst others.

However, Bayesian approach to quantile regression has advantages over the frequen-
tist approach, as it can lead to exact inference in estimating the influence of risk factors
on the upper quantiles of the conditional distribution of BP compared to the asymptotic
inference of the frequentist approach [63]. It also provides estimation that incorporates
parameter uncertainty fully [62,63]. Some comparison studies have been conducted for
both Bayesian and frequentist approaches, such as the analysis of risk factors for female
CVD patients in Malaysia [26] and the analysis of risk factors of hypertension in South
Africa [31]. The former revealed that the Bayesian approach has smaller standard errors
than that of the frequentist approach. The latter also revealed that credible intervals of
the Bayesian approach are narrower than confidence intervals of the frequentist approach.
These findings suggested that the Bayesian approach provides more precise estimates than
the frequentist approach.

Variable selection in Bayesian quantile regression has been widely studied in the lit-
erature, see [1–4,14,17,33], and amongst others. It plays an important role in building
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a multiple regression model, provides regularisation for good estimation of effects, and
identifies important variables. Sabanés Bové and Held [47] combined variable selection
and ’parsimonious parametric modelling’ of Royston and Altman [44] to formulate a
Bayesianmultivariate FPmodel with variable selection that efficiently selects best-fitted FP
model via stochastic search algorithm. However, in the present, no research studies have
been conducted for variable selection in Bayesian parametric non-linear quantile regres-
sion for medical application, even though there is a limited amount of studies in case of
non-regularised models, such as mixed effect models [53,60].

Therefore, in this paper, we explore a new quantile regression model using FPs and
employ Bayesian variable selection with quantile-dependent prior for a more accurate rep-
resentation of the risk factors on BP measures. The three-stage computational scheme of
Dao et al. [17] is employed as a variable selection method due to its fast convergence rate,
low approximation error and guaranteed posterior consistency under model misspecifi-
cation. So, we propose a Bayesian variable selection with non-linear quantile regression
model to assess how body mass index (BMI) amongst United States (US) adults influences
BP measures, including SBP and DBP. The objective of this paper is to examine non-linear
relationships between BP measures and their risk factors across median and upper quan-
tile levels. The dataset used in this paper is the 2007–2008 National Health and Nutrition
Examination Survey (NHANES), including the information on BP measurements, body
measures and socio-demographic questionnaires.

The remainder of this paper is as follows. Section 2 presents the concept of FPs [44],
quantile regression [27] and Bayesian variable selection with quantile-dependent prior
[17]. The details of the NHANES 2007–2008 dataset used for the analysis are provided
in Section 3. Section 4 applies the proposed method to the analysis, performs compara-
tive analysis with two quantile regression methods and provides all the findings. Section 5
concludes this paper.

2. Methodology

Regression analysis is a technique that quantifies the relationship between a response
variable and predictors. Quantile regression is a method to estimate the quantiles of a
conditional distribution of a response variable and as such, it permits a more complete
portrayal of the relationship between the response variable and predictors.

2.1. Quantile regression

Let τ be the proportion of a sample having data points below the quantile level τ . Given
a dataset, {xi, yi}ni=1 and the fixed quantile level τ , the τ th quantile regression model is
represented as follows:

yi = xTi β(τ ) + ε(τ )i , i = 1, . . . , n, (1)

where τ is in the range between 0 and 1, yi is the response variable, xi is the vector of
predictors, β(τ) is the vector of unknown parameters of interest, and ε(τ ) is the model
error term for the τ th quantile. For the sake of notation simplification, we omit τ from
these parameters.
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We wish to estimate the unknown parameters, β as β̂ for each τ th quantile, which can
be done by minimising the check loss function over β :

n∑
i=1

ρτ (yi − xTi β), (2)

with the check loss functionρτ (�) = �[τ · I�≥0 − (1 − τ) · I�<0]where I�≥0 represents
the value 1 if � belongs to the set [0,∞), and the value 0 otherwise.

Minimising Equation (2) is same as maximising a likelihood function. An asymmet-
ric Laplace distribution (ALD) is employed, which is the common choice for the quantile
regression analysis [61,62]. We assume that εi ∼ AL(0, σ , τ), i = 1, . . . , n, where the AL(·)
is the ALD with its density

f AL(εi) = τ(1 − τ)

σ
exp

{
−ρτ (εi)

σ

}
.

Here, ρτ (εi) denotes the usual check loss function of Koenker and Bassett[27].
We are interested in selecting a subset of important predictors, which have adequate

explanatory and predictive capabilities. Because regularisation has been shown to be effec-
tive in improving the predictive accuracy [34,58], one of the common procedures for
simultaneously facilitating the parameter estimation and variable selection is to impose
a penalty function on the likelihood to arrive at the penalised loss function,

n∑
i=1

ρτ (yi − xTi β) + P(β , δ), (3)

which is minimised to obtain the τ th regularised quantile regression estimator. Here,
P(β , δ) is a regularisation penalty function and δ is a penalty parameter that controls the
level of sparsity. Typically, Bayesian regularised quantile regression is formulated through
the relationship between the penalised loss function and the ALD.

Bayesian inference is one of the most popular approaches for the regression analysis.
It makes inference for an entire posterior distribution of a parameter of interest, as well as
incorporation of parameter uncertainty and prior information about data. This encourages
the use of Bayesian analysis over standard frequentist approaches.

By using the identity of Andrews and Mallows [5],

exp(−|ab|) =
∫ ∞

0

a√
2πν

exp
{
−1
2
(a2ν + b2ν−1)

}
dν,

for any a,b>0, letting a = 1/
√
2σ & b = ε/

√
2σ and multiplying a factor of exp(−(2τ −

1)ε/2σ), to express the probability density function of the ALD errors as its normal scale
mixture representation,

fAL(εi) =
∫ ∞

0

1√
4πσ 3vi

exp
{
− (εi − (1 − 2τ)vi)2

4σvi
− τ(1 − τ)vi

σ

}
dvi ,

as proposed by Reed and Yu [42] and Hideo and Kobayashi [24]. This representation can
be utilised to facilitate Gibbs sampling algorithms [14,22,24,29].

Rather than the standard linear model, we will use the FP model to develop the non-
linear model under Bayesian quantile regression and variable selection.
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2.2. Fractional polynomials

Box and Tidwell [9] introduced the transformation now known as the Box-Tidwell
transformation,

x(a) =
{
xa, if a �= 0 ,
log(x), if a = 0 ,

where a is a real number. Royston and Altman [43] extended the classical polynomials to
a class which they called FPs.

An FP of degree m with powers p1 ≤ . . . ≤ pm and corresponding coefficients
α1, . . . ,αm is

f m(x;α, p) =
m∑
j=1

αjhj(x) ,

where h0(x) = 1 and

hj(x) =
{
x(pj), ifpj �= pj−1,
hj−1(x) log(x), ifpj = pj−1,

(4)

where j = 1 . . . ,m. Note that the definition hj(x) allows the repeated powers. The bracket
around the exponent denote the Box-Tidwell transformation (Equation (4)). For m ≤ 3,
Royston and Altman [44] constrained the set of possible powers pj to the set

S =
{
−2,−1,−1

2
, 0,

1
2
, 1, 2, 3

}
, (5)

which encompasses the classical polynomial powers 1, 2, 3, yet also offers square roots and
reciprocals. Royston and Sauerbrei [45] argued that this set is sufficient to approximate all
powers in internals [−2, 3]. The simple example of the FP model is as follows. An FP with
m=3 powers and its power vector p = (p1, p2, p3) = (−1/2, 2, 2) would be

f 3(x;α, p) = α1x−1/2 + α2x2 + α3x2 log(x),

where the last term reflects the repeated power 2.
Generalisation to the case of multiple predictors:

η(x) =
k∑

l=1

f ml
l (xl;αl, pl) =

k∑
l=1

ml∑
j=1

αljhlj(xl) . (6)

This is called themultiple FPmodel. Suppose we continue examining k continuous predic-
tors x1, . . . , xk and content themselves with a maximum degree of mmax ≤ 3 for each f ml

l ,
for instance, 0 ≤ ml ≤ mmax for l = 1, . . . , k, whereml = 0 denotes the omission of xl from
the model. From the powers set S ,ml powers are chosen, which need not be different due
to the inclusion of logarithmic terms for repeated powers (Equation (4)), we now employ
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the τ th non-linear quantile regression with the normal scale mixture representation of the
ALD errors,

y = Bβ + θ1v +
√

θ2vσ 2z , (7)

where the (n × D)-matrix B is a function of the lth predictor for the ith observations, xl
(i = 1, . . . , n, and l = 1, . . . , k), the unknown parameter vector β = (α1, . . . ,αk)

T with
αl = (αl1, . . . ,αlml) for l = 1, . . . , k, v = (v1, . . . , vn)T is a vector of exponential random
variables with a rate of τ(1 − τ)/σ , z = (z1, . . . , zn)T is a vector of standard normal ran-
dom variables, zi is independent of vi for i = 1, . . . , n, θ1 = (1 − 2τ)/(τ (1 − τ)) and θ2 =
2/(τ(1 − τ)). Each entry of matrix B is a vector, Bid = B(xid) = (hl1(xil), . . . , hlml(xil))

T ,
for i = 1, . . . , n, l = 1, . . . , k, and d = 1, . . . ,D.

A special way of defining the matrix B is through the use of FPs. In this case, the basis
function B(xl) is chosen as the transformation hlj in Equation (6) (j = 1, . . . ,ml). The
transformation hj is determined by the power vector p1, . . . , pk through their definition
(Equation (4)). Note that the pl is empty if the predictor xl is not included in the model
(ml = 0).

2.3. Bayesian approach and variable selection

Given the model in Equation (7), the likelihood function conditional on β =
(β1, . . . ,βD)T , σ , v = (v1, . . . , vn)T can be written as

f (y|β , σ , v,B) =
n∏

i=1

1√
4πσ 3vi

exp
{
− (yi − B(xi)Tβ − (1 − 2τ)vi)2

4σvi
− τ(1 − τ)vi

σ

}
.

We employ the three-stage algorithm of Dao et al. [17] for Bayesian non-linear quantile
regression with variable selection. It can be summarised, as follows.

The first-stage is the expectation-maximisation (EM) algorithm consisting of two main
steps: the Expectation step (E step) and the Maximum step (M step). Dempster et al. [18]
proposed the EM algorithm, which is a statistical simulation method and it aims to solve
the complex data analysis problem with missing data.

Suppose the complete data (y, v) is composed of the observed data y = (y1, . . . , yn)T
and missing data v = (v1, . . . , vn)T , whereas B(xi), i = 1, . . . , n, is treated as a func-
tion of fixed predictors. Maximum likelihood estimates can be obtained by maximising
log-likelihood function log f (β , σ |y, v) of the complete data. The EM algorithm has the
following two steps: the E step and the M step.

• [E step] Given initial values of β(0) and σ (0), we denote β(q−1) and σ (q−1) as the
(q − 1)th iteration value of parameters β and σ in the EM algorithm, and we define
the mathematical expectation of the complete data as a Q-function

Q(β , σ |y,β(q−1), σ (q−1)) = Ey,β(q−1),σ (q−1)[log f (β , σ |y, v)] .
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• [M step]We obtain the updated values of β(q) and σ (q) bymaximisingQ(β , σ |y,β(q−1),
σ (q−1)) over parameters β and σ :

β(q) = (BTW(q−1)B)−1BTW(q−1)(y − θ1�3) ,

where

�3 =
(∣∣∣y1 − B(x1)Tβ(q−1)

∣∣∣ , . . . , ∣∣∣yn − B(xn)Tβ

∣∣∣(q−1)
)T

,

W(q−1) = diag(1/�31, . . . , 1/�3n) ,

and

σ (q) = 1
2(3n + 2)

{ n∑
i=1

�2i +
n∑

i=1

(yi − B(xi)Tβ(q))2

�3i
− 2θ1

n∑
i=1

(yi − B(xi)Tβ(q))

}
,

where �2i = |yi − B(xi)Tβ(q−1)| + 2σ (q−1)fori = 1, . . . , n.

Repeat both E-step and M-step until the EM algorithm meets the required condition,
then the final iteration values are set as the posterior modes of β and σ , denoted by β̃ and
σ̃ , respectively.

The second-stage algorithm is the Gibbs sampling algorithm. The quantile-specific
Zellner’s g-prior [3] is used for the prior specification and it is given by

β|σ ,V ,B ∼ N
(
0, 2σ g�−1

v
)

and p(σ ) ∝ 1
σ
, (8)

where N(·) is the multivariate normal distribution, g is a scaling factor, V =
diag(1/v1, . . . , 1/vn), and�v = BTVB. This prior specification has an advantage, as it con-
tains information that is dependent upon the quantile levels, which increases posterior
inference accuracy.

Given the posterior modes, β̃ and σ̃ as the starting value, we denote β(r−1) and σ (r−1)

as the (r − 1)th iteration value of parameters β and σ in the Gibbs sampling algorithm.

• Sample v(r)
i from

p(vi|y,β(r−1), σ (r−1)) ∼ GIG

(
0,

1
2σ

,
(yi − B(xi)Tβ)2 + 1

gβ
TB(xi)B(xi)Tβ

2σ

)
,

for i = 1, . . . , n, and GIG(0, c, d) is the generalised inverse Gaussian with its density

fGIG(v) = 1
2K0(

√
cd)

v−1 exp
(

−1
2
(cv + dv−1)

)
, v > 0 ,

where K0(·) is the modified Bessel function of the second kind at index 0 [6].
• Sample σ (r) from

p(σ |y, v(r)) ∼ IG

(
3n
2
,
1
4
(y − θ1v)TVHv(y − θ1v) + 2

θ2

n∑
i=1

vi

)
,

where IG(·) is the inverse Gamma distribution,Hv = In − g/(g + 1)B�−1
v BTV .
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• Sample β(r) from

p(β|y, v(r), σ (r)) ∼ N
(

g
g + 1

�−1
v BTV(y − θ1v),

2σ g
g + 1

�−1
v

)
.

• Calculate the important weights

w(r) = p(β(r), σ (r), v(r)|y)
p(β(r)|v(r), σ (r), y)p(σ (r)|v(r), y)p(v(r))

,

based on v(r), σ (r) and β(r). This is to adjust for the GIG approximation of the marginal
posterior of v given y, which is given by its unnormalised density function

π(v|y) ∝ p(v|β̃ , σ̃ , y)
p(β̃|y, v.σ̃ )p(σ̃ |y, v) ,

where p(v|β̃ , σ̃ , y) is an importance sampling density in the importance sampling
algorithm. The importance weights will be used to determine the acceptance probability
of each {β(r), σ (r), v(r)}.

The algorithm iterates until the Gibbs sampling algorithm reaches the final MCMC
iteration indexed at R and discard the burn-in period.

Finally, the third-stage is the important re-weighting step. The S samples are drawn from
the importance weights without replacement where S<R is the number of importance
weighting steps. A random indicator vector γ = (γ1, . . . , γD)T is introduced to the non-
linear model

Mγ : y = Bγ β + ε ,

where Bγ is the (n × Dγ ) matrix consisting of important predictors and βγ of length Dγ

is the non-zero parameter vector. The same prior specification in Equation (8) is employed
along with a prior on γd, d = 1, . . . ,D, and a beta prior on π :

p(γ |π) ∝ π
∑D

d=1 γd(1 − π)D−∑D
d=1 γd and p(π) ∼ Beta

(
1
2
,
1
2

)
,

where π ∈ [0, 1] is the prior probability of randomly including a predictor in the model.
Then, π is marginalised out from p(γ |π) resulting as

p(γ ) ∝ Beta

( D∑
d=1

γd + 1
2
,D −

D∑
d=1

γd + 1
2

)
.

The marginal likelihood of y under the model Mγ is then obtained by integrating out β

and σ resulting as

p(y|γ , v) ∼ t2n

(
(1 − 2τ)v,

4
∑n

i=1 vi
σθ2

(
V − g

g + 1
VBγ �v(γ )−1BT

γV
)−1

)
,

where t2n(·) is the multivariate Student t-distribution with 2n degrees of freedom. The
posterior probability of Mγ is therefore given by p(γ |y, v) ∝ p(y|γ , v)p(γ ). Lastly, the
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independent samples of v from the second-stage algorithm are drawn based on the S sam-
ples and the important re-weighting step is iterated until the S samples of γ are obtained.
Then, the posterior inclusion probability is estimated, as follows

p̂(γd = 1|y, v) = 1
S̃

S̃∑
s=1

γ
(s)
d , d = 1, . . . ,D ,

where S̃ is the number of iterations after discarding the burn-in period.

3. Data preparation and data analysis

This study is based on the data of the NHANES during 2007–2008. The survey conducted
by the National Center for Health Statistics of the Centers for Disease Control and Preven-
tion used a complex, stratified,multistage sampling design to select a representative sample
of non-institutionalised population in US civilians to participate in a series of comprehen-
sive health-related interviews and examinations. In total, 12,943 people participated in the
NHANES 2007–2008 study.

The study variables included SBP and DBP as the response variables. The BP measure-
ments were taken as follows. After a resting period of 5 minutes in a sitting position and
determination of maximal inflation level, three consecutive BP readings were recorded.
A fourth reading was recorded if a BP measurement is interrupted or incomplete. All the
results were taken in the Mobile Examination Center. The BP measurements are essential
for hypertension screening and disease management, since hypertension is an important
risk factor for cardiovascular and renal disease. Then, in this study, SBP and DBP were
selected as response variables where each was averaged over the second and third readings.
Predictor variables were BMI, age, ethnicity, gender and marital status.

We initially included 9 762 participants who have completed both BP and bodymeasure
examinations in the study. From 9 762 participants, we excluded those who had not under-
went examinations. Then, amongst the remaining 4 612 participants, we further excluded
those who refused to reveal their marital status. Finally, 4 609 participants were included
for analysis in this study.

The NHANES protocols were approved by the National Center for Health Statistics
research ethics review boards, and informed consent was obtained from all participants.
The research adhered to the tenets of the Declaration of Helsinki.

The R version 4.2.2 was used to conduct both frequentist and Bayesian analyses.
Both ’quantreg’ and ’Brq’ R packages were employed to fit the frequentist and Bayesian
approaches of the quantile regression model with FPs, respectively. The source R code was
provided from the main author of Dao et al. [17] to fit the Bayesian quantile regression
with variable selection and FPs via the three-stage algorithm.

This study considered two quantile models at the 50th, 75th and 95th percentiles. When
modelling hypertension, it is preferable to model both median and extremely high values
of SBP andDBP, which correspond to themedian and upper distributions of SBP andDBP,
respectively [31]. The following two quantilemodels were used for the analysis for the fixed
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quantile level τ :

SBPi = BMIiβ1 + BMI0.5i β2 + Ageiβ3 + Age0.5i β4 + Ethnicityiβ5 + Genderiβ6

+ MaritalStatusiβ7 ,

DBPi = BMIiβ1 + BMI0.5i β2 + Ageiβ3 + Age0.5i β4 + Ethnicityiβ5 + Genderiβ6

+ MaritalStatusiβ7 ,

for i = 1, . . . , 4609.
The power of 0.5 was chosen for continuous variables, including BMI and age. The

remaining variables were linear because they are categorical. Similar FP models were
employed tomodel BPwithin the linear regression framework, see [19,49,51] and amongst
others.

4. Results

In this section, both descriptive and model analyses are provided for the NHANES
2007–2008 dataset using the proposedmodel. To evaluate the performance of the proposed
model, we included two existing methods, including quantile regression and Bayesian
quantile regression, with the FP model for a fair comparative analysis. The model compar-
ison is discussed outlining the advantages of the proposed model over these two methods.
All the results are provided in this section through tables and figures for each regression
analysis.

4.1. Descriptive analysis

For this analysis, continuous variables were collapsed into categorical variables, including
SBP, DBP, BMI and age. According to the guidelines ofWhelton et al. [54], the BP variables
were divided into three groups: normal (< 120mmHg for SBP,< 80mmHg for DBP), pre-
hypertension (120−139mmHg for SBP, 80−89mmHg for DBP) and hypertension (≥ 140
mmHg for SBP, ≥ 90 mmHg for DBP). The BMI variable was also divided into six groups:
underweight (< 18.5), healthy (18.5−24.9), overweight (25−29.9), obese (30−34.9), very
obese (35−39.9) and morbidly obese (≥ 40) [13].

Tables 1 and 2 report SBP and DBP proportions amongst US adults by demographic
and lifestyle characteristics, including BMI, age, ethnicity, gender and marital status. The
Cramér’s V value was used to measure the magnitude of the association between SBP,
DBP, socio-demographic characteristics and BMI of the participants. Their values with
p-values are also presented in Tables 1-2 and compared with with guidelines given by Rea
and Parker (2014) [41]: 0.00 to under 0.10 = very weak association, 0.10 to under 0.20 =
weak association, 0.20 to under 0.40 = moderate association and 0.40 and above = strong
association.

It is evident from Tables 1 and 2 that hypertension was more prevalent in underweight,
very obese and morbidly obese participants for both BP measures where the very obese
and morbidly obese had the highest prevalence for DBP and SBP measures, respectively.
The same trend is observed on the proportions of elevated BP for DBP measure. It is clear
that healthy participants had the highest prevalence of normal BP for both BP measures.
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Table 1. SBP amongst US adults by BMI and socio-demographic characteristics.

Normal BP
(< 120 mmHg)

Pre-Hypertension
(120–139 mmHg)

Hypertension
(≥ 140 mmHg)

BMI Underweight 37 (56.92%) 16 (24.62%) 12 (18.46%)
Healthy 734 (60.31%) 343 (28.18%) 140 (11.50%)

Overweight 781 (49.49%) 565 (35.80%) 232 (14.70%)
Obese 415 (41.71%) 414 (41.61%) 166 (16.68%)

Very obese 201 (42.68%) 187 (39.70%) 83 (17.62%)
Morbidly obese 106 (37.46%) 116 (40.99%) 61 (21.55%)

P-value (Cramér’s V value) P-value < 0.01 (0.1106)
Age 20–29 years 493 (73.36%) 164 (24.40%) 15 (2.23%)

30–39 years 543 (65.66%) 251 (30.35%) 33 (3.99%)
40–49 years 460 (55.89%) 285 (34.63%) 78 (9.48%)
≥ 50 years 778 (34.02%) 941 (41.15%) 568 (24.84%)

P-value < 0.01 (0.2535)
Ethnicity Mexican American 456 (54.29%) 279 (33.21%) 105 (12.50%)

Other Hispanic 286 (53.16%) 186 (34.57%) 66 (12.27%)
Non-Hispanic white 1006 (47.61%) 793 (37.53%) 314 (14.86%)
Non-Hispanic black 425 (45.31%) 324 (34.54%) 189 (20.15%)

Other non-Hispanic race 101 (56.11%) 59 (32.78%) 20 (11.11%)
P-value < 0.01 (0.0665)

Gender Male 999 (43.28%) 957 (41.46%) 352 (15.25%)
Female 1275 (55.41%) 684 (29.73%) 342 (14.86%)

P-value < 0.01 (0.1310)
Marital Married 1219 (48.39%) 927 (36.80%) 373 (14.81%)
Status Widowed 84 (30.11%) 103 (36.92%) 92 (32.97%)

Divorced 226 (44.14%) 182 (35.55%) 104 (20.31%)
Separated 89 (52.05%) 57 (33.33%) 25 (14.62%)

Never married 468 (58.87%) 256 (32.20%) 71 (8.93%)
Living with partner 188 (56.46%) 116 (34.83%) 29 (8.71%)

P-value < 0.01 (0.1251)

Concerning age, the prevalence of both elevated BP and hypertension increased with
age, with the 40–49 years age group having the highest proportions for DBP measure and
the 50 years and above age group for SBPmeasure. In regards to ethnicity, the non-Hispanic
Black participants had the highest prevalence of hypertension compared to other races for
both BP measures.

Tables 1 and 2 also show that men had the highest prevalence of both elevated BP
and hypertension for both BP measures. Participants who were separated or divorced and
those who became widowed had the highest prevalence of hypertension for DBP and SBP
measures, respectively.

Lastly, at the 1% significance level, Tables 1 and 2 exhibit very weak to weak asso-
ciations between BP measures, BMI and socio-demographic characteristics amongst US
adults. However, there is a moderate association between SBP measure and age. There is
no statistically significant association between DBP measure and marital status at the 5%
level.

4.2. Model analysis

Tables 3 and 4 provide the coefficients for predictors relating to SBP and DBP responses
for three quantile regressionmodels with FPs at three quantile levels (τ = 0.50, 0.75, 0.95),
including one frequentist and two Bayesian approaches with one using variable selection.
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Table 2. DBP amongst US adults by BMI and socio-demographic characteristics.

Normal BP
(< 80 mmHg)

Pre-Hypertension
(80-89 mmHg)

Hypertension
(≥ 90 mmHg)

BMI Underweight 49 (75.38%) 12 (18.46%) 4 (6.15%)
Healthy 1025 (84.22%) 148 (12.16%) 44 (3.62%)

Overweight 1265 (80.16%) 243 (15.40%) 70 (4.44%)
Obese 772 (77.59%) 168 (16.88%) 55 (5.53%)

Very obese 356 (75.58%) 78 (16.56%) 37 (7.86%)
Morbidly obese 217 (76.68%) 47 (16.61%) 19 (6.71%)

P-value (Cramér’s V value) P-value < 0.01 (0.0587)
Age 20–29 years 619 (92.11%) 47 (6.99%) 6 (0.89%)

30–39 years 681 (82.35%) 118 (14.27%) 28 (3.39%)
40–49 years 584 (70.96%) 173 (21.02%) 66 (8.02%)
≥ 50 years 1800 (78.71%) 358 (15.65%) 129 (5.64%)

P-value < 0.01 (0.1118)
Ethnicity Mexican American 699 (83.21%) 116 (13.81%) 25 (2.98%)

Other Hispanic 444 (82.53%) 70 (13.01%) 24 (4.46%)
Non-Hispanic white 1687 (79.84%) 327 (15.48%) 99 (4.69%)
Non-Hispanic black 711 (75.80%) 154 (16.42%) 73 (7.78%)

Other non-Hispanic race 143 (79.44%) 29 (16.11%) 8 (4.44%)
P-value < 0.01 (0.0569)

Gender Male 1732 (75.04%) 423 (18.33%) 153 (6.63%)
Female 1952 (84.83%) 273 (11.86%) 76 (3.30%)

P-value < 0.01 (0.1244)
Marital Married 2017 (80.07%) 385 (15.28%) 117 (4.64%)
Status Widowed 231 (82.80%) 38 (13.62%) 10 (3.58%)

Divorced 386 (75.39%) 87 (16.99%) 39 (7.62%)
Separated 133 (77.78%) 26 (15.20%) 12 (7.02%)

Never married 656 (82.52%) 103 (12.96%) 36 (4.53%)
Living with partner 261 (78.38%) 57 (17.12%) 15 (4.50%)

P-value = 0.0516 (0.0444)

For Bayesian approaches, parameters were obtained via posterior men. The 95% confi-
dence intervals were also obtained for the frequentist approach, whilst the 95% credible
intervals were obtained for the Bayesian approaches. A confidence interval describes a
probability, for instance, if a user constructs a confidence interval with some confidence
level then they are confident that an estimate would fall within the interval. On the other
hand, a credible interval is an interval in the domain of a posterior probability distribution
where an unobserved parameter value falls with a particular probability. We denote the
frequentist approach as the QR-FP model, and two Bayesian approaches as the BQR-FP
and BQRVS-FP models where the latter uses variable selection.

For the BQR-FP model, the algorithm was implemented for 10,000 MCMC iterations
and 1 000MCMC iterations were discarded as a burn-in period. For the BQRVS-FPmodel,
the first-stage algorithm ran for 1 000 EM iterations and repeated for 2 replications. Then, 5
000 MCMC iterations were drawn for the second-stage algorithm, whilst discarding 2 500
MCMC iterations as a burn-in period. Finally, the last algorithm ran for 1 250 important
re-weighting steps of which 500 steps were discarded as a burn-in period. The value of g
was selected as 1 000 for all implementations of the variable selection model.

It is evident fromTable 3 that all the risk factors except both linear and non-linear terms
of agewere found to have statistically significant associationswith SBP across the two upper
quantile levels according to their 95% confidence intervals containing no zero value under
the QR-FP model. Looking at the median level, the linear term had association with SBP
under the same approach. When looking at the BQR-FP and BQRVS-FP models, only the
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Table 3. One frequentist and two Bayesian quantile regression analyses for relationship
between SBP and risk factors.

Quantile Regression

τ 0.50 0.75 0.95
BMI −2.856(−3.278,−2.280) −2.198(−3.040,−1.715) −2.024(−3.141,−0.798)
BMI0.5 36.085 (29.932, 40.529) 29.210 (23.907, 38.130) 29.113 (15.239, 42.302)
Age 0.510 (0.130, 0.785) 0.317(−0.003, 0.885) 0.710(−0.220, 1.630)
Age0.5 −1.758(−5.430, 3.339) 3.297(−4.116, 7.654) 2.300(−9.906, 14.672)
Ethnicity 0.626 (0.154, 1.040) 0.995 (0.366, 1.495) 1.214 (0.199, 2.642)
Gender −4.323(−5.302,−3.512) −3.813(−5.231,−2.506) −3.278(−6.147,−0.762)
Marital Status 0.894 (0.612, 1.155) 1.327 (0.916, 1.746) 1.400 (0.650, 2.037)

Bayesian Quantile
Regression

τ 0.50 0.75 0.95
BMI −2.818(−3.208,−2.447) −2.255(−2.669,−1.889) −2.120(−2.603,−1.685)
BMI0.5 35.628 (31.653, 39.794) 29.825 (25.763, 34.419) 30.191 (25.146, 35.809)
Age 0.484 (0.233, 0.734) 0.364 (0.103, 0.664) 0.768 (0.428, 1.142)
Age0.5 −1.366(−4.737, 2.002) 2.735(−1.237, 6.249) 1.446(−3.550, 6.077)
Ethnicity 0.640 (0.288, 0.979) 0.957 (0.561, 1.359) 1.341 (0.839, 1.829)
Gender −4.376(−5.138,−3.645) −3.809(−4.784,−2.823) −3.346(−4.397,−2.190)
Marital Status 0.888 (0.656, 1.125) 1.347 (1.055, 1.637) 1.354 (1.041, 1.649)

Bayesian Quantile
Regression Fractional
Polynomials &
Variable Selection

τ 0.50 0.75 0.95
BMI −2.812(−3.164,−2.468) −2.581(−2.974,−2.168) −2.426(−2.813,−2.027)
BMI0.5 35.547 (31.789, 39.269) 33.335 (28.817, 37.747) 33.335 (28.815, 37.784)
Age 0.459 (0.226, 0.680) 0.537 (0.274, 0.806) 0.945 (0.643, 1.256)
Age0.5 −1.129(−4.197, 2.029) −0.051(−3.717, 3.536) −1.382(−5.473, 2.680)
Ethnicity 0.571 (0.258, 0.898) 0.843 (0.484, 1.212) 1.152 (0.753, 1.616)
Gender −4.577(−5.300,−3.899) −4.291(−5.053,−3.518) −4.343(−5.301,−3.351)
Marital Status 0.828 (0.632, 1.033) 1.139 (0.893, 1.381) 1.331 (1.052, 1.617)

non-linear term of age did not have a statistically significant association for all quantile lev-
els. On the other hand, Table 4 observes that all the risk factors including non-linear terms
had statistically significant associations with DBP across all quantile levels for all model
approaches. Still, when looking at the median level under the QR-FP model, it revealed
that the marital status did not have statistically significant association.

Table 3 also observes that the BMI, non-linear term of age and gender have negative
associations with SBP, whilst the non-linear term of BMI, age and gender have negative
associations with DBP from Table 4 for all three model approaches. Under the SBP model,
the coefficients of BMI, ethnicity, gender and marital status increased when the quantile
levels increased. The same trend is observed for the coefficients of BMI’s non-linear term,
age, ethnicity and marital status under the DBP model. Observing the coefficient of age’s
non-linear term, all models saw the reverse U-shaped trend under the SBP model and
on other hand, both QR-FP and BQR-FP models had decreasing trends and the BQRVS-
FP had the U-shaped trend under the DBP model. Interestingly, the coefficient of BMI’s
non-linear term under the SBPmodel followed the decreasing trend for the QR-FPmodel,
the U-shaped trend for the BQR-FP model and the square-root trend for the BQRVS-FP
model.
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Table 4. One frequentist and two Bayesian quantile regression analyses for relationship
between DBP and risk factors.

Quantile Regression

τ 0.50 0.75 0.95
BMI 1.174 (0.705, 1.496) 0.761 (0.507, 1.096) 0.582 (0.022, 1.572)
BMI0.5 −12.200(−15.675,−7.071) −7.179(−10.821,−4.242) −3.995(−13.869, 2.247)
Age −2.266(−2.477,−1.979) −2.018(−2.252,−1.832) −1.852(−2.418,−1.418)
Age0.5 31.329 (27.308, 34.170) 28.298 (25.758, 31.451) 26.918 (21.199, 34.557)
Ethnicity 0.561 (0.203, 0.841) 0.712 (0.411, 1.030) 1.264 (0.345, 2.013)
Gender −3.345(−4.160,−2.651) −3.619(−4.337,−2.976) −4.592(−5.769,−3.047)
Marital Status 0.210(−0.041, 0.448) 0.368 (0.171, 0.549) 0.466 (0.143, 0.934)

Bayesian Quantile
Regression

τ 0.50 0.75 0.95
BMI 1.153 (0.836, 1.433) 0.798 (0.539, 1.056) 0.656 (0.345, 0.974)
BMI0.5 −11.923(−15.007,−8.505) −7.554(−10.406,−4.748) −4.624(−7.981,−1.332)
Age −2.253(−2.431,−2.058) −2.040(−2.224,−1.863) −1.870(−2.064,−1.663)
Age0.5 31.131 (28.434, 33.566) 28.594 (26.243, 31.077) 27.176 (24.467, 29.773)
Ethnicity 0.536 (0.291, 0.777) 0.706 (0.455, 0.966) 1.328 (0.981, 1.667)
Gender −3.391(−3.999,−2.778) −3.635(−4.169,−3.109) −4.498(−5.086,−3.924)
Marital Status 0.220 (0.030, 0.408) 0.374 (0.222, 0.533) 0.484 (0.304, 0.667)

Bayesian Quantile
Regression Fractional
Polynomials &
Variable Selection

τ 0.50 0.75 0.95
BMI 1.101 (0.823, 1.381) 0.808 (0.568, 1.041) 0.874 (0.584, 1.147)
BMI0.5 −11.299(−14.374,−8.289) −7.620(−10.207,−4.940) −7.217(−10.158,−4.080)
Age −2.217(−2.397,−2.033) −2.031(−2.203,−1.867) −2.018(−2.206,−1.821)
Age0.5 30.603 (28.089, 33.030) 28.381 (26.127, 30.639) 29.063 (26.415, 31.577)
Ethnicity 0.505 (0.278, 0.727) 0.630 (0.391, 0.868) 1.043 (0.747, 1.319)
Gender −3.401(−3.934,−2.888) −3.733(−4.219,−3.233) −4.436(−5.032,−3.827)
Marital Status 0.193 (0.033, 0.347) 0.371 (0.222, 0.523) 0.454 (0.270, 0.628)

Convergence of both Bayesian approaches was assessed using the trace plots, the den-
sity plots and autocorrelation plots. This is essential to perform various diagnostic tools for
assessing the convergence [48]. The convergence diagnostics are useful to check stationar-
ity of the Markov chain or good chain mixing and to verify the accuracy of the posterior
estimates [32]. The trace plot is in the form of a time series plot indicating whether it
reaches stationarity or not. The density plot represents the stationary distribution of poste-
rior samples approximating the posterior distribution of interest. The autocorrelation plot
reports the correlation of posterior samples at each chain step with previous estimates of
the same variable, lagged by number of iterations. A decreasing trend indicates that the
stationary distribution is more random and less dependent on initial values in the chain
[23].

Figures 1 and 2 present the trace, density and autocorrelation plots for each risk factor
of SBP and DBP, respectively under the BQR-FP model. When looking at the trace plots
across all the quantile levels, they exhibit stationarity due to relatively constant mean and
variance of each plot. Thus, they show the good Markov chain mixing rate. When looking
at the density plots across all the quantile levels, they reflect a smooth distribution with
one peak at the mode of the distribution indicating a good convergence. It is also shown
from the figures that each risk factor of SBP and DBP across all the quantile levels has
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Figure 1. Trace, density and autocorrelation plots for the risk factors of SBP at three quantile levels (τ =
0.5, 0.75, 0.95) under the Bayesian quantile regression model with FPs.

increasingly random stationary posterior distribution although at the 95th percentile, the
trend has a slower decreasing rate.

Figures 3 and 4 also present the trace, density and autocorrelation plots for each risk
factor of SBP and DBP, respectively under the BQRVS-FP model. All the plots show
stationarity, good Markov chain mixing rates and good convergence. Particularly, each
autocorrelation plot indicates that their stationary distribution became random and less
correlated with the initial values at a faster rate.

Table 5 provides marginal inclusion probabilities (MIPs) that determine which risk fac-
tors are influential on SBP and DBP for the BQRVS-FP model at three quantile levels. The
risk factors that lie above the threshold of 0.9 of MIP are selected as important predic-
tors. Across all the quantile levels for both SBP and DBP models, all the important risk
factors were consistently selected including the non-linear terms. There are two cases of
non-important risk factors where, unlike the SBP model, the DBP model did not select
marital status at the median level and the SBP model did not select the non-linear term
of age at all the quantile levels. This mostly agreed with findings on 95% credible intervals
from Tables 3 and 4.

4.3. Model comparison

Observing at the 95% confidence intervals of frequentist approach and the 95% credible
intervals of two Bayesian approaches fromTables 3 and 4, the BQRVS-FPmodel has tighter
intervals compared to the QR-FP model having wider intervals.
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Figure 2. Trace, density and autocorrelation plots for the risk factors of DBP at three quantile levels (τ =
0.5, 0.75, 0.95) under the Bayesian quantile regression model with FPs.

Figure 3. Trace, density and autocorrelation plots for the risk factors of SBP at three quantile levels (τ =
0.5, 0.75, 0.95) under the Bayesian quantile regression model with FPs and variable selection.
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Figure 4. Trace, density and autocorrelation plots for the risk factors of DBP at three quantile levels (τ =
0.5, 0.75, 0.95) under the Bayesian quantile regression model with FPs and variable selection.

Table 5. Selected predictors for both SBP and DBP models via the BQRVS-FP approach at different
quantile levels (τ = 0.50, 0.75, 0.95).

Model BMI BMI0.5 Age Age0.5 Ethnicity Gender MaritalStatus

τ = 0.50 SBP 1.0000 1.0000 0.9920 0.3062 0.9733 1.0000 1.0000
DBP 1.0000 1.0000 1.0000 1.0000 0.9973 1.0000 0.8628

τ = 0.75 SBP 1.0000 1.0000 0.9920 0.2423 1.0000 1.0000 1.0000
DBP 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

τ = 0.95 SBP 1.0000 1.0000 1.0000 0.4034 1.0000 1.0000 1.0000
DBP 1.0000 0.9986 1.0000 1.0000 1.0000 1.0000 0.9986

Another finding is from the diagnostic plots that the autocorrelation plots of BQRVS-FP
model have a faster decreasing rate across all the quantile levels, whereas those of the BQR-
FP model have a slower rate. This is evident that the BQRVS-FP model has more random
stationary posterior distributions of interest.

When looking at Tables 3–5, the BQRVS-FP model selected the important predictors
coincidingwith statistically significant associations between SBP,DBP and their risk factors
based on their 95% credible intervals.

These findings suggest that the Bayesian variable selection approach to quantile regres-
sion model with FPs obtained more precise estimates than the frequentist and unregu-
larised Bayesian approaches. The non-linear terms were selected as important variables
in both SBP and DBP models indicating that FP model was necessary to examine the
non-linear relationship between SBP, DBP and risk factors.

Whilst computational performance was not evaluated in this paper, it is noteworthy
that all computations were executed on R version 4.2.2, utilising an Intel Core i7-4790
CPU@3.6GHz machine with 16GB DDR3 RAM memory. Both Rcpp and the Intel MKL
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compiler were employed to enhance the efficiency of the proposed method and reduce
running time. The proposed method follows a three-stage algorithm, which, admittedly,
demands more computational time compared to the unregularised Bayesian method that
relies solely on a Gibbs sampling algorithm. Nevertheless, as previously mentioned, the
second-stage algorithm of the proposed method, namely the Gibbs sampling algorithm,
exhibits a faster convergence rate. Consequently, it necessitates fewer iterations to run
compared to the unregularised Bayesian method. The first and last algorithms of the pro-
posedmethod, requiring fewer iterations, contribute to a reasonable overall computational
performance. It is crucial to note that, with an increasing amount of data, computational
challenges may arise, potentially necessitating a big data strategy to address these issues.
However, it is important to acknowledge that addressing these challenges extends beyond
the scope of this paper.

5. Conclusion

In this paper, we conducted the data analysis of the impact of body mass index (BMI) on
the blood pressure (BP) measures, including systolic and diastolic BP using data extracted
from the 2007 to 2008 National Health and Nutrition Examination Survey (NHANES).
The descriptive analysis showed that the prevalence of hypertension increased by age and
the hypertension was highly prevalent amongst very obese and morbidly obese partici-
pants. In particular, it was more prevalent in men than women. Moreover, there was a
statistically significant moderate association between SBP and age based on the Cramér’s
V value, whilst the remaining associations were weaker for both BP measures. However,
there was no association between DBP and marital status.

The analysismotivated a newBayesian non-linear quantile regressionmodel under frac-
tional polynomial (FP) model and variable selection with quantile-dependent prior. The
quantile regression analysis investigates how the relationships differ across the median and
upper quantile levels. The use of FPs allows for the relationships to be non-linear para-
metrically. The variable selection investigates for important predictors that contribute to
the non-linear relationships via the Bayesian paradigm. The model analysis suggested that
the proposed model provides better estimates because the 95% credible intervals were
narrower and the autocorrelation plots have faster decreasing rates of correlated poste-
rior samples in comparison to two methods, the frequentist and Bayesian approaches of
quantile regression model. The analysis of the data showed that non-linear relations do
exist because the proposed model identified the non-linear terms of continuous variables,
including BMI and age as important predictors in the model across all the quantile levels.
On the other hand, the non-linear term of age was not selected under the SBP model. The
marital status was not selected as an important risk factor for the DBPmodel at themedian
level. This agreed with findings of both descriptive andmodel analyses. Moreover, the data
analysis suggested that the quantile-based FP approaches have the goodness of fit in com-
parison to mean-based FP approaches. Thus, the importance of the non-linear quantile
model with FPs is significant for modelling of BP measures.
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