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Abstract 

 

 

Several authors have hailed intuition as one of the defining features of expertise.  In 

particular, while disagreeing on almost anything that touches on human cognition and 

artificial intelligence, Hubert Dreyfus and Herbert Simon agreed on this point.  

However, the highly influential theories of intuition they proposed differed in major 

ways, especially with respect to the role given to search and as to whether intuition is 

holistic or analytic.  Both theories suffer from empirical weaknesses.  In this paper, 

we show how, with some additions, a recent theory of expert memory (the template 

theory) offers a coherent and wide-ranging explanation of intuition in expert 

behaviour.  It is shown that the theory accounts for the key features of intuition: it 

explains the rapid onset of intuition and its perceptual nature, provides mechanisms 

for learning, incorporates processes showing how perception is linked to action and 

emotion, and how experts capture the entirety of a situation.  In doing so, the new 

theory addresses the issues problematic for Dreyfus’s and Simon’s theories.  

Implications for research and practice are discussed. 
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Expertise and Intuition: A tale of three theories 

One of the hallmarks of expertise is the speed and ease with which experts can 

recognize the key features of a situation, a phenomenon often called intuition.
1
  For 

example, a radiologist can diagnose a disease nearly instantaneously, and a chess 

grandmaster can literally ‘see’ the good move straight away.  With routine problems, 

the decision will be correct most of the time.  This phenomenon has attracted wide 

attention in the literature, which has been dominated by two main theories.  On the 

one side, authors such as Hubert Dreyfus (Dreyfus, 1972; Dreyfus & Dreyfus, 1988)  

have argued that intuition is a signature of the holistic processing of the brain and the 

mind.
2
  On the other side, authors such as Herbert Simon (Chase & Simon, 1973; 

Simon, 1989) have proposed that simple mechanisms, based on pattern recognition, 

are sufficient for explaining intuition.  In spite of these differences, it is important to 

note that Dreyfus and Simon agreed on many aspects of intuition: its speed, its 

fluidity, the fact that it takes a large amount of practice for a novice to reach expert 

level and thus show intuitive behaviour, and the fact that perceptual processes lie at 

the core of intuition.  This level of agreement is rather ironic—and often ignored in 

the literature—given that these two scholars were at the centre of a bitter dispute as to 

whether artificial intelligence (AI) was myth or reality, the use of symbols in human 

cognition, and the importance of heuristics in decision making. 

                                                 
1
 In line with the literature, we use intuition for the rapid understanding shown by individuals, typically 

experts, when they face a problem, and insight for the sudden discovery of a solution after a protracted 

and unsuccessful search.  While this article focuses on intuition, several of the theories we discuss have 

been applied to explain insight as well. 

2
 As the authors made a number of corrections, we use the 1988 edition of Mind Over Machine rather 

than the 1986 edition. 
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 The goal of this article is to evaluate these two theories empirically and then to 

present a new theory of intuition that removes their limitations.  We first present the 

empirical evidence supporting the psychological reality of the concept of intuition, 

then we discuss Dreyfus’s and Simon’s theories in detail.  The identification of the 

strengths and weaknesses of these two theories leads to the presentation of a new 

theory of intuition based on the template theory of expertise (Gobet & Simon, 1996c, 

2000).  The final section highlights how the new theory addresses the deficiencies of 

the earlier theories. 

Empirical Evidence Supporting the Concept of Intuition 

A fair amount of the evidence in the literature on intuition is anecdotal, and it 

is important to establish the experimental validity of the phenomenon before engaging 

in a discussion of the merits of the candidate theories.  Without any doubt, the domain 

providing most experimental data is chess.   

There is good evidence that strong players search the problem space 

selectively, homing in rapidly on the important moves.  Klein, Wolf, Militello, and 

Zsambok (1995) found that the first move generated by players was usually good 

enough, a result that has been recently replicated in handball (Johnson & Raab, 2003).  

Campitelli and Gobet (2004)  found that a chess grandmaster was able to correctly 

solve nearly 50% of problem situations within 10 s, compared to less than 5% for a 

weak club player.  It has also been shown that performance in speed chess, where 

there is only about 5 s per move on average, shares 81% of the variance with the 

ratings based on standard chess, where players have about 180 s per move on average 

(Burns, 2004).  The skill effect with briefly-presented chess positions (Chase & 

Simon, 1973; De Groot, 1965) can also be seen as a signature of intuition, in 

particular when one considers that masters show nearly perfect recall with a 
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presentation as short as 5 s and that, even though their task is to memorise the 

position, they also understand its meaning fairly well at the end of the presentation.  

In addition, eye-movement recordings during the brief presentation of the position 

show that masters typically look rapidly at the key elements (De Groot & Gobet, 

1996). 

Empirical support for the role of intuition exists in other domains as well.  

Thinking-aloud protocols with physics experts (Larkin, Mc Dermott, Simon, & 

Simon, 1980) show that they can solve routine problems in a matter of seconds.  Fire-

fighter commanders facing high-risk situations use intuition to make decisions under 

considerable time pressure (Klein, 1998).  In many cases, they quickly adopt the 

appropriate behaviour without even considering alternatives.  A similar type of 

behaviour has been reported by other experts, including battle commanders (Klein, 

1998), managers (Patton, 2003), and intensive-care nurses (Benner, Tanner, & Chesla, 

1996; Crandall & Getchell-Reiter, 1993). 

Dreyfus’s Theory of Expertise and Intuition 

In his book What Computers Can’t Do Dreyfus (1972) developed a wide-

ranging critique of the symbolic approach in artificial intelligence, as exemplified for 

example by the work of Newell and Simon (1972), Minsky (1977), and McCarthy 

(1968).  One key argument in Dreyfus’s critique was that human cognition is 

embodied, situated, and experiential.  Another key argument was that, in contradiction 

to classical artificial intelligence and cognitive psychology, humans do not use 

symbols, but perceive their environment and make decisions using holistic processes.  

In particular, holistic processing is characteristic of individuals that are experts in a 

domain.  Dreyfus, a philosopher, was more interested in providing a critique of AI 
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based on phenomenology than in offering a detailed scientific theory, and did not 

develop his view in great detail, nor support it by experimental data. 

 In another influential book, Dreyfus (Dreyfus & Dreyfus, 1988) elaborated 

this view and described the steps that the aspiring expert has to go through (see also 

Dreyfus & Dreyfus, 1984; Dreyfus & Dreyfus, 1996, 2005).  In the “novice” stage, 

information is acquired through instruction; domain-specific facts, features, and 

actions are learnt.  Rules are “context-free,” in the sense that their application ignores 

what else is happening in the environment.  The “advanced beginner” stage is attained 

only after substantial concrete experience with the domain.  Situational elements—

that is, elements that depend on the context—become meaningful and are used.  In the 

“competence” stage, decision-making procedures are organised hierarchically.  While 

this stage is characterized by an increased level of efficiency, planning is still to a 

considerable extent conscious and deliberate.  In the “proficiency” stage, certain 

features will be perceived as salient while others will be ignored.  Proficient 

individuals, while able to “intuitively organize and understand” the problem 

situations, still use analytical thinking to decide what to do next.  In the final, 

“expertise” stage, both understanding of the task and deciding what to do is intuitive 

and fluid.  In routine situations, “experts don’t solve problems and don’t make 

decisions; they do what normally works” (Dreyfus & Dreyfus, 1988, pp. 30-31).  

Dreyfus and Dreyfus use mostly anecdotal evidence and references to the reader’s 

experience to buttress their theory.  In the domain of nursing, Benner and her 

colleagues (Benner, 1984) offer some direct empirical support in favour of the theory, 

based on group interviews, detailed observations, and intensive personal history 

interviews.  (See Gobet & Chassy (in press) for a discussion of nursing expertise in 

the light of some of the ideas discussed in the present article.) 
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 Dreyfus and Dreyfus have considered three ways in which the brain could 

produce intuitive behaviour based on experiences.  In the first edition of Mind over 

Machine, they speculated that the brain could be seen as a holographic pattern 

recognizer.  This idea was dismissed in the preface of the second edition of the book.  

Instead, these authors considered the possibility of using the mechanisms proposed by 

neural net research.  This possibility was in turn dismissed in the preface of the 1992 

editions of What Computers Still Can’t Do: “It looks likely that the neglected and then 

revived connectionist approach is merely getting its deserved chance to fail” (Dreyfus, 

1992, p. xxxviii).  The final possibility considered was the approach of reinforcement 

learning (e.g., Tesauro, 1992), but it was concluded that this approach also met with 

serious practical and theoretical problems (Dreyfus, 1992), although S. E. Dreyfus 

(2004) provides a more optimistic evaluation. 

 While we have centred on Dreyfus’s approach, we should mention that other 

authors have emphasized that intuition requires holistic processing.  For example, for 

chess, the domain discussed at length by Dreyfus (1972) and Dreyfus and Dreyfus 

(1988), one can mention the proposals by De Groot (1986; see also De Groot & 

Gobet, 1996, for an extended discussion of De Groot's view) and Linhares (2005).  At 

the descriptive level, the theory is in line with cognitive theories proposing that 

novices start with verbal, analytic knowledge and slowly move to levels where 

knowledge becomes unconscious (Anderson, 1982; Cleveland, 1907).   

Although Dreyfus and Dreyfus’s account has face value validity, it also 

conflicts with a fair amount of empirical data.  First, there is evidence that, in many 

domains, expertise does not imply a decrease of abstract thought and a concomitant 

increase in concrete thought, as proposed by Dreyfus and Dreyfus.  One of the best 

examples is physics, where experts in fact solve problems at a deep, abstract level, 
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while novices perform at a superficial, concrete level (Chi, Feltovich, & Glaser, 1981; 

Larkin et al., 1980).   

Second, the presence of stages in expertise development is poorly 

documented.  In addition to the well known difficulty of empirically establishing the 

reality of stages (van der Maas & Molenaar, 1992), there is clear evidence that 

individuals may be experts in one sub-field whilst performing less fluidly in another 

sub-field of the same domain (Benner, 1984; Gruber & Strube, 1989; Rikers et al., 

2002).  Although Dreyfus and Dreyfus (1988) acknowledge that the level of expertise 

of one individual may vary for different problems with the same area, this would 

suggest that the notion of stage must not be taken literally, but only suggestively.  But 

this seems to undermine one of the main theoretical contributions of the model. 

Third, a tenet of the theory, and of Dreyfus’s earlier work, is that intuition is 

necessary for performing at expert level in what Dreyfus (1972) calls “complex 

formal” and “nonformal” intelligent activities and that, being analytic, heuristic-

search computer programs cannot reach this level of performance (Dreyfus, 1972; 

Dreyfus & Dreyfus, 1988, e.g., Table 1.1; , 2005).  (This is discussed in detail in the 

conclusion chapter of What Computers Can’t Do (Dreyfus, 1972); see in particular 

the discussion surrounding Table 1 in the Conclusion chapter.) Recent developments 

in computer board games, for example in chess where world champion Kasparov was 

beaten by Deep Blue (Campbell, Hoane, & Hsu, 2002)
3
 and in Othello where world 

champion Murakami was beaten by Logistello (Buro, 1999), show that programs 

                                                 
3
 There has been some (unsubstantiated, in our view) suggestion that Deep Blue received unfair help 

from its programmers.  However, more recent matches pitting world champions against computer 

programmes running on standard PCs have consistently demonstrated that the best human players 

struggle against computers (see for example the 4-2 defeat of world champion Vladimir Kramnik 

against Deep Fritz in December 2006). 
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using heuristic search—without any holistic understanding of positions—can perform 

at very high levels (see also Strom & Darden, 1996, for a similar point).  Indeed, 

chess grandmasters are often baffled by how their intuitions can be proven false by 

commercially-available computer programs.
4
  

 It could actually be the case that computer programs may help develop a 

much better understanding of chess than humans have been able to achieve (Gobet, 

1993).  Jansen (1992; , 1992) compared human play with endgame databases and 

found that even grandmasters perform weakly in simple endings.  Consider the 

endgame King-Queen vs. King-Rook, an endgame that textbooks consider as 

elementary and to which they devote just a few pages.  Jansen found that even world-

class grandmasters made so many errors that it took, on average, four times longer 

than the optimal line of play to win the game.  In many cases, they would have 

achieved only a draw instead of a win. 

Fourth, while Dreyfus and Dreyfus (1988) recognize that even individuals at 

the expert level may need to carry out analytic problem solving, they do not supply 

details about how the information provided by holistic intuition may be used, for 

example, to guide look-ahead search in a game such as chess.  In addition, the role of 

conscious problem solving is clearly underestimated in the theory.  Based on an 

informal experiment with a chess international master who “more than held his own” 

against “a slightly weaker, but master level, player” in spite of having to add dictated 

numbers, Dreyfus and Dreyfus (1988, p. 33) conclude that players at the expert stage 

                                                 
4
 A good example of this is the last game of the match Kramnik vs. Deep Fritz, mentioned in the 

previous footnote, where a series of Deep Fritz’s manoeuvres that grandmasters commenting on the 

game originally found primitive and naïve turned out to have deep strategic implications. Deep Fritz 

won the game. 
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can still produce “fluid and coordinated play” in spite of being “deprived of the time 

necessary to see problems and construct plans.”  Unfortunately, not enough details are 

provided in Dreyfus and Dreyfus’s book to evaluate this experiment; in particular, it is 

unclear as to the difference in skill between the two players, whether there were 

behavioural differences between normal play and play with the interfering task, and, 

indeed, to what extent the second player was affected by the experimental setting.  

Well-controlled experiments with large samples (Robbins et al., 1995) have shown 

that a concurrent task interfering with what Baddeley (1986) calls the central 

executive substantially impairs the quality of the moves chosen.  Robbins et al. used 

tactical chess positions, and one could argue that Dreyfus and Dreyfus’s point was 

that their master won his game solely through intuitive strategic play (roughly, 

position estimation and long-range planning), without using tactical play (roughly, 

short-term precise calculations based on thinking ahead).  This seems unlikely to us, 

as nearly every game at master level contains moments where tactics become crucial.  

In addition, recent research (Chabris & Hearst, 2003; Gobet & Simon, 1996b) has 

clearly established that reducing thinking decreases playing skill, although one should 

emphasise that the level of play with grandmasters is still fairly high, and thus that 

some kind of pattern recognition must be involved.  Thus, our disagreement is not 

about the importance of intuitive play at expert level, but about Dreyfus and Dreyfus’s 

neglect of analytical thinking—in chess, look-ahead search. 

Finally, evidence from neuroscience does not support the notion of holistic 

pattern recognition.  There is now good evidence that perception proceeds 

sequentially, engaging specialized modules, as is shown for example by Eimer (2000) 

for data on face perception and O’Rourke and Holcomb (2002) for data on word 

perception. 
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Simon’s Standard Theories of Expertise and Intuition 

While Dreyfus’s approach is philosophical and the evidence used to support it 

mostly anecdotal, Simon’s emphasis is on mechanistic explanations of empirical 

phenomena, with direct recourse to experimental data.  The starting point of Simon’s 

analysis is that experts suffer from the same cognitive limits as novices (Chase & 

Simon, 1973).  In particular, they can pay attention to only one thing at a time, and 

their short-term memory (STM) is limited to just a few items.  In addition, experts 

essentially use the same problem solving methods as novices, such as means-end 

analysis, progressive deepening, and use of heuristics to cut the search space down.  

What happens during the path from novice to expert is that individuals learn a large 

number of perceptual patterns that get associated with possible actions; in other 

words, they learn a large number of “productions” (i.e., condition-action pairs; Chase 

& Simon, 1973; Newell & Simon, 1972).  For example, a chess player may learn that, 

given a certain king’s side pawn structure, an attack including the sacrifice of a bishop 

should be considered.  This chunking process is not unique to expertise, but is one 

basic learning mechanism found in other domains, such as verbal learning (Simon & 

Feigenbaum, 1964).  Intuition can then be explained by the firing of a production: a 

pattern similar to one learned during previous experience is recognized, and thus a 

solution is automatically accessed (see Fig. 1).
5
  While this solution was obtained 

through slow problem solving mechanisms in the first instance, it is now accessed 

automatically by memory lookup.  To some extent, within Simon’s framework, 

intuition is just one method among others to reduce the search space.    

 

                                                 
5
 Note that the proposed move is not necessarily the best one in a specific context—just a move that is 

often good in similar contexts. In the example of Figure 1, the move Ne5-g4 was actually played. 



  12 

-------------------------------------------------------------------------------------- 

Insert Fig. 1 about here 

-------------------------------------------------------------------------------------- 

 While Simon sometimes relied on anecdotal evidence, he also used a number 

of experimental data to support this explanation of intuition.  Data from chess (Chase 

& Simon, 1973) show that strong players perceive the board as chunks of pieces, and 

not as individual pieces, and also that they chunk sequences of moves.  The chunking 

of actions (moves) is also apparent in learning simple puzzles such as the tower of 

Hanoi (Anzai & Simon, 1979).  Data from physics clearly show that experts can 

recognize the solution of routine problems almost instantly and that, at least with 

routine problems, as expertise develops the search strategy changes from backward 

search to forward search or even forward execution—that is, proceeds through the 

solution with minimal search (Larkin et al., 1980). 

Another source of support for Simon’s theory comes from computer 

simulations, which establish that the mechanisms postulated by the theory are 

sufficient to produce the behaviour to explain.  Relevant simulations, using 

production systems, include modelling how a novice becomes proficient in solving 

the tower of Hanoi (Anzai & Simon, 1979) and how backwards search is replaced by 

forward search as novices become experts in physics (Larkin et al., 1980).  Indirect 

support is also offered by simulations of memory recall tasks showing how chunks—

an essential component of pattern recognition and thus of intuition—are acquired in 

chess (Simon & Gilmartin, 1973). 

In line with Simon’s views, a number of theories explain intuition as 

recognition of perceptual patterns linked to actions, which compile domain-specific 
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experience acquired over years of practice and study.  Among the most influential, 

one can mention those of Newell (1990), Saariluoma (1995), and Klein (2003). 

Simon’s theory of intuition has been criticized on several grounds.  Dreyfus 

and Dreyfus (1988) note that, as chess positions are comprised of several chunks, 

several moves will be proposed; however, there is no provision of mechanisms 

explaining how only one move is selected.  In addition, the types of chunk proposed 

by Simon are defined in isolation to other aspects of the situation.  By contrast, 

Dreyfus and Dreyfus (1988, p. 210) argue that the position is stored as “an 

unanalyzable whole.”  They also criticize Simon’s “information processing 

assumption that intelligence consists in drawing conclusions using features and rules,” 

noting that high levels of expertise “are characterized by a rapid, fluid, involved kind 

of behavior that bears no apparent similarity to the slow, detached reasoning of the 

problem-solving process” (Dreyfus & Dreyfus, 1988, p. 27).
6
  De Groot (1986) argues 

that intuition is more than pattern recognition, emphasising its constructive and 

productive aspects.  That is, intuition does not only reproduce previous solutions, but 

creatively combines elements to produce new solutions.  

Holding (1985) provides additional criticisms, more aimed at Simon’s general 

theory of expertise than at his theory of intuition in particular.  Two of these criticisms 

are especially important theoretically: encoding into long-term memory (LTM) is 

faster than proposed by the chunking theory, and the size of chunks is too small to 

reflect conceptual knowledge and provide useful information in problem-solving 

situations.  A third criticism—that pattern recognition is not a sufficient explanation 

of skill, because it applies only to the initial problem situation and does not link to 

                                                 
6 But note that this criticism appears to ignore Simon’s work on chunking and pattern recognition (e.g., 

Chase & Simon, 1973). 
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look-ahead analysis—is much weaker, as Chase and Simon (1973) made it clear that 

pattern recognition occurs not only in the initial problem situation, but also in the 

problem states generated during look-ahead search. 

To these criticisms, we can add that, while Simon’s computer models were 

remarkable and insightful in their own right, they either failed to reach high levels of 

expertise or did so only with considerable hand-coded knowledge but no real learning.  

Finally, the links between intuition and emotions are not spelled out in any detail.  

A New Theory of Intuition 

Our discussion of Dreyfus’s and Simon’s theories has highlighted the features 

that a successful theory of expert intuition should have: it should explain the rapid 

onset of intuition and its links with emotion, provide mechanisms for learning, have 

processes showing how perception is linked to action, and explain how experts 

capture the entirety of a situation.  In this section, we develop such a theory, taking as 

basis the template theory of memory developed by Gobet and Simon (Gobet & 

Simon, 1996c, 2000).  

The template theory was developed to correct a number of weaknesses of the 

chunking theory (Chase & Simon, 1973), of which it is a modification and extension.  

These include the fact that players use larger chunks that those proposed by the 

chunking theory, the failure of Simon and Gilmartin’s (1973) computer simulations of 

memory recall to reach master level and the fact that the chunks learnt were pre-

selected by the programmers, and weaknesses in the way PERCEIVER (Simon & 

Barenfeld, 1969) accounted for chess players’ eye movements.  Aspects of the 

template theory are implemented in a computer program known as CHREST (Chunk 

Hierarchy and REtrieval STructures) (Gobet & Simon, 2000; Gobet & Waters, 2003), 

and the fact that CHREST simulates not only the phenomena tackled by Simon and 
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Gilmartin’s (1973) and Simon and Barenfeld (1973), but also a substantial number of 

new phenomena (see section “Simulations with the CHREST model” below) clearly 

shows that the weaknesses of the earlier programs have indeed been corrected in the 

new theory without inadvertently creating new problems.  

Overview of the Theory 

We carefully distinguish between the features of the template theory that have 

been implemented in CHREST and in other programs,
7
 those that are part of the 

theory but have not been implemented yet, and those that we have added to the theory 

to account for the link between intuition and emotions. 

The CHREST model. 

Components.  Like the original chunking theory, template theory proposes that 

expertise is made possible by the acquisition of a large number of chunks, some of 

which are linked to possible actions.  A key addition of template theory is the 

assumption that some patterns that recur often in the environment give rise to chunks 

that develop into more complex data structures called templates.  Templates are 

similar to schemata (Bartlett, 1932; Minsky, 1975) in that they possess both a core, 

made of stable information, and slots, made of variable information.  Unlike previous 

schema theories, template theory proposes detailed mechanisms as to how 

templates—both their core and their slots—are acquired (see below).  

In CHREST, chunks and templates (which are a special case of chunks) are 

indexed by a discrimination network (Simon & Gilmartin, 1973), which consists of a 

network of sequential tests enabling the access to information in LTM.
8
  While 

                                                 
7
 The code of these programs (in Lisp) is available from the first author. 

8
 Neurally, it has been proposed that chunks and templates are implemented as cell assemblies (Chassy 

& Gobet, 2005). 



  16 

learning is assumed to be slow (e.g., 10 s to create a new chunk), access of chunks by 

sorting the discrimination network is assumed to lead to fast recognition of objects (a 

few hundred milliseconds). 

Chunks may be connected by similarity links if they have enough elements in 

common.  In addition to the discrimination net, the model has three components: an 

LTM, a visual STM, and a “mind’s eye.” LTM contains chunks, productions and 

schemata.  Visual STM has a capacity of three chunks.  It is a queue, meaning that, 

when a new chunk enters STM where it is already full, the oldest chunk “pops out” 

from STM.  The exception is that the largest chunk is kept in STM until a larger 

chunk is met.  Templates, which have slots in which variable information can be 

stored, are a special type of chunk.  Finally, the mind’s eye stores visuo-spatial 

information for a short time; it is the place where, for example, the trajectories of 

pieces are computed.  The main mechanisms used by CHREST deal with eye 

fixations, STM management, LTM learning, and information update in the mind’s 

eye.  In general, it is assumed that humans are conscious of the information held in 

STM and in the mind’s eye, but not of the information and processes used during 

learning and recognition. 

While CHREST has been applied to other domains (Gobet et al., 2001), we 

focus on chess in the explanations that follow, not only because this domain provides 

some the best evidence for intuition (see above), but also because both Dreyfus and 

Simon heavily refer to chess in their theory of intuition. 

-------------------------------------------------------------------------------------- 

Insert Fig. 2 about here 

-------------------------------------------------------------------------------------- 
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Fig. 2 illustrates the main components of the theory, with chess as the task 

environment.  A simulated eye scans the board, and the information within the visual 

field is input to the discrimination network, which leads to the access of a certain node 

in LTM.  A pointer to this node is placed in short-term memory, and the information 

is also unpacked in pictorial short-term memory (the “mind’s eye”).
9
 This sequence of 

operations is assumed to be repeated when players look at a position. 

Eye fixations.  CHREST’s attention is directed by eye movements.  The 

program attempts to use information provided by the largest chunk met at any given 

point to fixate a location.  In chess, this operation is performed by following a branch 

that is stored below the chunk and fixating the square associated with this branch.  As 

an example, let us assume that this is the chunk depicted in grey in Fig. 3.  CHREST 

would take the link leading to the most recently created node (in our example, “white 

pawn on f2”), and fixate on the square indicated by this link, in this case the square f2.  

If a white pawn is indeed located on f2, then a larger chunk has been found, and thus 

more information retrieved from LTM.  Although this guess, informed by experience, 

may sometimes be incorrect, it tends to produce eye movements that are similar to 

those of experts.  For example, it is this mechanism that leads the program to fixate on 

semantically-important squares in a proportion similar to experts’ (see De Groot & 

Gobet, 1996, for details).   

If it is not possible to use this eye-movement mechanism based on knowledge 

(for example, because there is no branch in the discrimination net below the largest 

                                                 
9
 Neurally, such pointers might be implemented by short-term memory neurons in the prefrontal cortex 

firing in synchrony with neurons in posterior areas of the brain; the limited capacity of STM—that is, 

the limited number of pointers that can be held in STM—is then a function of the number of distinct 

frequencies available (Ruchkin, Grafman, Cameron, & Berndt, 2003). 
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chunk), the program draws on alternative mechanisms such as fixation on a 

perceptually salient object or on a region of the display that has not been visited yet 

(see De Groot & Gobet, 1996).  Whereas novices’ eye movements are mainly directed 

by such heuristics, most experts’ eye movements use the first mechanism and are 

directed by the structure of the discrimination network.  An interesting feature of the 

theory is thus that it includes mechanisms detailing how perception determines what 

will be learned, on the one hand, and how learned knowledge determines what will be 

perceived, on the other.   

Learning chunks and creating templates.  After each new fixation, the model 

filters the information in the visual field through the discrimination net.  In the chess 

simulations, the field of vision is limited to two squares away from the fixation point 

in each direction, so that a maximum of 25 squares can be perceived at any time (see 

De Groot & Gobet, 1996, for empirical data supporting this choice).  An external 

pattern is encoded as a list of the pieces on their squares; for example, in Fig. 2, the 

pattern on the right of the position would be encoded as: (f2, g2, h2, g1, 

e2, f4).  

Two learning mechanisms are used, familiarisation and discrimination.  When 

a new (external) object is perceived, it is sorted through the discrimination net.  When 

a node is reached, the object is compared with the information stored with this node, 

which is known as the “image.” If the image under-represents the object, new features 

are added to the image (familiarisation).  If there is a mismatch between the 

information in the image and the object, a new node is created below the current node 

by recursively adding to it some of the mismatching information (discrimination).  

CHREST also creates “similarity links” between nodes and templates.  Each chunk 

arriving into STM is compared with the largest chunk already stored there.  When the 
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two chunks are sufficiently similar, a similarity link is created between them.  During 

the recognition phase, a similarity link can be used to move from the node reached by 

sorting to another similar node.  

Templates are chunks that possess at least one slot where variable information 

can be stored.  Template slots are created when enough nodes share related 

information below a node that is sufficiently large.
10

 Fig. 3 illustrates this mechanism 

for the domain of chess.  There are four nodes below the node depicted in grey; the 

information “white pawn” occurs three times, and the information “square e4” occurs 

twice.  In this simplified example, we assume that the minimum number of 

occurrences is two, and thus slots are created.   

-------------------------------------------------------------------------------------- 

Insert Fig. 3 about here 

-------------------------------------------------------------------------------------- 

 Time parameters.   Each process has a time cost, which enables precise and 

quantitative simulations to be carried out.  For example, the discrimination process, 

whereby a new node (and a branch leading to it) is added in the discrimination net, 

takes 8 s, and the familiarisation process, whereby information is added to an extant 

chunk, takes 2 s.  Filling a template slot is faster and takes 250 msec.  A full 

discussion of the time parameters in CHREST is provided by De Groot and Gobet 

(1996) and Gobet and Simon (2000).  

Learning phase.  Using the mechanisms just described, CHREST learns 

chunks and templates by scanning a large database of positions taken from master 

                                                 
10

 In the chess simulations, the requirement is that the target node contains at least five elements and 

that at least three nodes below that node share identical information (either a square, a type of piece, or 

a chunk) (Gobet & Simon, 2000). 
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games, moving its simulated eye around the board, and sorting the pieces within its 

visual field through the discrimination network.  Thus, learning is implicit, 

incremental and unsupervised, and it essentially captures the regularities of the 

environment without producing a statistical representation. 

Simulation of memory experiments.  During the presentation of a position, 

CHREST fixates on squares using the eye movement mechanisms described above.  

Each fixation defines a visual field (see above), and the pieces belonging to this visual 

field are sorted through the discrimination net.  If a chunk (a pattern already familiar 

to the discrimination net) is found, a pointer to it is placed in STM, or, when possible, 

the chunk is used to fill one slot of a template.  If the presentation time is long 

enough, the program learns using the mechanisms described above.  

During the reconstruction of a position, CHREST first draws on the 

information stored in STM, and then information stored in LTM.  Pieces are placed 

sequentially.  If a piece has already been replaced on the board from a previous 

chunk, it is ignored.  Conflicts can occasionally occur: for example, a square 

containing several pieces.  Such conflicts are resolved sequentially, making use of the 

frequency with which each placement is suggested.  It is therefore possible for the 

program to “change its mind” about the location of a piece or the contents of a square 

(see example in the appendix), and so do human players.  

Extensions of CHREST for problem solving. 

The idea that the recognition of patterns of chess piece allows for the 

accessing of information about good moves is embodied in CHUMP (CHUnks and 

Moves Patterns; Gobet & Jansen, 1994), a variant of CHREST.  CHUMP stores two 

types of knowledge in two different but linked discrimination nets. The first relates to 

patterns of pieces (the type of chunks learned by CHREST).  The second relates to 
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moves and sequences of moves. During learning, where positions from master games 

are presented, patterns of pieces are associated with moves.  During the performance 

phase, patterns of pieces act as conditions, and moves as actions.  When the 

recognized piece patterns suggest different moves, the program resolves the conflict 

by using a function that combines the number of chunks voting for a given move and 

the number of times the move has been seen with a given pattern during learning.  

The program could play chess by pure pattern recognition, but its lack of look-ahead 

abilities meant that its level of play was low.  Another limitation of CHUMP is that it 

learns only a small part of the knowledge that chess experts presumably encode as 

productions.  The literature on chess skill (e.g., Gobet, de Voogt, & Retschitzki, 2004) 

suggests that chess experts have other productions where the conditions consist of 

nodes containing information such as positional concepts, tactical features, etc., while 

the nodes denoting actions encode information such as plans, heuristics, tactical 

tricks, etc.  

 A stochastic model, SEARCH (Gobet, 1997) puts together several 

mechanisms that are proposed by the template theory but not implemented in 

CHREST.  Unlike CHREST, the model does not carry out the detail of the postulated 

processes, but computes key measures, such as depth of search or the number of 

moves searched per minute, as a function of the number of chunks and templates.  

SEARCH explicitly combines pattern recognition, search, and mental imagery.  It also 

includes assumptions about the time needed for cognitive operations, as well as 

assumptions about the “fuzziness” of the images kept in the mind’s eye.  Chunks and 

templates favour deeper search, because they suggest potential moves automatically 

(templates also facilitate long-term memory encoding, maintenance of information in 

the mind’s eye, and more abstract search).  On the other hand, these memory 
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structures favour shorter search, as they provide powerful evaluations that cut down 

the need for search.  The net product, as shown in computer simulations, is that 

average depth of search follows a power function of skill—a prediction consistent 

with the data.   

Adding emotions to the template theory. 

Starting with De Groot (1965), researchers have often emphasized the role of 

emotion for intuition (Bechara, Damasio, Tranel, & Damasio, 1997; Benner, 1984), 

but this is a feature that was not covered in any detail by the chunking theory, 

Dreyfus’s theory, nor the original version of the template theory.  One important 

contribution of the current article is to show how the template theory can be extended 

to include emotions and to speculate on the biological basis of this link.  The available 

evidence supports the view that a link associates simple cognitions and simple 

emotional responses (LeDoux, 1999).  Similarly, there is evidence that complex 

representations, stored in the inferior temporal cortex, are associated to neural nets 

coding for reward (Rolls, 2003), and that such neural networks underlie the automatic 

retrieval of emotional responses (Panksepp, 1998).  Cognitions, whether simple or 

complex, are thus associated with emotional responses.  We propose that, during the 

activities taking place in the practice and study of a domain, chunks and templates 

become associated to emotional responses.  Later, when a chunk or a template is 

retrieved from LTM, it may activate one or several emotional responses.  These 

responses are analysed by an emotional processor that determines what emotional 

response is to be given priority.  The emotional processor not only triggers the body 

changes but also instigates modulation of cognitive processing.  It is worth noting that 

emotional responses, and thus cognitive modulation, are submitted to huge personal 
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variability, known as affective style (Davidson & Irwin, 1999), which may be partly 

explained by different  histories of learning crystallised in LTM structures.   

Similar to what has been shown with emotional conditioning, we propose that 

chunks are associated to emotional responses by hebbian learning. For example, in an 

adversarial game like chess, we can expect typical defensive or attacking chunks to be 

associated with reward or rejection. The purpose of emotional responses would be to 

draw the player’s attention towards possible dangers in the position. This emotional 

bias would contribute to the selection of an appropriate option: a kind of emotionally-

driven decision-orienting heuristic. As expertise develops, the alerting system made 

up of emotions tunes the emotional response for the chunks stored in LTM. In a later 

phase, the emotional system may code the emotional responses in reply to frequently-

encountered combinations of chunks. 

Simulations with the CHREST model 

Simulations with CHREST show that the theory accounts for a wide range of 

data, both quantitatively and qualitatively, on skilled and unskilled chess perception, 

mental imagery, learning and memory, including: eye movements during the 5-s 

presentation of a position; memory for game positions as well as positions randomised 

or modified in various ways; effect of presentation time (from 1 s to 60 s); and how 

novices acquire chunks and templates (De Groot & Gobet, 1996; Gobet, 1993; Gobet 

& Jackson, 2002; Gobet & Simon, 2000; Gobet & Waters, 2003; Waters & Gobet, in 

press).  When considering the simulations, the coverage is broader than that offered 

by the chunking theory, and, unlike the earlier computer model by Simon and 

Gilmartin (1973), CHREST actually carries out the selection of the chunks to learn, 

without the need of human supervision.  This is achieved by simulating eye 

movements even during the learning phase.   
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To illustrate further the way CHREST works, we describe simulations for 

three aspects of the theory that will play an important role in explaining intuition: 

template formation, eye movements, and dynamic character of the simulations. 

Template formation. 

Given the importance of templates in the theory, it is important to show that 

the mechanisms used lead to the formation of templates that are plausible.  Fig. 4 

shows a sample of templates that were created by CHREST.  For each position, the 

core of the template is shown by the pieces placed on the board; the slots for squares 

are indicated by a dot on the square, and the slots for pieces are indicated by the icons 

shown below each position.  Based on the joint judgement of the authors, who are 

both chess masters, these templates correspond reasonably well to typical chess 

positions.  Note that in these examples, templates are not only constructed for typical 

openings, but also for typical offensive or defensive set-ups in middle-game positions 

(e.g., first position in Fig. 4). 

-------------------------------------------------------------------------------------- 

Insert Fig. 4 about here 

-------------------------------------------------------------------------------------- 

 

Eye movements. 

As we have seen in the description of eye fixations, one of CHREST’s 

attractive features is that its domain-specific knowledge is used to direct a large 

proportion of eye movements in the simulation of experts, but without using rules.  

This makes possible to simulate several key aspects of masters’ eye movements in 

chess.  De Groot and Gobet (1996) have shown that the program captures the main 

features of human behaviour: average duration of fixations, low variability in the 
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duration of fixations, proportion of the board covered, and proportion of the 

semantically-important squares covered.  For example, the average fixation duration 

is 272 ms (SD = 97 ms) for CHREST, which is in close agreement with the average 

duration of the human masters (260 ms; SD = 100 ms).  

Fig. 5a shows a typical master pattern of eye movements, for the position 

shown in Fig. 2, and Fig. 5b shows, for the same position, a typical run of CHREST.  

While the exact sequences of eye fixations differ—the sequences of eye movements 

also differ across human players of the same skill level—it is clear that the program 

reproduces the key features of the human pattern.  

-------------------------------------------------------------------------------------- 

Insert Fig. 5 about here 

-------------------------------------------------------------------------------------- 

Time course of constructing the internal representation of a position.  

 A key assumption of CHREST is that there is a close interaction between 

STM and LTM.  This interaction is mainly made possible by three mechanisms.  First, 

when an LTM chunk is recognized, a pointer to this chunk is stored into STM.  

Second, the information in STM may be used for further learning.  Third, when a 

template is held in STM, information can rapidly be added to its slots.  Appendix 1 

illustrates some of these ideas with a detailed run of CHREST in a recall task, where 

the position is presented for five seconds; again, the position depicted in Fig. 2 is 

used.  

Intuition 

We are now in a position to discuss the contribution of the template theory to 

our understanding of intuition.  In this respect, the template theory shares several 

features with the chunking theory, including the assumption that intuition can be 
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largely explained by pattern recognition; that chunks, which are learnt implicitly, 

mediate pattern recognition; that chunks give access to information about what kinds 

of action can be executed; and that there is close interplay between pattern recognition 

and search, with the implication that intuition affects the entire decision process, not 

only its early phase.  In this respect, both theories agree with De Groot’s statement 

(1986, p. 70) that “… intuitive processing is omnipresent in human thinking.” 

There are also important differences between the old and new theory.  As we 

shall see in the next section, these novel features are crucial for explaining key aspects 

of intuition.  These include the presence of similarity links between nodes in the 

discrimination net; more complex data structures (templates) in LTM; and provision 

of mechanisms for incrementally creating templates and automatically linking actions 

to perceptual patterns.  In particular, the presence of templates enables internal 

representations of the environment to be constructed at a higher level of abstraction 

than assumed in the chunking theory, while still explaining the speed at which these 

representations are created.  Another important novel feature of the theory is that it 

closely links attention, perception, learning, and action, in that it proposes 

mechanisms showing how LTM knowledge—in this case, the structure of the 

discrimination net—directs eye movements; this provides a powerful explanation of 

why the key features in a scene are generally perceived rapidly by experts.  Finally, 

the extended theory accounts for how emotions affect cognition during learning and 

performance. 

How the New Theory Addresses the Issues Problematic for Dreyfus’s and 

Simon’s Theories 

 Our discussion of Dreyfus’s and Simon’s theories has led to the identification 

of problems in both of them, problems that relate to deep issues in our understanding 
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of intuition.  If the extended template theory is a valid theory of intuition, it should be 

able to address these issues satisfactorily.  It is therefore important to review these 

questions from the point of view of template theory. 

Holistic vs. Local Processing 

Empirical data suggest that experts process information at various levels of 

granularity, including low-level features and high-level representations.  In particular, 

the recall of game and random chess positions has shed important light on this issue, 

and has direct relevance to the question as to whether intuition is always holistic in 

nature.  CHREST accounts for recall data obtained with brief presentation times, 

simulating data such as the percentage of correctly recalled pieces, the type and 

number of errors, as well as the size and number of chunks.  For example, the 

program replicates how players of different skill levels perform with presentation 

times ranging from 1 to 60 s, and in particular the rapid improvement shown by 

masters with game positions after 1 s (Gobet & Simon, 2000).  As noted by Gobet and 

Simon, this phenomenon is directly affected by the presence of templates, and in 

particular the assumption that encoding in the template slots is rapid once a template 

has been recognized (see also the discussion of the CHREST trace presented in the 

appendix).   

Another important result—directly addressing the issue of local processing—

is that CHREST also accounts for the small skill effect present in the recall of random 

positions.  While this effect is not as large as with game positions, it is reliable and 

has been replicated several times (Gobet & Simon, 1996a, 2000).  The program 

accounts for this effect by recognizing local patterns that show up serendipitously 

even in random positions.  The larger the discrimination net, the higher the probability 

of finding chunks for such patterns, hence the skill effect.  It is unclear how a holistic 
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theory such as Dreyfus’s can account for these data, as they seem to rely on 

processing local aspects of the positions.  In general, the pattern of eye movements 

during the 5-s presentation of a position also supports the hypothesis of a progressive 

and serial construction of an internal representation rather than holistic processing (De 

Groot & Gobet, 1996; Simon & Barenfeld, 1969).  Thus, the evidence seems to point 

to large, “holistic” representations being constructed by local mechanisms. 

From Abstract to Concrete? 

An important prediction of Dreyfus and Dreyfus’s theory (1988) is that, as 

novices become experts, there is a transition from analytic to intuitive, from abstract 

to concrete knowledge.  We have seen earlier that, at least in some domains of 

expertise and in some tasks, the opposite pattern is actually observed.  But this also 

seems to be a simplified picture.  As shown by research in domains such as chess (De 

Groot, 1965), physics (Larkin et al., 1980; Simon & Simon, 1978), and nursing 

(Benner, 1984; Gobet  & Chassy, in press), the pattern of learning is more complex 

and incorporates a progression from analytic to intuitive knowledge but also an 

increased ability to deal with abstractions.  Thus, an expert in physics will both 

recognize concrete patterns rapidly and understand the problems at a higher level of 

abstraction than a novice.  The template theory readily deals with the acquisition of 

different types of knowledge and representation (e.g., diagrammatic and algebraic), as 

has been discussed at length in the context of education (Gobet, 2005; Gobet & 

Wood, 1999).  The theory predicts that perceptual, schematic, and procedural as well 

as concrete and abstract knowledge are acquired in parallel, and thus that these types 

of knowledge should overlap with experts.   
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Analytic and Intuitive Behaviour 

Just like Simon’s theory, our theory has the advantage over Dreyfus’s that the 

links between intuition and slower problem solving behaviour are made explicit.  The 

key idea, already present in Simon’s earlier work and fully developed in Gobet 

(1997), is that problem solving involves cycles interleaving pattern recognition and 

search.  At the beginning, there is an attempt to access a chunk or a template in LTM.  

The more expert the individual, the more likely this will be successful.  If a chunk or a 

template is accessed, the information linked to it is used to carry out further searching 

of the problem, and this cycle continues. In cases where no chunk or template can be 

found, or where no information is associated to them, weaker heuristics are used, 

either domain-specific heuristics or domain-general heuristics such as means-end 

analysis.  When the problem is easy, the correct solution can be retrieved by LTM 

look-up.  

 As noted above, one of the objections filed by Dreyfus and Dreyfus (1988) to 

Simon’s idea of intuition as pattern recognition was that there was no explanation as 

to how a single action (a move, in the case of chess) could be chosen while several 

chunks could be identified.  The situation is actually worse, as a single chunk could 

propose several actions.  This is a standard issue with production systems, technically 

known as conflict resolution, and several solutions have been proposed (Neches, 

Langley, & Klahr, 1987; see also the description of CHUMP above).  

 Due to limits in existing technology in the sixties and seventies, Simon could 

not develop simulation programs able to show that such pattern-recognition 

mechanisms could indeed lead to the selection of a move and that the pattern-action 

pairs could be learned automatically.  As we have seen earlier, the CHUMP program 

(Gobet & Jansen, 1994) is doing just this for the domain of chess.  With respect to 
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intuition, it is of particular interest that this program performed better in situations 

requiring a “positional judgment” than in tactical positions, where look-ahead search 

becomes more critical.  Positional judgment in chess is often presented as a 

paradigmatic example of intuition, not only by Dreyfus and Dreyfus (1988), but also 

in the popular literature on chess (Kotov, 1971). 

The Problem of Small Chunks 

As noted above, two other objections to Simon’s theory are that the chunks 

identified by Chase and Simon (1973) for chess may be too small to elicit moves and 

that they do not capture the whole of the position.  The simulations carried out by 

Gobet and Jansen (1994) show that the first objection does not apply.  As to the 

second objection, there is indeed ample evidence that strong players use high-level 

representations at a more abstract level than the piece locations encoded by chunks 

and that, at least in some cases, they perceive the entire board as a single unit.  This 

evidence includes the analysis of verbal protocols in problem-solving tasks (De Groot, 

1965), recall tasks (De Groot, 1965; De Groot & Gobet, 1996), and classification 

tasks (Freyhoff, Gruber, & Ziegler, 1992).  As noted above, the template theory 

captures this aspect of expert perception in chess.  As a matter of fact, postulating 

structures that could potentially cover the entire problem situation and that have 

schema-like properties was one of the motivations behind the development of the 

template theory.  Although templates capture the “wholeness” of perception taken by 

Dreyfus to be a signature of expertise, their construction is incremental, with larger 

chunks being recursively produced by the conjunction of smaller chunks. 

Conclusion 

 In this paper, we have briefly considered the empirical data supporting the 

concept of intuition, before discussing two influential theories of intuition, that of 
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Hubert Dreyfus and that of Herbert Simon.  We have noted that, ironically, Dreyfus 

uses experts’ intuition as one of the main grounds for which information processing 

psychology (and classical artificial intelligence) is doomed to fail, ignoring empirical 

and theoretical work by Simon and others showing that simple information processing 

mechanisms might explain this phenomenon.  We have also noted that chess has often 

been used to illustrate the putative bankruptcy of rule-based and symbolic thinking.  

By contrast, the empirical evidence we have discussed has illustrated situations where 

these symbolic techniques do better than human intuition. 

 Our critical analysis of the two theories has established that, while both 

address important aspects of expert intuition, both fail to account for the empirical 

data thoroughly.  To address this theoretical gap, we have shown how the template 

theory, a modification of the chunking theory, accounts for most of the empirical data 

linked to intuition.  In addition to pattern recognition—already present in the 

chunking theory—the key mechanisms relate to the interaction between perception, 

attention, and learning, and to the creation and use of templates.  These schema-like 

structures enable information to be encoded both rapidly and at a high level of 

representation.  A further important addition consisted of mechanisms linking chunks 

and templates to emotions.   

 This paper has emphasised the differences between the three theories, but it is 

fair to acknowledge that they share a number of similarities: beyond accepting 

intuition as a genuine phenomenon, all three theories emphasise the essential role of 

perception, the fluid, automatised, and rapid behaviour characteristic of experts’ 

intuition, and the long time required to become an expert.  They also all stress the 

importance of discrimination and association in explaining experts’ behaviour, 
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although the holistic nature of these processes, essential in Dreyfus’s theory, is not 

shared by the other two theories. 

 The differences between the three theories have implications for practice and 

research.  The assumption that experts’ knowledge is composed of chunks, as opposed 

to Dreyfus’ assumption that it is holistic in nature, makes it possible to design 

curricula where the instructional material is decomposed into small bits and where 

computer-based tutors may be used (Anderson, Reder, & Simon, 2000; Gobet & 

Wood, 1999).  Assuming that knowledge also consists of templates leads to 

considerations as to how schematic knowledge can be best acquired and taught 

(Gobet, 2005); for example, variety in the curriculum material is an essential 

requirement for making possible the acquisition of templates.  By contrast, an 

emphasis on the holistic nature of expertise, with the implication that experts’ 

understanding cannot by analysed into components, leads to different types of 

curricula, where engagement in real-life situations is emphasized.  The importance of 

such situation is of course not negated by chunk-based approaches, but seen as 

complementary to other instructional methods.  As for empirical research, the impact 

of the two approaches can readily be seen.  Traditional research on expertise has been 

largely motivated by Chase and Simon’s  (1973) chunking theory, and has been 

characterised by a substantial number of experimental and quantitative observational 

studies, and to a lesser extent computer models (for reviews, see Ericsson, Charness, 

Feltovich, & Hoffman, 2006; Gobet, de Voogt, & Retschitzki, 2004).  Research on 

nursing expertise, perhaps the domain that has been most influenced by Dreyfus’ 

theory, is mostly made up of qualitative observational studies, of which many consist 

of phenomenological analysis (e.g., Benner, 1984; Benner et al., 1996), and 

quantitative approaches are explicitly considered suspicious (Benner, 1984). 
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 In sum, this paper has presented a new theory of intuition, part of which is 

formally expressed as a computer program.  We have argued that it accounts for all 

the phenomena taken as signatures of intuition.  Crucially, the new theory leads to the 

conclusion that, while aspects of expert intuition can be characterized as holistic, the 

mechanisms that lead to them are local. 
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Appendix 

Trace of CHREST in a memory recall task 

Fig. A1 illustrates the information held in CHREST’s STM during the five-

second presentation of a position (see Fig. 2) during a task, using the timing of the eye 

fixations as a clock.  Given the context of this paper, we are mostly interested in what 

happens at the beginning, and thus provide all the STM states during the first two 

seconds.  For each panel in the Fig., the first line shows the time at which the fixation 

was carried out, the following lines the state of STM (where #C means “chunk” and 

#T means “template”), and the diagram shows the pieces that would be replaced on 

the board if CHREST had to recall the position at this point.  The pieces or squares in 

grey indicate that this information has been encoded in the slot of a template.  The 

version of CHREST used in this simulation had 100,000 chunks, and is representative 

of a chess master. 

------------------------------------------------------------------------------------- 

Insert Fig. A1 about here 

-------------------------------------------------------------------------------------- 

At 30 ms, no chunk has been encoded in STM.  At 240 ms, the program has 

recognized a medium-sized chunk, which happens to be a template.  It is a fairly 

common black castling constellation.  However, at this point, CHREST did not have 

the opportunity to encode anything in the template slots and used only the core of the 

template.  Note that the black bishop, the black knight, and one of the black pawns are 

incorrectly located.  This is due to the fact that CHREST enables some fuzziness in 

the way patterns are matched, the information used to sort to a given node not being 
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necessarily identical to the information stored at this node.
11

  At 490 ms, a second 

chunk has been recognized, and a template slot has also been filled (black bishop on 

c6). 

 At 750 ms, a second piece has been encoded in the template slots, and a third 

chunk has been recognized.  This new chunk does not add new information, as the 

three pieces were already encoded by the main template.  This is typical of the way 

CHREST works, where there is always the possibility that the information held in 

different chunks overlaps.  At 850 ms and 960 ms, no new information has been 

added.  At 1060 ms, the only progress is that the white pawn on c5 has been encoded 

in one of the template slots.  This illustrates that the program has a fair amount of 

redundancy, as this pawn is now encoded both in a chunk and in a template. 

 At 1350 ms, a larger chunk on the king’s side has been recognized, which 

correctly encodes the location of the black pawn on h6.  There is now uncertainty as 

to whether CHREST would now replace the pawn on h7 or h6, and this type of 

uncertainty with lateral pawns is typical of human behaviour (De Groot & Gobet, 

1996; Jongman, 1968).  Given that visual STM is limited to three items, this new 

chunk has dislodged the small chunk on the black queen’s side.  The black queen has 

now been encoded as well in the template.  At 1490 ms, the white knight on e5 has 

been encoded in the template, and at 1610 ms, the same happens to the black knight 

on f4.  It is interesting to note that, just like most of the masters studied by de Groot 

                                                 
11

 Technically, this is due to the way the mechanisms of discrimination (construction of the network) 

and familiarisation (building of the information held at a given node) work together. The possible 

discrepancy between the information used to reach a node and the information stored at this node offers 

an important means of simulating errors in chess (De Groot & Gobet, 1996; Gobet & Simon, 2000) and 

in verbal learning (Feigenbaum & Simon, 1984). 
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and Gobet (1996), CHREST memorised the four perceptually salient pieces in the 

centre of the board (Pc5, Nd6, Ne5, and nf4). 

At 1740 ms and 1850 ms, CHREST has encoded that the squares e8 and d8 are 

empty.  This is not particularly useful for a recall task, but this is clearly something 

that chess masters occasionally do (De Groot & Gobet, 1996), as empty squares are 

important strategically (Holding, 1985; Reynolds, 1982; Tikhomirov & 

Poznyanskaya, 1966).  At 2100 ms, the program shows the same state of affairs. 

 We can now observe in a fast forward mode what happens during the last three 

seconds.  At 3110 ms, the program has recognized a medium-sized chunk on the 

white king’s side, which also happens to be a template.  The template has enabled the 

encoding of three white pieces.  The situation remains unchanged at 4000 ms and at 

4840 ms.  Thus, at the end of the presentation of the position, the program would 

replace 21 pieces correctly out of a total of 24 pieces.  Three pieces are missing (all on 

the “a” column), and three placements would be counted as errors of commission 

(black bishop on e7, black knight on f6, and black pawn on h7).  (While hesitating 

about the placement of a pawn or a piece, such as the black pawn h7/h6 in our 

example, humans either go for one location or replace both of them.)  This amount of 

recall is fairly consistent with what has been observed in the literature with strong 

masters (Gobet et al., 2004). 

 What this example illustrates is that CHREST incrementally constructs a 

representation of the position in memory, and that the access to templates seriously 

boosts its memory.  In particular, the recall performance would be fairly low without 

the possibility of encoding information in templates (that is, without the pieces on 

greyed squares).  This is consistent with what has been observed with human masters 
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when the presentation time ranges from one second to 60 seconds (Gobet & Simon, 

2000).   

 The astute reader may object that it is unclear how the program would see the 

checkmate threat (Qg5xg2; the queen is protected by the black bishop on c6 and the 

black knight on f4) within five seconds, given that the information on the white king’s 

side has been perceived fairly late, and no single chunk encodes both the black queen 

and the white king.  Interestingly, out of the four human masters whose behaviour is 

discussed in De Groot and Gobet (1996) with respect to this position, only one saw 

this threat.  Indeed, whereas masters reliably see threats when the attacking and 

attacked pieces are either close together or when one of the pieces is perceptually 

salient, as noted by Jongman (1968), the data of De Groot and Gobet (1996) clearly 

show that even “obvious” threats are often overlooked when these characteristics are 

lacking.  Thus, the detection of threats, which of course plays a key role in 

understanding the meaning of a position, does not always operate automatically.  In 

this respect, the trace produced by CHREST is consistent with the empirical data. 
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Figure captions 

Fig. 1. Illustration of how perceptual chunks can implement the notion of a 

production.  Patterns on the board (the circled groups of pieces) might elicit 

perceptual chunks in long-term memory, the condition part of the production.   

Some of these chunks (in this case the one elicited by the pattern on the lower 

right hand side of the board) might suggest possible moves, the action part of 

the production (here, the white bishop retreating to the square “f1” to parry the 

checkmate threat on “g2”).  Productions operate unconsciously and intuitively 

and, with strong players, may lead to actions that are readily solutions to a 

problem. 

Fig. 2. Overview of the key perceptual and memory mechanisms embodied in the 

template theory.  A simulated eye selects patterns on the external board.  

These patterns are sorted through a discrimination net, which enables access to 

a chunk (node) in long-term memory.  Chunks give access to diverse types of 

information in addition to the location of pieces (depicted in the Fig.), 

including, in the case of chess, what kinds of move should be played or what 

plan should be followed (additional information is not shown in the Fig.).  

Information accessed in long-term memory is then placed in short-term 

memory, which consists of a queue of chunks and a pictorial short-term 

memory, where visuo-spatial information can be unpacked. 

Fig. 3.  Illustration of the mechanism of template formation (Panel a, discrimination 

net; Panel b, representation of the piece location on the chessboard).  If a given 

type of information recurs often below a node in the discrimination network, a 

slot can be created at this node, specifying both the variable and the values 

that this variable can have.  For example, given that a white pawn is used in 
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three branches below the node depicted in grey, a slot can be created for 

“white pawn”, and the possible values for the squares on which the pawn can 

be located are “f2,” “e4,” and “d4.”  Similarly, a slot can be created for the 

square “e4,” which can have the value “black bishop” and “white pawn.” 

Chunks possessing slots are called templates. 

Fig. 4.  Sample of templates created by CHREST for chess. 

Fig. 5.  Pattern of eye movements for a chess master (top) and for a CHREST 

simulation (bottom).  The semantically important squares are displayed in 

grey. (After De Groot & Gobet, 1996.  Reproduced with permission of the 

copyright holder.) 

Fig. A1. The time course dynamics of STM during the 5-s viewing of a chess 

position, according to CHREST. 
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