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Abstract: This paper introduces a new modelling approach that incorporates nonlinear, exponential
deterministic terms into a fractional integration framework. The proposed model is based on a
specific test on fractional integration that is more general than the standard methods, which allow
for only linear trends.. Its limiting distribution is standard normal, and Monte Carlo simulations
show that it performs well in finite samples. Three empirical examples confirm that the suggested
specification captures the properties of the data adequately.
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1. Introduction

It is common practice in applied work to allow for simple linear deterministic trends
when modelling standard economic and financial series (Bhargava 1986; Stock and Watson
1988; Schmidt and Phillips 1992). However, some of these appear to be characterised by
exponential growth, as in the case of compound interest. An exponential growth trend can
be captured through taking logs of the series of interest and regressing the data against a
constant and a linear trend. However, fitting a linear trend with a constant growth rate is
in most cases too restrictive. Alternatively, the raw data can be used to run a regression
including an exponential time trend as well as a constant. The present paper takes the latter
approach based on exponential trends and develops an appropriate modelling and testing
framework in the context of fractional integration with a standard normal asymptotic
distribution. The proposed fractional integration model belongs to the category of long-
memory processes; its feature is that the number of differences that are required to make
a series stationary and with short memory (e.g., a white noise or a stationary ARMA) is
a non-integer positive value. In most cases investigated with such models, a linear trend
is considered and most of the departures from this specification are in the form of special
non-linear deterministic structures such as those produced by Chebyshev polynomials in
time or Fourier functions. This paper considers exponential trends instead and employs
simulation techniques to evaluate the properties of the proposed test with finite samples; it
also presents three empirical applications to show that the advocated framework captures
well the behaviour of the data. Modelling exponential trends in a fractional integration
framework is a novel contribution, and the suggested approach is a practical tool to use
in cases of economic and financial series that possibly exhibit long memory as well as
exponential deterministic trends.

The structure of this paper is as follows. Section 2 presents the proposed framework
and testing procedure along with its asymptotic distribution, which is standard normal.
Section 3 reports some Monte Carlo simulation results to assess the finite sample behaviour
of the suggested test. Section 4 discusses three empirical applications. Section 5 offers some
concluding remarks.
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2. The Model

We consider a time series {yt, t = 1, 2, . . .. } for which the following regression model is
specified:

yt = α + βtγ + xt, t = 1, 2, . . . , (1)

where α, β and γ are unknown parameters (the intercept, the time trend coefficient and its
exponent respectively); in addition, xt is assumed to be an integrated process of order d,
i.e.,:

(1 − B)dxt = ut, t = 1, 2, . . . , (2)

where d can be any real scalar value, B is the backshift operator, i.e., Bkxt = xt−k, and ut
is thus an I(0) process, more precisely a covariance–stationary one with a spectral density
function that is positive and bounded at all frequencies in the spectrum.1 Thus, ut might be
a white noise process but it might also display a weakly autocorrelated structure as in the
autoregressive moving average (ARMA) processes.

We test the null hypothesis:
Ho : d = do, (3)

for any real value d0 in the model given by (1) and (2), through choosing specific values for
γ, for example between 0 and 2, with 0.01 increments. Under the null hypothesis (3), the
model given by (1) and (2) becomes:

∼
y t = α

∼
1 t + β

(∼
t t) + ut, t = 1, 2, ..., (4)

where
ỹt = (1 − B)do yt,

and2
∼
1 t =

(
1 − B)do 1, and

∼
t t =

(
1 − B)do (t)γ,

and ut is still an I(0) process. Since the value of γ is set, one can follow the same strategy as
in Robinson (1994) and therefore the test statistic is given as follows:

r̂ =
√

T
σ̂2

â√
Â

, (5)

where T is the sample size, and

â =
−2π

T

∗
∑

j
ψ
(
λj
)

gu

(
λj ;̂ τ)−1 I

(
λj
)

; σ̂2 = σ2(τ̂) =
2π
T

T−1

∑
j=1

gu(λj; τ̂)
−1 I(λj),

Â =
2
T

 ∗
∑

j
ψ(λj)ψ(λj)′−

∗
∑

j
ψ(λj)ε̂(λj)

(
∗
∑

j
ε̂(λj) ε̂(λj)′

)−1 ∗
∑

j
ε̂(λj)ψ(λj)′

;

ψ
(
λj
)
= log

∣∣∣∣2sin
λj

2

∣∣∣∣; ε̂
(
λj
)
=

∂

∂τ
log gu

(
λj ;̂ τ

)
,

where λj = 2πj/T and the summation in * in the above equations is over all frequencies
which are bounded in the spectrum.3 I(λj) is the periodogram of ût , where

ût =
∼
y t − α̂

∼
1 t − β̂

(∼
t t) , t = 1, 2, ..., (6)
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ˆpar =
(

α̂

β̂

)
=

(
∑T

t=1
∼
z

T
t
∼
z t

)−1

∑T
t=1

∼
z t

∼
y t,

∼
z t =

(∼
1 t,

∼
t t

)
T, and τ̂ = arg minτ ∈ T∗ σ2(τ) ,

with T* as a suitable subset of the Rq Euclidean space. Finally, gu is a known function
coming from the spectral density of ut:

fu(λ) =
σ2

2 π
gu(λ; τ), −π < λ ≤ π.

Note that this test is parametric and, therefore, it requires specific modelling assump-
tions about the short-memory specification of ut. In particular, if ut is a white noise, gu
≡ 1, whilst if it is an AR process of the form φ(L)ut = εt, (with white noise εt), then gu =
|φ(eiλ)|−2, with σ2 = V(εt) and the AR coefficients being a function of τ.

In this context, Robinson (1994) showed that for γ = 1:

R̂ = r̂2 →d χ2
1, as T → ∞, (7)

where “→d” stands for convergence in distribution. Therefore, unlike in the case of other
(unit root/fractional) procedures, this is a classical large-sample testing situation. On the
basis of (5), the null Ho (3) is rejected against the alternative Ha: d ̸= do if R̂ > χ2

1,α, with
Prob (χ2

1 > χ2
1,α) = α. In addition, one-sided tests can be obtained against the alternatives Ha:

d > do (d < do) at the 100α% when r̂ > zα (r̂ < −zα), where the probability that a standard
normal variate exceeds zα is α.

This result holds for any finite value of γ. Specifically, Robinson (1994) used the
following regression model:

yt = β zt + xt, t = 1, 2, ..., (8)

where zt is a (kx1) observable vector whose elements are assumed to be non-stochastic,
such as polynomials in t, for example, to include the null hypothesis of a unit root with drift
if do = 1 and zt = (1, t)T. According to Robinson: “The limiting null and local distributions
of our test statistic are unaffected by the presence of such regressors. For simplicity, we
treat only linear regression, but undoubtedly a nonlinear regression will also leave our
limit distributions unchanged, under standard regularity conditions”. These regularity
conditions are described in his definition of the class G provided in Appendix A to that
paper: “G is the class of k X 1 vector sequences { zt, t = 0, +1, . . .} such that zt = 0, t < 0 and D
defined as:

D = ∑T
t=1

∼
wt

∼
w

T
t , and

∼
w

T
t =

(∼
1 t,

∼
t t

)
(9)

is positive definite for sufficiently large T.”. G imposes no rate of increase on D; different
elements can increase at different rates, and indeed D need not tend to infinity as T → ∞. If
D is positive definite for T = To, then it is positive definite for all T > To.

In this context, the following theorem can be stated:

Theorem 1. Under the null hypothesis (3) in the model defined by Equations (1) and (2), with γ =
γo where γo is the true value of the exponential trend, and under the condition:

0 < det (Ψ) < ∞ (10)

where det denotes determinant and Ψ = 1
2π

∫ ∞
−∞ ψ

(
λj
)2, r̂ converges asymptotically in distribution:

r̂ →
d

N(0, 1) as T → ∞ (11)
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Note that the right-hand-side inequality in (10) is not satisfied by the autoregressive
AR alternatives, whilst it is by the fractional model in (2) (see the expression for ψ

(
λj
)

below (5), and Appendix A for the proof of this theorem).
As an alternative approach, one can compute the residual sum of the squares for a

set of values of γ and choose the one that minimises it. In such a case, under standard
regularity conditions, the estimate should coincide with the one obtained with our method
when choosing the value of d that minimises ˆ̂R in (11). In the empirical applications carried
out in Section 4, we set values of γ = 0, 0.10, 0.20, . . . (0.10), . . ., 1.40, and 1.50, and in
each case we estimated the differencing parameter via choosing the test statistic (based
on Robinson 1994) with the lowest value. The estimate of d was virtually identical to
the Whittle one based on the frequency domain analysed in Robinson (1994), as ˆ̂R clearly
depends on γ. Then, for each value of γ and the associated d, we computed the residual
sum of the squares and chose the pair producing the lowest statistic, R̂, in (7).

Next, we display some realisations of the model given by Equations (1) and (2).
More specifically, we first generated a white noise process with sample size T = 1000, and
produced time series for 1̃t and t̃t via setting different values for d0 and γ. Then, ỹt was
obtained from Equation (4) with α = 0.2 and β = 0.4 and first differences of d0 were taken
after removing the first 100 observations.

Figures 1–4 correspond to do = 0.25, 0.50, 0.75, and 1 respectively, and each of them
includes plots of the series (i.e., yt in (1) and (2)) for γ = 0.25, 0.50, 0.75, 1, 1.25, and 1.50. It
can be seen that when γ = 0.25, the trend was almost unnoticeable; however, as γ increased
the series exhibited a clear trend characterised by convexity, whilst γ = 1 corresponded to a
linear trend, and γ > 1 to one exhibiting concavity.

Econometrics 2024, 12, x FOR PEER REVIEW 4 of 13 
 

 

Note that the right-hand-side inequality in (10) is not satisfied by the autoregressive 
AR alternatives, whilst it is by the fractional model in (2) (see the expression for 𝜓(𝜆௝) 
below (5), and Appendix A for the proof of this theorem). 

As an alternative approach, one can compute the residual sum of the squares for a 
set of values of γ and choose the one that minimises it. In such a case, under standard 
regularity conditions, the estimate should coincide with the one obtained with our 
method when choosing the value of d that minimises 𝑅෠෠ in (11). In the empirical applica-
tions carried out in Section 4, we set values of γ = 0, 0.10, 0.20, … (0.10), …, 1.40, and 1.50, 
and in each case we estimated the differencing parameter via choosing the test statistic 
(based on Robinson 1994) with the lowest value. The estimate of d was virtually identical 
to the Whittle one based on the frequency domain analysed in Robinson (1994), as 𝑅෠෠ 
clearly depends on γ. Then, for each value of γ and the associated d, we computed the 
residual sum of the squares and chose the pair producing the lowest statistic, 𝑅෠, in (7). 

Next, we display some realisations of the model given by Equations (1) and (2). More 
specifically, we first generated a white noise process with sample size T = 1000, and pro-

duced time series for t1~  and tt
~

 via setting different values for d0 and γ. Then, ty~  
was obtained from Equation (4) with α = 0.2 and β = 0.4 and first differences of d0 were 
taken after removing the first 100 observations. 

Figures 1–4 correspond to do = 0.25, 0.50, 0.75, and 1 respectively, and each of them 
includes plots of the series (i.e., yt in (1) and (2)) for γ = 0.25, 0.50, 0.75, 1, 1.25, and 1.50. It 
can be seen that when γ = 0.25, the trend was almost unnoticeable; however, as γ increased 
the series exhibited a clear trend characterised by convexity, whilst γ = 1 corresponded to 
a linear trend, and γ > 1 to one exhibiting concavity. 

γ = 0.25 γ = 0.50 

  
γ = 0.75 γ = 1.00 

  
 
 
 
 

 
 
 
 

-2

-1

0

1

2

3

4

5

6

1 54 107 160 213 266 319 372 425 478 531 584 637 690 743 796 849
0

2

4

6

8

10

12

14

16

1 54 107 160 213 266 319 372 425 478 531 584 637 690 743 796 849

0

10

20

30

40

50

60

70

80

1 54 107 160 213 266 319 372 425 478 531 584 637 690 743 796 849
0

50

100

150

200

250

300

350

400

450

1 55 109 163 217 271 325 379 433 487 541 595 649 703 757 811 865

Figure 1. Cont.



Econometrics 2024, 12, 15 5 of 14

Econometrics 2024, 12, x FOR PEER REVIEW 5 of 13 
 

 

 
γ = 1.25 

 
γ = 1.50 

  
Figure 1. Realisations from Equations (1) and (2) with d = 0.25. Note: We generated Gaussian series 
with T = 1000, and then produced the realisations of yt in (1) and (2) with d = 0.25. 

γ = 0.25 γ = 0.50 

  
γ = 0.75 γ = 1.00 

  
γ = 1.25 γ = 1.50 

  

0

1000

2000

3000

4000

5000

6000
1 37 73 10
9

14
5

18
1

21
7

25
3

28
9

32
5

36
1

39
7

43
3

46
9

50
5

54
1

57
7

61
3

64
9

68
5

72
1

75
7

79
3

82
9

86
5

90
1

93
7

97
3

0

5000

10000

15000

20000

25000

30000

35000

1 37 73 10
9

14
5

18
1

21
7

25
3

28
9

32
5

36
1

39
7

43
3

46
9

50
5

54
1

57
7

61
3

64
9

68
5

72
1

75
7

79
3

82
9

86
5

90
1

93
7

97
3

-2
-1
0
1
2
3
4
5
6
7
8

1 55 109 163 217 271 325 379 433 487 541 595 649 703 757 811 865 0
2
4
6
8
10
12
14
16
18

1 55 109 163 217 271 325 379 433 487 541 595 649 703 757 811 865

0

10

20

30

40

50

60

70

80

1 55 109 163 217 271 325 379 433 487 541 595 649 703 757 811 865
0
50
100
150
200
250
300
350
400
450

1 56 111 166 221 276 331 386 441 496 551 606 661 716 771 826 881

0

1000

2000

3000

4000

5000

6000

1 37 73 10
9

14
5

18
1

21
7

25
3

28
9

32
5

36
1

39
7

43
3

46
9

50
5

54
1

57
7

61
3

64
9

68
5

72
1

75
7

79
3

82
9

86
5

90
1

93
7

97
3

0

5000

10000

15000

20000

25000

30000

35000

1 37 73 10
9

14
5

18
1

21
7

25
3

28
9

32
5

36
1

39
7

43
3

46
9

50
5

54
1

57
7

61
3

64
9

68
5

72
1

75
7

79
3

82
9

86
5

90
1

93
7

97
3

Figure 1. Realisations from Equations (1) and (2) with d = 0.25. Note: We generated Gaussian series
with T = 1000, and then produced the realisations of yt in (1) and (2) with d = 0.25.
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Figure 2. Realisations from Equations (1) and (2) with d = 0.50. Note: We generate Gaussian series
with T = 1000, and then produce the realisations of yt in (1) and (2) with d = 0.50.
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Figure 3. Realisations from Equations (1) and (2) with d = 0.75. Note: We generated Gaussian series
with T = 1000, and then produced the realisations of yt in (1) and (2) with d = 0.75.
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Figure 4. Realisations from Equations (1) and (2) with d = 1.00. Note: We generated Gaussian series
with T = 1000, and then produced the realisations of yt in (1) and (2) with d = 1.00.

3. Simulation Results

In this section, we examine the finite sample behaviour of the test statistic proposed
above by means of Monte Carlo simulation techniques (the Fortran codes are available
from the authors upon request). As data generating processes, we used the GASDEV and
RAN3 routines from Press et al. (1986) to obtain Gaussian series for different sample sizes
T = 100, 500, and 1000 and carried out 10,000 replications in each case; specifically, we used
the model given by Equations (1) and (2) with α = 0.2 and β = 0.4, γ = 0.75, and tested the
null hypothesis (3) with do = 0.50; the reported results are for a nominal size of 5%. Using
alternative values for α, β, γ, and do produced almost identical results.

Table 1 displays the rejection frequencies of the test statistic r̂ in (5) for three different
sample sizes, T = 100, 500, and 1000 and a nominal size of 5%.4 It can be seen that the
nominal sizes were too large in all cases, and they approached 0.05 as the sample size
increased. There was also a bias in the size as higher values were obtained in all cases
against alternatives of form d < do. Finally, the frequencies against departures from the null
increased as the sample size increased, which was consistent with the asymptotic behaviour
in the test.
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Table 1. Rejection frequencies against one-sided alternatives with Gaussian errors.

do T = 100 T = 500 T = 1000

Ho: d > do

0.20 0.688 0.983 1.000

0.30 0.478 0.688 0.808

0.40 0.296 0.354 0.499

0.50 0.099 0.069 0.057

Ho: d < do

0.50 0.104 0.099 0.068

0.60 0.319 0.449 0.676

0.70 0.665 0.883 0.997

0.80 0.997 1.000 1.000
Note: The values reported in this table are the rejection frequencies of the test against fractional alternatives. The
size of the test is shown in bold.

Table 2 is similar to Table 1 but reports the results based on the t3-Student distribution
for the error term. Once again, the sizes were higher than the 5% level and higher values
were observed against departures in the form d < do. The rejection frequencies were also
higher for this type of departure, and even for small ones the rejection frequencies were
relatively high.

Table 2. Rejection frequencies against one-sided alternatives with t3-distributed errors.

do T = 100 T = 500 T = 1000

Ho: d > do

0.20 0.709 0.878 0.998

0.30 0.526 0.735 0.910

0.40 0.314 0.359 0.651

0.50 0.112 0.089 0.067

Ho: d < do

0.50 0.127 0.109 0.083

0.60 0.414 0.565 0.712

0.70 0.727 0.899 1.000

0.80 1.000 1.000 1.000
Note: The values reported in the table are the rejection frequencies of the test against fractional alternatives. The
size of the test is shown in bold.

4. Three Empirical Applications

For illustration purposes, we used the proposed framework to model three US time
series. The first was the US real GNP per capita series analysed in Omay et al. (2017); it
is quarterly and spans the period from 1947 Q1 to 2018 Q1, for a total of 285 observations
(see Figure 5), and its source was the FRED database of the Federal Reserve Bank of St
Louis (https://www.stlouisfed.org/ accessed on 1 May 2020). The second was the S&P500
weekly series from 1 January 1970 up to 23 October 2023, obtained from Yahoo! Finance (see
Figure 6). The third was the US Consumer Price Index for All Urban Consumers, monthly,
from January 1913 until October 2023 (see Figure 7). The issue of interest is whether the
effects of exogenous shocks are transitory or permanent, and thus whether the series can
be characterised as trend stationary or difference stationary (Omay et al. 2017).

https://www.stlouisfed.org/
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Figure 5. US real GNP per capita. Note: the data source was the FRED database of the Federal Reserve
Bank of St Louis (https://www.stlouisfed.org/ accessed on 1 May 2020); the series is quarterly and
the sample period spans from 1947 Q1 to 2018 Q1.
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Figure 6. S&P500 Stock Market Index. Note: the data source was Yahoo! Finance (https://es.
finance.yahoo.com/); the series is weekly and the sample period extends from 1 January 1970 to 23
October 2023.
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Figure 7. US Consumer Price Index for All Urban Consumers. Note: the data source was the U.S.
Department of Labor Bureau of Labor Statistics (https://www.bls.gov); the series is monthly and the
sample period runs from 1913m1 to 2023m10.
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Table 3 reports the results for US real GNP, more precisely, the estimates of α, β, γ,
and d in the model given by Equations (1) and (2) under the assumption that ut is a white
noise process with zero mean and constant variance. It can be seen that when values of
γ from 0 to 1.50 with 0.10 increments were selected, the estimates of d were very similar
and ranged from 1.28 to 1.30. The estimated model exhibited an exponential trend with
γ = 0.80, d = 1.28, and the 95% confidence interval being given by (1.17, 1.42), with the
remaining two parameters, α and β, both being statistically significant. Thus, the unit root
null hypothesis is rejected in favour of d > 1 and γ < 1, which indicates the presence of a
concave time trend in the data.

Table 3. Estimated coefficients for the log of US real GNP per capita.

Γ d 95% Band α (t-Value) β (t-Value) Stastistic

0 1.29 (1.18, 1.42) 9.568 (1120.32) --- 0.02218

0.10 1.29 (1.18, 1.43) 9.625 (80.19) −0.00584
(−0.47) 0.04994

0.20 1.29 (1.18, 1.43) 9.585 (172.36) −0.01811
(−0.31) 0.04412

0.30 1.29 (1.18, 1.43) 9.572 (299.66) −0.00473
(−0.13) 0.03298

0.40 1.29 (1.18, 1.43) 9.565 (404.95) 0.00347 (0.14) 0.00959

0.50 1.29 (1.18, 1.43) 9.561 (550.26) 0.00823 (0.46) 0.02218

0.60 1.29 (1.17, 1.42) 9.559 (712.56) 0.01068 (0.83) -0.05273

0.70 1.28 (1.17, 1.42) 9.559 (882.03) 0.01165 (1.33) 0.05811

0.80 1.28 (1.17, 1.42) 9.561 (1008.38) 0.00981 (1.68) 0.00337

0.90 1.28 (1.17, 1.42) 9.583 (1079.09) 0.00709 (1.92) 0.01557

1.00 1.28 (1.17, 1.42) 9.565 (1107.19) 0.00453 (2.04) 0.01978

1.10 1.28 (1.17, 1.42) 9.567 (1115.28) 0.02653 (2.05) 0.05558

1.20 1.29 (1.18, 1.42) 9.567 (1119.87) 0.00147 (1.91) -0.03381

1.30 1.29 (1.19, 1.42) 9.568 (1119.53) 0.00079 (1.83) 0.02787

1.40 1.30 (1.19, 1.42) 9.568 (1122.12) 0.00041 (1.63) -0.06320

1.50 1.30 (1.20, 1.43) 9.568 (1121.49) 0.02166 (1.54) -0.01687
Note: The first column reports the values of the exponent for the trend. The second and third columns, respectively,
refer to the estimated differencing parameter and the associated 95% confidence intervals. The following columns
display the intercept and the slope of the exponential trend along with their associated t-values. The final column
reports the test statistics.

Table 4 has the same layout as the previous one but concerns the S&P500 stock market
index. The estimates of d ranged between 0.91 and 1.24 and the lowest statistic was
obtained with γ = 1.00 and d = 0.97 (0.92, 1.24). Thus, a linear time trend with a unit root
seems to be a plausible hypothesis; this is consistent, for t > 2, with a random walk model
with an intercept, and thus with the efficiency market hypothesis (EMH) in its weak form
(Fama 1970).

Table 4. Estimated coefficients for the S&P500 stock market prices.

Γ d 95% Band α (t-Value) β (t-Value) Stastistic

0 0.96 (0.93, 1.02) 41.119 (0.171) --- 0.227

0.10 0.96 (0.93, 1.02) 42.633 (0.143) 49.836 (0,16) 0.219

0.20 0.97 (0.92, 1.23) 52.366 (0.399 39.924 (0.31) 0.203

0.30 0.97 (0.92, 1.23) 54.121 (0.70) 37.914 (0.56) 0.239
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Table 4. Cont.

Γ d 95% Band α (t-Value) β (t-Value) Stastistic

0.40 0.95 (0.91, 1.22) 57.445 (1.09) 34.327 80.90) 0.202

0.50 0.95 (0.91, 1.22) 59.009 (1.18) 34.327 (0.90) 0.200

0.60 0.96 (0.92, 1.22) 73.080 (1.99) 18.523 (1.71) 0.188

0.70 0.97 (0.92, 1.23) 80.733 (2.28) 10.997 (2.08) 0.161

0.80 0.97 (0.92, 1.23) 85.950 (2.46) 5.941 (2.38) 0.091

0.90 0.97 (0.92, 1.23) 89.053 (2.55) 3.004 (2.62) 0.006

1.00 0.97 (0.92, 1.22) 90.718 (2.60) 1.461 (2.81) −0.001

1.10 0.97 (0.92, 1.23) 91.577 (2.63) 0.693 (2.96) −0.154

1.20 0.98 (0.92, 1.22) 92.010 (2.64) 0.324 (3.09) −0.225

1.30 0.97 (0.92, 1.23) 92.228 (2.65) 0.149 (3.20) −0.289

1.40 0.98 (0.93, 1.23) 92.341 (2.65) 0.068 (3.30) −0.346

1.50 0.97 (0.92, 1.24) 92.042 (2.61) 0.031 (3.39) −0.398
Note: The first column reports the values of the exponent for the trend. The second and third columns, respectively,
refer to the estimated differencing parameter and the associated 95% confidence intervals. The following columns
display the intercept and the slope of the exponential trend along with their associated t-values. The final column
reports the test statistics.

Finally, Table 5 reports the corresponding results for the US Consumer Price Index. In
this case, d was much higher than 1 (specifically, 1.44), with a confidence interval given
by (1.38, 1.52). Thus, the unit root null hypothesis is rejected in favour of d > 1; also, the
estimate of γ = 1.10 implies a convex time trend.

Table 5. Estimated coefficients for the US Consumer Price Index.

Γ d 95% Band α (t-Value) β (t-Value) Stastistic

0 1.43 (1.36, 1.51) 9.921 (3.13) --- 0.144

0.10 1.43 (1.36, 1.51) 9.938 (1.71) −0.144 (−0.02) 0.147

0.20 1.42 (1.36, 1.50) 9.851 (3.60) −0.056 (−0.01) 0.129

0.30 1.43 (1.36, 1.52) 9.814 (5.81) −0.018 (−0.03) 0.122

0.40 1.43 (1.35, 1.52) 9.784 (8.36) −0.015 (−1.21) 0.124

0.50 1.42 (1.37, 1.50) 9.871 (4.44) −0.017 (−1.22) 0.108

0.60 1.43 (1.36, 1.51) 9.742 (4.26) 0.123 (−0.02) 0.119

0.70 1.42 (1.36, 1.50) 9.796 (7.88) 0.125 (0.59) 0.114

0.80 1.43 (1.37, 1.52) 9.475 (5.76) 0.166 (0.60) 0.094

0.90 1.44 (1.38, 1.52) 9.697 (24.36) 0.171 (0.87) 0.088

1.00 1.44 (1.37, 1.50) 9.722 (26.15) 0.151 (1.11) 0.079

1.10 1.44 (1.38, 1.52) 9.755 (26.85) 0.106 (1.32) −0.055

1.20 1.44 (1.38, 1.50) 9.780 (27.05) 0.064 (1.91) −0.079

1.30 1.44 (1.37, 1.51) 9.741 (27.11) 0.034 (1.93) −0.087

1.40 1.44 (1.38, 1.51) 9.799 (26.14) 0.018 (1.98) −0.119

1.50 1.44 (1.37, 1.51) 9.801 (27.13) 0.009 (1.65) −0.145
Note: The first column reports the values of the exponent for the trend. The second and third columns, respectively,
refer to the estimated differencing parameter and the associated 95% confidence intervals. The following columns
display the intercept and the slope of the exponential trend along with their associated t-values. The final column
reports the test statistics.

5. Conclusions

This paper puts forward a long-memory modelling and testing framework that allows
for exponential deterministic trends in a fractional integration context. An attractive feature
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of the proposed test statistic is that its asymptotic distribution is N(0,1). The Monte Carlo
simulations carried out to examine the properties of the proposed test indicated that it
performed well with finite samples. As an illustration, the proposed framework was then
applied to model the behaviour of US real GDP, the S&P500 stock market index, and US
consumer prices. The empirical exercise showed that the suggested model captured well
the behaviour of the series under examination and was data-congruent; specifically, in
the case of US real GNP per capita and US CPI, the exponential trend fractional model
outperformed the one with a linear trend (i.e., γ = 1) for different differencing parameters.

The proposed modelling approach is widely applicable to time series that exhibit
exponential trends. However, it should be noted that, although unlimited exponential
growth might characterise some economic and financial series, this is not likely to occur
whenever real resources are involved. In such cases, there will necessarily be an upper
bound which should also be introduced into the model, for instance, through a logistic
curve. In addition, the stochastic structure of the model described with Equation (2) can be
extended using alternative approaches that allow for poles or singularities in the spectrum
at one or more frequencies away from zero, as is the case with seasonal and/or cyclical
structures.5 These issues are left for future research.
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Appendix A

Proof of Theorem 1

The test proposed in this theorem is an extension of Robinson’s (1994) fractional
integration linear framework to the non-linear case. The test statistic is r̂ described in
Equation (5), where T is the sample size. The sample variance of the residuals from
Equation (6) can be expressed as (see Gil-Alana 1997):

σ̂2 =
1
T ∑T

t=1 û2
t . (A1)

Under the assumption of a stationary martingale difference process for ut, through
Chebyshev’s inequality, Theorem 1 in Robinson (1994) ensures that the sample variance
converges in probability to the variance of the probability density function of σ2 (Robinson
1991, 1994; Tanaka 1999):

lim
T→∞

Prob
(∣∣∣σ̂2 − σ2

∣∣∣ > ε

)
= 0, (A2)

where ε can be any positive number.
Assuming the functional form of the polynomial in B as in Equation (2), the information

matrix Â in the test statistic in (5) can be expressed as (Robinson 1994):

Â =
2
T ∑T−1

j=1 ψ
(
λj
)
ψ′
(
λj
)
. (A3)
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Assuming now that φ(z; θ) in θ in a neighbourhood of θ = 0, which is the expression
corresponding to the polynomial in B in (2), i.e., φ(z; θ) = A = (1 − z)d+θ , and I(0) ut, ψ(λ)
can be represented as:

ψ(λ) = Re
∣∣∣∣ ∂

∂θ
logφ(z; θ)

∣∣∣∣ = −log
∣∣∣1 − eiλ

∣∣∣2 = −2log
(

2 sin
λ

2

)
(A4)

where ε can be any positive number and Re stands for real. The Euclidean norm of ψ(λ)
has a single pole ρ and the function is a monotonically increasing function. The supremum
in this function can be expressed as:

sup
λ∈Sk−(ρ−σ,ρ−σ)

(
|λ − ρ|

∥∥∥∥ψ(λ)− ψ

(
λ ± 1

2
σ

)∥∥∥∥) = O(ση) as σ → ∞ (A5)

where η is a real number which is greater than 0.5, k = 1, 2 . . . . . . ..r and ∥·∥ donates the
Euclidean norm. Equation (A5) ensures that a crucial condition for this test statistic is
satisfied, which is expressed in terms of the errors of the model. Specifically, the sampling
error for a in Equation (5) can be expressed as:

a − ∼
a =

2π

T ∑T
j−1 (par − p̂ar)′ I(λ)

(
β −

∼
β

)
− 2re

∣∣∣(par − p̂ar)′ I(λ)
∣∣∣, (A6)

where ˆpar is defined in Equation (6). Furthermore, the Ergodic theorem and martingale
difference sequence assumption ensure that plim

T→∞
(par − ˆpar) = 0, which implies:

par − p̂ar = op

(
1√
T

)
. (A7)

Under the assumptions concerning the error term, namely, that ut is I(0) combined
with Equation (A7), Theorems 2.1 and 2.2 in the neural network framework (Yaya et al.
2021) and the martingale difference central limit theorem (Brown 1971) ensure that the limit
distribution in (11) is followed.

Notes
1 Alternatively, an I(0) process can be defined in the time domain as one for which the sum of all autocorrelation coefficients

is finite.
2 Note that

∼
1 t becomes 0 for t > 1 only if do = 1.

3 For this particular version of Robinson’s (1994) tests, based on Equation (2), the spectrum has a singularity at the zero frequency;
therefore, j runs from 1 to T-1.

4 Note that shorter sample sizes, such as T = 50, though of interest in some cases, are not relevant in the context of fractional
integration and long-memory processes, which require large samples for meaningful statistical inference.

5 Although seasonal and cyclical fractional integration has already been analysed in a linear context in Gil-Alana and Robinson
(2001) and Gil-Alana (2001), respectively, no attempt has yet been made to incorporate non-linearities.
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