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LIMIT THEOREMS FOR A CLASS OF UNBOUNDED OBSERVABLES WITH

AN APPLICATION TO “SAMPLING THE LINDELÖF HYPOTHESIS”

KASUN FERNANDO AND TANJA I. SCHINDLER

Abstract. We prove the Central Limit Theorem (CLT), the first order Edgeworth Expansion and
a Mixing Local Central Limit Theorem (MLCLT) for Birkhoff sums of a class of unbounded heavily
oscillating observables over a family of full-branch piecewise C2 expanding maps of the interval. As
a corollary, we obtain the corresponding results for Boolean-type transformations on R. The class
of observables in the CLT and the MLCLT on R include the real part, the imaginary part and the
absolute value of the Riemann zeta function. Thus obtained CLT and MLCLT for the Riemann
zeta function are in the spirit of the results of Lifschitz & Weber [30] and Steuding [41] who have
proven the Strong Law of Large Numbers for sampling the Lindelöf hypothesis.
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1. Introduction

The study of the statistical properties of dynamical systems has a long and rich history, dating
back to the works of Maxwell and Boltzmann that introduced the ergodic hypothesis. In fact, a
whole facet of ergodic theory, which originated with the (almost simultaneous) publication of the
well-known ergodic theorems of Birkhoff and von Neumann in the early 1930s providing evidence
to ergodic hypothesis, is concerned with establishing limit laws such as the Central Limit Theorem
(CLT), and Large Deviation Principles (LDPs) for sufficiently chaotic dynamical systems. These
limit laws describe the behaviour of a dynamical system over a long period of time and can provide
important insights into the properties of the system.

Expanding maps of the unit interval are the most elementary class of dynamical systems that
exhibit chaotic behaviour and there is a vast literature on limit theorems for Birkhoff sums of
expanding maps. For example, in [37], the CLT is established for observables with bounded variation
(BV) over piecewise uniformly expanding maps whose inverse derivative is also BV. We refer the
reader to [6] for a review of limit theorems for transformations of an interval. In [10], Edgeworth
expansions describing the error terms in the CLT are established in the case of BV observables
over C2 covering uniformly expanding maps. Since the observables are BV, this result is limited to
bounded observables.

One standard technique of establishing limit theorems for dynamical systems is the Nagaev-
Guivarc’h spectral approach which was first introduced by Nagaev in the Markovian setting in [35]
and later adapted to deterministic dynamical systems by Guivarc’h in [16]. The key idea is to
code the characteristic function using iterated twisted transfer operator (one can think of this as
the deterministic counterpart of the dual of the Markov operator in the Markovian setting) and
to analyze the the spectral data of these family of operators in a suitable Banach space, see [15]
for details. Though transfer operator techniques to handle unbounded observables are available,
see for example, [20, 4, 32, 11], they have not been applied to obtain limit theorems for uniformly
expanding maps of the interval. In this paper, we introduce a class of Banach spaces that are not
contained in L∞ for which the conditions introduced in [20, 11] can be verified. In particular, we
establish the CLT, its first order correction – the order 1 Edgeworth expansion, and a Mixing Local
Central Limit Theorem (MLCLT) for the Birkhoff sums of a class of unbounded heavily oscillating

observables over a family of full-branch piecewise C2 uniformly expanding maps of the interval.

While providing a class of elementary examples where the theory developed in [11] for limit
theorems for unbounded observables can be applied, these results pave the way to obtain further
results on sampling the Lindelöf hypothesis which is a line of research in analytic number theory
that deals with understanding the properties of the Riemann zeta function on the critical strip. We
elaborate on this below.

Let ζ : C \ {1} → C be the Riemann zeta function defined by ζ(s) =
∑
n−s,ℜ(s) > 1 and by

analytic continuation elsewhere except s = 1. The Lindelöf hypothesis states that the Riemann zeta
function does not grow too quickly on the critical line ℜz = 1/2. More precisely, it is conjectured
that

ζ1/2(t) := ζ

(
1

2
+ it

)
= O(tε) , t → ±∞

for all ε > 0 , i.e., limt→±∞ |ζ1/2 (t) |/tε <∞. To date, the best estimates are due to Bourgain in [3]
where it is proved that this is true for all ε > 13/84 ≈ 0.154. It is worth noting that the Riemann
hypothesis implies the Lindelöf hypothesis and the latter is a substitute for the former in some
applications.

Since the conjecture is related to the value distribution of ζ1/2(t) as t → ±∞, to study ergodic
averages of ζ1/2 when sampled over the orbits of heavy-tailed stochastic processes was initiated by
Lifschitz and Weber in [30]. In particular, they prove that when {Yj}j≥0 are independent Cauchy
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distributed random variables and Xk =
∑k−1

j=0 Yj (the Cauchy random walk), then for all b > 2,

1

n

n−1∑

k=0

ζ1/2(Xk) = 1 + o

(
(log n)b√

n

)
, n→ ∞,

almost surely, where we denote an = o(bn) if limn→∞ |an|/bn = 0. This work was later generalized
by Shirai, see [39], where Xk was taken to be a symmetric α-stable process with α ∈ [1, 2]. Since
Xk are heavy tailed, i.e., E(|Xk|p) = ∞ when p = ⌈α⌉, the α-stable process samples large values
with high probability. So, this result illustrates that the values of ζ1/2(t) are small on average even
for large values of |t|.

Similarly, in the deterministic setting, the Birkhoff sums

(1.1)

n−1∑

k=0

ζ1/2(φ
kx)

where φ : R → R the Boolean-type transformation given by φ(0) = 0 and

φ(x) =
1

2

(
x− 1

x

)
, x 6= 0

are studied in [41]. Since φ preserves the ergodic probability measure dµ = dx
π(1+x2)

(the law of a

standard Cauchy random variable) and ζ1/2 is integrable with respect to µ, it follows from Birkhoff’s
point-wise ergodic theorem that for almost every (a.e.) x ∈ R

(1.2) lim
n→∞

1

n

n−1∑

k=0

ζ1/2(φ
kx) =

∫
ζ1/2(x)

dx

π(1 + x2)
= ζ1/2(3/2) − 8/3 ≈ −0.054 .

This too illustrates that most of the values of ζ1/2 are not too large, and hence, provides evidence
in favour of the Lindelöf hypothesis.

Sampling the Lindelöf hypothesis has two other theoretical underpinnings. On the one hand, it
is known that the Lindelöf hypothesis is true if and only if for all m ∈ N and for a.e. x ∈ R, the
following limit exists

lim
n→∞

1

n

n−1∑

k=0

|ζ1/2(φkx)|2m =

∫
|ζ1/2(x)|2m

dx

π(1 + x2)
.

On the other hand, the Riemann hypothesis is true if and only if for a.e. x ∈ R

lim
n→∞

1

n

n−1∑

k=0

log|ζ1/2((φkx)/2)| = 0.

In both cases, evidence can be gathered numerically, see [41, Theorems 4.1 and 4.2] for details.

The results by Steuding have also been generalized, both by replacing ζ and replacing φ: in
[8], Elaissaoui and Guennoun used log |ζ| as the observable and a slight variation of φ as the
transformation, and in [29], Lee and Suriajaya studied different classes of meromorphic functions
such as Dirichlet L−functions or Dedekind ζ functions while taking φ to be an affine version of the
Boolean-type transformation. Maugmai and Srichan gave further generalizations of these results,
see [34]. It must also be mentioned that these transformations φ have been studied earlier in a
solely ergodic theoretic context by Ishitani(s) in [22, 23].

To further understand the value distribution of the Birkhoff averages given by (1.1) around their
asymptotic mean A = ζ1/2(3/2) − 8/3, and in turn, the values of ζ1/2, the crucial next step is the
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study of the CLT and MLCLT. In [40], the second author establishes the CLT: There exists σ2 > 0
such that

1√
n

(
n−1∑

k=0

ζ1/2(φ
k(·))− nA

)
d−→ N (0, σ2)(1.3)

where
d−→ denotes the convergence in distribution and N (0, σ2) is the centered normal random

variable with variance σ2. However, there was a critical mistake in the proof: the normed vector
space considered there in order to study the spectrum of the transfer operator is not complete. In
this paper, we not only correct this mistake but also establish a MLCLT for (1.1). Further, we
provide conditions for the 1st order Edgeworth expansion to hold. Even though the state of the art
on ζ1/2 is not sufficient to verify these conditions, a slight improvement of results in [3] will provide
us what is required.

The proofs of the CLT, MLCLT and Edgeworth expansion are based on two key ideas: the spectral
techniques introduced in [11] and the existence of a smooth conjugacy between the doubling map
on the unit interval and φ. In fact, we consider an increasing sequence of Banach spaces on each
of which the twisted transfer operators corresponding to full-branch C2 expanding maps satisfy
Doeblin-Fortet Lasota-Yorke (DFLY) inequalities and other good spectral properties, prove limit
theorems for the expanding maps, and finally, deduce the limit theorems for φ via the conjugacy.
In doing so, we introduce a novel class of Banach spaces that can be used to study Birkhoff
sums of unbounded and highly oscillatory observables. Further, the class of dynamical systems we
consider is sufficiently rich. The restriction to full branch maps was done in order to simplify the
computations.

The Banach spaces introduced in [4, 32] are seemingly more general than the Banach spaces we
introduce. In fact, in our case, the observables can have non-removable discontinuities only at the
fixed points of the map. However, to obtain results for sampling the Lindelöf hypothesis, we have
to consider observables χ : (0, 1) → R such that

|χ| . x−a(1− x)−a and max{|χ′(x+)|, |χ′(x−)|} . x−b(1− x)−b

for some a, b > 0. In particular, we consider real and imaginary parts of

ζ1/2 ◦ ξ : (0, 1) → R where ξ (x) = cot (πx) .

But it is not clear whether such observables or even more elementary observables like x−c sin(1/x),
c > 0 belong to Banach spaces in the literature [33]. It is worth mentioning that observables
with a non removable singularity at the fixed point are particularly interesting: once an orbit lands
close to a fixed point, a few subsequent iterates might stay relatively close to the fixed point and
the Birkhoff sum might be very large locally. Alternatively, such situations can cause the system
behave qualitatively different from the independently and identically distributed (IID) setting, see
for example, [28, Theorem 1.10].

The structure of the paper is as follows: Section 2 is dedicated to preliminaries and main results: in
Section 2.1, we introduce the relevant notation and common definitions that we will use throughout
the paper, in Section 2.2, we state precisely the class of expanding maps we consider, Section 2.3 we
introduce our Banach spaces, in Section 2.4, we state our main results for the interval maps, and
in Section 2.5, we state the corresponding results for the Boolean transformation on R and their
implications to sampling the Lindelöf hypothesis. In Section 3, we recall known abstract results in
[20, 11] tailored (with justifications) to our setting. The desirable properties of the Banach spaces we
introduce are discussed in Section 4 and the spectral properties of twisted transfer operators acting
on these spaces including the DFLY inequality are established in Section 5. In Section 6, we collect
the proofs of our main results. In particular, the proofs of the limit theorems for interval maps
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appear in Section 6.1 and in Section 6.2 we prove the corresponding results for the Boolean-type
transformation. Finally, we have relegated some technical results to the Appendices.

2. Main Results

2.1. Preliminaries. Let X be a metric space with a reference Borel probability measure m, and
let T : X → X be a non-singular dynamical system, i.e., for all U ⊆ X Borel subsets m(U) = 0
holds if and only ifm(T−1U) = 0 holds. We denote by M1(X) the set of Borel probability measures
on X. Let ν ∈ M1(X). For p ≥ 1, by Lp(ν), we denote the standard Lebesgue spaces with respect
to ν, i.e.,

Lp(ν) = {h : X → X |h is Borel measurable, ν(|h|p) <∞}
where the notation ν(h) refers to the integral of a function h with respect to a measure ν and the
corresponding norm is denoted by ‖ · ‖Lp(ν). When ν = m, we often write, Lp instead of Lp(m) and
‖ · ‖p instead of ‖ · ‖Lp(m).

For us, an observable is a real valued function f ∈ L2 and we consider the Birkhoff sums (also
commonly referred to as ergodic sums),

(2.1) Sn(f, T ) =

n−1∑

k=0

f ◦ T k

which we denote by Sn(f) when the dynamical system T is fixed.

We say T̂ : L1 → L1 is the transfer operator of T̂ with respect to m, if for all f ∈ L1 and
f∗ ∈ L∞,

(2.2) m(T̂ (f) · f∗) = m(f · f∗ ◦ T ).
Let m ∈ M1(X) be absolutely continuous with respect to m with density ρm. Then, from (2.2), it
follows that

(2.3) Em(e
isSn(f)) = m

(
T̂ nis(ρm)

)

where Em is the expectation with respect to the law of Sn where the initial point x is distributed
according to m and

(2.4) T̂is(·) = T̂ (eisf ·), s ∈ R ,

see, for example, [19, Chapter 4]. Eventually, we are interested in the asymptotics of quantities of
the form m(Sn(f) ≤ zn) and Em(Vn(Sn(f))) as n → ∞ where zn ∈ R and Vn : R → R are from a
suitable class of functions, and to obtain these asymptotics we exploit the relation (2.3).

We denote

A(f, t) = lim
n→∞

Em

(
Sn(f, T )

n

)
and σ2(f, T ) = lim

n→∞
Em

(
Sn(f, T )− nA(f, T )√

n

)2

for the asymptotic mean and the asymptotic variance of Birkhoff sums, Sn(f), respectively. Then,
it can be seen that, under the assumptions we impose on T in Section 2.2, A and σ2 are independent
of the choice of m; see, for example, [12, Lemma 3.4]. In particular, under our assumptions there
will be a unique absolutely continuous invariant measure (acip), say m̄, then A(f, T ) = m̄(f). So,
we can focus on zero average observables by considering f := f −A instead of f .

We call f to be T−cohomologous to a constant if there exist ℓ ∈ L2 and a constant c such that

f = ℓ ◦ T − ℓ+ c

and T−coboundary if there exists ℓ ∈ L2 such that

f = ℓ ◦ T − ℓ .
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We say f is non-arithmetic if it is not T−cohomologous in L2 to a sublattice-valued function, i.e.,
if there exists no triple (γ,B, θ) with γ : X → R, B a closed proper subgroup of R and a constant
θ such that f + γ − γ ◦ T ∈ θ +B.

Given a Banach space B1, the C−valued continuous linear functionals are denoted by B ′
1 and

given another Banach space B2, L(B1,B2) denotes the space of bounded linear operators from B1

to B2. When B1 = B2, we write L(B1,B1) as L(B1). When B1 ⊂ B2, B1 →֒ B2 denotes continuous
embedding of Banach spaces, i.e., there exists c > 0 such that ‖ · ‖B2

≤ c‖ · ‖B1
.

Given a set D ⊆ X, its complement X \D is denoted by Dc, and D̊ denotes its interior. Given a
function f : D → R set f+ := max{f, 0} and f− := max{−f, 0}. Given g : D → R, g . f denotes
that there exists constant K > 0 such that g(x) ≤ Kf(x), for all x ∈ D. Let Q1, Q2 be R

+
0 valued

functionals acting on a class of functions G1 and G2, the inequality Q1(g) . Q2(h) for all g ∈ G1

and h ∈ G2 is written to denote that there exists K independent of the choices of g and h such
that Q1(g) ≤ KQ2(h). Finally, given two numbers a, b ∈ R, a ≈ b means that 0 ≤ a− b ≤ 10−3.

We denote the standard Gaussian density and the corresponding distribution function by

n(x) =
1√
2π
e−x

2/2 and N(x) =

∫ x

−∞
n(y) dy ,

respectively.

2.2. The classes of dynamical systems. Let I = [0, 1] and λ the Lebesgue measure (on R) and

λI its restriction to I. We use λI as the reference measure on I and let I =
⋃k−1
j=0 [cj , cj+1] be a

partition of I with c0 = 0 and ck = 1. We consider the class of maps ψ : I → I satisfying the
following conditions.

(1) There are ψj+1 : [cj , cj+1] → I such that for all j, ψj+1 ∈ C2 , |ψ′
j+1| > 1 , Range(ψj+1) = I

and

ψj+1|(cj ,cj+1) = ψ|(cj ,cj+1) .

(2) For all j, the derivative of ψ−1
j+1 is uniformly ϑ−Hölder, i.e., there exists c such that for all j,

for all ε > 0, for all z ∈ I and for all x, y ∈ Bε(z) := [z − ε, z + ε] ∩ [0, 1] ,

|(ψ−1
j+1)

′(x)− (ψ−1
j+1)

′(y)| ≤ c|(ψ−1
j+1)

′(z)|εϑ .

Remark 2.1. The full branch assumption was made in order to simplify our calculations. This does
not exclude the doubling map - the interval map studied in [40] to further analyze the situation
studied in [41].

Since these maps are C2, Markov and topologically mixing, each map has one and only one acip
and it is exact [13, Theorem 6.1.1]. We denote this acip by π. Since ψ′

j+1 are C1 , there exists
η+ <∞ such that

max
j

‖ψ′
j+1‖∞ = η+.

Also, since |ψ′
j+1| > 1 , there exists η− > 1 such that

max
j

‖(ψ−1
j+1)

′‖∞ = 1/η−.

Without loss of generality we assume that ψ′ > 0 and we have

(2.5) ψ̂is(ϕ)(x) =

k−1∑

j=0

eisχ(ψ
−1

j+1
x)

ψ′(ψ−1
j+1x)

ϕ(ψ−1
j+1x) ,

see, for example, [19] for a proof of this fact.
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2.3. The Banach spaces. For a measurable function f : I → C and a Borel subset S of I, we
define the oscillation on S by

osc (f, S) := osc(Rf, S) + osc(If, S),

where Rf and If refer to real and imaginary parts of f , respectively and we set osc(f, ∅) := 0.
Also, note that up to a constant this is equivalent to the more intuitive definition

osc (f, S) := ess sup
x,y∈S

|f(x)− f(y)| .

This can be easily seen. We have |f(x) − f(y)| ≤ |ℜf(x) − ℜf(y)| + |ℑf(x) − ℑf(y)|, and thus,
osc(f, S) ≤ osc(f, S). On the other hand, we have osc(f, S) ≤ 2max{osc(ℜf, S), osc(ℑf, S)} ≤
2 osc(f, S). In what follows, we use osc as the standard definition.

For α ∈ R, define, Rα, an operator on the space of measurable functions by

Rαf(x) :=

{
xα · (1− x)α · f(x) if |f(x)| <∞
0 otherwise,

denote by Bε(x) the ε-ball around x in I, and define a seminorm

|f |α,β := sup
ε∈(0,ε0]

ε−β
∫

osc (Rαf,Bε(x)) dλI(x) ,

where ε0 is sufficiently small (to be chosen later). Let

‖·‖α,β,γ := ‖·‖γ + |·|α,β
and set

Lγ :=
{
f : I → C : ‖f‖γ <∞

}
, Vα,β,γ :=

{
f : I → C : ‖f‖α,β,γ <∞

}
.

Finally, by V
′
α,β,γ we denote the set of C−valued continuous linear functionals on Vα,β,γ .

Remark 2.2. It is shown in Appendix A that for α ∈ [0, 1), β ∈ (0, 1] and γ ≥ 1, Vα,β,γ is a Banach
space. Similar real Banach spaces were considered in [25, 2, 27]. In all these cases, their spaces
correspond to our spaces with α = 0, and hence, are embedded in L∞; see Lemma A.4.

Due to the dampening operation Rα, which was first introduced in [40], the functions in Vα,β,γ

may be unbounded and oscillate heavily near 0 and 1. We remark that depending on the application
one could consider different damping operators and use the ideas presented here to prove limit
theorems.

2.4. Results for the unit interval. Now, we are ready to state the limit theorems for Sn(χ) :=
Sn(χ,ψ) over dynamical systems ψ defined as in Section 2.2. Though we do not state this explicitly,
it will later turn out that the χ specified in the following theorems belongs to an appropriate Vα,β,γ .

We first state the CLT in the stationary case.

Theorem 2.3. Suppose χ is continuous and the right and left derivatives of χ exist on I̊, χ is not

a coboundary and there exist constants a, b > 0 such that

|χ| . x−a(1− x)−a and max{|χ′(x+)|, |χ′(x−)|} . x−b(1− x)−b .(2.6)

Assume

a < min

{
ϑ,

1

b
,
1

2

}
·min

{
1,

log η−
log η+

}
.(2.7)

Then, the following Central Limit Theorem holds:

(2.8) π

(
Sn(χ)− nπ(χ)

σ
√
n

≤ x

)
−N(x) = o(1), for all x ∈ R as n→ ∞ .
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Now, we discuss sufficient conditions for the MLCLT.

Theorem 2.4. Suppose χ is continuous and the right and left derivatives of χ exist on I̊, χ is

not arithmetic and there exist constants a, b > 0 such that (2.6) and (2.7) are true. Then, Sn(χ)
satisfies the following MLCLT:for all 0 < α0 < α1 < β, M ≥ 1, U ∈ Vα0,β,M , V : R → R

a compactly supported continuous function, m ∈ M1(I) being absolutely continuous wrt λI , and

W ∈ L1 such that (W ·m) ∈ V
′
α1,β,M

, we have

(2.9) lim
n→∞

sup
ℓ∈R

∣∣∣∣σ
√
2πnEm(U ◦ ψn V (Sn(χ)− ℓ)W )− e−

ℓ2

2nσ2 Em(W )Eπ(U)

∫
V (x) dx

∣∣∣∣ = 0 .

Remark 2.5. In particular, it is possible to choose m = π for all W ∈ LM̄ where M−1 + M̄−1 = 1.
In fact, under our assumptions, there exists ρ ∈ BV such that π = ρλI ; see, for example, [31].
Therefore, |W · π(h)| =

∣∣∫ (hW )ρdλI
∣∣ ≤ ‖ρ‖∞|Wh|L1 ≤ ‖ρ‖∞‖W‖M̄‖h‖M ≤ C‖h‖α1,β,M with

C = ‖ρ‖∞‖W‖M̄ , and hence, W · π ∈ V
′
α1,β,M

as required.

Next, we discuss the first order asymptotics of the CLT with no assumptions on the stationarity.
In particular, under the conditions of the theorem, we have the CLT for initial measures that are
not necessarily invariant.

Theorem 2.6. Suppose χ is continuous and the right and left derivatives of χ exist on I̊, χ is

arithmetic and there exist constants a, b > 0 such that (2.6) and

3min{2a,max{a, a + b− 2}} < min

{
ϑ,

1

b
,
1

2

}
·min

{
1,

log η+
log η−

}
.(2.10)

are true. Then, Sn(χ) satisfies the first order Edgeworth expansion, i.e., for all m ∈ M1(I) being

absolutely continuous wrt λI there exists a quadratic polynomial P whose coefficients depend on the

first three asymptotic moments of Sn(χ) but not on n such that

sup
x∈R

∣∣∣∣m
(
Sn(χ)− nπ(χ)

σ
√
n

≤ x

)
−N(x)− P (x)√

n
n(x)

∣∣∣∣ = o(n−1/2), as n→ ∞ .

Remark 2.7. Note that from (2.10) and (2.6) with the corresponding choices of a and b it follows
that χ ∈ L3. So, Em(|Sn(χ)|3) <∞ for each n. Our proof shows that the third asymptotic moment

lim
n→∞

Em

(
Sn(χ)− nπ(χ)√

n

)3

does, indeed, exist.

Finally, we provide a concrete example of a class of observables that satisfies our conditions.

Example 2.8. Let χ(x) = x−c sin(1/x) and define η̃ = min
{
1, log η−log η+

}
.

(1) If 0 ≤ c < min
{√

1 + η̃ − 1, ϑη̃
}
, then Sn(χ) satisfies the CLT and MLCLT.

(2) If 0 ≤ c < min{
√

1 + η̃/6− 1, ϑη̃/6}, then Sn(χ) admits the first order Edgeworth Expansion.

If ψ is the doubling map, i.e. ψ(x) = 2x mod 1, then the conditions simplify in the following way:

(1a) If c <
√
2− 1 (≈ 0.414), then Sn(χ) satisfies the CLT and MLCLT.

(2a) If c <
√
7/6 − 1 (≈ 0.080), then Sn(χ) admits the first order Edgeworth Expansion.
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2.5. The application to the Boolean-type transformation. Recall the Boolean-type trans-
formation φ : R → R defined as

φ(x) :=

{
1
2

(
x− 1

x

)
if x 6= 0

0 if x = 0
(2.11)

and µ ∈ M1(R) defined by

dµ (x) :=
1

π · (x2 + 1)
dλ(x).(2.12)

We are interested in limit theorems for Birkhoffs sums S̃n(h) := Sn(h, φ) where h : R → R. To
study these systems we go back to an easier system which fulfills all our properties of the last
section.

Let ψ : I → I be given by ψ (x) := 2x mod 1 and ξ : I → R be given by ξ (x) := cot (πx). Note
that ξ is almost surely bijective. An elementary calculation yields that the dynamical systems
(R,BR, µ, φ) and (I,BI , λI , ψ) are isomorphic via ξ, i.e.

(φ ◦ ξ) (x) = (ξ ◦ ψ) (x) ,

for all x ∈ I and additionally ξ and ξ−1 are measure preserving, i.e. for all B ∈ BR it holds that
µ (B) = λI

(
ξ−1B

)
and for all B ∈ BI it holds that λI (B) = µ (ξB). To simplify the notation, we

define σ̃2 := σ2(h, φ).

Hence, instead of studying the Birkhoff sum
∑N−1

n=0 (h ◦ φn) (x) with x ∈ R we can study the sum∑N−1
n=0 (h ◦ ξ ◦ ψn) (y), for y ∈ I. Since the transformations φ and ψ are isomorphic we conclude

that

µ

(
N−1∑

n=0

(h ◦ φn) (x) ∈ B

)
= λI

(
N−1∑

n=0

(h ◦ ξ ◦ ψn) (y) ∈ B

)
,(2.13)

for all sets B ∈ BR. Formally, we define χ : I → R by χ (x) := (h ◦ ξ) (x) and consider then the
Birkhoff sum Sn(χ). Then our task reduces to transferring the conditions we have for χ to conditions
for h.

Let F be the class of functions h : R → R such that the left and right derivatives exist and there
exist u, v ≥ 0 fulfilling

h (x) . |x|u and max
{∣∣h′ (x−)

∣∣ ,
∣∣h′ (x+)

∣∣} . |x|v(2.14)

and u(2 + v) < 1 . Analogously to f , we define h = h− µ(h) .

Under the non-coboundary condition on φ, we have the CLT:

Proposition 2.9. Suppose h ∈ F is not φ−cohomologous to a constant. Then, the following CLT

holds:

(2.15) µ

(
S̃n(h)− nµ(h)

σ̃
√
n

≤ x

)
−N(x) = o(1), for all x ∈ R as n→ ∞

with σ̃2 ∈ (0,∞).

Under a non-arithmeticity condition on φ, we have the MLCLT:

Proposition 2.10. Let h ∈ F be non-arithmetic. Let 0 < α0 < α1 < β and M ≥ 1. Then,

the following MLCLT holds: for V : R → R compactly supported and continuous, U such that
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U ◦ ξ ∈ Vα0,β,M , W such that W ◦ ξ ∈ L1 for all m ∈ M1(R) being absolutely continuous with

respect to λ such that (W ◦ ξ · ξ∗m) ∈ V
′
α1,β,M

, we have

(2.16) lim
n→∞

sup
ℓ∈R

∣∣∣∣σ
√
2πnEm(U ◦ ψn V (S̃n(h)− ℓ)W )− e−

ℓ2

2nσ̃2 Em(W )Eµ(U)

∫
V (x) dx

∣∣∣∣ = 0 .

Since |ℜ ζ(s+ i ·)|a, |ℑ ζ(s+ i ·)|a, |ζ(s + i ·)|a ∈ F for some suitable choices of s and a, we obtain
two corollaries that improve the existing results on sampling the Lindelöf hypothesis.

Corollary 2.11. Let s ∈ (3− 2
√
2, 1) and define h : R → R as follows.

• h(x) = ℜ ζ(s+ ix) ,
• h(x) = ℑ ζ(s+ ix) , or
• h(x) = |ζ(s+ ix)|

where ζ : C → C is the Riemann zeta function. If h is not φ−cohomologous to a constant, then the

CLT, (2.15) holds. Moreover, if h is non-arithmetic, then the MLCLT, (2.16), holds.

Remark 2.12. See [40, Section 2.5] for a discussion where it is shown using numerics that for ζ1/2 all
of the above choices of h are not coboundaries. Similarly, for a fixed value of s, one can numerically
check whether h is not a ψ−coboundary by calculating the sum of values of χ = h ◦ ξ over some
appropriate periodic orbit of the doubling map and showing that it is not equal to 0.

Corollary 2.13. Let h : R → R be as follows.

• h = |R ζ1/2|a ,
• h = |I ζ1/2|a, or
• h = |ζ1/2|a

where 1 ≤ a < 84/13(
√
2− 1) (≈ 2.677). If h is not φ−cohomologous to a constant, then the CLT,

(2.15) holds. Moreover, if h is non-arithmetic, then the MLCLT, (2.16), holds.

Remark 2.14. On the one hand, the Lindelöf hypothesis states that |ζ1/2(x)| . xε holds for all
ε > 0, and hence, if it is true, the above statement has to hold for any a > 0.

On the other hand, sampling |ζ(s + iφk(x))|a with larger values of a and obtaining normally
distributed samples provide further evidence that the Lindelöf hypothesis is indeed true.

Finally, we state a set of sufficient conditions that implies the Edgeworth Expansions for φ.

Proposition 2.15. Let h : R → R be such that the left and right derivatives exist and there exist

u, v ≥ 0 fulfilling (2.14) and

min{2u(2 + v), (u + v)(2 + v)} < 1/3(2.17)

and h is not arithmetic. Then there exists a quadratic polynomial P whose coefficients depend

on the first three asymptotic moments of S̃n(h) but not on n such that for all m ∈ M1(R) being

absolutely continuous with respect to λ we have

(2.18) sup
x∈R

∣∣∣∣∣m
(
S̃n(h) − nµ(h)

σ̃
√
n

≤ x

)
−N(x)− P (x)√

n
n(x)

∣∣∣∣∣ = o(n−1/2), as n→ ∞ .

Remark 2.16. The condition (2.17) forces that 0 ≤ u < 1 and u < v.

Remark 2.17. The state of the art is not sufficient to conclude that the Riemann zeta function, or
more precisely ℜζ1/2, ℑζ1/2 and |ζ1/2|, satisfy the conditions of the theorem. However, our theorem
shows that if the Lindelöf hypothesis is true, then the first order Edgeworth expansion has to hold.
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3. Review of Abstract Results for Limit Theorems

One known technique used to establish limit theorems for ergodic sums with unbounded observ-
ables is a combination of the Keller-Liverani perturbation result (see [26]) applied to a sequence of
Banach spaces as in [20, 11, 36]. There exist elementary criteria for the CLT and the MLCLT to
hold. We state them below as propositions adapted from [20, Corollary 2.1, Theorem 5.1] to our
setting.

Proposition 3.1. Let T : X → X be a dynamical system that has an ergodic invariant probability

measure m̄. Let f ∈ L2(m̄) be such that m̄(f) = 0 and
∑

n≥0 T̂
n(f) converges in L2(m̄). Then, we

have the following CLT.

(3.1) lim
n→∞

m̄

(
Sn(f)√

n
≤ x

)
= N

(x
σ

)
, for all x ∈ R as n→ ∞ ,

where σ2 = σ2(f, T ) can be written as

σ2 = Em̄(f
2) + 2

∞∑

k=1

Em̄(f · f ◦ T k) ∈ [0,∞) .

Here σ = 0 if and only if f is a T -coboundary and in this case N(x/σ) := 1[0,∞) and
Sn(f)√

n
→ δ0 in

distribution as n→ ∞.

Proof. This follows due to Gordin [14]. See [20, Corollary 2.1, Proposition 2.4] for details. �

Proposition 3.2. Let T : X → X be a non-singular dynamical system wrt a probability measure

m. Suppose T has an ergodic invariant probability measure m̄ absolutely continuous wrt m and that

there exist two, not necessarily distinct, Banach spaces X and X (+) such that

(3.2) X →֒ X (+) →֒ L1(π)

each containing 1X and satisfying the following:

(I) For all s ∈ R, T̂is ∈ L(X ) ∩ L(X (+)) .

(II) The map s 7→ T̂is ∈ L(X ,X (+)) is continuous on R .

(III) Either X = X (+) , or there exist κ ∈ (0, 1) and δ > 0 such that for all

z ∈ Dκ := {z ∈ C||z| > κ, |z − 1| > (1− κ)/2},
and for all s ∈ (−δ, δ) we have

(zId− T̂is)
−1 ∈ L(X ) and sup

|s|<δ
sup
z∈Dκ

‖(zId− T̂is)
−1‖X→X <∞ .

(IV) limn→∞ ‖T̂ n(·) − m̄(·)1X‖X0→X0
= 0 .

(V) The CLT, (3.1) holds with σ > 0.

(VI) For all s 6= 0, the spectrum of the operators T̂is acting on X is contained in the open unit

disc, {z ∈ C | |z| < 1} .
Then, for all U ∈ X , V : R → R a compactly supported continuous function, m ∈ M1(X) being

absolutely continuous wrt m and W ∈ L1 such that (W ·m) ∈ X (+) ′ , we have

(3.3) lim
n→∞

sup
ℓ∈R

∣∣∣∣σ
√
2πnEm(U ◦ T n V (Sn(χ)− ℓ)W )− e−

ℓ2

2nσ2 Em(U)Em̄(W )

∫
V (x) dx

∣∣∣∣ = 0 .

Proof. This follows from a modified version of [20, Theorem 5.1]. The condition (CLT) there is
assumed here in (V).

Also, the Condition (K̃) there follows from our assumptions (I) through (IV) because (K1) is

(IV), (K̃1) is (II), and finally, (K̃2) can be replaced by (III) (see Remark 3.4).
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Our assumptions (II) and (VI) yield that on any compact set K ⊂ R \ {0}, there exist ρ ∈ (0, 1)
and CK > 0 such that

sup
s∈K

‖T̂ nis‖X→X+ ≤ CKρ
n,

for all n ∈ N (see, for example, [11, Proposition 1.13] for a proof). This replaces the non-lattice
condition (S) there.

So, for all U ∈ X , V : R → R a compactly supported continuous function and W ∈ L1 such that
(W ·m) ∈ X (+) ′ , we have the MLCLT due to [20, Theorem 5.1]. �

Finally, we state a result that gives us sufficient conditions for the first order Edgeworth expan-
sion. It is adapted from [20, 11] to our setting (compare with [20, Proposition 7.1, Propostion A.1]
and [11, Corollary 1.8, Proposition 1.12]).

Proposition 3.3. Let T : X → X be a non-singular dynamical system wrt a probability measure

m. Suppose T has an ergodic invariant probability measure m̄ absolutely continuous wrt m and that

there exists a sequence of, not necessarily distinct, Banach spaces

(3.4) X0 →֒ X (+)
0 →֒ X1 →֒ X (+)

1 →֒ X2 →֒ X (+)
2 →֒ X3 →֒ X (+)

3

each containing 1X , X (+)
3 →֒ L1 and satisfying the following:

(I) For each space C in (3.4), s ∈ R, T̂is ∈ L(C) .
(II) For all a = 0, 1, 2, 3, the map s 7→ T̂is ∈ L(Xa,X (+)

a ) is continuous on R .

(III) For all a = 0, 1, 2, the map s 7→ T̂is ∈ L(X (+)
a ,Xa+1) is C

1 on (−δ, δ) .
(IV) Either all spaces in (3.4) are equal, or there exist κ ∈ (0, 1) and δ > 0 such that for all

z ∈ Dκ := {z ∈ C||z| > κ, |z − 1| > (1− κ)/2},
for all s ∈ (−δ, δ) and for each space C in (3.4),

(zId− T̂is)
−1 ∈ L(C) and sup

|s|<δ
sup
z∈Dκ

‖(zId − T̂is)
−1‖C→C <∞ .

(V) T̂ has a spectral gap of (1− κ) on each space C in (3.4).

(VI) For all s 6= 0, the spectrum of the operators T̂is acting on either X0 or X (+)
0 is contained in

the open unit disc, {z ∈ C | |z| < 1} .
(VII) The sequence {

n−1∑

k=0

f ◦ T k
}

n∈N
where f := f −A has an L2−weakly convergent subsequence .

(VIII) f is not T−cohomologous to a constant.

Then for all m ∈ M1(X) being absolutely continuous wrt m, there exists a quadratic polynomial P
whose coefficients depend on the first three asymptotic moments of Sn(χ) such that the following

asymptotic expansion holds;

(3.5) sup
x∈R

∣∣∣∣m̄
(
Sn(f)

σ
√
n

≤ x

)
−N(x)− P (x)√

n
n(x)

∣∣∣∣ = o(n−1/2), as n→ ∞ .

Remark 3.4. In [20] and [11], instead of the condition (IV) above, the following stronger condition
of a uniform DFLY inequality is assumed.

Either all spaces in (3.4) are equal, or there exist C̃ > 0, κ̃1 ∈ (0, 1) and p0 ≥ 1 such
that, for every C in (3.4),

(3.6) ∀h ∈ C, sup
|s|<δ

‖T̂ nish‖C ≤ C̃
(
κ̃n1‖h‖C + ‖h‖Lp0 (ν̄)

)
.
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However, the proof of the key theorem, [11, Proposition 1.11], is based on [20, Proposition A,
Corollary 7.2] which uses the hypothesis D(m) in [20, Appendix A] that contains the much weaker
condition (IV) instead of condition (3.6). Therefore, all the results in [11] based on [11, Proposition
1.11] including [11, Proposition 1.12] remain true with this replacement. We refer the reader to
[20] for more details.

Remark 3.5. For an elementary illustration of the proof of the CLT based on the classical Nagaev-

Guivarc’h approach, we refer the reader to [15] where the C2 regularity of s 7→ T̂is along with the

spectral gap of T̂ on a single Banach space (instead of a chain) is used. This corresponds to the
C2 regularity of the characteristic function in the IID case. When it comes to the MLCLT in the
IID setting, a non-lattice assumption is necessary. In our case, the equivalent assumption is (VI).

Proof of Proposition 3.3. We apply results in [11] restricted to a single dynamical system with r = 1
there, i.e., when Assumptions (0) and (A)[1](1-2) in [11, Section 1.2] are trivially true. This case
is, thus, similar to the r = 1 case of [11, Proposition 1.12] which implies [11, Corollary 1.8] which,
in turn, gives the first order Edgeworth expansion. This is because our assumptions above imply
Assumptions (A)[1] and (B) in [11, Section 1.2], except for (A)[1](4) which is equivalent to (3.6).
However, as discussed in Remark 3.4, [11, Corollary 1.8] remains true because the key ingredient
of the proof in [11] is our assumption (IV) (implied by the much stronger (A)[1](4)). �

4. Multiplication in Vα,β,γ

4.1. Multiplication by eisχ. In this section, we prove some properties of multiplication by eisχ

in Vα,β,γ that are necessary for our proofs.

Observe that the spaces Vα,β,γ , as opposed to spaces usually used in ergodic theory such as

L∞, BV[0, 1] or C1[0, 1], are not Banach algebras. Hence, s 7→ ψ̂is ∈ L(Vα,β,γ) may not be
continuous. The following lemma will allow us to establish its continuity as a function from R to
L(Vα1,β1,γ1 ,Vα2,β2,γ2) for some good choices of indices.

Lemma 4.1. Suppose g ∈ Vα1,β1,γ1, h ∈ Vα2,β2,γ2 and α3 = α1 + α2, β3 ≤ min{β1 , β2} and

γ3 ≤ (γ−1
1 + γ−1

2 )−1. Then,

‖gh‖α3 ,β3,γ3 . ‖g‖α1 ,β1,γ1‖h‖α2 ,β2,γ2

with the proportionality constant independent of g and h but dependent on αj , βj , γj , j = 1, 2, 3.

Proof. First, suppose g and h are real valued. Then

(4.1) osc(Rαu,Bε(x)) = osc(Rαu−, Bε(x)) + osc(Rαu+, Bε(x)) .

By applying [38, Proposition 3.2 (iii)] to the positive and negative parts of g,

osc(Rα3
(gh), Bε(x))

= osc(Rα3
(g+ − g−)h,Bε(x))

= osc(Rα1
(g+ − g−) · Rα2

h,Bε(x))

≤ osc(Rα1
g+ ·Rα2

h,Bε(x)) + osc(Rα1
g− ·Rα2

h,Bε(x))

≤
∑

r=±

(
osc(Rα1

gr, Bε(x)) · ess sup |Rα2
h|+ osc(Rα2

h,Bε(x)) · ess sup |Rα1
gr|
)

≤ osc(Rα1
g,Bε(x)) ess sup |Rα2

h|+ 2 · osc(Rα2
h,Bε(x)) ess sup |Rα1

g| .
If g is complex valued, using the definition of osc, we have

osc(Rα3
(gh), Bε(x))

≤ osc(Rα1
g,Bε(x)) ess sup |Rα2

h|+ 2 · osc(Rα2
h,Bε(x))(ess sup |Rα1

ℜg|+ ess sup |Rα1
ℑg|) ,
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≤ osc(Rα1
g,Bε(x)) ess sup |Rα2

h|+ 2
√
2 · osc(Rα2

h,Bε(x)) ess sup |Rα1
g| .

If h is not real valued, repeating the argument for the real and imaginary parts of h, we obtain

osc(Rα3
(gh), Bε(x))

≤ 2
√
2 · osc(Rα1

g,Bε(x)) ess sup |Rα2
h|+ 2

√
2 · osc(Rα2

h,Bε(x)) ess sup |Rα1
g| .

Now, we use the inclusion of L∞ in V0,βr,1 where r = 1, 2 to conclude that
∫

osc(Rα3
(gh), Bε(x)) dλI(x)

.

∫
osc(Rα1

g,Bε(x)) dλI(x) · ‖Rα2
h‖0,β2,1 +

∫
osc(Rα2

h,Bε(x)) dλI(x) · ‖Rα1
g‖0,β1,1

. εβ1 |g|α1,β1(|h|α2,β2 + ‖Rα2
h‖1) + εβ2 |h|α2,β2(|g|α1 ,β1 + ‖Rα1

g‖1).

This gives us that for all ε ∈ (0, 1],

ε−β3
∫

osc(Rα3
(gh), Bε(x)) dλI(x)

. |g|α1,β1 |h|α2,β2 + |g|α1,β1‖h‖γ2 + |h|α2,β2 |g|α1,β1 + |h|α2,β2‖g‖γ1 .

Taking the supremum over ε and combining with ‖gh‖γ3 ≤ ‖g‖γ1‖h‖γ2 implies the result. �

Due to the linearity of the operator ψ̂, in order to show regularity of s 7→ ψ̂is = ψ(eisχ × · ), it is
enough to show the regularity of the one parameter group of multiplication operators s 7→ eisχ× · .
Our next lemma provides general conditions that guarantees this.

Lemma 4.2. Let 0 ≤ α0, β ≤ 1 and γ0 ≥ 1. For each s ∈ R, consider the multiplication operator,

Hs(·) = eisχ × · , on Vα0,β,γ0 .

(1) Suppose there is β̄ ≥ β such that, for all s ∈ R, |eisχ|0,β̄ < ∞. Then, for all s ∈ R,

Hs ∈ L(Vα0,β,γ0) .

(2) Suppose, in addition to the conditions in (1), there exists 0 < α∗ < β such that

(4.2) lim
s→0

|1− eisχ|α∗,β = 0.

Put α1 = α0 + α∗ and γ1 ≤ γ0. Then s 7→ Hs ∈ L(Vα0,β,γ0 ,Vα1,β,γ1) is continuous.

(3) Suppose, in addition to the conditions in (1) and (2), there exist 0 < α∗∗ < β and γ ≥ 1
such that

(4.3) lim
s→0

∣∣∣∣
eisχ − 1− isχ

s

∣∣∣∣
α∗∗,β

= 0 and ‖χ‖γ <∞ .

Put α2 = α0 + max{α∗, α∗∗} and γ2 ≤ (γ−1
1 + γ−1)−1. Then, the function s 7→ Hs ∈

L(Vα0,β,γ0 ,Vα2,β,γ2) is differentiable with the derivative

H ′
s(·) = (iχ)eisχ × · .

(4) Suppose, the conditions in (1), (2) and (3) are true. Put α3 = α2 + α∗ and γ3 ≤ γ2. Then

s 7→ Hs ∈ L(Vα0,β,γ0 ,Vα3,β,γ3) is continuously differentiable.

Remark 4.3. It would be possible to have some more flexibility on the parameter β and change it
for different spaces. However, we only use the version of the lemma as stated which also keeps a
simpler notation.
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Proof of Lemma 4.2.

Proof of (1):

We note that for all g ∈ Vα0,β,γ0 , ‖Hs(g)‖γ0 = ‖g‖γ0 and due to [38, Proposition 3.2 (iii)],

osc(Rα0
(eisχg), Bε(x)) ≤ osc(Rα0

(eisχg+), Bε(x)) + osc(Rα0
(eisχg−), Bε(x))

. osc(Rα0
g,Bε(x)) + osc(eisχ, Bε(x)) · ess sup(|Rα0

g|)
. osc(Rα0

g,Bε(x)) + osc(eisχ, Bε(x))‖g‖α0 ,β,γ0 and

ε−β osc(Rα0
(eisχg), Bε(x)) . ε−β osc(Rα0

g,Bε(x)) + ε−β osc(eisχ, Bε(x))‖g‖α0 ,β,γ0 .

The first . is due to adding up the positive and negative part of g the second is due to the inclusion
V0,β,γ0 →֒ L∞. Integrating and taking the supremum over ε, we have

|Hs(g)|α0,β . |g|α0,β + |eisχ|0,β‖g‖α0,β,γ0

which gives

(4.4) ‖Hs(g)‖α0 ,β,γ0 ≤ (1 + |eisχ|0,β)‖g‖α0,β,γ0 .

Therefore, for all s, Hs maps Vα0,β,γ0 to itself, and is a bounded linear operator on Vα0,β,γ0 .

Proof of (2):

We note that, Htg −Hsg = (Id−Hs−t)Htg and if g ∈ Vα0,β,γ0 then Htg ∈ Vα0,β,γ0 . Hence, due to
Lemma 4.1, it is enough to prove that

lim
s→0

‖Id−Hs‖Vα0,β,γ0
→Vα1,β,γ1

= 0.

To this end, let g ∈ Vα0,β,γ0 be such that ‖g‖α0,β,γ0 ≤ 1. Then,

lim
s→0

‖(Id −Hs)g‖γ1γ1 = lim
s→0

∫
|(1 − eisχ)g|γ1 dλI = 0

by the dominated convergence theorem. Moreover, by [38, Proposition 3.2 (iii)]

osc(Rα1
(Id−Hs)g,Bε(x))

= osc(Rα∗(1− eisχ)Rα0
g,Bε(x))

. osc(Rα0
g,Bε(x)) · ess sup |Rα∗(1− eisχ)|+ osc(Rα∗(1− eisχ), Bε(x)) · ess sup |Rα0

g| ,
where . is due to the fact that we have to consider the positive and negative part of g separately.
Because V0,β,1 →֒ L∞, we have

ε−β osc(Rα1
(Id−Hs)g,Bε(x)) . ε−β osc(Rα0

g,Bε(x))(|1 − eisχ|α∗,β + ‖Rα∗(1− eisχ)‖1)
+ ε−β osc(Rα∗(1− eisχ), Bε(x))‖g‖α0 ,β,γ0 .

Integrating, taking the sup over ε, and finally, using ‖g‖α0 ,β,γ0 ≤ 1, we get

|(Id−Hs)g|α1,β . |1− eisχ|α∗,β + ‖Rα∗(1− eisχ)‖1.
By the bounded convergence theorem lims→0 ‖Rα∗(1− eisχ)‖1 = 0. Therefore,

lim
s→0

|(Id−Hs)g|α1,β = 0.

Hence, we have the continuity of s 7→ Hs.

Proof of (3):

First, we show that for all g ∈ Vα1,β1,γ1 such that ‖g‖α1 ,β1,γ1 ≤ 1,

lim
h→0

∥∥∥
(Hs+h −Hs −H ′

sh

h

)
g
∥∥∥
α2,β,γ2

= lim
h→0

∥∥∥
(Hh − Id− iχh

h

)
Hsg

∥∥∥
α2,β,γ2

= 0.
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Due to Lemma 4.1, it is enough to show that

lim
h→0

∥∥∥
(Hh − Id− iχh

h

)
1

∥∥∥
α∗∗,β,γ

= lim
h→0

∥∥∥e
ihχ − 1− iχh

h

∥∥∥
α∗∗,β,γ

= 0.

From the dominated convergence theorem, we have

lim
h→0

∥∥∥e
ihχ − 1− iχh

h

∥∥∥
γ
= 0.

The assumption (4.3) completes the proof of differentiability.

Finally, picking h 6= 0 sufficiently close to 0, applying the estimate in part (1), part (2) with
γ1 = γ0, and Lemma 4.1, we note that for all g ∈ Vα1,β,γ1 and for all s ,

‖H ′
s(g)‖α2,β,γ2 =

∥∥∥∥
eihχ − 1− ihχ

h
eisχg +

1

h
(1− eihχ)eisχg

∥∥∥∥
α2,β,γ2

≤
∥∥∥∥
eihχ − 1− ihχ

h
eisχg

∥∥∥∥
α2,β,γ2

+
1

h
‖(1 − eihχ)eisχg‖α2,β,γ2

≤
∥∥∥∥
eihχ − 1− ihχ

h

∥∥∥∥
α∗∗,β,γ

‖Hs(g)‖α0,β,γ0 +
1

h
‖(1 − eihχ)‖α∗,β,γ‖Hs(g)‖α0 ,β,γ0

.

(∥∥∥∥
eihχ − 1− ihχ

h

∥∥∥∥
α∗∗,β,γ

+ ‖(1− eihχ)‖α∗,β,γ

)
(1 + |eisχ|0,β)‖g‖α0,β,γ0

So, H ′
s is, in fact, a bounded linear operator in L(Vα0,β,γ0 ,Vα2,β,γ2).

Proof of (4): Since Vα2,β,γ2 →֒ Vα3,β,γ3 , we have that s→ Hs ∈ L(Vα0,β,γ0 ,Vα3,β,γ3) is differentiable.

So, we need to check whether s→ H ′
s is continuous. Note that for all g ∈ Vα0,β,γ0 and for all s > 0,

H ′
s(g) ∈ Vα2,β,γ2 and for all h > 0

‖(H ′
s+h −H ′

s)g‖α3,β,γ3 = ‖(eihχ − 1)H ′
s(g)‖α3,β,γ3

. ‖(Hh −H0)1‖α∗,β,γ0‖H ′
s(g)‖α2 ,β,γ2 → 0,

as h→ 0 due to part (2). Hence, we have the continuity of the derivative. �

4.2. Sufficient conditions for Lemma 4.2. We limit our scope by providing sufficient conditions
for the assumptions in Lemma 4.2.

Lemma 4.4. Let β̄ > 0. Suppose χ is continuous and the right and left derivatives of χ exist on

I̊. If there exists a constant b ∈ [0, 1/β̄) such that

max{|χ′(x+)|, |χ′(x−)|} . x−b(1− x)−b(4.5)

then

|eisχ|0,β̄ <∞
holds for all s > 0.

Proof. We have

|eisχ|0,β̄ ≤ sup
ε∈(0,ε0]

∫ 1/2

0

osc(eisχ, Bε(x))

εβ̄
dλI(x) + sup

ε′∈(0,ε0]

∫ 1

1/2

osc(eisχ, Bε′(x))

ε′β̄
dλI(x).

We will only estimate the first summand as the estimation of the second follows analogously. Using
the definition osc(h,A) = osc(ℜh,A) + osc(ℑh,A) we note that for any measurable set A we have

osc
(
eisχ, A

)
≤ min{4, 4s/π osc(χ,A)}.(4.6)
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By (4.5) there exists C > 0 such that for all ε > 0 and all x ∈ [ε, 1/2] we have

osc(eisχ, Bε(x)) ≤
8|s|ε
π

sup
y∈Bε(x)

max{|χ′(y+)|, |χ′(y−)|} ≤ 8C|s|ε
π

(x− ε)−b.

We have that 8C|s|ε/π(x − ε)−b ≤ 4 if and only if

x ≤
(
2C|s|ε
π

)1/b

+ ε =: γε.

Hence, we split the integral on [0, 1/2] into two, one on [0, γε] and the other on [γε, 1/2]. For the
first range, we use the first bound in (4.6) and for the second range, we use the second bound.
Then,

sup
ε∈(0,ε0]

∫ 1/2

0

osc(eisχ, Bε(x))

εβ̄
dλI(x) ≤ sup

ε∈(0,ε0]

(
4γεε

−β̄ +
∫ 1/2

γε

8C|s|ε1−β̄
π

(x− ε)−bdλI(x)

)

≤ sup
ε∈(0,ε0]

4γεε
−β̄ + sup

ε∈(0,ε0]

∫ 1/2

γε

8C|s|ε1−β̄
π

(x− ε)−bdλI(x).(4.7)

For the first summand, we have

sup
ε∈(0,ε0]

4γεε
−β̄ ≤ 8 sup

ε∈(0,ε0]
max

{(
2C|s|
π

)1/b

ε1/b−β̄ , ε1−β̄
}
<∞,

which follows from the fact that b < 1/β̄ and β̄ ≤ 1. For the second summand of (4.7), we have

sup
ε∈(0,ε0]

∫ 1/2

γε

8C|s|ε1−β̄
π

(x− ε)−bdλI(x)

≤ 8C|s|
π

sup
ε∈(0,ε0]

ε1−β̄
∫ 1/2

( 2Csε
π )

1/b
x−bdλI(x)

≤





8C|s|
π supε∈(0,ε0]

ε1−β̄

|1−b| max

{
1
2 ,
(
2C|s|ε
π

)1/b}1−b
b 6= 1

8C|s|
π supε∈(0,ε0] ε

1−β̄ log
(

π
2C|s|ε

)
b = 1

=
8C|s|
π

max

{
ε1−β̄0

21−b|1− b| ,
(
2C|s|
π

)1/b−1 ε
1/b−β̄
0

|1− b| , ε
1−β̄
0 log

(
π

2C|s|ε0

)}
<∞ ,

which again follows from the fact that β̄ ≤ 1 and b < 1/β̄. �

Remark 4.5. The above lemma combined with Corollary 5.2 gives a sufficient condition on χ for

the operator Hs, and hence, ψ̂is to be a bounded linear operator on Vα,β,γ for all α ≥ 0, β ≤ β̄ and
γ ≥ 1.

The following lemma gives a sufficient condition on χ for the operator valued function s 7→ Hs,

and hence, s 7→ ψ̂is to be continuous.

Lemma 4.6. Suppose |χ|α,β < ∞ with 0 ≤ α ≤ β < 1/(1 + α) and there exists b ∈ [0, 1/β) such

that (4.5) holds. Then, for all α∗ ∈ (0, 1)

lim
s→0

|1− eisχ|α∗,β = 0 .
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Proof. We will do the calculation only for the real part ℜ(1−eisχ) = 1−cos(sχ) and the calculations
for the imaginary part ℑ(1− eisχ) = − sin(sχ) follow analogously and we mention these estimates
briefly. Furthermore, we use the splitting of the positive and negative part as in (4.1). Also, since
ℜ(1− eisχ)− = 0, it does not contribute to the estimates.

For δ ∈ (0, ε0) to be specified later depending on ε and s, we have

|ℜ(1− eisχ)+|α∗,β = sup
ε≤ε0

∫
osc(Rα∗ℜ(1− eisχ)+, Bε(x)) dλI(x)

εβ

≤ sup
ε≤ε0

∫
osc(Rα∗ℜ(1− eisχ)+1[0,δ+ε], Bε(x)) dλI(x)

εβ
(4.8)

+ sup
ε≤ε0

∫
osc(Rα∗ℜ(1− eisχ)+1(δ+ε,1−δ−ε), Bε(x)) dλI(x)

εβ
(4.9)

+ sup
ε≤ε0

∫
osc(Rα∗ℜ(1− eisχ)+1[1−δ−ε,1], Bε(x)) dλI(x)

εβ
,(4.10)

where we assume that s and ε0 are so small that δ + ε < 1− δ − ε.

We start by estimating the middle summand (4.9). [38, Proposition 3.2(ii)] yields

osc(Rα∗ℜ(1− eisχ)+1(δ+ε,1−δ−ε), Bε(x))

≤ osc(Rα∗ℜ(1− eisχ)+, (δ + ε, 1 − δ − ε) ∩Bε(x))1(δ+ε,1−δ−ε)(x)(4.11)

+ 2

[
ess sup

(δ+ε,1−δ−ε)∩Bε(x)
Rα∗ℜ(1− eisχ)+

]
1Bε((δ+ε,1−δ−ε))∩Bε((δ+ε,1−δ−ε)c)(x) .

We first investigate the first summand of (4.11). For the following, we set

(4.12) D(δ, ε, x) := (δ + ε, 1 − δ − ε) ∩Bε(x).
For x ∈ (δ + ε, 1− δ − ε),

osc(Rα∗(1− cos(sχ)),D(δ, ε, x)) ≤ 2ε sup
D(δ,ε,x)

[Rα∗(1− cos(sχ))]′

≤ 2ε

[
sup

D(δ,ε,x)
|(Rα∗1)′| (1 − cos(sχ)) + sup

D(δ,ε,x)
(Rα∗1) |(1 − cos(sχ))′|

]
.(4.13)

Both of the above calculations follow analogously for the imaginary part with | sin(sχ)| instead of
1− cos(sχ).

We set δ = δ(ε, s) = εκ · |s|ι with κ ∈ (0, 1) and ι > 0 to be specified later. Since |χ|α,β < ∞
implies that Rαχ is essentially bounded, we can conclude that there exists K(χ) ∈ (0,∞) such that
|χ(x)| ≤ K(χ) · x−α(1 − x)−α almost everywhere. Recall that there is C > 0 such that max{|1 −
cos(x)}|, | sin(x)|} ≤ C|x| . Combining this with (Rα∗1)′ = α∗(xα

∗−1(1 − x)α
∗

+ xα
∗

(1 − x)α
∗−1) ,

we have

(4.14) sup
D(δ,ε,x)

|(Rα∗1)′|max{1 − cos(sχ) , | sin(sχ)|} .
|s|

(x− ε)1+α−α∗
,

when x ≤ 1/2. The estimates for x ≥ 1/2 follows from replacing (x − ε) by (1 − x + ε), and the
final estimates remain unchanged. So, we restrict our attention to the former case.

It follows that

lim
s→0

sup
ε∈(0,ε0]

1

εβ

∫ 1/2

δ+ε
2ε sup

D(δ,ε,x)

(
|(Rα∗1)′|(1− cos(sχ))

)
1(δ,1−δ)(x) dλI(x)
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. lim
s→0

|s| sup
ε∈(0,ε0]

ε1−β
∫ 1/2

δ+ε
(x− ε)α

∗−1−α dλI(x)

. lim
s→0

|s| sup
ε∈(0,ε0]

ε1−β
∫ 1/2−ε

δ
xα

∗−1−α dλI(x)

.





lims→0 ε
1−β+κ(α∗−α)
0 lims→0 |s|1+ι(α∗−α) α∗ < α

ε1−β0 (| log(1/2 − ε0)|+ κ| log(ε0)|) lims→0 |s|+ ιε1−β0 lims→0 |s| | log |s|| α∗ = α

ε1−β0 lims→0 |s| α∗ > α

= 0(4.15)

provided that under the condition α∗ < α we have

(4.16)
1− β + κ(α∗ − α) > 0 ⇐⇒ κ < (1− β)/(α − α∗) ,

ι (α∗ − α) + 1 > 0 ⇐⇒ ι < 1/(α − α∗) .

Analogously, under the same conditions,

lim
s→0

sup
ε∈(0,ε0]

1

εβ

∫
2ε sup

D(δ,ε,x)

(
|(Rα∗1)′ |(sin(sχ))±

)
1(δ+ε,1−δ−ε)(x) dλI(x) = 0.

To estimate the second summand of (4.13), we use (1 − cos(sχ))′ = sin(sχ) · sχ′ , (sin(sχ))′ =
cos(sχ) · sχ′ , | cos(sχ)| ≤ 1, | sin(sχ)| ≤ 1, and our assumption about χ′. Then, we have

sup
D(δ,ε,x)

max
{
(Rα∗1) |(1 − cos(sχ))′| , (Rα∗1)|(sin(sχ)±)′|

}
.

{
|s|(x− ε)α

∗−b α∗ < b

|s| · 1 α∗ ≥ b

for x ≤ 1/2. Also, note that for x ≤ 1/2 and the estimate for x ≥ 1/2 is the same with (x − ε)
replaced by (1− x+ ε). Thus, if α∗ < b

lim
s→0

sup
ε∈(0,ε0]

1

εβ

∫ 1/2

δ+ε
2ε sup

D(δ,ε,x)

(
(Rα∗1) |(1 − cos(sχ))′|

)
1(δ+ε,1−δ−ε)(x) dλI(x)

. lim
s→0

sup
ε∈(0,ε0]

ε1−β |s|
∫ 1/2−ε

δ
xα

∗−bdλI(x)

.





ε
1−β+κ(1+α∗−b)
0 lims→0 |s|1+ι(1+α

∗−b) b > 1 + α∗

ε1−β0 (| log(1/2 − ε0)|+ κ| log(ε0)|) lims→0 |s|+ ιε1−β0 lims→0 |s| | log |s|| b = 1 + α∗

ε1−β0 lims→0 |s| b < 1 + α∗

= 0 ,(4.17)

where, in the case of b > 1 + α∗, we have assumed that

(4.18)
1− β + κ(1 + α∗ − b) > 0 ⇐⇒ κ < (1− β)/(b − 1− α∗) ,

1 + ι(1 + α∗ − b) > 0 ⇐⇒ ι < 1/(b − 1− α∗) .

The α∗ ≥ b case is similar to the b < 1 + α∗ case above. Analogously, under the same assumptions
on κ and ι, we obtain

lim
s→0

sup
ε∈(0,ε0]

1

εβ

∫
2ε sup

D(δ,ε,x)

(
Rα∗1

∣∣(sin(sχ)±)′
∣∣
)
1(δ+ε,1−δ−ε)(x) dλI(x) = 0 .

Hence, combining (4.15) and (4.17), we can conclude

lim
s→0

sup
ε∈(0,ε0]

1

εβ

∫
osc
(
Rα∗ℜ(1− eisχ)+,D(δ, ε, x)

)
1(δ,1−δ)(x) dλI(x) = 0.(4.19)
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Also, the analogous result for the imaginary part, ℑ(1− eisχ)±, follows.

Next, we will estimate the second summand in (4.11). We note that

Bε((δ + ε, 1− δ − ε)) ∩Bε((δ + ε, 1− δ − ε)c) = Bε(δ + ε) ∪Bε(1− δ − ε)

and hence,

1Bε((δ+ε,1−δ−ε))∩Bε((δ+ε,1−δ−ε)c) = 1Bε(δ+ε)∪Bε(1−δ−ε).(4.20)

It follows that

sup
D(δ,ε,x)

Rα∗(1− cos(sχ)) .

{
|s|(x− ε)α

∗−α α∗ < α

|s|(x+ ε)α
∗−α α∗ ≥ α.

(4.21)

Due to the symmetry around x = 1/2, we obtain

lim
s→0

sup
ε∈(0,ε0]

1

εβ

∫
sup

D(δ,ε,x)
Rα∗ℜ(1− eisχ)+ · 1Bε((δ+ε,1−δ−ε))∩Bε((δ+ε,1−δ−ε)c)(x) dλI(x)

= lim
s→0

sup
ε∈(0,ε0]

1

εβ

(∫ δ+2ε

δ
+

∫ 1−δ

1−δ−2ε

)
sup

D(δ,ε,x)
Rα∗(1− cos(sχ)) dλI(x)

. lim
s→0

sup
ε∈(0,ε0]

|s|ε−β
∫ δ+2ε

δ
max{(δ + ε)α

∗−α, (δ + 2ε)α
∗−α}dλI(x)

.

{
lims→0 ε

1−β−κ(α−α∗)
0 |s|1−ι(α−α∗) α∗ < α

lims→0 ε
1−β
0 |s| α∗ ≥ α

= 0(4.22)

where, in the case of α∗ < α, we assume that

(4.23)
1− β − κ(α− α∗) > 0 ⇐⇒ κ < (1− β)/(α − α∗) ,

1− ι(α− α∗) > 0 ⇐⇒ ι < 1/(α − α∗) .

Combining this with (4.11) and (4.19) yields that the summand (4.9) tends to zero for s → 0 and
the same is true for the imaginary part, ℑ(1 − eisχ)±, because the same assumptions on κ and ι
along with | sin(x)| . |x| and (4.21) yield

lim
s→0

sup
ε∈(0,ε0]

1

εβ

∫
osc ((sin(sχ))±,D(δ, ε, x)) 1(δ+ε,1−δ−ε)(x) dλI(x) = 0 ,

lim
s→0

sup
ε∈(0,ε0]

1

εβ

∫
sup

D(δ,ε,x)
Rα∗(sin(sχ))± · 1Bε((δ+ε,1−δ−ε))∩Bε((δ+ε,1−δ−ε)c) dλI(x) = 0 .

Finally, we investigate into the first summand (4.8). As the calculation for the summand (4.10)
is very similar, we will only give the details for (4.8). We split the integral into

lim
s→0

sup
ε≤ε0

1

εβ

∫
osc(Rα∗ℜ(1− eisχ)1[0,δ+ε], Bε(x)) dλI(x)

= lim
s→0

sup
ε≤ε0

1

εβ

(∫

[0,δ)
+

∫

[δ,δ+2ε]

)
osc(Rα∗(1− cos(sχ))1[0,δ+ε], Bε(x)) dλI(x).(4.24)

For the first summand of (4.24), we write

(4.25) D̄(δ, ε, x) := [0, δ + ε] ∩Bε(x)
and we note that ℜ(1− eisχ) ∈ (0, 2) and

osc(Rα∗(1− cos(sχ))1[0,δ+ε], Bε(x)) ≤ 2 · supD̄(δ,ε,x)Rα∗1 ≤ 2Rα∗1(x+ ε) ≤ 2(x+ ε)α
∗

.(4.26)
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Now, we have

lim
s→0

sup
ε≤ε0

1

εβ

∫ δ

0
osc(Rα∗(1− cos(sχ))1[0,δ+ε], Bε(x)) dλI(x) = 0(4.27)

under the condition

(4.28) ι > 0 and κ >
β

1 + α∗

due to Lemma C.1 in Appendix C.

In order to estimate the second summand of (4.24), we first note that for x ∈ [δ, δ + 2ε],

(4.29) sup
D̄(δ,ε,x)

Rα∗(1− cos(sχ))1[δ,δ+ε] . |s| sup
y∈D̄(δ,ε,x)∩[δ,δ+2ε]

yα
∗−α ≤

{
|s| α∗ ≥ α

|s| · δα∗−α α∗ < α .

Hence,

lim
s→0

sup
ε≤ε0

1

εβ

∫

[δ,δ+2ε]
osc
(
Rα∗(1− cos(sχ))1[δ,δ+ε], Bε(x)

)
dλI(x)

. lim
s→0

sup
ε≤ε0

1

εβ

∫

[δ,δ+2ε]
sup

D̄(δ,ε,x)

(
Rα∗(1− cos(sχ))1[δ,δ+ε]

)
dλI(x)

.

{
ε1−β0 lims→0 |s| α∗ ≥ α

ε
1−β+κ(α∗−α)
0 lims→0 |s|1+ι(α−α

∗) α∗ < α

= 0(4.30)

provided that, in the case of α∗ < α,

(4.31)
1− β + κ (α∗ − α) > 0 ⇐⇒ κ < (1− β)/(α − α∗) ,

1 + ι(α∗ − α) > 0 ⇐⇒ ι < 1/(α − α∗).

Next, by [38, Prop. 3.2(ii)] we have for x ∈ (δ, δ + 2ε]

osc
(
Rα∗(1− cos(sχ))1[0,δ], Bε(x)

)

≤ osc (Rα∗(1− cos(sχ)), Bε(x) ∩ [0, δ]) 1[0,δ](x) + 2 ess sup
Bε(x)∩[0,δ]

Rα∗(1− cos(sχ))1[δ−ε∨0,δ+ε](x)

≤ 0 + 2 ess sup
[δ−ε∨0,δ]

Rα∗1 ≤ 2δα
∗

.

Hence,

lim
s→0

sup
ε≤ε0

1

εβ

∫

[δ,δ+2ε]
osc
(
Rα∗(1− cos(sχ))1[0,δ], Bε(x)

)
dλI(x)

. lim
s→0

sup
ε≤ε0

1

εβ

∫

[δ,δ+2ε]
δα

∗

dλI(x) . lim
s→0

sup
ε≤ε0

ε1−β+κα
∗

sια
∗

= 0

under (4.28). This together with (4.30) imply

lim
s→0

sup
ε≤ε0

1

εβ

∫

[δ,δ+2ε]
osc
(
Rα∗(1− cos(sχ))1[0,δ+2ε], Bε(x)

)
dλI(x) = 0.

Combining this with (4.24) and (4.27) implies that (4.8) tends to zero for s tending to zero. The
same is true for the imaginary part, ℑ(1− eisχ)±, as ℑ(1− eisχ)± ≤ 1.

Finally, we discuss here possible values of α∗ and the implicit requirements on b that ensure the
existence of ι > 0 and κ > 0 used in the proof. There are four cases.
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Note that, in the case of α∗ < α and b > 1 + α∗ , under (4.16), (4.18), (4.23), (4.28) and (4.31),
we have

β

α∗ + 1
<κ < min

{
1− β

α− α∗ ,
1− β

b− 1− α∗ , 1

}
,

0 <ι < min

{
1

α− α∗ ,
1

b− 1− α∗

}
.

First, we see that the conditions on ι are always fulfilled, because

0 <
1

α− α∗ and 0 <
1

b− 1− α∗ .

Similarly, considering the inequalities that guarantee the existence of κ, we have

α > α∗ > max {αβ + β − 1, βb − 1}
is necessary and sufficient. Note that due to β < min{1/b, 1/(α+1)} we have αβ +β− 1 < 0 , and
also, βb− 1 < 0. So, 0 < α∗ < min{α, b − 1} which is equivalent to α∗ < α and b > 1 + α∗.

In the case of α∗ < α and b ≤ 1 + α∗ , (4.18) poses no restrictions. So, under (4.16), (4.23),
(4.28) and (4.31) we have b − 1 < α∗ < α and b ≤ 1 + α which is equivalent to our assumptions
α∗ < α and b ≤ 1 + α∗.

In the case of α∗ ≥ α , (4.16), (4.23), and (4.31) pose no restrictions. So, when b < 1 + α∗ , we
have α∗ > max{α , b− 1} and when b > 1+α∗, we have α < α∗ < b− 1 and b > 1+α and we don’t
obtain any additional restrictions either. �

The next lemma of this section gives a sufficient condition on χ for the operator valued function

s 7→ Hs, and hence, s 7→ ψ̂is to be differentiable.

Lemma 4.7. Suppose |χ|α,β < ∞ with 0 ≤ α ≤ β < 1/(1 + α) and there exists b ∈ [0, 1/β) such

that (4.5) holds. Then, for all α∗ > min{2α,max{α,α + b− 2}} we have

lim
s→0

∣∣∣∣
eisχ − 1− isχ

s

∣∣∣∣
α∗,β

= 0 .

Proof. The proof follows very similar to the proof of the previous lemma and we will stick to the
same notation. Again, we will do the calculations only for the non-negative real part, only noting
some differences for the imaginary part. We have

osc

(
Rα∗ℜ

(
eisχ − 1− isχ

s

)
, Bε(x)

)
=

1

s
osc (Rα∗(1− cos(sχ)), Bε(x))

and

osc

(
Rα∗ℑ

(
eisχ − 1− isχ

s

)
, Bε(x)

)
=

1

s
osc (Rα∗(sin(sχ)− sχ), Bε(x)) .

As in (4.8) to (4.10), we have for δ ∈ (0, ε0) (to be specified later and depending on s and ε) that

∣∣ℜ(eisχ − 1− isχ)
∣∣
α∗,β

= sup
ε≤ε0

∫
osc(Rα∗(1− cos(sχ)), Bε(x)) dλI(x)

sεβ

≤ sup
ε≤ε0

∫
osc(Rα∗(1− cos(sχ))1[0,δ+ε], Bε(x)) dλI(x)

sεβ
(4.32)

+ sup
ε≤ε0

∫
osc(Rα∗(1− cos(sχ))1(δ+ε,1−δ−ε), Bε(x)) dλI(x)

sεβ
(4.33)

+ sup
ε≤ε0

∫
osc(Rα∗(1− cos(sχ))1[1−δ−ε,1], Bε(x)) dλI(x)

sεβ
,(4.34)
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and similarly, for the imaginary part.

Now, we start by estimating the middle term (4.33), and as in (4.11), we use [38, Proposition
3.2(ii)] to obtain

osc(Rα∗(1− cos(sχ))1(δ+ε,1−δ−ε), Bε(x))

≤ osc(Rα∗(1− cos(sχ)),D(δ, ε, x))1(δ+ε,1−δ−ε)(x)(4.35)

+ 2

[
sup

D(δ,ε,x)
Rα∗(1− cos(sχ))

]
1Bε((δ+ε,1−δ−ε))∩Bε((δ+ε,1−δ−ε)c)(x) .

For x ∈ (δ + ε, 1− δ − ε),

osc(Rα∗(1− cos(sχ)),D(δ, ε, x)) ≤ 2ε sup
D(δ,ε,x)

|[Rα∗(1− cos(sχ))]′|

≤ 2ε

[
sup

D(δ,ε,x)
|(Rα∗1)′| (1− cos(sχ)) + sup

D(δ,ε,x)
(Rα∗1)|(1 − cos(sχ))′|

]
.(4.36)

Both of the above calculations follow analogously for the imaginary part.

For the following, as in the previous proof, we set δ = δ(ε, s) = εκ · |s|ι with κ ∈ (0, 1), ι > 0 and
recall that there is C > 0 such that max{|1 − cos(x)|, | sin(x) − x|} ≤ C|x|2. The latter fact and
(Rα∗1)′ = α∗(xα

∗−1(1− x)α
∗

+ xα
∗

(1− x)α
∗−1) , imply that

(4.37) sup
D(δ,ε,x)

|(Rα∗1)′| ·max {1− cos(sχ) , |sin(sχ)− (sχ)|} .
|s|2

(x− ε)1+2α−α∗
,

when x ≤ 1/2. The estimates for x ≥ 1/2 follows from replacing (x − ε) by (1 − x + ε), and the
final estimates remain unchanged. So, we restrict our attention to the former case.

This implies that the contribution of the first term in (4.36) is

lim
s→0

sup
ε∈(0,ε0]

1

|s|εβ
∫ 1/2

δ+ε
2ε sup
D(δ,ε,x)

|(Rα∗1)′| (1 − cos(sχ))1(δ+ε,1−δ−ε)(x) dλI(x)

. lim
s→0

|s| sup
ε∈(0,ε0]

ε1−β
∫ 1/2−ε

δ
xα

∗−1−2α dλI(x)

.





ε
1−β+κ(α∗−2α)
0 lims→0 |s|1+ι(α

∗−2α) = 0 , α∗ < 2α

ε1−β0 (| log(1/2 − ε0)|+ κ| log(ε0)|) lims→0 |s|+ ιε1−β0 lims→0 |s| | log |s|| α∗ = 2α

ε1−β0 lims→0 |s| α∗ > 2α

= 0

provided that, in the α∗ < 2α case,

(4.38)
1− β + κ(α∗ − 2α) > 0 ⇐⇒ κ < (1− β)/(2α − α∗)

1 + ι(α∗ − 2α) > 0 ⇐⇒ ι < 1/(2α − α∗) ,

and similarly,

lim
s→0

sup
ε∈(0,ε0]

1

sεβ

∫
2ε sup

D(δ,ε,x)
|(Rα∗1)′| (sin(sχ)− sχ)±1(δ+ε,1−δ−ε)(x) dλI(x) = 0 .

Next, we estimate the second summand of (4.36). Using (1−cos(sχ))′ = sin(sχ)·sχ′ , | sin(sχ)| ≤
|sχ|, and our assumption about χ and χ′ we have

sup
D(δ,ε,x)

(Rα∗1) |(1 − cos(sχ))′| .
{
|s|2(x− ε)α

∗−(α+b) α∗ < α+ b

|s|2 · 1 α∗ ≥ α+ b .
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Also, note that the estimate for x ≤ 1/2 and for x ≥ 1/2 are the same with (x − ε) replaced by
(1− x+ ε). Thus, when α∗ < α+ b

lim
s→0

sup
ε∈(0,ε0]

ε

sεβ

∫ 1/2

δ+ε
sup

D(δ,ε,x)
(Rα∗1) |(1 − cos(sχ))′|1(δ+ε,1−δ−ε)(x) dλI(x)

. lim
s→0

sup
ε∈(0,ε0]

ε1−β|s|
∫ 1/2−ε

δ
xα

∗−(α+b)dλI(x)

.





ε
1−β+κ(1+α∗−α−b)
0 lims→0 |s|1+ι(1+α∗−α−b) α+ b > 1 + α∗

ε1−β0 (| log(1/2 − ε0)|+ κ| log(ε0)|) lims→0 |s|+ ιε1−β0 lims→0 |s| | log |s|| α+ b = 1 + α∗

ε1−β0 lims→0 |s| α+ b < 1 + α∗

= 0 .

where, in the case of α+ b > 1 + α∗, we have assumed that

(4.39)
1− β + κ(1 + α∗ − α− b) > 0 ⇐⇒ κ < (1− β)/(α + b− 1− α∗) ,

1 + ι(1 + α∗ − α− b) > 0 ⇐⇒ ι < 1/(α + b− 1− α∗) .

Analogously, under the same assumptions on κ and ι, we obtain

lim
s→0

sup
ε∈(0,ε0]

ε

sεβ

∫
sup

D(δ,ε,x)
Rα∗1(x)

∣∣((sin(sχ)− sχ)±)
′∣∣1(δ+ε,1−δ−ε)(x) dλI(x) = 0

because |(sin(sχ)− sχ)′| = | cos(sχ)− 1| · |sχ′| and | cos(sχ)− 1| ≤ |sχ|.
Next, we look at the second summand of (4.35). Using (4.20), our assumption about χ and the

symmetry around x = 1/2, the corresponding integral over the second summand is dominated by

lim
s→0

sup
ε∈(0,ε0]

2

sεβ

(∫ δ+2ε

δ
+

∫ 1−δ

1−δ−2ε

)
sup

D(δ,ε,x)
Rα∗(1− cos(sχ)) dλI(x)

. lim
s→0

sup
ε∈(0,ε0]

|s|ε−β
∫ δ+2ε

δ
max{(δ + ε)α

∗−2α, (δ + 3ε)α
∗−2α}dλI(x)

. |s|1−ι(2α−α∗) lim
s→0

ε1−β0 |s|
= 0 .

Here, in the case of α∗ < 2α, we have to assume additionally that

(4.40)
1− β − κ(2α − α∗) > 0 ⇐⇒ κ < (1− β)/(2α − α∗) ,

1− ι(2α− α∗) > 0 ⇐⇒ ι < 1/(2α − α∗) .

Analogously, under the same assumptions on κ and ι, using our assumption about χ , we have

lim
s→0

sup
ε∈(0,ε0]

2

sεβ

(∫ δ+2ε

δ
+

∫ 1−δ

1−δ−2ε

)
sup

D(δ,ε,x)
Rα∗(sin(sχ)− sχ)± dλI(x) = 0.

Finally, we investigate (4.32). The estimations for (4.34) then follow analogously. We split the
integral as in (4.24).

For the first integral, due to Lemma C.1 in Appendix C, we have

lim
s→0

sup
ε≤ε0

1

sεβ

∫

[0,δ)
osc(Rα∗(1− cos(sχ))1[0,δ+ε], Bε(x)) dλI(x) = 0(4.41)

provided that

(4.42)
κ(1 + α∗)− β > 0 ⇐⇒ κ > β/(1 + α∗) ,

ι− 1 > 0 ⇐⇒ ι > 1 .
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For the imaginary part, since we assumed α∗ ≥ α , we can use the following estimate.

supD̄(δ,ε,x)|Rα∗(sin(sχ)− sχ)1[0,δ+ε]| . |s|supD̄(δ,ε,x)|Rα∗χ1[0,δ+ε]|
. |s| supD̄(δ,ε,x)Rα∗−α1[0,δ+ε] . |s| (x+ ε)α

∗−α.

Then repeating the argument in Appendix C leading to Equation (C.2) with α∗ − α replacing α∗,
we have that

lim
s→0

sup
ε≤ε0

1

sεβ

∫

[0,δ)
osc(Rα∗(sin(sχ)− sχ)1[0,δ+ε], Bε(x)) dλI(x) = 0

provided that

(4.43)
κ(1 + α∗ − α)− β > 0 ⇐⇒ κ > β/(1 + α∗ − α) ,

ι− 1 > 0 ⇐⇒ ι > 1 .

For the second integral, as in (4.29) but using (4.37) instead, we obtain for all x ∈ (δ, δ + 2ε]

sup
D̄(δ,ε,x)

Rα∗(1− cos(sχ))1[δ,δ+ε] . s2 sup
y∈D̄(δ,ε,x)∩(δ,δ+2ε]

yα
∗−2α ≤

{
s2 α∗ ≥ 2α

s2 · δα∗−2α α∗ < 2α .

Therefore,

lim
s→0

sup
ε≤ε0

1

sεβ

∫

(δ,δ+2ε]
osc(Rα∗(1− cos(sχ))1[δ,δ+ε], Bε(x)) dλI(x)

.

{
ε1−β0 lims→0 |s| α∗ ≥ 2α

ε
1−β+κ(α∗−2α)
0 lims→0 |s|1+ι(α−2α∗) α∗ < 2α

= 0

provided that, in the case of α∗ < 2α,

(4.44)
1− β + κ (α∗ − 2α) > 0 ⇐⇒ κ < (1− β)/(2α − α∗) ,

1 + ι(α∗ − 2α) > 0 ⇐⇒ ι < 1/(2α − α∗) .

Due to [38, Prop. 3.2(ii)] and our assumption that α∗ > α we have for x ∈ (δ, δ + 2ε],

osc
(
Rα∗(1− cos(sχ))1[0,δ], Bε(x)

)

≤ osc (Rα∗(1− cos(sχ)), Bε(x) ∩ [0, δ]) 1[0,δ](x) + 2 ess sup
Bε(x)∩[0,δ]

Rα∗(1− cos(sχ))1[δ−ε∨0,δ+ε](x)

≤ 0 + 2|s| ess sup
[δ−ε∨0,δ]

Rα∗χ ≤ 2|s|δα∗−α.

So,

lim
s→0

sup
ε≤ε0

1

sεβ

∫

(δ,δ+2ε]
osc
(
Rα∗(1− cos(sχ))1[0,δ], Bε(x)

)
dλI(x)

. lim
s→0

sup
ε≤ε0

1

εβ

∫

(δ,δ+2ε]
δα

∗−α dλI(x) . lim
s→0

ε1−β+κα
∗

0 sι(α
∗−α) = 0

under (4.42). So we have

lim
s→0

sup
sε≤ε0

1

εβ

∫

[δ,δ+2ε]
osc
(
Rα∗(1− cos(sχ))1[0,δ+2ε], Bε(x)

)
dλI(x) = 0.

Finally, we discuss here values of α∗ and implicit restrictions on b that ensure the existence of
ι > 0 and κ ∈ (0, 1) used in the proof. There are four key cases to consider.
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(1) α < α∗ < 2α and α + b > 1 + α∗: Under (4.38), (4.39), (4.40), (4.42), (4.43) and (4.44), we
have

β

α∗ − α+ 1
<κ < min

{
1− β

2α− α∗ ,
1− β

α+ b− 1− α∗

}

1 <ι < min

{
1

2α− α∗ ,
1

α+ b− 1− α∗

}
.

Considering the conditions for ι, we have α∗ > 2α−1 and α∗ > α+ b−2. Since α > 2α−1, the
former is automatic. Next, considering each of the two inequalities that guarantee the existence
of κ, we obtain that

α∗ > max {β − 1 + βα+ α, βb+ α− 1} = α+max {β − 1 + βα, βb− 1}
is necessary. Note that β − 1 + βα < 0 and βb − 1 < 0 because β < min{1/b, 1/(1 + α)}. So
α∗ > α is a sufficient choice. Combining everything, we have that

max{α+ b− 2, α} < α∗ < min{α+ b− 1, 2α}
is sufficient.

(2) α < α∗ < 2α and α + b < 1 + α∗: (4.39) poses no extra restriction. So, under (4.38), (4.40),
(4.42), (4.43) and (4.44), we have α∗ > α as before. Hence,

max{α+ b− 1, α} < α∗ < 2α

is sufficient.

(3) α∗ > 2α and α+ b > 1+α∗: (4.38), (4.40) and (4.44) pose no extra restrictions. Under (4.39),
(4.42) and (4.43) we have α∗ < α+ b− 1 and α∗ > βb+ α− 1. Since βb+α− 1 < α < 2α, the
latter is true. So,

2α < α∗ < α+ b− 1

is sufficient.

(4) α∗ > 2α and α + b < 1 + α∗: (4.39) is not relevant, and both (4.42) and (4.43) pose no extra
restrictions. Hence,

max{2α,α + b− 1} < α∗

is sufficient.

We obtain from (1) and (2) that max{α+ b− 2, α} < α∗ is sufficient if α∗ < 2α. From (3) and (4)
we obtain that α∗ > 2α is sufficient if α∗ > 2α. So,

α∗ > min{2α,max{α,α + b− 2}}
is sufficient. �

Lemma 4.8. Assume χ is continuous, the right and left derivatives of χ exist on I̊, and there exist

a ≥ 0 , b > 0 such that

|χ(x)| . x−a(1− x)−a and max{|χ′(x+)|, |χ′(x−)|} . x−b(1− x)−b ,(4.45)

then ‖χ‖α,β,γ <∞ if

α > a ,

β < (1 + α− a)/(b− a) or b < a+ 1 and(4.46)

1 ≤ γ < 1/a .

Proof. The first inequality of (4.45) implies χ ∈ Lγ with 1 ≤ γ < 1/a.

For simplicity we assume χ is differentiable. Otherwise, at a point where χ is not differentiable,
both one-sided derivatives will exist and the following estimates do hold for them.
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Now, we proceed as in the proof of Lemma 4.6, however, with δ = εκ to find the minimal α and
maximal β such that |Rαχ|0,β <∞. Set g := Rαχ, then

g′(x) = α(1 − 2x)Rα−1χ(x) +Rαχ
′(x).

Choose ε sufficiently small and split the domain into three parts, [0, εκ + ε), (εκ+ ε, 1− ε− εκ) and
(1− ε− εκ, 1]. Due to the symmetry of the bounds, we only focus on [0, 1/2].

On (εκ + ε, 1− ε− εκ) , we use [38, Prop. 3.2(ii)] implying

osc
(
g 1(εκ+ε,1−εκ−ε), Bε(x)

)

≤ osc(g,D(εκ, ε, x))1(εκ+ε,1−εκ−ε)(x) + 2
(

sup
D(εκ,ε,x)

g
) (

1Bε(εκ+ε)∪Bε(1−εκ−ε)(x)
)

(4.47)

with D as in (4.12).

For the following we set α̃ = min{α − b + 1, α − a}. Then the contribution from the first term
to |Rαχ|0,β is (up to a constant) bounded by

sup
0<ε≤ε0

ε1−β
∫ 1/2

εκ+ε
sup

D(εκ,ε,x)
g′ dλI(x) . sup

0<ε≤ε0
ε1−β

∫ 1/2

εκ+ε
(x− ε)−a+α−1 + (x− ε)−b+α dλI(x)

. sup
0<ε≤ε0

ε1−β
∫ 1/2

εκ
xᾱ−1 dλI(x)

.





sup0<ε≤ε0 ε
1−β+κᾱ α̃ < 1

sup0<ε≤ε0 ε
1−β(log(1/2) − κ log(ε)) ᾱ = 1

ε1−β0 α̃ > 1 .

In the α̃ ≤ 1 case, we require that

(4.48) 1− β + κα̃ > 0 ⇐⇒
(
κ < (1− β)/(b− α− 1) or b < α+ 1

)
,

where we have made use of the fact α > a. On the other hand, (4.48) is automatically fulfilled if
α̃ > 1, so we don’t have to distinguish the cases anymore.

Since α > a the contribution from the second term in (4.47) is bounded by

sup
ε∈(0,ε0]

1

εβ

∫ εκ+2ε

εκ
sup

D(εκ,ε,x)
g dλI(x) . sup

ε∈(0,ε0]
ε−β

∫ εκ+2ε

εκ
1 dλI(x) . ε1−β0 .

Now, for x ∈ [0, εκ) we use the following estimate

supD̄(εκ,ε,x)|g| . supD̄(εκ,ε,x)|Rα−a1[0,εκ+ε]| . (x+ ε)α−a

with D̄ as in (4.25). Following the argument in Appendix C with α − a replacing α∗ and without

the s→ 0 limit but fixing s = 1, we have, since α− a+ 1 > β automatically holds, that

sup
ε≤ε0

1

εβ

∫

[0,δ)
osc(g,Bε(x)) dλI(x) . sup

ε≤ε0

2
(
(εκ + ε)α−a+1 − εα−a+1

)

(α− a+ 1)εβ

=
2
(
(εκ0 + ε0)

α−a+1 − εα−a+1
0

)

(α− a+ 1)εβ0

provided that

κ(1 + α− a)− β > 0 ⇐⇒ κ >
β

1 + α− a
.
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So, together with (4.48) we require that there exists κ such that

β

1 + α− a
< κ <

1− β

b− α− 1
or b < α+ 1 .

This is true if and only if
(b− a)β < 1 + α− a or b < α+ 1 .

�

5. Twisted Transfer Operators ψ̂is

5.1. Properties of twisted transfer operators. We first prove Lγ norm estimates for ψ̂is.

Lemma 5.1. For all γ > 1, s ∈ R and ϕ ∈ Lγ, there exists a constant Cγ > 1 that depends only

on ψ and γ such that

‖ψ̂is(ϕ)‖1 ≤ ‖ψ̂is(ϕ)‖γ ≤ Cγ‖ϕ‖γ .

Proof. The first inequality follows from a direct application of Hölder’s inequality. The second one
is a straightforward application of Minkowski’s inequality.

(∫
|ψ̂is(ϕ)|γ dλI

)1/γ

≤
(∫

ψ̂(|ϕ|)γ dλI
)1/γ

=



∫ 

k−1∑

j=0

|ϕ| ◦ ψ−1
j+1

|ψ′ ◦ ψ−1
j+1|



γ

dλI




1/γ

≤
k−1∑

j=0

(∫ ( |ϕ| ◦ ψ−1
j+1

|ψ′ ◦ ψ−1
j+1|

)γ
dλI

)1/γ

=
k−1∑

j=0

(∫ ( |ϕ|
|ψ′|

)γ
1[cj ,cj+1]|ψ′|dλI

)1/γ

≤ k

η1−γ−

(∫
|ϕ|γ dλI

)1/γ

.

Put Cγ = k · ηγ−1
− . Then

‖ψ̂is(ϕ)‖γ ≤ Cγ‖ϕ‖γ .
�

Next, we have the following result on the required regularity of the transfer operators.

Corollary 5.2. Let 0 ≤ α0, α
∗, α∗∗, β ≤ 1 and γ0, γ ≥ 1. Put

α1 = α0 + α∗ α2 = α1 +max{α∗∗, α∗}
1 ≤ γ1 ≤ γ0 1 ≤ γ2 ≤ (γ−1

1 + γ−1)−1

and consider the chain of Banach spaces

(5.1) Vα0,β,γ0 →֒ Vα1,β,γ1 →֒ Vα2,β,γ2 .

Suppose that for all s ∈ R, |eisχ|0,β <∞. Then

(1) for s ∈ R, ψ̂is is a bounded linear operator on each of the Banach spaces in (5.1).

Suppose, in addition, that lims→0 |1− eisχ|α∗,β = 0. Then

(2) s 7→ ψ̂is is continuous as a function from R to L(Vα0,β,γ0 ,Vα1,β,γ1).
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Finally, suppose that

lim
s→0

∣∣∣∣
eisχ − 1− isχ

s

∣∣∣∣
α∗∗,β

= 0 and ‖χ‖γ <∞.

Then,

(3) s 7→ ψ̂is is continuously differentiable as a function from R to L(Vα1,β,γ1 ,Vα2,β,γ2).

Proof. Since ψ̂ is a bounded linear operator on each of the Banach spaces in (5.1) (in particular,
due to the DFLY inequality below), the theorem follows from Lemma 4.2 and Lemma 5.1. �

5.2. DFLY Inequalities. In this section, we prove DFLY inequalities for the family ψ̂is. First, we
state and prove two preparatory lemmas. Throughout this section, we assume that χ is continuous
and the right and left derivatives of χ exist on I̊ and that there exists a constant b > 0 such that

max{|χ′(x+)|, |χ′(x−)|} . x−b(1− x)−b .(5.2)

Lemma 5.3. Let α, β ∈ (0, 1) and let γ̄ ∈ [1, 1/α). Suppose the constant b > 0 in (5.2) is such

that

min
{
γ̄−1 + (α− β)b , γ̄−1 + α− βb

}
> 0 .(5.3)

Then, there exists Cε0 > 0 independent of γ such that

(5.4) sup
ε∈(0,ε0]

ε−β
∥∥Rα osc

(
eisχ, Bε(·)

)∥∥
γ̄
≤ Cε0

for all s ∈ R.

Remark 5.4. We note that, if b > 1, then γ̄−1 + α− βb > 0 =⇒ γ̄−1 + (α− β)b > 0, and if b < 1
then γ̄−1 + (α− β)b > 0 =⇒ γ̄−1 + α− βb > 0.

Proof of Lemma 5.3. Since eisχ is 2π periodic in s, we will estimate

sup
s∈[0,2π]

sup
ε∈(0,ε0]

ε−β‖Rα osc(eisχ, Bε(·))‖γ̄ .

Note that

sup
ε∈(0,ε0]

‖Rα osc(eisχ, Bε(·))‖γ̄ · ε−β ≤ sup
ε∈(0,ε0]

(∫ 1/2

0

(
Rα osc(e

isχ, Bε(x))
)γ̄

dλI(x)

)1/γ̄

· ε−β

+ sup
ε∈(0,ε0]

(∫ 1

1/2

(
Rα osc(e

isχ, Bε(x))
)γ̄

dλI(x)

)1/γ̄

· ε−β.

We will only estimate the first summand as the estimation of the second follows analogously. Using
the definition osc(h,A) = osc(ℜh,A) + osc(ℑh,A) and |eit1 − eit2 | ≤ min{2, |t1 − t2|}, we note that
for any measurable set A we have osc

(
eisχ, A

)
≤ min{4, 4s/π osc(χ,A)}. Due to (5.2) there exists

C > 0 such that for all s > 0, for all ε > 0 and all x ∈ [ε, 1/2] we have

osc(eisχ, Bε(x)) ≤
8|s|ε
π

sup
y∈Bε(x)

max{|χ′(y+)|, |χ′(y−)|} ≤ 8C|s|ε
π

(x− ε)−b.

We have that 8C|s|ε(x− ε)−b/π ≤ 4 if and only if

x ≥
(
2C|s|ε
π

)1/b

+ ε =: γε > ε.
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Since γε > ε, on [γε, 1/2], we use 8C|s|ε
π (x − ε)−b, and on [0, γε), we use 4 as upper bounds for

osc(eisχ, Bε(x)), to obtain

sup
ε∈(0,ε0]

(∫ 1/2

0

(
Rα osc(e

isχ, Bε(x))
)γ̄

dλI(x)

)1/γ̄

· ε−β

≤ sup
ε∈(0,ε0]


4γε sup

[0,γε]
Rα1 · ε−β +

(∫ 1/2

γε

(
8C|s|ε1−β

π
Rα1 · (x− ε)−b

)γ̄
dλI(x)

)1/γ̄



≤ sup
ε∈(0,ε0]

4γ1+αε ε−β + sup
ε′∈(0,ε0]

8C|s|ε1−β
π

(∫ 1/2

γε

(
xα(x− ε)−b

)γ̄
dλI(x)

)1/γ̄

.(5.5)

For the first summand of (5.5), we have that there exists C̃ε0 > 0 such that

sup
ε∈(0,ε0]

4γ1+αε ε−β ≤ 8 sup
ε∈(0,ε0]

max

{(
2C|s|
π

)(1+α)/b

ε(1+α)/b−β , ε1+α−β
}

≤ C̃ε0(1 + |s|(1+α)/b) <∞
which follows from the fact that β < (1/γ̄ + α)/b < (1 + α)/b and β ≤ 1.

For the second summand of (5.5), we use γ̄ < 1/α and (x+ ε)αγ̄ ≤ xαγ̄ + εαγ̄ to compute

sup
ε∈(0,ε0]

8C|s|ε1−β
π

(∫ 1/2

γε

(
xα(x− ε)−b

)γ̄
dλI(x)

)1/γ̄

≤ 8C|s|
π

sup
ε∈(0,ε0]

ε1−β
(∫ 1/2

( 2Csε
π )

1/b
(x+ ε)αγ̄x−bγ̄dλI(x)

)1/γ̄

≤ 8C|s|
π

sup
ε∈(0,ε0]


ε1−β

(∫ 1/2

( 2Csε
π )

1/b
xγ̄(α−b)dλI(x)

)1/γ̄

+ ε1+α−β
(∫ 1/2

( 2Csε
π )

1/b
x−bγ̄dλI(x)

)1/γ̄



. |s| sup
ε∈(0,ε0]


ε1−β max

{
1

2
,

(
2Csε

π

)1/b
}1/γ̄+α−b

+ ε1+α−β max

{
1

2
,

(
2Csε

π

)1/b
}1/γ̄−b




. |s| sup
ε∈(0,ε0]

(
max

{
ε1−β , |s|1/(γ̄b)+α/b−1ε1/(γ̄b)+α/b−β

}
+max

{
ε1+α−β , |s|1/(γ̄b)−1ε1/(γ̄b)+α−β

})

≤ C̃ε0 |s|(1 + |s|1/(γ̄b)+α/b−1 + |s|1/(γ̄b)−1)

for some constant C̃ε0 > 0. This follows from the assumption that 1/(γ̄b) + α/b − β > 0 and
1/(γ̄b) + α− β > 0.

Finally, combining this with the first step and using symmetry, we have that

sup
s∈[0,2π]

sup
ε∈(0,ε0]

‖Rα osc(eisχ, Bε(·))‖γ̄ · ε−β ≤ C̃ε0 sup
s∈[0,2π]

(1 + |s|+ |s|1/(γ̄b)+α/b + |s|1/(γ̄b) + |s|(1+α)/b)

≤ Cε0

for some Cε0 > 0 which is independent of γ̄ ≥ 1. �

For the following for all j = 0, . . . , k − 1, let R̄j+1 : [cj , cj+1] → R be given by

R̄j+1 =
(Rα1) ◦ ψj+1

Rα1

and the following lemma is independent of the choice of χ.
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Lemma 5.5. R̄j+1 is bounded1 for all j. Further, let 0 < ε < δ and α ∈ (0, 1). Then, for all j,
there is a constant C which is independent of ε and δ such that

(5.6) sup
x∈[cj+δ+ε,cj+1−δ−ε]

(
(Rα1)(x) sup

Bε(x)
|R̄′

j+1|
)
≤ C · δα−1.

Proof. First, we notice that for all j

R̄j+1(x) =
ψj+1(x)

α(1− ψj+1(x))
α

xα(1− x)α
≤ max

{
(ψj+1(x)− 0)α

xα
,
(1− ψj+1(x))

α

(1− x)α

}

≤ max

{
((x− 0)η+)

α

xα
,
((1 − x)η+)

α

(1− x)α

}
≤ ηα+,(5.7)

where the first inequality holds true, because at most one of the arguments in the maximum can
be larger than 1. Hence, for all j, R̄j+1 is bounded.

We know from (1) in the proof of Lemma B.1 that R̄′
1 is bounded at 0 and R̄′

k−1 is bounded at
1. We can infer from the representation in (B.2) that there exist K ′

3,K3 > 0 such that

|R̄′
j+1(x)| ≤

K ′
3

(ψj+1(x)(1 − ψj+1(x)))
1−α ≤ K3

((x− cj)(cj+1 − x))1−α
,(5.8)

for all j ∈ {1, . . . , k−2}. This can be deduced as follows: We assume we are in the interval [δ0, 1−δ0]
with δ0 as in (1) of the proof of Lemma B.1. Then the subtrahend of (B.2) has to be bounded as
it only has a pole at 0 and 1. Furthermore, considering the minuend it is easy to notice that the
factor αψ′

j+1(x)(1 − 2ψj+1(x))/(x(1 − x))α has to be bounded on [δ0, 1 − δ0] as well. This leaves

the remaining factor as in the middle term of (5.8).

In order to verify the second inequality we notice that ψj+1(x) ∈ [η−(x− cj), η+(x− cj)] which
follows from the fact that limε→0 ψj+1(cj + ε) = 0 and from the bound on the derivative. With a
similar argumentation, using that limε→0 ψj+1(cj+1 − ε) = 1 we obtain 1 − ψj+1(x) ∈ [η−(cj+1 −
x), η+(cj+1 − x)].

In addition, from the proof of Lemma B.1

|R̄′
1(x)| ≤

K3

(c1 − x)1−α
and R̄′

k(x) ≤
K3

(x− ck−1)1−α
.

Hence,

sup
x∈[cj+δ+ε,cj+1−δ−ε]

(
(Rα1)(x) sup

Bε(x)
|R̄′

j+1|
)
.





sup 1
[(x±δ−cj)(cj+1−x±δ)]1−α j /∈ {0, k − 1}

sup 1
(c1−x±δ)1−α j = 0

sup 1
(x±δ−ck−1)1−α j = k − 1

(5.9)

. δα−1 .

�

Now, we are ready to prove the main lemma.

Lemma 5.6. Let 0 ≤ α < β < min {1/2, ϑ, 1/b} be such that

κ :=
ηα+

ηβ−
< 1 , and max{|χ′(x+)|, |χ′(x−)|} . x−b(1− x)−b .

Then, for all 1 ≤ γ < 1/α there exist C, C̃ > 0 and γ̄ with γ < γ̄ < 1/α such that for all s ∈ R we

have that for all h ∈ Vα,β,γ and for all n ∈ N ,

(5.10) ‖ψ̂nish‖α,β,γ ≤ C̃ (κn‖h‖α,β,γ + Cn‖h‖γ̄) .
1In fact, they are α-Hölder continuous. See Appendix B.
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Remark 5.7. In the linear expanding case, i.e., η+ = η− > 1, the condition κ < 1 reduces to β > α.
Also, the constant C is independent of γ̄.

Remark 5.8. Restricting γ̄ to (γ, 1/α) ensures that h ∈ Vα,β,γ implies h ∈ Lγ̄ . To see this, observe
that |Rαh| . 1 which yields that |h|γ̄ . R−αγ̄1, and since γ̄α < 1 , R−αγ̄1 is integrable.

Proof of Lemma 5.6. Let s ∈ R and h ∈ Vα,β,γ be R−valued. We estimate |ψ̂ish|α,β :

osc
(
Rα(ψ̂ish), Bε(x)

)
= osc


Rα

k−1∑

j=0

(
eisχ · h
|ψ′|

)
◦ ψ−1

j+11ψ[cj ,cj+1] , Bε(x)




≤
k−1∑

j=0

osc

(
Rα

(
eisχ · h
|ψ′|

)
◦ ψ−1

j+1 , Bε(x)

)

≤
k−1∑

j=0

osc

(
Rα1 ◦ ψj+1

Rα1
·Rα

eisχ · h
|ψ′| , ψ−1

j+1Bε(x) ∩ [cj , cj+1]

)

≤
k−1∑

j=0

osc

(
Rα1 ◦ ψj+1

Rα1
·Rα

eisχ · h
|ψ′| , Bε/η−(ψ

−1
j+1x) ∩ [cj , cj+1]

)

=

k−1∑

j=0

osc

(
R̄j+1 ·

eisχ

|ψ′| ·Rαh ,Dj+1(x, ε/η−)

)
,

where Dj+1(x, ε) := Bε(ψ
−1
j+1x) ∩ [cj , cj+1]. So, by [38, Prop. 3.2 (iii)] there exists c > 0 such that

osc
(
Rα(ψ̂ish), Bε(x)

)
≤

k−1∑

j=0

osc (Rαh ,Dj+1(x, ε/η−)) sup
Dj+1(x,ε/η−)

∣∣∣∣R̄j+1 ·
eisχ

|ψ′|

∣∣∣∣

+

k−1∑

j=0

osc

(∣∣∣∣R̄j+1 ·
eisχ

|ψ′|

∣∣∣∣ ,Dj+1(x, ε/η−)

)
inf

Dj+1(x,ε/η−)
|Rαh| .

≤
(
1 + c(εη−1

− )ϑ
) k−1∑

j=0

osc
(
Rαh ,Bε/η−(ψ

−1
j+1x)

)

|ψ′|(ψ−1
j+1x)

sup
Dj+1(x,ε/η−)

∣∣R̄j+1

∣∣

+

k−1∑

j=0

osc

(∣∣∣∣R̄j+1 ·
eisχ

|ψ′|

∣∣∣∣ ,Dj+1(x, ε/η−)

)
|Rαh(ψ−1

j+1x)| .

The last inequality follows from the fact that ψ−1 is C1 and its derivative is uniformly ϑ−Hölder.

Hence, using the upper bound (5.7), and then using the definition of the transfer operator ψ̂, we
have

osc
(
Rα(ψ̂ish), Bε(x)

)
≤
(
1 + c(εη−1

− )ϑ
)
ηα+ψ̂

(
osc(Rαh,Bε/η−( · ))

)
(x)(5.11)

+

k−1∑

j=0

|Rαh(ψ−1
j+1x)| osc

(∣∣∣∣R̄j+1 ·
eisχ

|ψ′|

∣∣∣∣ ,Dj+1(x, ε/η−)

)
.

Taking the integral over the first term in (5.11) and multiplying by ε−β we obtain

ε−β
∫ (

1 + c(εη−1
− )ϑ

)
ηα+ψ̂

(
osc(Rαh,Bε/η−( · ))

)
(x) dλI(x)
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≤ ε−β
(
1 + c(εη−1

− )ϑ
)
ηα+

∫
ψ̂
(
osc(Rαh,Bε/η−( · ))

)
(x) dλI(x)

= ε−β
(
1 + c(εη−1

− )ϑ
)
ηα+

∫
osc(Rαh,Bε/η−( · ))(x) dλI (x)

≤
(
1 + c(εη−1

− )ϑ
)
ηα+η

−β
− |h|α,β

≤
(
1 + c(ε0η

−1
− )ϑ

)
κ‖h‖α,β,γ ,(5.12)

for all γ ≥ 1. Next, we analyze the second term in (5.11). Again, by [38, Prop. 3.2 (iii)] we have

osc

(∣∣∣∣R̄j+1 ·
eisχ

|ψ′|

∣∣∣∣ ,Dj+1(x, ε/η−)

)

≤ osc

(
1

|ψ′| , Bε/η−(ψ
−1
j+1x)

)
 ess sup
Bε/η

−
(ψ−1

j+1
x)

|ℜR̄j+1e
isχ|+ ess sup

Bε/η
−
(ψ−1

j+1
x)

|ℑR̄j+1e
isχ|




+ osc
(
R̄j+1e

isχ ,Dj+1(x, ε/η−)
)

inf
Dj+1(x,ε/η−)

1

|ψ′|

≤ c(εη−1
− )ϑηα+

1

|ψ′|(ψ−1
j+1x)

+ (1 + c(εη−1
− )ϑ)

osc
(
R̄j+1e

isχ ,Dj+1(x, ε/η−)
)

|ψ′|(ψ−1
j+1x)

.(5.13)

Note that

ε−βc(εη−1
− )ηηα+

∫ k−1∑

j=0

|Rαh(ψ−1
j+1x)|

|ψ′|(ψ−1
j+1x)

dλI(x) = ε−βc(εη−1
− )ϑηα+

∫
ψ̂(|Rαh|) dλI(x)

= ε−βc(εη−1
− )ϑηα+

∫
|Rαh|dλI(x)

≤ K1ε
ϑ−β‖Rα1‖γ1‖h‖γ̄(5.14)

where γ−1
1 + γ̄−1 = 1, K1 := cη−ϑ− ηα+‖Rα1‖γ̄ and β < ϑ. So, the contribution from the first

summand of (5.13) to (5.11) is under control.

To estimate the contribution from second summand of (5.13) to (5.11) we note that for all j and
for all A ⊂ [cj , cj+1], we have

osc
(
R̄j+1e

isχ , A
)
= osc



k−1∑

j=0

R̄j+1e
isχ1[cj ,cj+1) , A


 ,

and therefore, we can bound this contribution by

(1 + c(εη−1
− )ϑ)

k−1∑

j=0

|Rαh(ψ−1
j+1x)|

|ψ′|(ψ−1
j+1x)

osc
(
F , Bε/η−(ψ

−1
j+1x)

)

= (1 + c(εη−1
− )ϑ)ψ̂

(
|Rαh| osc

(
F , Bε/η−( · )

))
,(5.15)

where

F (x) = eisχ(x)
k−1∑

j=0

R̄j+1(x)1[cj ,cj+1)(x) = eisχ(x)
k−1∑

j=0

Rα1 ◦ ψj+1(x)

Rα1(x)
1[cj ,cj+1)(x).

This is bounded by

(1 + c(εη−1
− )ϑ)

∫
ψ̂
(
|Rαh| osc

(
F , Bε/η−( · )

))
(x) dλI(x)
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= (1 + c(εη−1
− )ϑ)

∫
|Rαh|(x) osc

(
F , Bε/η−(x)

)
dλI(x)

= (1 + c(εη−1
− )ϑ)

∫
|h(x)| ·

(
Rα osc

(
F , Bε/η−(x)

))
dλI(x) .(5.16)

To estimate the integral we split it as follows.∫
|h(x)| ·

(
Rα osc

(
F , Bε/η−(x)

))
dλI(x)

=



k−1∑

j=1

∫ cj+ει+ε

cj−ει−ε
+

k∑

j=1

∫ cj−ε−ει

cj−1+ει+ε
+

∫ ε+ει

0
+

∫ 1

1−ε−ει


 |h(x)| ·

(
Rα osc

(
F , Bε/η−(x)

))
dλI(x)

where we choose for ι any number fulfilling

(5.17)
β

1− α
< ι <

1− β

1− α
.

Because β < 1/2 such a choice is possible. Note that for j = 1, . . . k−1 , x ∈ [cj − ει − ε, cj + ει + ε] ,

osc
(
F , Bε/η−(x)

)
≤ 2(sup R̄j + sup R̄j+1) ≤ 4K

and for x ∈ [0, ε + ει) ∪ (1− ε− ει, 1] ,

osc
(
F , Bε/η−(x)

)
≤ 2(sup R̄0 + sup R̄k) ≤ 4K

where K := supj supRj+1 <∞. So,

k∑

j=0

∫ (cj+ει+ε)∧1

(cj−ει−ε)∨0
|h(x)| ·

(
Rα osc

(
F , Bε/η−(x)

))
dλI(x)

≤ ‖h‖γ̄
k∑

j=0

(∫ (cj+ει+ε)∧1

(cj−ει−ε)∨0

(
Rα osc

(
F , Bε/η−(x)

))γ1
dλI(x)

)1/γ1

≤ Kαε
ι/γ1‖h‖γ̄(5.18)

where γ−1
1 + γ̄−1 = 1 and Kα = 4ι/γ12−2αK. Here, we choose γ̄ such that

(5.19) max

{
γ,

ι

ι− β
,

1

1− bβ + α
,

1

1− b(β − α)

}
< γ̄ <

1

α
.

We will see later in the proof why this restrictions on γ̄ are needed.

Now, we show that such a choice is possible. Since we were assuming that ι > β/(1 − α), we
have ι/(ι− β) < 1/α. We note that when b ≤ 1, 1− bβ +α ≥ 1− b(β − α), and it is enough to see
whether α < 1− b(β −α). In fact, this is true because b(β −α) < β −α < 1−α. On the contrary,
when b > 1, we have 1 − bβ + α < 1 − b(β − α), and it is enough to see whether α < 1 − bβ + α.
This is true because β < 1/b.

To estimate the remaining terms we note, using (5.7) and [38, Prop. 3.2(iii)], that for all j =
0, . . . , k − 1 , for all x ∈ [cj + ει + ε, cj+1 − ει − ε],

osc
(
F , Bε/η−(x)

)

= osc
(
eisχR̄j+1 , Bε/η−(x)

)

≤ sup
Bε(x)

(ℜ|eisχ|+ ℑ|eisχ|) osc
(
R̄j+1 , Bε/η−(x)

)
+ osc

(
eisχ , Bε/η−(x)

)
inf
Bε(x)

R̄j+1

≤ 2 sup
Bε(x)

|R̄′
j+1|

ε

η−
+ osc

(
eisχ , Bε/η−(x)

)
ηα+,
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and thus,

k−1∑

j=0

∫ cj+1−ει−ε

cj+ει+ε
|h(x)| ·

(
Rα osc

(
F , Bε/η−(x)

))
dλI(x)

≤ 2ε

η−

∥∥∥∥∥∥
|h|

k−1∑

j=0

1[cj+ει+ε,cj+1−ει−ε]

∥∥∥∥∥∥
1

sup
x∈[cj+ει+ε,cj+1−ει−ε]

Rα sup
Bε(x)

|R̄′
j+1|

+ ηα+

∥∥∥∥∥∥

k−1∑

j=0

1[cj+ει+ε,cj+1−ε−ει] · |h|
(
Rα osc

(
eisχ , Bε/η−(·)

))
∥∥∥∥∥∥
1

≤ 2ε

η−
‖h‖1 sup

x∈[cj+ει+ε,cj+1−ει−ε]
Rα sup

Bε(x)
|R̄′

j+1|+ ηα+‖h‖γ̄
∥∥∥Rα osc

(
eisχ , Bε/η−(·)

)∥∥∥
γ̄
.

Now, in order to estimate the first summand taking the maximum over j of the supremum in
(5.6) above with δ = ει yields that the outer supremum above is bounded by Cει(α−1) for some
constant C > 0. For the second summand, from (5.19), we have that γ̄−1 < 1 − bβ + α which
implies that bβ < 1− γ̄−1 +α = γ̄−1+α, and hence, when b > 1, we have the condition (5.3). Also
from (5.19), γ̄−1 < 1− b(β−α) which implies that bβ < γ̄−1 + bα, and hence, when b ≤ 1, we have
(5.3). Therefore, we can apply Lemma 5.3 with α, β, b, γ̄, ε/η− to conclude

∥∥∥Rα osc
(
eisχ , Bε/η−(·)

)∥∥∥
γ̄
≤ Cε0ε

βη−β−

where Cε0 is independent of γ̄. Therefore, for all s 6= 0,

k−1∑

j=0

∫ cj+1−ει−ε

cj+ει+ε
|h(x)| ·

(
Rα osc

(
F , Bε/η−(x)

))
dλI(x)

≤ C̄ε0ε
min{1−ι(1−α),β}‖h‖γ̄ .(5.20)

Finally, combining (5.18) and (5.20), we estimate (5.16) multiplied by ε−β by

ε−β(1 + c(εη−1
− )ϑ)

∫
ψ̂
(
|Rαh| osc

(
F , Bε/η−( · )

))
(x) dλI(x)

≤ ε(ι/γ̄∧(1−ι(1−α))∧β)−βCε0‖h‖γ̄ ≤ Cε0‖h‖γ̄ .(5.21)

To justify the last inequality, we analyse the exponent of ε. By (5.19) and the relation γ−1
1 +γ̄−1 = 1

we have ι/γ1 > ι(1 − γ̄−1) > ι(1 − (ι − β)/ι)) = β. Furthermore, the second inequality of (5.17)
implies that 1− ι(1− α) > β.

Combining (5.11), (5.12), (5.14) and (5.21), we have

|ψ̂ish|α,β = sup
ε∈(0,ε0)

∫
osc
(
Rα(ψ̂ish), Bε(x)

)

εβ
dλI(x)

≤
(
1 + c(ε0η

−1
− )ϑ

)
κ‖h‖α,β,γ + Cε0‖h‖γ̄ ,

for all γ ≥ 1. Therefore, for all γ̄ chosen appropriately

‖ψ̂ish‖α,β,γ = |ψ̂ish|α,β + ‖ψ̂ish‖γ
≤
(
1 + c(ε0η

−1
− )ϑ

)
κ‖h‖α,β,γ +Cε0‖h‖γ̄ + Cγ‖h‖γ

≤ κ̄‖h‖α,β,γC̄‖h‖γ̄
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where κ̄ =
(
1 + c(ε0η

−1
− )η

)
κ < 1 for sufficiently small ε0, and C̄ = Cε0 + Cγ , where Cγ is given in

Lemma 5.1.

Iterating, we obtain the following DFLY inequality: for all h ∈ Vα,β,γ

sup
s

‖ψ̂nish‖α,β,γ ≤ κ‖ψ̂n−1
is h‖α,β,γ + C̄‖ψ̂n−1

is h‖γ̄

≤ κ2‖ψ̂n−2
is h‖α,β,γ + κC̄‖ψ̂n−2

is h‖γ̄ + C̄C̄n−1‖h‖γ̄

≤ κn‖h‖α,β,γ + C̄‖h‖γ̄
n−1∑

j=0

κjC̄n−1−j

≤ κn‖h‖α,β,γ +CC̄n+1‖h‖γ̄
for some C > 0.

In the proof above, we assumed that h is R−valued. When h = h1 + ih2 where hj, j = 1, 2 are
R−valued, using linearity of the operator

‖ψ̂nish‖α,β,γ ≤ ‖ψ̂nish1‖α,β,γ + ‖ψ̂nish2‖α,β,γ ,
and also, ‖hj‖α,β,γ ≤ ‖h‖α,β,γ and ‖hj‖γ̄ ≤ ‖h‖γ̄ for all j = 1, 2. So, applying DLFY inequality
proven above in the R−valued case to h1 and h2, we conclude that DFLY in the general case of h
holds up to a constant multiple. �

6. Proofs of the Main Theorems

Finally, we give the proofs of our main theorems. We start with the theorems from Section 2.4.

6.1. Proofs of limit theorems for expanding interval maps.

Proof of Theorem 2.3. From (2.7) we obtain that there exist α, β fulfilling

a < α < β ·min

{
1,

log η−
log η+

}
< min

{
ϑ,

1

b
,
1

2

}
·min

{
1,

log η−
log η+

}
.(6.1)

Furthermore, since α > a, the inequality β < 1/b which we can deduce immediately from (6.1) that
1
b <

1
b−a . So, by Lemma 4.8, we obtain |χ|α,β < ∞ and also χ ∈ Vα,β,2 →֒ L2. Furthermore, from

the second inequality of (6.1) we obtain ηα+/η
β
− < 1.

Since ψ is a piecewise C2 uniformly expanding and a covering map of the interval, it has a
unique absolutely continuous invariant mixing probability (acip) with a bounded invariant density;
see [31]. Let’s call this acip π. Then L2 →֒ L2(π) because

∫
|h|2 dπ =

∫
|h|2 dπ

dλI
dλI ≤

∥∥∥∥
dπ

dλI

∥∥∥∥
∞

∫
|h|2 dλI .

We claim that ψ̂ has a spectral gap in Vα,β,γ with γ = 2. In Appendix A.2, we show that Vα,β,2
is continuously embedded in Lγ̄ where γ̄ ∈ (2, 1/α) and that the unit ball of Vα,β,2 is relatively
compact in Lγ̄ . A suitable γ̄ exists by the condition α < 1/2 from (6.1). So, the claim follows from
[5, Lemma B.15] due to the DFLY inequality (5.10) with s = 0 and Remark A.9.

Now, the CLT (in the stationary case) follows directly from Proposition 3.1 applied to χ−π(χ).
That is, from (3.1) we have

Pπ

(
Sn(χ)− nπ(χ)

σ
√
n

≤ x

)
−N(x) = o(1), as n→ ∞

with σ2 > 0 because χ is not a coboundary. �
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Next, we will continue with the proof of Theorem 2.6 as the proof of Theorem 2.4 will need
similar methods to those of Theorem 2.6.

Proof of Theorem 2.6. (2.10) implies that there exist α, β such that α > a and

3ᾱ := 3min{2α,max{α,α + b− 2}} < β ·min

{
1,

log η+
log η−

}
< min

{
ϑ,

1

b
,
1

2

}
·min

{
1,

log η+
log η−

}
.

Since either b < a+ 1 or 1/b < (1 + α− a)/(b − a), we obtain by Lemma 4.8 that |χ|α,β < ∞ and
additionally we obtain by the last inequality that

(a) 0 < 3ᾱ < β < min{ϑ, 1/b, 1/2},
(b) η3ᾱ+ < ηβ−.

Hence, under our assumptions, we have the following:

(1) The second inequality in (2.6) and |χ|α,β < ∞ imply that |eisχ|0,β < ∞ for all s > 0 (see

Lemma 4.4). So, due to Corollary 5.2 (1), we have ψ̂is ∈ L(Vα̃,β,γ̃) for all 0 < α̃ < β and γ̃ ≥ 1.

(2) Since |χ|α,β <∞, from Lemma 4.6, for all α∗ > 0 close to 0,

lim
s→0

|1− eisχ|α∗,β = 0 .

Along with Corollary 5.2 (2), this yields that for all 0 ≤ α0 < β, γ0 ≥ 1,

s 7→ ψ̂is ∈ L(Vα0,β,γ0 ,Vα1,β,γ1)

is continuous for α1 = α∗ + α0 and 1 ≤ γ1 ≤ γ0.

(3) From the second inequality in (2.6) and |χ|α,β <∞ , for all α∗∗ > min{2α,max{α+ b− 2, α}} ,

lim
s→0

∣∣∣∣
eisχ − 1− isχ

s

∣∣∣∣
α∗∗,β

= 0

due to Lemma 4.7. Then, we have that for all 0 ≤ α1 < β, and γ1 ≥ 1 ,

s 7→ ψ̂is ∈ L(Vα1,β,γ1 ,Vα2,β,γ2)

is continuously differentiable, for all α2 = α∗ +max{α∗, α∗∗}+ α1 and 1 ≤ γ2 ≤ (γ−1
1 + γ−1)−1

due to Corollary 5.2 (2) and (3).

Next, we define the following chain of spaces in order to invoke Proposition 3.3 with r = 1:

Vα0,β,γ0 →֒ Vα1,β,γ1 →֒ Vα2,β,γ2 →֒ Vα3,β,γ3 →֒ Vα4,β,γ4 →֒ Vα5,β,γ5 →֒ Vα6,β,γ6 →֒ Vα7,β,γ7 ,

where α0 = 0, α2j−α2j−1 ≥ min{2α,max{α+b−2, α}}, for j = 1, 2, 3, α2j+1 > α2j for j = 0, 1, 2, 3,
and α7 < β. By (a) such a choice is possible. Furthermore, we assume that the γjs are chosen such

that γ0 =M ≫ 1 sufficiently large, γ2j+1 = γ2j and γ2j < (α−1 + γ−1
2j−1)

−1.

Now, to prove the theorem, we verify the conditions in Proposition 3.3 for the above sequence of
Banach spaces. We notice that if for some function ϕ it holds that |ϕ|α,β <∞, then ‖ϕ‖α,β,γ <∞
as long as γ < 1/α. We next verify that it is possible to construct valid spaces with the above
choice of parameters. First, we notice that by (a) it is possible to construct α0 ≤ . . . ≤ α7 with
the above properties that α7 < β and thus αj < β for all j. Furthermore, by (a) we have α < 1/3.

Thus, it is possible that 1 ≤ γ2j ≤ (γ−1 + γ−1
2j−1) holds together with 1/γj > αj . Moreover, under

(b) we have that η
αj

+ /ηβ− < 1 holds for all j.

With that it becomes immediate from applying the conditions of this theorem on the parameters
in the Banach spaces and from the calculations in (1)–(3) applied to all indices j that conditions
(I)-(III) of Proposition 3.3 are satisfied.

For each j, we apply Lemma 5.6 with γ = γj and we choose γ̄ = γ̄j as in the proof of the
lemma. In Appendix A.2, we show that Vαj ,β,γj is continuously embedded in Lγ̄j and that the unit
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ball of Vαj ,β,γj is relatively compact in Lγ̄j . Also, we recall from Lemma 5.1 that for all h ∈ Lγ̄j ,

‖ψ̂is(h)‖γ̄j ≤ Cγ̄j‖h‖γ̄j where Cγ̄j > 1. Therefore, ‖ψ̂nis(h)‖γ̄j ≤ Cγ̄j‖ψ̂n−1
is (h)‖ ≤ Cnγ̄j‖h‖γ̄j which

gives us ‖ψ̂nis‖Lγ̄j→Lγ̄j ≤ Cnγ̄j . Choose κ = max
0≤j≤7

η
αj

+ η−β− < 1. Also, by our previous constructions,

we have that γj < 1/αj for all j. So, due to Lemma 5.6, we have the DFLY inequality: for all
h ∈ Vαj ,β,γj

‖ψ̂nish‖αj ,β,γj ≤ C̃
(
κn‖h‖αj ,β,γj + Cn‖h‖γ̄j

)

for some γj < γ̄j < 1/αj and C uniform in j and s. Therefore, we have the first conclusion, equation
(8), of [26, Theorem 1] uniformly over all spaces. That is, there exist v and w such that

sup
z∈Dκ

‖(zId− ψ̂is)
−1h‖Vαj,β,γj

→Vαj,β,γj
≤ v‖h‖αj ,β,γj + w‖h‖γ̄j

for all space pairs Vαj ,β,γj →֒ Lγ̄j and s ∈ R. This gives (IV) of Proposition 3.3.

The conditions (V)–(VII) of Proposition 3.3 are equivalent to Assumption (B) in [11, Section
I.1.2] for a single dynamical system, i.e., when Assumptions (0) and (A)(1) in [11, Section I.1.2] are
trivially true. Moreover, as discussed in [11], [11, Lemma 4.5] implies Assumption (B). Therefore,
we verify the conditions (with a slight modification) in [11, Lemma 4.5] to establish (V)–(VII):

• We have assumed that χ is non-arithmetic.
• Due to Remark A.9 and the DFLY inequality (5.10), we can apply [5, Lemma B.15] to conclude

that for all s the essential spectral radius of ψ̂is on Vαj ,β,γj is at most κ. This is precisely the
conclusion of [11, Proposition 4.3].

• We know that Vαj ,β,γj →֒ L1 for all j, and that ‖ψ̂ish‖1 ≤ ‖ψ̂h‖1 ≤ ‖h‖1 for all h ∈ L1. So, the

spectral radius of ψ̂is on L
1 , and hence, on Vαj ,β,γj for all j, is at most 1.

• Since ψ is a uniformly expanding, piecewise C2 and a full branch map with finitely many branches,
ψ is exact (cf. [17, Theorem 3]) and ψ−1x is finite for all x.

• The Assumption (A)(1) in [11] is trivially true because there is only a single dynamical system
in Figure 2 of [11].

Hence, (V) and (VI) are true due to the first part of [11, Lemma 4.5]. To establish (VII), we need
a slight modification of the second part of [11, Lemma 4.5]. First, we note that χ ∈ Vα,β,γ →֒ L2 ,

for γ ≥ 3 , and ψ̂ has a spectral gap on Vα,β,γ . So, we can repeat the argument in the first part of

the proof of [11, Lemma 4.5] to conclude that
∑n−1

k=0 χ̄◦ψk is L2−bounded. So, it has an L2−weakly
convergent subsequence. This establishes (VII).

Finally, the non-arithmeticity of χ implies that χ is not cohomologous to a constant, and hence,
we have (VIII) of Proposition 3.3. �

Proof of Theorem 2.4. To prove this theorem we use Proposition 3.2. By Theorem 2.3 we immedi-
ately obtain (V) of Proposition 3.2.

Next, we define the following chain of spaces.

Vα0,β,M →֒ Vα1,β,M →֒ Lp →֒ L1(π)

with p ≤ M where the choices correspond to 0 ≤ α0 < α1 < β and γ0 = γ1 = M ≥ 1 in the proof
of Theorem 2.6. Then, the conditions (I)–(IV) and (VI) of Proposition 3.2 follow as in the proof of
Theorem 2.6 due to Corollary 5.2 (2) and [11, Lemma 4.5]. �

Proofs of the results in Example 2.8. We first note that

|χ′(x)| . x−c(1− x)−c
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and

|χ′(x)| =
∣∣∣∣−cx−c−1 sin

(
1

x

)
− x−c−2 cos

(
1

x

)∣∣∣∣ . x−c−2(1− x)−c−2.

So, we obtain a = c and b = c+ 2 in the notation of Theorems 2.3, 2.4 and 2.6. In order to prove
(1) we note that (2.7) then simplifies to

c < min

{
ϑ,

1

2 + c

}
min

{
1,

log η−
log η+

}
.

So, on the one hand, we have the requirement c < ϑη̃ and on the other hand, we have the condition
c < η̃/(c + 2) which, given that we assume c ≥ 0 , is equivalent to c <

√
1 + η̃ − 1 giving (1).

Furthermore, in the doubling map case we have ϑ = 2 and η̃ = 1 implying (1a).

Next, we notice that (2.10) in our case simplifies to

3c < min

{
ϑ,

1

2 + c

}
min

{
1,

log η+
log η−

}
.

With a similar calculation as above applying Theorem 2.6 gives (2) and as above we get (2a). �

6.2. Proofs of limit theorems for the Boolean-type transformation. Now we give the proofs
from Section 2.5. We start with the following technical lemmas:

Lemma 6.1. For all r ∈ N, the rth asymptotic moments of both Sn(χ) and S̃n(h) are equal.

Proof. It is enough to show that Eµ(S̃
r
n(h)) = EλI (S

r
n(χ)) for all r. In fact, due to (2.13)

Eµ(h ◦ φj1 h ◦ φj2 · · · h ◦ φjk) = EλI (h ◦ ξ ◦ ψj1 h ◦ ξ ◦ ψj2 · · · h ◦ ξ ◦ ψjk)
= EλI (χ ◦ ψj1 χ ◦ ψj2 · · · χ ◦ ψjk)

for all j1 , . . . , jk ∈ N0 such that j1 + · · ·+ jk = r. �

Lemma 6.2. Let h : R → R be such that the left and right derivatives exist and there exist u, v ≥ 0
fulfilling

h (x) . |x|u and max
{∣∣h′ (x−)

∣∣ ,
∣∣h′ (x+)

∣∣} . |x|v ,
and let χ : I → R be given by χ = h ◦ ξ with ξ(x) := cot(πx), then we have

|χ(x)| . x−u(1− x)−u

and

max{|χ′(x+)|, |χ′(x−)|} . x−b(1− x)−b, b = 2 + v .

Further, if

α > u ,

β < (1 + α− u)/(2 + v − u) or 1 + v < u , and(6.2)

1 ≤ γ < 1/u ,

then ‖χ‖α,β,γ < ∞ . In particular, if u < 1/(2 + v − u), then there exist 0 < α < β < 1 such that

|χ|α,β <∞.

Proof. We will apply Lemma 4.8. First, we note that

lim
x→0

ξ(x)x = 1/π and lim
x→1

ξ(x)(1− x) = 1/π .

This and (2.14) imply

|χ(x)| . x−u(1− x)−u,(6.3)

and in particular, χ ∈ Lγ with 1 ≤ γ < 1/u.
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For simplicity, we assume χ is differentiable. Otherwise, at a point where χ is not differentiable,
both one-sided derivatives will exist and the following estimates do hold for them.

Note that we have |h′ (ξ (x))| . x−v (1− x)−v. Using the chain rule |χ′(x)| = |h′(ξ(x))||ξ′(x)| .
Since ξ′(x) = −π/ sin2 (πx) , we have that

|χ′(x)| . x−2−v(1− x)−2−v.(6.4)

So, we have |χ′(x)| . x−b(1 − x)−b with b = 2 + v > 2. The lemma then follows immediately by
applying Lemma 4.8. �

With this we are able to prove the results from Section 2.5

Proof of Proposition 2.9. To prove the statement it is enough to prove its counterpart for Sn(χ,ψ)
where χ = h ◦ ξ and ψ is the doubling map.

From Lemma 6.2, we have

|χ(x)| . x−u(1− x)−u and max{|χ′(x+)|, |χ′(x−)|} . x−b(1 − x)−b, b = 2 + v .

Now, we invoke Theorem 2.3 with ψ, η+ = η− = 2 and log η−/ log η+ = 1. Since ψ is linear, ϑ = 1.
Hence, (2.7) simplifies to u < 1/(2 + v). Also, the assumption that h is not an L2(µ) coboundary
implies that χ is not an L2(λ) coboundary.

Therefore, χ and ψ satisfy the conditions of Theorem 2.3, and hence satisfy the CLT given by
(2.8) with

σ2 = Eλ(χ
2) + 2

∞∑

k=1

Eλ(χ · χ ◦ ψk) ∈ (0,∞) .

From Lemma 6.1, σ̃2 = σ2 and Eµ(h) = EλI (χ). As a direct consequence of (2.13), we obtain the
required CLT given by (2.15). �

We next prove the MLCLT for a class of observables in F.

Proof of Proposition 2.10. Our assumption allows us to apply Theorem 2.4 to the Birkhoff sum
Sn(χ) =

∑n−1
k=0 χ ◦ ψk with χ = h ◦ ξ and ψ the doubling map and conclude

sup
ℓ∈R

∣∣∣∣σ
√
2πnEξ∗m(U ◦ ξ ◦ ψn V (Sn(χ)− ℓ)W ◦ ξ)− e−

ℓ2

2nσ2 Eπ(U ◦ ξ)Eξ∗m(W ◦ ξ)
∫
V (x) dx

∣∣∣∣ = o(1) .

From Lemma 6.1 and the fact that ξ is a conjugacy, we have

sup
ℓ∈R

∣∣∣∣σ̃
√
2πnEm(U ◦ φn V (S̃n(h)− ℓ)W )− e−

ℓ2

2nσ̃2 Eµ(U)Em(W )

∫
V (x) dx

∣∣∣∣ = o(1) .

This is because the two LHSs are exactly the same. �

Now, we prove that corollaries that show the validity of the CLT and MLCLT for the real
part, imaginary part and the absolute value of the Riemann zeta function when sampled over the
trajectories of φ.

Proof of Corollary 2.11. To apply Proposition 2.9, we have to show the existence of u, v as in (2.14).
It is well-known that for any s ∈ (0, 1), for any δ > 0,

(6.5) max
{
|ζ|(s+ ix), |ζ ′|(s+ ix)

}
. |x|(1−s)/2+δ ;

see, for example, [42].

So, we pick u = v = (1−s)/2+δ and this is possible when ((1− s)/2 + δ) ((1− s)/2 + δ + 2) < 1
and such δ > 0 exists iff (1 − s)(5 − s) < 4 iff s ∈ (3 − 2

√
2, 1). So, for such choices of s we can

apply Proposition 2.9 and obtain the CLT provided that h is not φ−cohomologous to a constant.
The MLCLT follows from Proposition 2.10 analogously, when φ is non-arithmetic. �
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Proof of Corollary 2.13. To apply Proposition 2.9, we have to show the existence of u, v as in (2.14).

We assume a ≥ 1, set h̃(x) = h(x)1/a. Note that h′(x) = ah̃(x)a−1h̃′(x). Since we restrict ourselves

to the critical line, s = 1/2, |h̃(x)| . |x|13/84+δ and |h̃′(x)| . |x|13/84+δ for all δ > 0, due to
(6.5). So, we can take u = 13a/84 + δ and v = 13(a − 1)/84 + 13/84 + δ = 13a/84 + δ , and the
condition in Proposition 2.9 for u, v reduces to (13a/84)(13a/84 + 2) < 1 . This is equivalent to

1 ≤ a < 84/13(
√
2−1). So, for such choices of a, we can apply Proposition 2.9 and obtain the CLT

provided that h is not φ−cohomologous to a constant. The MLCLT follows from Proposition 2.10
analogously, when φ is non-arithmetic. �

Finally, we look at the proof for the First Order Edgeworth Expansion for observables over the
Boolean-type transformation.

Proof of Proposition 2.15. We follow the proof of Proposition 2.9 and invoke Theorem 2.6.

Consider Sn(χ,ψ) where χ = ξ ◦h and ψ is the doubling map. Remember that from Lemma 6.2,
we have

|χ(x)| . x−u(1− x)−u and max{|χ′(x+)|, |χ′(x−)|} . x−b(1 − x)−b, b = 2 + v .

Next, to apply Theorem 2.6 we observe that η+ = η− = 2 and log η−/ log η+ = 1 and since ψ
is linear ϑ = 1. Hence, (2.10) simplifies to (2.17). Also, the assumption that h is not an L2(µ)
coboundary implies that χ is not an L2(λ) coboundary. �

Appendix A. The Banach Spaces Vα,β,γ

The spaces Vα,β with their particular norm considered in [40] are not complete, and thus, are not
Banach spaces. However, with the norm we introduce here, we can construct a family of Banach
spaces Vα,β,γ, α ∈ (0, 1), β ∈ (0, 1] and γ ≥ 1, and use it to correct the proofs in [40], and even
generalize the results appearing there.

First, we show that ‖·‖α,β,γ is indeed a norm.

Lemma A.1. For all α ∈ (0, 1), β ∈ (0, 1] and γ ≥ 1, we have that ‖·‖α,β,γ is a norm.

Proof. We have for f, g ∈ Vα,β that

|f + g|α,β = sup
ε∈(0,ε0]

∫
osc (Rα (f + g) , Bε(x))

εβ
dλI(x)

= sup
ε∈(0,ε0]

∫
osc (Rαf +Rαg,Bε(x))

εβ
dλI(x)

≤ sup
ε∈(0,ε0]

∫
osc (Rαf,Bε(x))

εβ
dλI(x) + sup

ε∈(0,ε0]

∫
osc (Rαg,Bε(x))

εβ
dλI(x)

= |f |α,β + |g|α,β
and thus

‖f + g‖α,β,γ = ‖f + g‖γ + |f + g|α,β ≤ ‖f‖γ + ‖g‖γ + |f |α,β + |g|α,β = ‖f‖α,β,γ + ‖g‖α,β,γ .

It is obviously true that ‖af‖α,β,γ = a ‖f‖α,β,γ , for any positive a. Since ‖·‖γ is already a norm and

|f |α,β = 0 if f = 0 almost surely, we know that ‖f‖α,β,γ = 0 if and only if f = 0 almost surely. �
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A.1. Completeness. Here we verify that Vα,β,γ are, in fact, Banach spaces.

Lemma A.2. For α ∈ (0, 1), β ∈ (0, 1] and γ ≥ 1, Vα,β,γ is complete.

Proof. Let (fn) be a Cauchy sequence with respect to ‖·‖α,β,γ . Then, in particular (fn) is also a

Cauchy sequence with respect to ‖·‖γ , we set f as its limit. Also, there exists a subsequence, say

(fnr), that converges to f pointwise almost everywhere.

Since (fn) is a Cauchy sequence with respect to ‖·‖α,β,γ , for each δ > 0 we can choose L > 0

such that ‖fk − fℓ‖α,β,γ < δ for all k, ℓ > L. Let δ > 0 and choose k, ℓ sufficiently large so that
nk, nℓ > L. Then,

‖fnk
− fnℓ

‖α,β,γ = ‖fnk
− fnℓ

‖γ + sup
ε∈(0,ε0]

∫
osc (Rα (fnk

− fnℓ
) , Bε(x)) dλI (x)

εβ
< δ .

Then, by Fatou’s Lemma, ‖fnk
− f‖γ ≤ lim infℓ→∞ ‖fnk

− fnℓ
‖γ and

∫
osc (Rα (fnk

− f) , Bε(x)) dλI (x)

εβ
≤
∫
lim infℓ→∞ osc (Rα (fnk

− fnℓ
) , Bε(x)) dλI (x)

εβ

≤ lim inf
ℓ→∞

∫
osc (Rα (fnk

− fnℓ
) , Bε(x)) dλI (x)

εβ

≤ lim inf
ℓ→∞

sup
ε∈(0,ε0]

∫
osc (Rα (fnk

− fnℓ
) , Bε(x)) dλI (x)

εβ
.

As a result, for all k sufficiently large so that nk > L,

‖fnk
− f‖α,β,γ ≤ lim inf

ℓ→∞
‖fnk

− fnℓ
‖γ + lim inf

ℓ→∞
sup

ε∈(0,ε0]

∫
osc (Rα (fnk

− fnℓ
) , Bε(x)) dλI (x)

εβ

≤ lim inf
ℓ→∞

(
‖fnk

− fnℓ
‖γ + sup

ε∈(0,ε0]

∫
osc (Rα (fnk

− fnℓ
) , Bε(x)) dλI (x)

εβ

)
≤ δ.

Now, choose r sufficiently large so that nr > L and k > L. Then,

‖fk − f‖α,β,γ ≤ ‖fk − fnr‖α,β,γ + ‖fnr − f‖α,β,γ < 2δ .

Thus, f ∈ Vα,β,γ and (fn) converges to f with respect to ‖·‖α,β,γ giving completeness. �

Now, we discuss properties of Vα,β,γ that are relevant for the application of Proposition 3.3 to
our setting. First, we prove that constant functions belong to the spaces we consider.

Lemma A.3. For α ∈ (0, 1), β ∈ (0, 1] and γ ≥ 1, the constant function, 1 ∈ Vα,β,γ.

Proof. Since ‖1‖γ = 1, we only have to show that |1|α,β < ∞. Observe that Rα1 is bounded
by 2−2α, symmetric about x = 1/2 and strictly increasing on [0, 1/2] with a strictly decreasing
derivative. Hence, for any 0 < ε ≤ ε0 < 1/4,
∫

osc(Rα1, Bε(x))dλI(x) ≤
∫ 1−2ε

2ε
osc(Rα1, Bε(x)) dλI(x) + 2−2α

(∫ 2ε

0
dλI(x) +

∫ 1

1−2ε
dλI(x)

)

≤ 4ε

∫ 1/2

2ε
max
Bε(x)

|(Rα1)′|dλI(x) + 22−2αε

= 4ε

∫ 1/2

2ε
(Rα1)

′(x− ε) dλI(x) + 22−2αε

= 4ε
(
Rα1

(
1/2 − ε

)
−Rα1(ε)

)
+ 22−2αε ≤ 23−2αε.

This implies that |1|α,β ≤ 23−2αε1−β0 . �
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Next, we state two lemmas about the inclusion properties of Vα,β,γ .

Lemma A.4. For β ∈ (0, 1] and γ ≥ 1 ,

V0,β,γ →֒ V0,β,1 →֒ L∞ .

Proof. This follows from [38, Proposition 3.4] applied to the real and imaginary parts of functions
in V0,β,1 and the fact that Lγ →֒ L1. �

Remark A.5. Note that, if f ∈ Vα,β,γ, then Rαf ∈ V0,β,γ. So, ess supRαf < ∞. This fact will be
useful in proofs.

Lemma A.6. Suppose 0 < α1 ≤ α2 < 1 , 0 < β2 ≤ β1 ≤ 1 and 1 ≤ γ2 ≤ γ1. Then

Vα1,β1,γ1 →֒ Vα2,β2,γ2 →֒ L1 .

Proof. Since ‖f‖γ2 ≤ ‖f‖γ1 , it is enough to show that |f |α2,β2 . ‖f‖α1,β1,γ1 . By applying [38,
Proposition 3.2 (iii)] to the real and imaginary parts of f , we have,

osc(Rα2
f,Bε(x)) = osc(Rα2−α1

1 · Rα1
f,Bε(x))

≤ ess sup |Rα1
f | · osc(Rα2−α1

1, Bε(x)) + osc(Rα1
f,Bε(x)) · sup

Bε(x)
Rα2−α1

1 ,

and due to Lemma A.4,

ess sup |Rα1
f | . |Rα1

f |0,β1 + ‖Rα1
f‖1 ≤ |f |α1,β1 + ‖Rα1

1‖γ̄‖f‖γ1 . ‖f‖α1,β1,γ1

with γ̄ = (1− γ−1
1 )−1. Therefore,

ε−β2osc(Rα2
f,Bε(x))

. ε−β1osc(Rα2−α1
1, Bε(x))‖f‖α1,β1,γ1 + sup

Bε(x)
Rα2−α1

1 · ε−β1osc(Rα1
f,Bε(x)) .

Integrating and taking the supremum over ε,

|f |α2,β2 . ‖f‖α1,β1,γ1 ,

and the inclusion follows. �

A.2. Continuous inclusion and relative compactness. To apply Hennion-Nassbaum theory,
see [26, 5], we have to show that our weak spaces, Lp, are continuously embedded in strong spaces,
Vα,β,γ , and that the closed bounded sets in strong spaces are compact with respect to weak norms.

Lemma A.7. Let α ∈ (0, 1), β ∈ (0, 1] and γ ≥ 1. Then for all γ̄ such that γ < γ̄ < 1/α , Lγ̄ is

continuously embedded in Vα,β,γ.

Proof. Due to Remark 5.8 and the assumption γ̄ < 1/α, if h ∈ Vα,β,γ , then h ∈ Lγ̄ . So, Vα,β,γ ⊆ Lγ̄ .
To show that this inclusion is continuous we need to show that if fn → 0 in Vα,β,γ, then fn → 0 in
Lγ̄ . Let ‖fn‖α,β,γ → 0. Then, |Rαfn| ∈ V0,β,1 and ‖Rαfn‖0,β,1 → 0. However, V0,β,1 →֒ L∞. So,

‖Rαfn‖∞ → 0. Therefore, ‖f γ̄n‖1 ≤ ‖R−αγ̄1‖1‖Rαfn‖γ̄∞ → 0 proving the claim. �

Lemma A.8. Let α, β, γ and γ̄ be as in the previous lemma. Then, the closed unit ball of Vα,β,γ
is compact in Lγ̄.

Proof. Let {fn} be such that ‖fn‖α,β,γ ≤ 1. It is enough to show that there is f ∈ Vα,β,γ such that
‖f‖α,β,γ ≤ 1 and {fn} converges to f in Lγ̄ over a subsequence. To do this, we recall from [25,
Theorem 1.13] that closed subsets of V0,β,γ are compact in Lγ . Since {Rαfn} ⊂ V0,β,γ is a bounded
sequence, it has an Lγ convergent subsequence, and in turn, it has a pointwise almost everywhere
convergence subsequence. Let’s call this subsequence {Rαfnk

} and its point-wise limit f .
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We claim fnk
→ R−αf in Lγ̄ . Observe that fnk

→ R−αf point-wise almost everywhere, and
since V0,β,γ →֒ L∞ , |fnk

| ≤ |R−α1||Rαfnk
| ≤ C|R−α1| ∈ Lγ̄ . So, fnk

→ R−αf in Lγ̄ if αγ̄ < 1 .
Moreover, we claim ‖R−αf‖α,β,γ ≤ 1. To see this, observe that since Lγ̄ convergence implies Lγ

convergence, we apply [25, Lemma 1.12] to conclude that lim infk |fnk
|α,β = lim infk |Rαfnk

|0,β ≥
|f |0,β = |R−αf |α,β. Since strong convergence implies weak convergence, we have lim infk ‖fnk

‖γ ≥
‖R−αf‖γ , and finally,

‖R−αf‖α,β,γ = |R−αf |α,β + ‖R−αf‖γ ≤ lim inf
k

|fnk
|α,β + lim inf

k
‖fnk

‖γ
≤ lim inf

k
(|fnk

|α,β + ‖fnk
‖γ) = lim inf

k
‖fnk

‖α,β,γ ≤ 1

as claimed. �

Remark A.9. In particular, the above implies that ‖ · ‖α,β,γ-bounded sequences have ‖ · ‖γ̄-Cauchy
subsequences.

Appendix B. Hölder Continuity of R̄j+1

Lemma B.1. For all j = 0, . . . , k − 1, let R̄j+1 : [cj , cj+1] → R be given by

R̄j+1 =
(Rα1) ◦ ψj+1

Rα1
.

Then R̄j+1 is bounded and α-Hölder continuous for all j.

Proof. Our strategy is to prove the following two steps:

(1) There exists δ0 > 0 such that R̄′
1 is bounded on the interval [0, c1 − δ0), R̄

′
k+1 is bounded on

the interval (ck+ δ0, 1] and R̄
′
j+1, j = 1, . . . , k−1 is bounded on the interval (cj+ δ0, cj+1− δ0).

(2) Since R̄j+1(cj) = R̄j+1(cj+1) = 0 for j = 1, . . . , k − 1, it is enough to show that there exists
C > 0 such that R̄j+1(cj + ε) ≤ Cεα and R̄j+1(cj+1 − ε) ≤ Cεα, for all ε > 0.

We have

R̄′
j+1(x) = α ·

ψ′
j+1(x)(1 − 2ψj+1(x))x(1 − x)− ψj+1(x)(1− ψj+1(x))(1 − 2x)

(ψj+1(x)(1 − ψj+1(x)))1−α (x (1− x))1+α
.(B.1)

The numerator is bounded, and for j = 1, . . . , k−2, the denominator has zeros only at cj and cj+1.
So, we immediately get that R̄′

j+1 is bounded on (cj + δ0, cj+1 − δ0) .

We only have to further consider the cases j = 0 and j = k − 1. We have to show that R̄′
1(x) is

bounded in a neighbourhood of 0. Since ψ1 has a bounded second derivative, we can write ψ1(x) =

ψ1(0)+ψ
′
1(0)x+O(x2) = ψ′

1(0)x+O(x2). This yields (ψ1(x)(1−ψ1(x)))
1−α (x (1− x))1+α = Ω(x2) .2

On the other hand, by simply multiplying out we obtain

ψ′
1(x)(1 − 2ψ1(x))x(1 − x)− ψ1(x)(1 − ψ1(x))(1 − 2x) = O(x2)

implying that limx→0 R̄1(x) <∞. The calculation for limx→1 R̄k(x) follows analogously.

In order to analyse the behaviour for x → cj and x → cj+1 with x starting from [cj , cj+1] we
note that R̄′

j+1 can be written as

R̄′
j+1(x) = α ·

ψ′
j+1(x)(1 − 2ψj+1(x))

(ψj+1(x)(1 − ψj+1(x)))1−α (x (1− x))α
− α · (ψj+1(x)(1 − ψj+1(x)))

α (1− 2x)

(x (1− x))1+α
.

(B.2)

The minuend tends to ∞ for x→ cj and to −∞ for x→ cj+1 since ψj+1(x) and 1− ψj+1(x) tend
to zero, respectively, and the numerator remains bounded and is positive near cj and negative near

2f(x) = Ω(g(x)) as x → 0 if lim infx→0 |f(x)|/g(x) > 0 .
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cj+1. The subtrahend is bounded on an interval [δ0, 1− δ0]. Thus, R̄
′
j+1(x) tends to ∞ for x→ cj

and to −∞ for x→ cj+1 except if cj = 0 or cj+1 = 1.

Hence, we can conclude that |R̄j+1(x)−R̄j+1(y)| ≤ R̄j+1(cj+|x−y|)−R̄j+1(cj) = R̄j+1(cj+|x−y|)
for x, y ∈ [cj , cj + δ0] and δ0 > 0 sufficiently small. Similarly, we have |R̄j+1(x) − R̄j+1(y)| ≤
R̄j+1(cj+1 − |x − y|) − R̄j+1(cj+1) = R̄j+1(cj+1 − |x − y|) for x, y ∈ [cj+1 − δ0, cj+1] and δ0 > 0
sufficiently small. On the other hand, we have

R̄j+1(cj − ε) =

(
ψj+1(cj − ε)(1 − ψj+1(cj − ε))

(cj − ε)(1− cj + ε)

)α
.

There exists Cj,δ0 > 0 such that
(

ψj+1(cj − ε)

(cj − ε)(1 − cj + ε)

)α
< Cj,δ0

uniformly for all ε ∈ (0, δ0) and thus

R̄j+1(cj − ε) ≤ Cj,δ0 (η+ε)
α .

Similarly, we have

R̄j+1(cj−1 + ε) =

(
ψj+1(cj−1 + ε)(1 − ψj+1(cj−1 + ε))

(cj−1 + ε)(1 − cj−1 − ε)

)α

and there exists C̄j,δ0 > 0 such that
(

1− ψj+1(cj−1 + ε)

(cj−1 + ε)(1 − cj−1 + ε)

)α
< C̄j,δ0

uniformly for all ε ∈ (0, δ0) and thus

R̄j+1(cj − ε) ≤ C̄j,δ0 (η+ε)
α .

Setting C = maxj max{Cδ0,j, C̄δ0,j} concludes the proof of the lemma. �

Appendix C. A Key Estimate

In this appendix we will prove the following key lemma:

Lemma C.1. Define

Θ1 := lim
s→0

sup
ε≤ε0

1

εβ

∫ δ

0
osc(Rα∗ℜ(1− eisχ)+, D̄(δ, ε, x)) dλI (x)

and

Θ2 := lim
s→0

sup
ε≤ε0

1

sεβ

∫ δ

0
osc(Rα∗ℜ(1− eisχ)+, D̄(δ, ε, x)) dλI (x)

with α∗ ≥ 0, δ = δ(ε, s) = εκsι where ι, κ > 0 and with D̄ as in (4.25). Suppose |χ|α,β < ∞ with

0 ≤ α < β ≤ 1.

(1) If

(C.1) ι > 0 and κ ≥ β

α∗ + 1
,

then Θ1 = 0 .
(2) If

(C.2) ι > 1, and κ ≥ β

α∗ + 1
,

then Θ2 = 0.
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Proof. Without loss of generality, we assume that s > 0. Note that due to (4.26), we have

Θ1 ≤ lim
s→0

sup
ε≤ε0

∫ δ
0 2(x+ ε)α

∗

dλI(x)

εβ

= lim
s→0

sup
ε≤ε0

2
(
(δ + ε)α

∗+1 − εα
∗+1
)

(α∗ + 1)εβ
= lim

s→0
L(s, ε0)

where

L(s, ε0) :=
2

(α∗ + 1)
sup
ε≤ε0

J(s, ε) ,

and

J(s, ε) :=
(δ + ε)α

∗+1 − εα
∗+1

εβ
= (εκsι + ε)α

∗+1ε−β − εα
∗+1−β .

First, we note that

(εκsι + ε)α
∗+1ε−β = (εκ−β/(α

∗+1)sι + ε1−β/(α
∗+1))α

∗+1 ,(C.3)

and hence, for J(s, ε) to not blow up near ε = 0, we should have (C.1). Due to the first inequality
in (C.1) and (C.3), we have for given s > 0 that supε≤ε0 J(s, ε) = J(s, ε0) and thus J(0, ε) :=
lims→0 J(s, ε) = 0 for all ε. Therefore, under the assumption (C.1), Θ1 = 0 as claimed because

Θ1 ≤ lim
s→0

L(s, ε0) =
2

α∗ + 1
lim
s→0

J(s, ε0) = 0 .

Now, using (4.26) and l’Hôpital’s rule, we obtain

Θ2 = lim
s→0

sup
ε≤ε0

∫
osc(Rαℜ(1− eisχ)+, D̄(δ, ε, x))1[0,δ](x) dλI(x)

sεβ

≤ lim
s→0

1

s
sup
ε≤ε0

2
(
(δ + ε)α

∗+1 − εα
∗+1
)

(α∗ + 1)εβ
=

d

ds
L(s, ε0)

∣∣∣
s=0

.

We note that the last equality follows by the above calculation, namely that supε≤ε0 J(s, ε) =
J(s, ε0) holds because of 1 + α∗ > β and the additional conditions ι > 0 and κ ≥ β/(α∗ + 1).

Next, taking the derivative of L wrt s, we obtain

d

ds
L(s, ε0) =

2

α∗ + 1

d

ds
(εκ0s

ι + ε0)
α∗+1ε−β0 = 2ι(εκ0s

ι + ε0)
α∗

ε−β0 εκ0s
ι−1.

Note that for Θ2 = 0 we should have d
dsL(s, ε0)

∣∣
s=0

= 0 and this is true, if

ι > 1 .

Therefore under (C.2), we have that Θ2 = 0 as claimed. �
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Birkhäuser Basel, 1997.
[14] M. I. Gordin. The central limit theorem for stationary processes, Soviet Math. Dokl. 10: 1174–1176, 1969.
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