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Abstract: With the increasing number of electric vehicles (EVs), their uncoordinated charging poses 
a great challenge to the safe operation of the power grid. In addition, traditional individual-EV 
scheduling models may be difficult to solve due to the increasing number of constraints. Therefore, 
this paper proposes a cluster-based EV scheduling model. Firstly, electric vehicle clusters (EVCs) 
are formed based on the charging and discharging preferences of EV users and the expected time 
for EVs to leave. Secondly, the EVC energy and power boundary aggregation method based on the 
Minkowski addition algorithm is proposed. Finally, for the sake of reducing user charging cost and 
distribution network energy loss, and smoothing the daily load curve, an EVC scheduling model 
for EV participation in grid auxiliary services is proposed. The optimization model includes the 
reactive-power compensation of EV charging piles. The simulation results show that the proposed 
EVC scheduling model can greatly reduce the solution time compared to traditional individual-EV 
scheduling model. The model has high potential to be applied to large-scale EV scheduling. The 
reactive-power compensation provided by EV charging piles improves the voltage quality of the 
grid and enables more EVs to be connected to the grid. 

Keywords: electric vehicle; cluster optimization model; reactive-power compensation; distribution 
network; electric vehicle aggregator 
 

1. Introduction 
Global warming caused by greenhouse gas emissions has become a widespread chal-

lenge to the sustainability of the Earth. Replacing fossil fuel vehicles with electric vehicles 
(EVs) offers a promising way to reduce greenhouse gas emissions and dependence on tra-
ditional fossil energy sources [1]. The number of EVs is expected to reach 245 million glob-
ally by 2030 [2]. However, despite the environmental benefits of EVs, the uncoordinated 
charging of large numbers of EVs can jeopardize the reliability and economics of the power 
system. This can lead to increased energy losses, voltage reduction, peak-to-valley differen-
tials, and transformer overloads. Studies have shown that when the penetration of uncoor-
dinated charging EVs in the grid reaches 50%, the maximum voltage deviation in the distri-
bution network may increase by more than 30% and the power losses in the transmission 
lines increase by 25% [3]. Therefore, it is crucial to explore how to minimize the negative 
impacts of EVs on the distribution system and how to further utilize EV flexibility to provide 
ancillary services to the grid. 
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To address the problem of the negative impact of the uncoordinated charging of large-
scale EVs on the power distribution system, researchers have conducted in-depth studies. 
For example, study [4] proposed an optimal EV charging strategy for reducing network 
transmission loss while taking seasonal factors into consideration. Study [5] proposed an 
optimal-power flow-based EV charging and discharging strategy to improve the economic 
and technical performance of power grid operation by considering the constraints of power 
grid operation and battery function. Study [6] proposed a multi-objective EV charging and 
discharging scheduling strategy based on a local search and competitive learning particle 
swarm optimization algorithm. In the context of electricity market trading, study [7] pro-
posed a stochastic-based optimal charging strategy for plug-in EV aggregators under a dis-
tribution system operator (DSO) incentive and regulatory policies. Study [8] proposed a 
large-scale EV grid scheduling model and solution algorithm based on improved second-
order cone programming. Study [9] proposed two smart charging strategies whose objective 
functions consider the minimization of total daily cost and the minimization of the peak-to-
average ratio, and investigated the impact of the two smart strategies on the charging of 
plug-in EVs from both economic and technological perspectives. While the aforementioned 
studies mainly focus on mitigating the impact of large-scale charging on the grid through 
active-power management, reactive-power management is equally crucial for the safe and 
economic operation of the distribution network [10]. 

Traditional distribution network reactive-power compensation devices mainly include 
capacitors and static reactive-power compensation devices, but the investment cost is high. 
With the development of charging devices, these devices are able to achieve active- and re-
active-power management according to the demand of EVs and do not affect battery life 
when generating or consuming reactive power [11–13]. EV reactive-power compensation 
based on V2G technology not only reduces the investment cost of reactive-power compen-
sation equipment, but also improves the safety and economy of distribution network oper-
ation [14]. Therefore, in order to further reduce the impact of large-scale charging on the 
grid, some researchers have begun to study active–reactive-power coupling management 
strategies for EVs. Study [15] proposed a model for conjugate active- and reactive-power 
management through EVs in distribution networks. Study [16] developed a hierarchical co-
ordination framework for optimizing active- and reactive-power scheduling for EVs. The 
coordination framework consists of two optimization models; the first model is a compre-
hensive optimal power flow model at the distribution grid level, and the second model is an 
EV scheduling model that provides reactive-power support to the grid. The simulation re-
sults show the benefits of EV reactive-power scheduling for grid operation and EV owners, 
e.g., it helps to address under-voltage due to active-power consumption during EV charg-
ing. Study [17] proposes a double-layered smart energy management approach for EVs to 
manage active- and reactive-power flows to/from PEVs at the node and system levels of the 
distribution system. Study [18] proposed a two-stage optimization method for energy loss 
minimization in microgrids based on a smart power management scheme for EVs. Study 
[19] presented a two-stage optimization approach for the active- and reactive-power control 
of EVs to meet both the grid and EV users’ requirements. Although [15–19] have conducted 
in-depth studies on the modeling of EV participation in grid reactive-power optimization, 
this method does not take into account the charging preferences of the users, nor does it 
provide financial compensation to the EV users who participate in reactive-power compen-
sation. In fact, EV users, as highly free individuals, can choose charging modes suitable for 
them according to their needs, such as fast charging, participation in charging optimization 
only, and participation in charging and discharging optimization. Furthermore, the ap-
proaches mentioned in studies [4–9] and study [15] are based on centralized control. Alt-
hough centralized control is suitable for considering power flow constraints in the distribu-
tion network, as the number of EVs increases, the optimization model will face “dimension-
ality catastrophe”, and solving the optimization problem will be very time-consuming [20]. 
At the same time, direct control of the charging and discharging strategy of each EV by the 
distribution system operator will put a huge burden on the communication network. To 
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overcome these problems, distributed optimization models have been developed in studies 
[16–19]. Although distributed optimization models can handle large-scale EV optimization 
problems, the power balance constraints of the load buses and the power flow constraints 
of the distribution network lines are usually ignored when actively managing EVs, which 
may reduce the possibility of safe and economic grid operation. 

In order to solve the problem of the dramatic increase in variables and constraints 
brought by the large-scale EV issue to the optimal scheduling of power grids, the ideas of 
hierarchical optimization and cluster optimization can be adopted. The electric vehicle clus-
ter (EVC) scheduling model is an equivalent aggregation of individual EVs within the clus-
ter, i.e., any charging strategy that satisfies the cluster model can always find a distribution 
strategy that satisfies the individual constraints of EVs. Using the EVC scheduling model 
instead of the individual-EV scheduling model to carry out grid optimization scheduling 
can ignore individual device characteristics and focus on the EVC characteristics, thus re-
ducing the computational difficulty. Moreover, the impact of individual-EV charging and 
discharging power on the grid is extremely weak, aggregating a certain number of EVs to 
form clusters can have a good effect, and cluster charging demand will show regularity, 
which can reduce the spatial and temporal uncertainty of individual EVs. Study [21] pro-
posed a collaborative optimization model of generators, EVCs, and wind power, but the 
energy constraints of EVCs are ignored. Studies [22,23] developed an electricity pricing 
method to indirectly schedule the charging and discharging decision process of EVs, in 
which the EVC was modeled using the concept of a virtual battery. Study [24] designed a 
hierarchical multiagent system to schedule the active and reactive power of EVCs. Although 
EVC models are used in the EV scheduling models proposed in the above references to re-
duce the computational and communication problems in large-scale EV scheduling, they do 
not solve the EV charging and discharging power aggregation and allocation problems. 
They do not consider the charging preferences of users when dividing clusters either. In 
addition, these EVC scheduling models do not consider the reactive-power compensation 
of charging piles. 

Based on the above analysis, this paper concentrates on the issue of EVC scheduling 
models for distribution systems while considering reactive-power compensation at charg-
ing piles. The main contributions of this paper are summarized as follows: 
(1) This paper proposes a double-layer scheduling framework for DSO and electric vehicle 

aggregators (EVAs) to systematically manage the charging and discharging power of 
EVs. 

(2) A method for classifying EVCs, a model for calculating energy and power boundaries, 
and a model for allocating EVC charging and discharging power are presented. Specif-
ically, the EVC division method takes into account the charging preferences of EV us-
ers. The energy and power boundary aggregation method utilizes the Minkowski ad-
dition algorithm, while the allocation method is based on a consensus algorithm. 

(3) An EVC scheduling model is proposed for the participation of EVs in the auxiliary ser-
vices of the grid, to reduce the user charging cost and distribution network energy loss, 
and to smooth the daily load profile. This optimization model takes into account the 
power flow constraints of the distribution network and the reactive-power compensa-
tion of EV charging piles. 
The organization of the remainder of this paper is as follows: Section 2 provides the 

proposed double-layer scheduling framework for a DSO and EVAs. Section 3 introduces the 
proposed energy and power aggregation and distribution methods for EVCs. Section 4 pre-
sents the formulation of the proposed EVC scheduling model. Section 5 gives the simulation 
results and discussion. The conclusions and future studies are discussed in Section 6. 

2. Double-Layer Scheduling Framework for DSO and EVAs 
Figure 1 shows the proposed double-layer scheduling framework for a DSO and 

EVAs to manage the charging and discharging EVs. The first layer is controlled by the 
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DSO, which optimizes the charging and discharging of the EVCs. The second layer is con-
trolled by EVAs, which schedule individual EVs. First, the EVAs obtain the necessary in-
formation from the EV users. Then, they divide the EVs into different EVCs. The EVAs 
calculate the energy and power boundaries of each EVC, i.e., the operation constraints of 
each EVC, using the energy and power aggregation model provided by the paper. They 
report these boundaries to the DSO. Next, the EVAs receive the charging and discharging 
power signals of the EVCs from the DSO. They allocate the power of the each EVC to its 
EVs using the power allocation method. Finally, the EVAs send the charging and discharg-
ing schedules to the EV users. The EVs then execute the charging and discharging plans 
as instructed by the EVAs. The proposed scheduling framework requires robust commu-
nication infrastructure. This is crucial because continuous interaction is needed between 
the DSO, EVA, and EV users. 

 
Figure 1. Double-layer scheduling framework for DSO and EVAs for orderly scheduling of EVs. 

The effectiveness of this scheduling framework relies on robust methods for energy 
and power aggregation and distribution for EVCs. With the double-layer scheduling 
framework established, the subsequent sections delve into the specific methodologies em-
ployed for the effective management of EV charging and discharging. 

3. Energy and Power Aggregation and Distribution Methods for EVCs 
This section introduces the proposed method for classifying EVCs. It also presents 

the model for calculating energy and power boundaries, as well as the model for allocating 
the charging and discharging power of EVCs. EVAs can use these methods and models to 
manage EVs. 

3.1. EVC Division Method 
Not all EV users are willing to participate in grid dispatch. Some only want to join in 

with charging power regulation, while others will participate in V2G. Therefore, the pro-
posed EVC division method considers the charging preferences of EV users. Based on 
their willingness to participate, EVs can be classified into three categories. 

Type I EVs (Non-participatory in Grid Dispatch): These EVs do not participate in dis-
patch. They start charging immediately upon connecting to the charging piles at their 
maximum rated power until either they disconnect from the station or the vehicle’s battery 
reaches the set target value. 

Type II EVs (Participatory in Grid Dispatch but No Discharge): These EVs participate 
in dispatch for charging but are not allowed to discharge power back to the grid. 
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Type III EVs (Participatory in Grid Dispatch and Permitted Discharge): These EVs 
participate in dispatch for both charging and discharging power back to the grid. 

Based on the above charging preference classification criteria, EVA firstly classifies 
EVs under its jurisdiction into three major clusters. Beyond charging preferences, the tim-
ing of EV usage also plays a crucial role in EVC scheduling. For example, commuter EVs 
tend to have a more concentrated off-grid time, typically occurring between 6:00 a.m. and 
10:00 a.m. Therefore, this paper utilizes the off-grid time of EVs as a secondary criterion 
to group them into clusters. For instance, in the case of Type II EVs, if their off-grid time 
falls predominantly between 6:00 a.m. and 10:00 a.m., the EVs can be further categorized 
into five EVCs based on their off-grid time. Essentially, EVs with similar charging prefer-
ences and off-grid time are consolidated into the same EVC. This clustering approach re-
duces the number of variables in the scheduling optimization model, as it depends solely 
on the number of EVCs, independent of the number of EVs. As a result, this streamlining 
significantly reduces computation time. 

3.2. EVC Energy and Power Boundary Aggregation Method 
As stated in Section 2, once the EVs are divided into clusters, the EVA has to calculate 

the energy and power boundaries for each EVC, i.e., the operating limits for each EVC. 
This subsection describes the model for calculating the energy and power boundaries. 
First, the EVA needs to collect the charging and discharging power limit and capacity as 
well as trip information for each EV in the cluster. Therefore, for any EV, the following 
information is assumed to be reported to its EVA: 

arr leave ini exp min

max cap max chmax dismax

, , , , ,

, , , ,
n n n n n

n
n n n n n

t t SOC SOC SOC

SOC E S P P

 
Ω =  

  
 (1) 

where arr
nt   and leave

nt   are the moments when EV n   arrives at and leaves the charging 
station; ini

nSOC  is the initial SOC of the battery for EV n ; exp
nSOC  is the expected SOC 

when the EV disconnects the charging piles; min
nSOC  and max

nSOC  are the minimum and 
maximum SOC allowed for the battery; cap

nE  is the battery capacity; max
nS  is the maxi-

mum apparent power of the charger; and chmax
nP  and dismax

nP  are the maximum charging 
and discharging power of the charger. 

Using the aforementioned information and the traditional individual-EV charging 
and discharging power scheduling model, we can derive the charging and discharging 
power boundaries as well as energy boundaries of the EVC at any given moment. We first 
introduce a 0–1 variable that indicates whether or not EV n  is in the charging station at 
time t . An n,tX  value equal to 1 means that EV n  is in the charging station and can be 
scheduled. Therefore, the value of ,n tX  can be determined based on the arrival and de-
parture times of the EVs. 

arr leave
,

arr leave
,

1,    [ , ]

0,   [ , ]
n t n n

n t n n

X t t t

X t t t

 = ∈


= ∉
 (2) 

,n tX  is combined with the charging and discharging power limit of a single EV given 
in Equation (1), along with the energy boundaries for Type II EVs and Type III EVs, as 
shown in Figures 2 and 3. In these two figures, the blue curve shows the highest possible 
EV battery energy change. This happens when the battery starts charging at full power as 
soon as it connects to the grid, reaching the maximum allowed energy level at a certain 
point. The yellow curve shows how the EV battery energy changes during the scheduled 
period. In Figure 2, the green curve represents the scenario where the EV does not charge 
immediately upon connecting to the grid. Instead, it charges at full power just before dis-
connection to meet the user's expected energy level. In Figure 3, the green curve shows 
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the lowest possible EV battery energy change. This happens when the battery starts dis-
charging at full power immediately after connecting to the grid. We use the Minkowski 
addition algorithm to determine the charging and discharging power and energy bound-
aries for the EVC, as depicted in Equation (3). 

EVC

EVC

EVC
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EVC,max cap max
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In the above equation, kc  is the index of the EVC. Since there are two classification 
criteria for ECVs, we use two subscripts kc  for an EVC. EVC kc  is the thc  EVC con-
sisting of Type II EVs (k = 2) or Type III EVs (k = 3). SC  is the set of EVCs. EVC

kcS  is the set 
of EVs inside EVC kc . EVC,chmax

,kc tP  and EVC,chmax
,kc tP  are the maximum charging and discharg-

ing power of EVC kc  at moment t . EVC,max
,kc tE  and EVC,min

,kc tE  are the maximum and mini-
mum energy of the virtual batteries of EVC kc  at moment t . Since the arrival time of 
each EV in an EVC is different, the charging and discharging power and energy bounda-
ries at each moment of the EVC are different. EVC,chmax

,kc tE  denotes the maximum energy 
available to EVC kc  at time t . When the EVs arrive, they start charging at maximum 
power up to moment t . EVC,chmin

,kc tE  represents the minimum energy value that EVC kc  
needs to maintain in time t , so that when the EVs leave the charging station, the battery 
has the amount of energy that the user expects. EVC,dismin

,kc tE  denotes the minimum energy 
of EVC kc  consisting of Type III EVs at moment t . When the EVs arrive, they start dis-
charging at maximum power up to moment t . EVC,max

,kc tS  is the apparent power capacity 
of the virtual charger for EVC kc  at moment t . 

Since the arrival time of each EV in the EVC is not the same, it is possible for an EV 
to arrive the charging pile at every moment, which will result in a change in the energy of 
the virtual battery of the EVC; we need to compute this change in energy in order to use 
it for the energy calculation formulae in the EVC scheduling model. 

EVC

cpt int
, , , -1EVC

, exp
, -1 , -1 ,

( ( )
  

( ))
                       {2,3}, ,

kc

n n n t n t n t
kc t

n S n n t n t n t

E SOC X X X
E

SOC X X X
k kc SC t ST

∈

−
∆ =

− −

∈ ∈ ∈

∑  (4) 
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By calculating the power and energy boundary parameters as well as the energy 
change parameters of EVCs based on the above formulas, we can establish the EVC oper-
ation constraints applicable to the EVC scheduling model, as shown in Equations (5)–(7). 

 
Figure 2. Energy boundaries of a single Type II EV. 

 
Figure 3. Energy boundaries of a single Type III EV. 

The maximum charging and discharging power constraint of the EVCs is shown in 
Equation (5). EVCs composed of different types of EVs have different maximum charging 
and discharging power constraints. 

EVC,ch EVC,chmax
, ,

EVC,ch EVC,ch EVC,chmax
, , ,

EVC,dis EVC,dis EVC,dismax
, , ,
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0  {3}, ,

0 1  
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kc t kc t kc t

kc t kc t kc t

kc t kc t

P P k kc SC t ST

P y P k kc SC t ST

P y P k kc SC t ST

y y

≤ ≤ ∈ ∈ ∈

≤ ≤ ∈ ∈ ∈

≤ ≤ ∈ ∈ ∈

≤ + ≤

{ }EVC,ch EVC,dis
, ,

   {3}, ,

, 0,1       {3}, ,kc t kc t

k kc SC t ST

y y k kc SC t ST








∈ ∈ ∈
 ∈ ∈ ∈ ∈

 (5) 
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where EVC,ch
,kc tP  is the charging power of EVC kc  at moment t ; EVC,dis

,kc tP  is the discharg-
ing power of EVC kc  at time moment t ; and EVC,ch

,kc ty  and EVC,dis
,kc ty  are binary variables 

used to ensure that only one state (i.e., charging or discharging) is true at each moment 
for each EVC consisting of Type III EVs. 

Equation (6) shows the energy constraints of the EVCs. 
EVC EVC EVC,ch EVC
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 (6) 

where EVC
,kc tE  is the energy of the virtual batteries of EVC kc  at time t . 

Equation (7) is the reactive-power constraint for the EVCs. 
EVC EVC,ch

, ,

EVC EVC,ch EVC,dis
, , ,

EVC EVC,max 2 EVC 2 EVC,max
, , , ,

                 {2}, ,
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
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

 (7) 

where EVC
,kc tP   is the charging/discharging power of EVC kc   at time t  ; EVC

,kc tQ   denotes 
the reactive power absorbed or released by the charger charging the virtual battery of EVC 
kc  at time t ; and EVC,max

,kc tS  is the apparent power capacity of the charger. 
To summarize, Equations (5)–(7) are the EVC operating constraints. Therefore, the 

optimization variables for the EVC scheduling model are as follows. 

{ }EVC,ch EVC,dis EVC,ch EVC,dis EVC EVC EVC
, , , , , , ,, , , , , ,kc t kc t kc t kc t kc t kc t kc tP P y y E P Q  (8) 

Using the above constraints and variables, the DSO can optimize the charging and 
discharging power of EVCs without having to directly optimize the charging and dis-
charging power of a large number of individual EVs, which can greatly reduce the time it 
takes to solve the optimization problem. 

The above power and energy boundary calculation model is used for EVCs consisting 
of Type II EVs and Type III EVs, because Type I EVs do not participate in power system 
operation optimization. So, we do not need to calculate their cluster boundaries, but need 
to calculate their charging power at each moment, as shown in Equation (9). 
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where ch
,n tP  is the charging power of EV n  at moment t . The first three equations in 

Equation (9) are used to calculate the amount of energy and charging time required to 
charge an EV when it was charged at its maximum charging power. t∆  is the time inter-
val after the scheduling cycle is discretized, e.g., 15 min, 1 h. need

nNT  is the number of time 
intervals that EV n   needs to be charged. From moment arr need

n nt NT+   to moment leave
nt  , 

the EV is no longer charged at maximum power; otherwise, the battery energy may exceed 
its capacity or exceed the user’s expectations. Using Equation (9), the charging power of a 
Type I EV can be calculated and then input as a known parameter into the EVC scheduling 
model. 

3.3. EVC Charging and Discharging Power Allocation Method 
As stated in Section 3.2, the DSO optimizes the charging and discharging of the Type 

II and Type III EVCs by using Equations (5)–(7). However, after obtaining the charging 
and discharging power of the EVC, it is still necessary to allocate the power to each EV 
inside the EVC to make it execute. There is also the question of how to allocate the power 
so that the power of all the EVs adds up to equal the cluster power while satisfying the 
individual constraints of each EV. Existing power allocation methods typically only dis-
tribute the total power equally among EVs without considering the differences in battery 
capacity and charging/discharging power constraints of each EV. Other optimization-
model-based methods are able to take into account the operational constraints of individ-
ual EVs, but are unable to accurately track the cluster power scheduling commands sent 
by the DSO. In this paper, we propose a power allocation method based on a consistency 
algorithm that aims to accurately execute the scheduling instructions and takes into ac-
count EV energy differences. 

The consensus algorithm [25,26] is an iterative algorithm in which the state variables 
of all individuals in the system tend to converge to an identical value as the iterations 
proceed. Therefore, when applying this algorithm, a state variable is first defined. The 
state variable used in the proposed EVC charging and discharging power allocation 
method is shown in Equation (10). Its updating law is shown in Equation (11). 
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In Equation (10), ch,0
,n tP   and dis,0

,n tP   are the initial charging power and discharging 
power of EV n  (belonging to EVC kc ) before starting the iteration at time t , which can 
be calculated by Equation (12). In Equation (12), ,kc tNEV  is the total number of EVs that 
belong to EVC kc  and are connected to the grid at time t . In Equation (11), constant 

,nm td  is the weight between EV n  and m  at time t , which is given by Equation (13). In 
Equation (13), the values of ,n tz  and ,m tz  are equal to ,kc tNEV  minus one. 
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After updating the value of q
,n tλ , the charging power or discharging power assigned 

to each EV can be calculated by Equation (15). 

( )
( )
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Note that if ch,q
,n tP   obtained from Equation (15) exceeds the charging power limit 

chmax
nP , it should be adjusted to chmax

nP , as shown in Equation (16). So should dis,q
,n tP . 
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 (16) 

According to the above formula, a flowchart for the proposed charging and discharg-
ing power allocation method is shown in Figure 4. 
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Figure 4. Flowchart for the proposed charging and discharging power allocation method. 

The specific steps are shown below. 
(1) The EVA receives the charging and discharging power signals sent by the DSO for 

each time period of each EVC. 
(2) For each EVC, the EVA calculates the initial power allocation for each EV in each time 

period based on the number of EVs connected to the grid in each time period using 
Equation (12). 

(3) For each period in the scheduling cycle, firstly, the initial value of the state variable 
lambda is calculated using Equation (10); then, the charging and discharging power 
of each EV is updated according to Equations (15) and (16), and the error between 
the sum of the charging or discharging power of all EVs and the cluster power is 
calculated according to Equation (14). If the error meets the requirements, the itera-
tion is stopped; otherwise, the lambda is updated according to Equation (11), and 
then, the charging and discharging power of each EV is updated until the error meets 
the requirements or the number of iterations exceeds the set number. 

(4) After obtaining the power allocation result that meets the requirements, the energy 
of each EV for the current period is calculated according to Equation (17). 

dis
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, ,
1 ,int 1
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tt n t
kc ch n t

t kc dist
n t n

n n

P t
P t

SOC SOC
E E

η η==
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(17) 

The above allocation algorithm only allocates the active charging and discharging 
power of the EVC and does not deal with the reactive power. For the allocation of reactive 
power, after obtaining the active-power allocation scheme that meets the requirements, 
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the maximum reactive power that can be provided by individual EVs can be calculated 
according to Equation (18). 

ch dis
, , ,

max max 2 2
, ,
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n t n t n t
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= −
 (18) 

If the sum of the maximum reactive power that can be provided by individual EVs is 
less than the cluster reactive power EVC

,kc tQ  , the real reactive charging and discharging 
power per EV charger is the maximum value. If it is greater, constraint Equation (19) is 
added to the scheduling model and re-optimization is performed to find another solution 
until the requirement is satisfied. 

max 2 2
, , ,( ) ( )  

                                     ,
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j t n t n n t
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4. Formulation of the Proposed EVC Scheduling Model 
Based on the operating constraints and variables for EVCs described in Section 3, this 

section proposes an optimal scheduling model for EVCs considering the network con-
straints of the distribution system. The proposed optimization model aims to reduce 
charging costs for EV users, minimize network energy losses, and decrease the peak-to-
valley difference in the system’s daily load profile. Additionally, the model considers the 
absorption and release of reactive power by EV chargers to enhance grid voltage quality. 

The objective function of the EVC scheduling model is as follows. 

1 cos 2 3min( )t dlv lossF w f w f w f= + +  (20) 
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t i j SL

f r i t
= ∈

= ∆∑ ∑  (24) 

where cos tf  is the total charging cost of the EVCs. If the EVC consists of Type III EVs, 

cos tf  equals the cost of charging minus the revenue from discharging. dlvf  is the objective 
function to reduce the peak-to-valley difference in the daily load curve, which is expressed 
by the daily load variance, as shown in Equation (22). The smaller the daily load variance, 
the smaller the fluctuation in the daily load curve and the smaller the peak-to-valley dif-
ference, and vice versa. lossf  is the total energy loss of the distribution network. EV

,j tP  de-
notes the charging power minus the discharging power of all EVCs at bus j . LD

,j tP  is the 
active-power demand of other loads at bus j . ,ij ti  is the square of the current magnitude 

in the line, i.e., 
2

, ,ij t ij ti I= . NT  is the total number of time periods during a scheduling 
cycle. Since the units and magnitudes of the two objective functions in Equation (20) are 
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different, the coefficients 1w , 2w , and 2w are introduced to turn the three objective func-
tions into a unified measure. 

The constraints of the EVC scheduling model include the operational constraints of 
the EVC (Equations (5)–(7) shown in Section 3.2), the bus power balance equation con-
straints (Equations (25)–(28)), the bus voltage magnitude constraints (Equations (29)–(31)), 
and the line current magnitude constraints (Equation (32)) as follows. 
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,     ,j j t ju u u j SB t ST≤ ≤ ∀ ∈ ∀ ∈  (31) 

,0        , ( )ij t iji i t ST i, j SL≤ ≤ ∀ ∈ ∀ ∈  (32) 

The DistFlow model [27] is used in the power flow constraints. In addition, for the 
nonlinear constraints between voltage, current, and power, the second-order cone relaxa-
tion method is used to transform them into second-order cone constraints. Therefore, 

,i t
u  

is the square of the voltage magnitude on bus i , i.e., 
, ,

2

i t i t
u V= , ,ij ti  is the square of the 

current magnitude in the line, i.e., 
2

, ,ij t ij ti I= . When the charging time of multiple EVs is 
relatively concentrated, it may lead to overloading of the distribution network, a voltage 
drop, or even an over-limit, so the upper and lower limit constraints of the voltage ampli-
tude at each bus and current magnitude in each line are considered. 

With the above optimization model, the DSO can optimize the charging and dis-
charging power of EVCs, and the absorption and release of reactive power by EV chargers. 
Then, the DSO passed the optimal results to the EVAs. The EVAs allocate the charging/dis-
charging power of each EVC to its EVs according to the power allocation method, and, 
finally, send the information to the users. Finally, the EVs execute the charging and dis-
charging power scheduling plan sent by the EVAs. 

The proposed EVC scheduling model represents a second-order conic programming 
problem (SOCP). Common commercial solvers (e.g., Gurobi and CPLEX) can be used to 
find the global optimal solution quickly. 
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5. Simulation Results and Discussion 
5.1. Description of Data Used for Simulation 

An IEEE-33 bus test system rated at 12.66 kV was used as the simulation system. Its 
topology and parameters were taken from reference [28]. The daily load curve for basic 
loads and the time-of-use electricity prices are depicted in Figure 5. In parking clusters, 
coordinated pricing mechanisms have been proven to be an effective way to improve the 
satisfaction of users and the economy of the system [29]. This is another worthy research 
topic, but it is not covered in this paper. This paper mainly focuses on optimizing the 
charging and discharging schedule of electric vehicles participating in the ancillary ser-
vices market based on time-of-use pricing mechanisms. Table 1 lists the basic parameters 
of the EVs, where 2( , )N µ σ  is a normal distribution with a mathematical expectation of 
µ  and a standard deviation of σ , and ( , )U a b  is a uniform distribution over the inter-
val [ ],a b . The arrival and departure times as well as the initial state of charge (SOC) of 
all EVs are sampled from their respective probability distributions by Monte Carlo meth-
ods. According to the EVC division method presented in Section 3, all EVs are divided 
into different EVCs according to their charging preferences and leaving times. Table 2 
shows the details of the EVC division rule used in the simulation. The proposed EVC 
scheduling model can be applied in both day-ahead and intra-day manners. In this paper, 
day-ahead scheduling is taken as an example, assuming that the scheduling period is from 
12:00 to 12:00 the next day, with an interval of 1 h. 

 
Figure 5. The daily load curve for basic loads and the time-of-use electricity prices. 

Table 1. Basic parameters of EVs. 

Parameter Value 
cpt
nE  35 kWh 

max chmax dismax, ,n n nS P P  3.3 kVA 

, ,,kc ch kc disη η  95% 
arr
nt  N (18.8, 3.35) 

leave
nt  N (8.5 3.3) 

ini
nSOC  U (0.4, 0.6) 
max
nSOC  0.9 
min
nSOC  0.2 
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Table 2. Division rule of the EVCs. 

Leaving Time of the EVs 
Name of the EVC 

Type I EVs Type II EVs Type III EVs 
Before 6:00 11EVC  21EVC  31EVC  
6:00–7:00 12EVC  22EVC  32EVC  
7:00–8:00 13EVC  23EVC  33EVC  
8:00–9:00 14EVC  24EVC  34EVC  
after 9:00 15EVC  25EVC  35EVC  

5.2. Case Study Settings 
Four cases are studied in this paper. 
Case 1: A study of the difference in solution efficiency between the EVC scheduling 

model and the traditional individual-EV scheduling model. 
Case 2: A study of the effectiveness of the proposed EVC charging/discharging power 

allocation method. 
Case 3: A study of the effects of different objective functions and reactive-power com-

pensation provided by electric vehicle charging piles on the optimization results of the 
EVC scheduling model. 

Case 4: A study of the impacts of different EV charging preferences on the economics 
and safety of distribution network operation. 

All simulations were programmed in the MATLAB 2018a environment and the opti-
mization problems were solved by YALMIP with Gurobi 10.0.1 solver. 

5.3. Case 1: EVC Scheduling Model vs. Individual-EV Scheduling Model 
In this case, we investigate the differences between the EVC scheduling model and 

the individual-EV scheduling model in terms of solution results and solution time. We 
conducted two simulations, the first assuming that all EVs involved in the scheduling are 
type II EVs, i.e., they only participate in the charging power scheduling process and do 
not participate in V2G. The second experiment assumes that all EVs are type III EVs, which 
not only participate in the charging power scheduling process but also participate in V2G. 
For the first experiment, the optimization objective is to minimize the charging cost of the 
EVs. For the second experiment, the optimization objective is to minimize charging cost 
minus discharging revenue. Note that in this case, both optimization models only consider 
the active-power dispatch of EVs and do not consider the reactive-power dispatch of 
charging piles. In each simulation, we tested three scenarios when the numbers of EVs 
involved in the scheduling were 1000, 2000, and 3000. The optimization results for each 
model in both experiments are shown in Tables 3 and 4. 

Table 3. Optimization results of the EVC and the individual-EV scheduling models when EVs are 
Type II EVs. 

EV Numbers 
Objective Value/Charging Cost (CNY) Solution Time (s) 

EVC 
Model 

IEV 
Model 

EVC 
Model 

IEV 
Model 

1000 5471.6 5471.6 0.632 74.722 
2000 10,914.7 10,914.7 0.653 161.771 
3000 16,339.9 16,339.9 0.66 268.452 
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Table 4. Optimization results of the EVC and the individual-EV scheduling models when EVs are 
Type III EV. 

EV Numbers 
Objective Value/Charging Costs Minus Discharging Income (CNY) Solution Time (s) 

EVC  
Model 

EV  
Model 

EVC  
Model 

EV  
Model 

1000 −1043.2 −949.1 0.737 93.591 
2000 −1956.0 −1784.7 0.741 216.585 
3000 −3398.7 −3153.0 0.703 389.796 

As can be seen from Table 3, the solving time of the individual-EV scheduling model (IEV 
model) increases exponentially with an increase in the number of EVs. It can be imagined that 
if power flow constraints of the distribution network are introduced into the model, the solv-
ing time may sharply increase, or the problem may even fail to be solved successfully. How-
ever, the solving time of the EVC scheduling model (EVC model) does not increase signifi-
cantly with an increase in the number of electric vehicles. This is because an increase in the 
number of EVs does not increase the number of EVCs. As for the optimization results, in sim-
ulation 1, both models gave the same results. This indicates that the proposed EVC scheduling 
model is correct and effective. It can effectively solve the large-scale EV scheduling problem. 

As can be seen from Table 4, considering the V2G scenario does not increase the solution 
time of the EVC scheduling model, but there is a small difference in the optimization results 
between the EVC scheduling model and the individual-EV scheduling model. The optimiza-
tion results of the EVC scheduling model will be better than those of the individual-EV sched-
uling model. Because the EV charging and discharging scheduling model is a multi-temporal 
coupling model, it is difficult to achieve full equivalence between the EVC scheduling model 
and the individual-EV scheduling model. Especially after considering V2G, the energy 
changes in EVC in adjacent time periods become larger, which is more likely to produce errors. 
Therefore, after obtaining the EVC optimization results, the results should be assigned accord-
ing to the individual constraints of EVs to make them more reasonable. 

5.4. Case 2: Investigate the Effectiveness of the Proposed EVC Charging/Discharging Power  
Allocation Method 

In this case, we use the proposed allocation method to allocate the charging and dis-
charging power of the EVCs of 1000 EVs obtained in the simulation in Case 1, i.e., the 
charging and discharging power of each EVC in each time slot is allocated to the EVs that 
are connected to the grid and belong to it, so that each EV receives a scheduling instruction 
to arrange its own charging and discharging power plan. The allocation results are shown 
in Figures 6 and 7, and Table 5. 

 
Figure 6. Total power of all EVC before allocation vs. total power of all EVs after allocation for 1000 
Type II EVs. 
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Figure 7. Total power of all EVC before allocation vs. total power of all EVs after allocation for 1000 
Type III EVs. 

Figure 6 shows the total power of all EVCs before allocation vs. the total power of all EVs 
after allocation for 1000 Type II EVs. Figure 7 shows the total power of all EVCs before alloca-
tion vs. the total power of all EVs after allocation for 1000 Type III EVs. As can be seen from 
the figure, overall, there is almost no difference between their pre-allocated and post-allocated 
power in each time slot. The results of the quantitative analyses are presented in Table 5. 

Table 5. The charging/discharging power allocation results of the EVCs for Type II and Type III EVs. 

EV Type EVC No. meetNT  notmeetNT  maxError  
(kW) 

maxError  
(%) 

max

system

Error
P  

(%) 

solveT  
(s) 

Type  
II 

EVs 

EVC21 24 0 0 0 0 

0.412 
EVC22 24 0 0 0 0 
EVC23 24 0 0 0 0 
EVC24 23 1 1.2 0.21% 0.13% 
EVC25 24 0 0 0 0 

Type  
III 

EVs 

EVC31 23 1 20.3 8.9% 0.95% 

0.57 
EVC32 23 1 0.5 0.5% 0.02% 
EVC33 23 1 12.9 4.1% 0.61% 
EVC34 23 1 5.6 3.2% 0.23% 
EVC35 23 1 0.3 0.1% 0.01% 

In Table 5, meetNT  denotes the total number of time slots in which the allocation error 
(calculated by Equation (14)) meets the requirement (<0.01 kW) out of the 24 time slots, and 

notmeetNT  denotes the total number of time slots where the allocation error does not meet the 
requirement. maxError  (kW) represents the maximum allocation error of all EVCs and all 
time slots, and maxError (%) represents the percentage of the maximum allocation error rel-

ative to the power of the EVC for that time slot. max
Psystem

Error  (%) represents the percent-

age of the maximum allocation error relative to the total power of all EVCs for that time slot. 
solveT  denotes the total time required for the successful allocation of the five EVCs. 

As can be seen from Table 5, the solution time solveT   required by the allocation 
method is very short, so that the solution time for the EVC scheduling model given in 
case1, together with its allocation time, is also still much shorter than the solution time for 
an individual-EV scheduling model. As for the allocation error, the allocation error of the 
Type II EVs, which only participates in charging power scheduling, is very small. The 
allocation errors of each EVC in each time period are in line with the requirements. This 
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result is consistent with Case 1. The EVC scheduling model for Type II EVs is more equiv-
alent to the individual-EV scheduling model, so the differences in the optimization and 
allocation results are minimal. As for Type III EVs, it can be seen that the results of most 
of the time slots satisfy the allocation error requirement, and only one slot does not. The 
allocation error values are small. As analyzed in case 1, the EVC scheduling model of Type 
III EVs cannot easily be made equivalent to the individual-EV scheduling model because 
of the V2G, so there will be an error in the optimization results of both. The constraints of 
the individual models are taken into account to correct the optimization results when per-
forming EVC power allocation, so that the difference between the allocation results and 
the EVC optimization results can be explained. The above analyses demonstrate the effec-
tiveness of the allocation method proposed in this paper. 

5.5. Case 3: Study the Effects of Different Objective Functions and Reactive-Power Compensation 
Provided by Electric Vehicle Charging Piles on the Optimization Results of the EVC Scheduling 
Model 

In this case, we investigated the impact of EVC scheduling models with different ob-
jective functions on the grid and discuss the changes in the grid operation state after con-
sidering the reactive-power compensation provided by charging piles. The IEEE 33-bus 
system was used as the test system. Assume that buses 13, 18, and 32 are each equipped 
with one charging station and that each charging station can accommodate up to 200 EVs; 
the ratios of the number of EVs in the three types are 0.2, 0.3, and 0.5, respectively. Three 
optimization models with different objectives, listed below, were studied. 

Case 3.A: In this model, EV users prioritize their own interests and take the minimum 
charging and discharging cost as the optimization objective without considering the net-
work constraints. 

Case 3.B: In this model, the optimization objective includes the reduction in distribu-
tion network loss and daily load variance in addition to the charging and discharging 
costs of EV users. It is assumed that the value of the coefficient w2 before the optimization 
objective of network loss is 0.1, and the value of the coefficient w3 before the optimization 
objective of daily load variation is 0.01. 

Case 3.C: This optimization objective is the same as that of Case 3.B, but the reactive-
power constraints of EV charging piles are added to the constraints. 

By solving the above optimization model, we can determine the charging and dis-
charging active power for each charging station. Figure 8 shows the active power for 
charging and discharging at the three charging stations for all cases. Figure 9 shows the 
reactive power supplied by the three charging stations for Case 3.C. In Figure 9, the “be-
fore allocation” curve represents the total reactive power based on the optimization model 
results; the “after allocation” curve represents the total reactive power for all EVs calcu-
lated using Equation (18); and the “correction” curve shows the results based on the reac-
tive-power allocation method presented in Section 3.3. 
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(a) CS1 (b) CS2 (c) CS3 

Figure 8. Charging and discharging active power of the three charging stations in case 3. 

   
(a) CS1 (b) CS2 (c) CS3 

Figure 9. Reactive power supplied by the three charging stations in case 3.C. 

After determining the charging and discharging power of all stations, Matpower was 
used to calculate the distribution network power flow. The simulation results are shown 
in Table 6 and Figures 10 and 11. Figure 10 shows the daily load profile of the system 
obtained from the power flow distribution for all cases. Figure 11 shows the voltage at bus 
18 for all cases. 

Table 6. Optimization results of different models in Case 3. 

Model -Costch dis  
(CNY) 

Loss 
(kW) 

Cost loss  
(CNY) 

Load 
Variance 

varCost  
(CNY) 

Cost total  
(CNY) 

Case 3.A 2475.4 3319.8 332.0 118,149.9 1181.5 3968.4 
Case 3.B 2792.2 3253.4 325.3 49,025.4 490.2 3607.8 
Case 3.C 2768.6 2933.4 293.3 50,688.9 506.9 3568.8 

From Table 6, we can see that the charging and discharging costs of the user in case 
3.MA are the lowest, but the load variance and the power loss are higher than those of the 
other two EVC scheduling models, which lead to the highest comprehensive cost of sys-
tem operation. Higher load variance and power loss means a lower utilization rate of 
equipment in the distribution network, which is not conducive to the economic operation 
of the distribution network. Therefore, in Case 3.MB and Case 3.C, not only are the power 
loss and load variance of the distribution network included in the optimization objective, 
but the power flow constraints are also considered in the model. Compared to Case 3.A, 
although the charging and discharging costs of Csae3.B and case3.C increased by 12.8% 
and 11.8%, respectively, their load variance decreased by 58.5% and 57.1%, and the com-
prehensive cost of system operation decreased by 9.1% and 10.1%. From the perspective 
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of the economic operation of the distribution network, the EVC scheduling models in Case 
3.B and Case3.C perform better than that in Case 3.A. 

Figures 10 and 11 show the system load and the voltage value of bus 18 of the base 
load and the three studied models. From these two figures, it can be seen that Case 3.A, 
which does not take into account the peak shaving optimization objective and the distri-
bution network power flow constraints, shows new load peaks and bus voltage violations 
during the night time compared to the other two models. For Case 3.B and Case 3.C, since 
the optimization objective of reducing the peak-to-valley difference in system load is taken 
into account, the solutions derived from these two models result in a smoother load pro-
file. This outcome avoids high concentrations of users charging their electric vehicles dur-
ing the low-tariff hours of 22:00 p.m. to 6:00 a.m. In Figure 11, the green line represents a 
voltage value of 0.95, which is the minimum node voltage generally allowed by the grid. 
As illustrated in Figure 11, the solutions derived from these two models also ensure that 
the distribution network’s bus voltage limits are not violated. This is achieved by consid-
ering the power flow constraints of the distribution network. 

 
Figure 10. Daily load profile of the system obtained from the power flow distribution in case 3. 

 
Figure 11. Voltage of bus 18 obtained from the power flow distribution in case 3. 

In summary, therefore, for the safe operation of the grid, EV scheduling should be 
carried out with the goal of not only minimizing the cost of EV charging, but also incen-
tivizing the participation of EVs in the grid ancillary services market. In addition, the bus 
voltage magnitude of Case 3.C is improved compared to that of Case 3.B, as shown in 
Figure 11. This is due to the fact that Case 3.C takes into account the reactive-power com-
pensation provided by the EV charging piles, as shown in Figure 9. This also results in a 
reduction of 9.8% in the distribution network energy losses, as shown in Table 6. 
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5.6. Case 4: Study the Impact of Different EV Charging Preferences on the Economics and Safety 
of Distribution Network Operation 

This case investigates the impact of EV charging preferences on the operating state 
of the distribution network. Based on the parameter settings in Case 3, three simulation 
experiments are conducted in this case. The first experiment does not uniformly schedule 
the EVs and allows them to charge in an unorganized manner according to their respective 
travel plans. The second and third experiments use the Case 3.C scheduling model and 
assume that all EVs are Type II EVs and Type III EVs, respectively. These three experi-
ments are named Case 4.A, Case 4.B, and Case 4.C. The simulation results are shown in 
Table 7 and Figures 12 and 13. 

Table 7. Simulation results of different models in Case 4. 

Model -Costch dis  
(CNY) 

Loss 
(kW) 

Cost loss  
(CNY) 

Load 
Variance 

varCost  
(CNY) 

Cost total  
(CNY) 

Case 4.A 9074.1 3569.2 356.9 538,674.3 5386.7 14,817.7 
Case 4.B 3434.3 2655.4 265.5 73,326.6 733.3 4433.1 
Case 4.C 1055.2 3040.1 304.0 112,500.3 1125.0 2484.2 

From Table 7 it can be seen that disordered charging not only maximizes the charging 
cost for EV users, but also increases the network losses of the system and increases the 
peak-to-valley difference in the daily load profile of the system. In addition, from Figure 
12, it can be seen that disordered charging leads to a significant drop in the voltage at bus 
18, which is below the permissible lower limit. Therefore, disordered charging can pose a 
significant challenge to the safe operation of the grid. 

 
Figure 12. Voltage of bus 18 under different models. 

 
Figure 13. Daily load profile of the system obtained from different optimization models. 
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Comparing the results of Case 4.B and Case 4.C, it is evident that EV participation in 
V2G can significantly reduce charging costs for users. However, excessive discharging 
during high-tariff hours and concentrated charging at night when tariffs are low can create 
new valleys and peaks in the system’s daily load profile, as shown in Figure 13. Therefore, 
more EVs participating in V2G is not always better for the grid. DSO and EV aggregators 
should strategically manage the number of EVs with different charging preferences con-
nected to the grid at different times to benefit both users and the grid. 

6. Conclusions 
This paper proposes an electric vehicle cluster scheduling model that takes into ac-

count distribution network power flow constraints and reactive-power compensation pro-
vided by EV charging piles, for DSOs or EVAs to optimize the charging and discharging 
power of large-scale EVs. The proposed model includes an EVC division method, an en-
ergy and power boundary aggregation method, and a charging/discharging power allo-
cation method. The proposed methods were applied to an IEEE-33 test system with large 
scale EVs. The simulation results show that the proposed EVC scheduling model can 
greatly reduce the solution time compared to the traditional individual-EV scheduling 
model. For the safe operation of the grid, EVC scheduling should be carried out with the 
goal of not only minimizing the cost of EV charging, but also incentivizing the participa-
tion of EVs in the grid ancillary services market, for example, reducing the energy losses 
and peak-to-valley difference. This not only reduces their adverse impact on the grid be-
cause of their uncoordinated charging behavior, but also improves the operational eco-
nomics and security of the grid. However, it is not the case that more EVs participating in 
V2G is better for the grid. DSO and EV aggregators should strategically manage the num-
ber of EVs with different charging preferences that are connected to the grid, so that both 
users and the grid can benefit. Finally, the simulation results show that the reactive-power 
compensation provided by EV charging piles improves the voltage quality of the grid and 
enables more EVs to be connected to the grid. For future work, we will explore how re-
newable energy sources, such as solar and wind power, can be integrated into the pro-
posed scheduling model. For example, we will investigate how EVC scheduling can re-
duce the output stochasticity of renewable energy and enhance the stability and safety of 
grid operation. 
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