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Abstract: The aerial inspection of electricity infrastructure is gaining high interest due to the rapid 
advancements in unmanned aerial vehicle (UAV) technology, which has proven to be a cost- and 
time-effective solution for deploying computer vision techniques. Our objectives are focused on en-
abling the real-time detection of key power line components and identifying missing caps on insu-
lators. To address the need for real-time detection, we evaluate the latest single-stage object detector, 
YOLOv8. We propose a fine-tuned model based on YOLOv8’s architecture, trained on a custom 
dataset with three object classes, i.e., towers, insulators, and conductors, resulting in an overall ac-
curacy rate of 83.8% (mAP@0.5). The model was tested on a GeForce RTX 3070 (8 GB), as well as on 
a CPU, reaching 243 fps and 39 fps for video footage, respectively. We also verify that our model 
can serve as a baseline for other power line detection models; a defect detection model for insulators 
was trained using our model’s pre-trained weights on an open-source dataset, increasing precision 
and recall class predictions (F1-score). The model achieved a 99.5% accuracy rate in classifying de-
fective insulators (mAP@0.5). 
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1. Introduction 
Global energy demand, industrial or residential, is growing over the years, making 

the energy sector uniquely critical. As a result, the proper maintenance and periodical 
inspection of such critical infrastructure are a priority and a challenge as well. This re-
search addresses the challenge of high-voltage transmission line surveillance and inspec-
tion. Traditionally, power line inspections have been conducted manually by workers, 
assisted mainly by helicopters. These methods are not only costly but also time-consum-
ing and expose workers to high risk [1]. As a result, researchers have shifted their focus 
towards automated, remote inspection solutions utilizing unmanned aerial vehicles 
(UAVs), or drones. Drones provide more efficient and safer means of conducting inspec-
tions and have become increasingly popular for monitoring critical infrastructure in hard-
to-reach areas, such as transmission line networks. The efficiency of drone-based intelli-
gent inspections is estimated to be 2.5 times that of traditional methods, significantly aid-
ing grid maintenance personnel by saving time and reducing effort [2]. The latest ad-
vancements in this area have seen the integration of drones with artificial intelligence (AI), 
further enhancing the efficiency and accuracy of the inspection process. Overall, this tech-
nology has the potential to have a significant impact on the power industry, helping to 
ensure that power line systems can meet the increasing demand for energy while main-
taining safety. To this end, this study investigates automatic power line detection models 
based on the latest single-stage detector, YOLOv8 [3]. YOLO stands for You Only Look 
Once [4], because unlike previous regional neural networks (RCNNs), where the neural 
network made predictions after creating several regions of interest (ROIs) within an im-
age, in YOLO the input image is passed only once through the process. 
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This work is part of a project that aims for visual-based navigation over power lines 
for a fully automated inspection solution. This purpose requires a system that is able to 
recognize all the major components of high-voltage electricity facilities from a longer dis-
tance; namely towers, insulators, and conductors, and then approach at a closer distance 
to differentiate between normal and defective insulators (missing caps). For this purpose, 
we created an image dataset consisting of both drone and ground footage in order to train 
a YOLOv8 model for detecting power line components in their normal state. Pre-trained 
weights derived from this process were then utilized to train a model for detecting defec-
tive insulators on an open-source dataset. Our work proved that the pre-trained weights 
of our model can improve precision and recall when training other YOLOv8 models for 
defect detection applications. 

Concurrently, this work offers publicly accessible models and an image dataset to 
facilitate the further research of power line inspection. This initiative is particularly note-
worthy given the existing scarcity of open-source data in the field. 

1.1. Contributions 
This research enhances existing knowledge, providing useful insights in the field of 

visual-based power line inspection with three main contributions: 
 In this work, we created an image dataset with annotation files, both for object detec-

tion (bounding boxes) and instance segmentation (polygons), containing 2056 images 
of the three main components of high-voltage power line facilities: towers, insulators, 
and conductors. To the best of our knowledge, there is only one dataset publicly 
available, containing 1100 images of high-voltage towers and conductors with anno-
tations for instance segmentation [5], indicating the need for more data in the field. 

 Our proposed method of utilizing our model’s pre-trained weights for detecting de-
fects of insulators increased precision and recall class predictions (f1-score), outper-
forming state-of-the-art work. 

 This work contributes to the evaluation of recently developed YOLOv8-based models 
for real-time power line detection, focusing on the capabilities of onboard processing. 
The research builds upon our prior work [6], improving the detection accuracy across 
all three object classes. 

1.2. Related Work 
In the past five years, researchers have been increasingly interested in utilizing deep 

learning techniques for detecting electrical components and conducting fault diagnosis. 
This interest stems from the advantages offered by computer vision technology, such as 
the ability to accurately and rapidly detect multiple objects. In [7], researchers carried out 
a pioneering work in this field, employing a convolutional neural network (CNN) to clas-
sify the status of insulators. Their approach involved extracting features from multiple 
patches using a CNN model, which served as a representation of the insulator’s status. 
These extracted features were then used to train a support vector machine (SVM) for clas-
sification purposes. Interesting results were also obtained from the Region-CNN approach 
algorithms, as demonstrated in studies [8,9]. These studies showed that deep learning has 
the potential to enable fully automated power line inspections, achieving high accuracy 
results with a mean average precision (mAP) of over 90%. Recently, there has been a focus 
on striking a balance between accuracy and speed, leading to the exploration of single-
stage detectors. Among various deep neural architectures, the YOLO family has gained 
prominence since 2019. In [10,11], YOLOv2 and YOLOv3, respectively, were assessed for 
their effectiveness in detecting and classifying distribution line poles. These models out-
performed previous Faster-RCNN models in terms of both mAP and detection speed. In 
our previous work [6], a YOLOv5-based model achieved an 82.3% mAP 0.50 for detecting 
high-voltage towers, conductors, and insulators, reaching 33 fps detection speed in a UAV 
flight, using a Jetson Nano (Nvidia Corporation, Santa Clara, California, USA) for onboard 
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processing. Furthermore, YOLOv5 was fine-tuned using a custom dataset and evaluated 
for its ability to detect normal and defective insulators in [12]. For other smaller objects 
found in transmission lines, such as dampers, spacers, and adjusting plates, an optimized 
YOLOv5 algorithm was proposed in [13], demonstrating high accuracy and speed. An 
image enhancement method based on illumination correction and compensation was 
combined with a fine-tuned YOLOv5 model in [14] to detect defective insulators, reaching 
a 94.79% mAP on the open-source dataset (CPLID). On the same dataset, ref. [15] achieved 
an even higher overall mAP of 97.82% and a detection speed of 43.2 fps. Finally, a method 
to enhance the feature extraction capability of the YOLOv5-small neural network was at-
tempted in [16] to improve the detection performance while maintaining high speed. In 
[17], researchers achieved the highest results so far in detecting defective insulators, with 
the F1-score reaching 99.64%, using the latest YOLOv8 architecture combined with PS-
ProtoPNet. 

2. Materials and Methods 
2.1. Methodology 

This work experiments on YOLOv8 architecture, which is the latest object detector of 
the YOLO models. Object detection is a technique in computer vision that enables the 
identification and positioning of objects in images or videos. It merges the concepts of 
image classification and object localization. Image classification is the process of determin-
ing the category of objects in an image, while object localization involves pinpointing the 
objects’ positions, typically by surrounding them with a bounding box to mark their 
boundaries. Object detection models are trained on relatively large datasets containing 
images annotated with bounding boxes and class labels. These models learn to recognize 
paĴerns, shapes, and features that correspond to various objects, enabling them to detect 
these objects in new, unseen images. In YOLO, the input image is passed through the 
neural network only once to make predictions. This offers fast predictions achieving real-
time object detection with a video stream of less than 25 ms latency [4]. The input image 
is divided into grid cells (S × S), and each of them corresponds to bounding box predic-
tions, confidence scores for these boxes, and class probabilities. Figure 1 depicts the ge-
neric YOLO algorithm’s process. YOLO has received several improvements—YOLOv2 
[18], YOLOv3 [19], YOLOv4 [20], and YOLOv5 [21], reaching YOLOv8 in 2023 [3]—by the 
Ultralytics team. YOLOv8 introduces a novel architecture, with faster and more accurate 
predictions on the MS-COCO dataset, anchor-free detections, and an additional applica-
tion of instance segmentation (mask branch). The architecture of YOLOv8 comprises two 
main components, the backbone and the head: 
a. The backbone is based on a modified CSPDarknet53 architecture, consisting of 53 

convolutional layers, while incorporating cross-stage partial connections to enable 
enhanced information flow between the layers. 

b. The head is composed of several convolutional layers followed by fully connected 
layers. These layers play a crucial role in predicting bounding boxes and class prob-
abilities for detected objects in an image. 
Similar to YOLOv5, we find five different variations (nano, small, medium, large, and 

xlarge) depending on the layers’ depth and width. 
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Figure 1. YOLO model detection process: It divides the image into an S × S grid and each grid cell 
predicts B bounding boxes, the confidence for those boxes, and C class probabilities (class probabil-
ity map indicating each class prediction by different pixel coloring) [4]. 

The aim of this research is reflected in the following graphical representation (Figure 
2), which illustrates the aerial inspection with onboard processing using a drone. 

 

 
 

Figure 2. Schematic representation of real-time object detection on power lines. 

We fine-tuned and trained models based on the YOLOv8 architecture and its differ-
ent variations (nano, small, medium, large, and xlarge), which detected the three main 
power line components (towers, insulators, and conductors, TICs) using our custom da-
taset described in Section 2.4. We evaluated our model for accuracy and speed and chose 
the model that best fit for drone applications. The real-time detection of our selected TIC 
model was verified by optimizing it with Tensor-RT (v8.2) and ONNX and performing 
tests on video footage using both a GPU (GeForce RTX 3070) and CPU (AMD-Ryzen 5) to 
assess the performance. Tensor-RT (hĴps://developer.nvidia.com/tensorrt , accessed on 15 
October 2023) enhances inference performance by leveraging various optimization tech-
niques. These techniques include quantization, layer and tensor fusion, kernel tuning, and 
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more, and are specifically designed for Nvidia GPUs. The Open Neural Network eX-
change (ONNX) (hĴps://onnx.ai/ , accessed on 15 October 2023) runtime is an open-source 
project that is designed to accelerate machine learning across a wide range of frameworks, 
operating systems, and hardware platforms. Both formats can speed up inference in 
YOLO models, with Tensor-RT accelerating the speed on GPUs and ONNX increasing the 
speed on a CPU. 

2.2. Model Training 
We used YOLOv8 base models as a starting point to build up our TIC model training. 

Transfer learning, as this training methodology is called, takes advantage of other models 
trained on large, open-source datasets, such as ImageNet and MS-COCO, thus being pre-
ferred to training from scratch in terms of computational efficiency. In our case, we used 
YOLOv8 weights, pre-trained on the MS-COCO dataset, a large-scale object detection da-
taset consisting of 330 K images and 80 object categories. The pre-trained models used to 
train our TIC models are listed in Table 1. 

Table 1. Pre-trained models used for transfer learning. 

Model Model Version Pre-Trained Model Parameters (M) GFLOPs (B) 
 Yolov8n yolov5n.pt 3.2 8.7 

YOLOv8 Yolov8s yolov5s.pt 11.2 28.6 
 Yolov8m yolov5m.pt 25.9 78.9 
 Yolov8l yolov5l.pt 43.7 165.2 
 Yolov8x yolov8x.pt 68.2 257.8 

Initially, we conducted training for all five models using the default hyperparameters 
and internal data augmentations provided in the original code. By observing the behavior 
of training loss over the training epochs, we found that the model was “learning” too fast, 
while the validation loss indicated early overfiĴing. Based on these observations, we 
deemed it necessary to fine-tune some of the main hyperparameters of each model using 
a genetic algorithm (GA) for optimizing the hyperparameters of YOLO-based models. The 
final combination of the main hyperparameters we set for training are shown in Table 2. 
The most important hyperparameter we adjusted was the initial learning rate (lr0), which 
is a significant factor regarding the model’s accuracy. We found that changing its value 
could improve the model’s accuracy by approximately 1–2%. Other changes were related 
to augmentation techniques, which improved the training process by avoiding early over-
fiĴing. Information about the training environment is listed in Table 3. 

Table 2. Tuned hyperparameters. 

Hyperparameter Value Hyperparameter Value 
Lr0 0.00106 Scale 0.82518 
Lrf 0.01 Mosaic 0.94583 

Momentum 0.98 Flipud 0.25826 
Weight decay 0.00058 

Copy_paste 0.09673 Epochs 80–100 
patience 20 
Hsv_h 0.01443 

  Hsv_s 0.68579 
Hsv_v 0.28021 

Translate 0.12681 

Table 3. Training environment. 
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Dependencies/Hardware Version 
python 3.10.11 

Ultralytics 8.0.112 
CUDA 12.0 
GPU Tesla 4 15 GB (google colab) 
CPU AMD Ryzen 5 2500U 8 GB RAM (2 GHz) 

2.3. Insulators’ Inspection Method 
For the inspection task, we trained on an open-source dataset (CPLID) using our TIC 

model and its pre-trained weights from the previous stage. The described methodology is 
presented in Figure 3. 

 
Figure 3. Methodology steps applying transfer learning, using our TIC model’s pre-trained weights 
to enhance the performance of the defects’ detection model. 

We built upon our TIC model from the earlier phase, which had been pre-trained on 
a dataset relevant to power lines (TIC dataset), to develop a model capable of identifying 
defects in insulators. Our investigation focused on the impact that pre-trained weights 
from our model had on the accuracy when working with fewer images, as opposed to the 
default YOLOv8 weights. Additionally, we explored whether this approach would result 
in quicker convergence, meaning the model would reach its optimal performance faster 
during the training process. 

2.4. Data Description 
2.4.1. Tower, Insulator, and Conductor (TIC) Dataset 

Our TIC dataset including 2056 images of transmission line network footage in 
Greece (Northeast AĴica) and annotations of three object classes, i.e., towers, insulators 
and conductors, was created by aerial and ground photos taken from a DJI Mavic 2 Zoom 
quadcopter (CMOS 1080p, 30 fps) and a 64 MP conventional camera, respectively. To cap-
ture real flight parameters with diverse backgrounds and different points of view, angles 
and sun positions of the shots differ (Figure 4). 

   
(a) (b) (c) 

Figure 4. Sample images of the dataset: (a) downside up, (b) top down, and (c) side. 
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In order to simplify the computational procedure, images (frames) from video foot-
age were cropped, rotated, and resized to 512 × 640 (original size 1080 × 1920). Figure 5 
shows polygon annotation on an open-source annotations tool. In total, 9802 objects were 
annotated. We extracted segmentation pixel coordinates and bounding box coordinates of 
each object, which were then used for the model training procedure (instance segmenta-
tion and object detection, respectively). 

  
Figure 5. Annotations of towers (blue), insulators (red), and grids (yellow) using CVAT tool (v2.1). 
Conductors were annotated both separately and in pairs to visualize them as straight line “corri-
dors”. 

The object classes were very different from each other, in terms of size and features, 
and often more than one or two object classes were captured within a frame. Different 
angles and distances of the same object class were also included, making the detection 
procedure even more complex. These characteristics of the dataset reduce the mean aver-
age precision score. However, they reflect real environment visualization for visual-based 
navigation. Conductors, often depicted as straight lines, typically occupy a minimal num-
ber of pixels within an image, leading to an inconsistent ratio of object-to-background 
pixels. They tend not to be centrally positioned within a frame and may bear resemblance 
to other background elements, such as lines of similar shape, which can perplex the model. 
These issues can lead to challenges in accurately detecting and distinguishing conductors 
from the surrounding environment, potentially resulting in misclassifications or false pos-
itives in the object detection task. On the other hand, towers are typically depicted as large 
objects within an image, with a characteristic shape but also containing many transparent 
areas, resulting in high background noise. Compared to towers, insulators are depicted as 
relatively small objects, often necessitating closer shots for precise defect detection. When 
captured at close range, they exhibit clear boundaries and a distinct geometry character-
ized by recognizable caps, typically in the shape of disks or cylinders. These geometric 
features, along with their elongated body, facilitate the easier detection of small defects. 

2.4.2. Chinese Power Line Insulator Dataset (CPLID) 
To inspect insulators and identify potential missing caps, the open-source CPLID da-

taset by Tao et al. (2020) [22] was utilized to train our models. The dataset is divided into 
two parts: 
a. 600 images of normal insulators captured by UAVs, with bounding box annotations 

in VOC2007 format; 
b. 248 synthesized images of defective insulators, also with bounding box annotations 

in VOC2007 format. 
This dataset contains up-close shots of insulators with only two object classes, where 

either of them appears in each image, thus demonstrating low complexity. Although the 
dataset is relatively small, we applied no external data augmentation techniques, as 
YOLOv8 provides internal augmentations that are sufficient to achieve high accuracy with 
no overfiĴing indications. Sample images of the CPLID dataset are shown in Figure 6. 
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Figure 6. Sample images of CPLID dataset, containing normal insulators images (left side) and syn-
thesized images of insulators with missing cups with diverse backgrounds (center,right side). 

3. Results 
3.1. Evaluation Metrics 

Unlike previous YOLO versions, YOLOv8 calculates classification loss based on the 
focal loss function, which is an improved version of cross-entropy loss. It focuses on hard 
examples that the model predicts incorrectly rather than dealing with rewarding the easy 
predictions that the model understands and predicts correctly [23]. The equation of focal 
loss extends to cross-entropy by adding a parameter γ to be tuned during cross-validation, 
which has a value range of [0, 1] (Equation (1)). 

Focal Loss =  − ∑ (𝑖 − 𝑝𝑖)ఊ௜
௜ୀଵ log𝑏 (𝑝𝑖)  (1)

where γ = 0 and γ = 1 indicate that the predicted probability (pi) is high and low, respec-
tively, so the function is unaffected by this parameter and works like cross-entropy. The 
regression branch (bbox) is calculated using the intersection over the union (IoU), which 
is defined by the area where the predicted box and the ground truth overlaps divided by 
the total area of both bounding boxes (predicted and ground truth): 

IoU(𝑏௣௥௘ௗ , 𝑏௚௧) =
୅୰ୣୟ(ୠ౦౨౛ౚ∩ୠౝ౪)

୅୰ୣୟ(ୠ౦౨౛ౚ∪ୠౝ౪)
  (2)

During training, loss in the training set and loss in the validation set should be re-
duced; otherwise, the model indicates overfiĴing. In our methodology, we selected train-
ing iterations based on validation loss behavior. The graphs in Figure 7 depict the training 
and loss behavior of the models. The training loss graph shows how well each model is 
learning from the training data over time. A general trend of decreasing loss indicates that 
the model is improving its predictions and geĴing beĴer at the task that it is being trained 
for. We observe that the smaller the model, the sooner it converges, meaning it learns as 
much as it can from the training data earlier compared to more complex models, such as 
YOLOv8x. Thus, further training may not significantly improve its performance. Valida-
tion loss gives an estimate of how well the model performs on a dataset that it has not 
seen during its training process. A decreasing trend in validation loss suggests that the 
model is learning general paĴerns rather than memorizing the training data. Lower values 
of validation loss indicate a beĴer performance of the model, which in our case is 
YOLOv8x. Once the level of the validation loss curve stabilizes (in other words, it stops 
decreasing), it is recommended to stop the training process to avoid overfiĴing. In our 
scenario, the optimal number of iterations was identified as 50 for the larger models and 
80 for the smaller models. 
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Figure 7. Box loss during training process for all five YOLOv8 models: loss in training dataset (left) 
and loss in validation dataset (right). 

The final evaluation stage of the trained model is defined by the mean average preci-
sion (Equation (5)) and F1-score (Equation (6)). 

Precision is calculated using false positives and true positives of the predictions: 
 true positive (TP): object is present and predicted; 
 false positive (FP): object is predicted when not present (confused with background); 
 false negative (FN): object is present and not predicted. 

Precision relies on true positives in relation to false positives, while recall relies on 
true positives in relation to false negatives (Equations (3) and (4)): 

Precision =
TP

TP + FP
  (3)

Recall =
୘୔

୘୔ା୊୒
  (4)

The mean average precision is calculated by the sum of the average precision (AP) 
for each query, represented by the sum of the curve area under the PR curves: 

mAP =
ଵ

୒
∑ APi୒

୧ୀଵ   (5)

An IoU of 50% is the minimum acceptable percentage to evaluate the accuracy of the 
majority of the models, indicated as mAP@.50. We also included an evaluation of the AP 
across all IoUs from 50% to 95% (mAP@.50:.95). 

F1-score is the harmonic average of recall and precision, taking values between 0 and 
1: 

F1 = 2 ×
୔୰ୣୡ୧ୱ୧୭୬×ୖୣୡୟ୪୪

୔୰ୣୡ୧ୱ୧୭୬ାୖୣୡୟ୪୪
  (6)

3.2. Models’ Performance for Detecting Key Components 
We fine-tuned, trained, and evaluated five YOLOv8 models on our custom TIC da-

taset predicting towers, insulators, and conductors based on the different base models 
(nano, small, medium, large, and xlarge). Table 4 shows the mAP score of each fine-tuned 
model and speed in the validation dataset, while Table 5 depicts the detection accuracy of 
each object class. 

Table 4. Our models’ performance with Tesla T4 GPU (15 GB). Input image size, 640 × 640. NMS 
time per image ≈ 1.5–2 ms (not included). The highest scores overall are highlighted in bold. 

TIC Models Precision Recall mAP@.50 mAP@[.50:.95] 
Inference 

(FPS) 
Model Size 

Time to 
Train 

YOLOv8n 0.793 0.781 0.822 0.606 277 5.9 MB 31 min 18 s 
YOLOv8s 0.813 0.784 0.838 0.646 138 21.5 MB 30 min 34 s 
YOLOv8m 0.833 0.78 0.84 0.678 61 49.6 MB 1 h 17 min 
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YOLOv8l 0.841 0.787 0.852 0.694 35.7 83.6 MB 1 h 12 min 
YOLOv8x 0.837 0.799 0.856 0.699 21.5 130 MB 1 h 77 min 

Table 5. Precision, recall, and mAP of YOLOV8x for each class, reaching 97% mAP@.50 for tower 
detection. 

Object Class Precision Recall mAP@.50 mAP@[.50:.95] 
Tower 0.956 0.891 0.97 0.916 

Insulator 0.836 0.865 0.91 0.696 
Conductor 0.718 0.641 0.689 0.486 

The YOLOv8x TIC model outperformed the others in terms of accuracy; however, it 
was significantly slower than the other YOLOv8 models. We noticed a fair trade-off be-
tween accuracy and speed for the YOLOv8s TIC model, which is also lighter and less com-
plex, and could thus be more effective for onboard real-time applications using a drone. 
We chose YOLOv8s TIC model for further testing the detection speed with ONNX and 
Tensor-RT optimization on a CPU and GPU to verify the results on video. Table 6 presents 
the results of the optimized TIC model hardware tests. 

Table 6. Accuracy and speed results of video inference of our optimized TIC model on RTX3070 (8 
GB) and on AMD- Ryzen 5 (16 GB) CPU. 

Model Hardware Image size mAP@.50 ms fps 
TIC model GPU 640 83.8% 4.1 243 

 CPU 320  25.6 39 
TIC model + ONNX CPU 320 82.2% 32.4 30.8 

TIC model + Tensor-RT GPU 640 82.2% 3.9 256 

Running our models on a GPU, we observed an increase in speed after optimizing 
our model with Tensor-RT, with a good balance between mAP and fps. On the other hand, 
optimizing the inference with ONNX on a CPU did not result in a higher speed; however, 
we achieved real-time detection in both cases by reducing the image size from 640 × 640 
to 320 × 320. The real-time detection speed on GPU-free hardware is promising and indi-
cates that our model is capable of onboard real-time detection using single-board comput-
ers (SBCs) with embedded GPUs, which are often used as companion computers on UAVs. 

Based on state-of-the-art work, experiments on other object detection methods, such 
as CNN models, CenterNet, Fast- and Faster-RCNN, have shown that YOLO models are 
superior in terms of balancing accuracy and speed [13,14]. They demonstrate excellent 
speed performance while producing lightweight models, which is one of the main objec-
tives of our research. To verify our results over other computer vision techniques, we ex-
perimented and compared our TIC YOLOv8s model to recent instance segmentation 
methods, which according to the literature [24,25] can achieve real-time multi-class detec-
tion, i.e., YOLACT [26]. Unlike traditional segmentation methods that might first detect 
objects and then segment them, YOLACT (You Only Look At Coefficients) operates by 
predicting both object classes and segmentation masks simultaneously. It is a pioneering 
approach in the realm of instance segmentation that can operate at speeds comparable to 
real-time object detection models like YOLO. To this end, we trained all the models on our 
TIC dataset and the results are shown in Table 7. 

Table 7. Performance comparison of TIC YOLOv8s model with YOLOv5s, YOLACT, YOLACT++, 
and YOLACT-Edge models. Object detection models (YOLO) are evaluated for their bounding box 
predictions and instance segmentation models (YOLACT) for their mask prediction accuracy. The 
highest scores in each column are highlighted in bold. 

Model mAP@[.50:.95] mAP@.50 Inference (FPS) 
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YOLACT-Resnet50-FPN [26] 32.71 53.14 26 
YOLACT++-RESNET50 [27] 32.11 53.14 27.8 

YOLACT Edge-Resnet50 [28] 32.34 53.02 33 
YOLOv5s [6] 60.7 82 303 
TIC YOLOv8s 64.6 83.8 138 

Figure 7 demonstrates that YOLOv8s provides a fair trade-off between accuracy and 
speed compared to YOLOv5s. Among the YOLACT models evaluated, YOLACT-Edge 
was the only one to achieve real-time detection on the TIC dataset, although with perfor-
mance significantly inferior to that of the YOLO models. These findings underscore the 
suitability of our object detection model for practical applications. 

3.3. Models’ Performance for Detecting Defects in Insulators 
To verify our TIC model’s robustness, we further extended our research by training 

models for detecting normal and defective insulators on the open-source dataset CPLID. 
We applied transfer learning using our TIC model weights to train a model to predict 
defects in insulators. This method proved to increase precision and recall class predictions 
(reflected by F1-score curve), compared to training using the base YOLOv8s pre-trained 
weights on the MS-COCO dataset. In Figure 8, the F1-score curve reflects the precision 
and recall class predictions of each model. 

 

(a) 
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Figure 8. F1-score curve of the defects’ detection models trained on (a) YOLOv8s base model and 
(b) our TIC model. 

The overall accuracy score, according to the F1-score curves, suggests that our meth-
odology led to a model that had a marginally beĴer balance of precision and recall. In 
practical terms, it appeared to be more effective at correctly identifying defects while min-
imizing the number of false positives and false negatives. 

We compared this model with state-of-art work, where a high mAP and F1-score 
were achieved on the same dataset and ground truth annotations, showing that our 
method based on YOLOv8 architecture outperformed the others in precision and recall. 
Table 8 shows the score results for each model. 

Table 8. Comparison with related work on CPLID dataset for detecting defective insulators. The 
highest scores in each column are highlighted in bold. 

Authors Model Precision Recall mAP@.50 F1 
Tao et al. [22] CNN/VGG-16 91% 96% N/A 93.4% 

Qi et al.[16] 
YOLOv5 + anchor, 
NAM, and gn Conv 94.8% 91.9% 93.7% 93.32% 

Feng et al. [12] 
YOLOv8x + Anchor 

changing 
86.8% 1 99.5% 92.93% 

Chen et al. [29] YOLOv5 + CBAM + 
Focal loss 

N/A 1 99.5% N/A 

Xia et al. [30] CenterNet 95.8% N/A 79.4% N/A 

Dong et al. [31] 
Cascade RCNN + 

SwingV2 
96.5% 98.55% 94.6% 97.51% 

Zhao et al. [32] 
Attention mechanism 

+ Fast-RCNN 
N/A 98.42% 94.3% N/A 

Wang et 
al.[33],[34] 

Improved YOLOv5 
[33] 

98.6% 94.3% 97.8% 96.4% 

 
YOLOv4 + data aug-

mentation [34] 
91% 98.84% 99.08% 94.7% 

Ours Base YOLOv8s 96% 98.1% 98.7% 97.04% 
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Ours TIC model 97.7% 97.6% 99% 97.65% 
defect  0.998% 1 99.5% 99.89% 

normal  0.955% 0.953% 98.5% 97.35% 

We observed that our method achieved the highest F1-score amongst the other meth-
ods. This indicates that the model is ready for practical application, as it has advanced 
ability to accurately identify relevant instances with a balanced approach towards false 
positives and false negatives. It is important to highlight that our model achieved a highly 
competitive accuracy, without external augmentations or modifications to the backbone. 
These techniques, while useful, tend to complicate the pre-processing and training phases. 
In the comparison table, we exclusively feature models trained on an identical CPLID da-
taset to ensure fair comparability. This is because outcomes can vary substantially and 
become incomparable if either the dataset or the annotation process (ground truth) is dif-
ferent. Nonetheless, it is important to acknowledge the notable contribution made by [35], 
in which an enhanced YOLOv8 algorithm was tested in detecting small insulator targets 
using a different dataset, achieving a 99.4% mAP 0.50. In the same context, researchers in 
[17] pre-processed, augmented, and re-annotated the CPLID dataset with remarkable re-
sults as well. Using a method of combining the YOLOv8m model with PS-ProtoPNet 
based on Resnet-34, they achieved an F1-score of 99.64% and 99.79% accuracy in defect 
classification, which is close to our F1-score for defect detection, i.e., 99.89%. 

3.4. Inference 
Inference conducted on test images showed a high accuracy rate in the predictions 

made by both models (the TIC model and the defect detection model), as illustrated in 
Figure 9. This evidence supports their potential for practical application in real-world 
power line inspections. We observed a decrease in prediction accuracy as the shot distance 
increased, a trend that aligned with expectations. This occurs because objects are repre-
sented by fewer pixels within a frame when the drone moves further away. 

  
(a) (b) 
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Figure 9. Inference on test images of (a,b) TIC model predictions and (c,d) defect detection model. 
Inference on drone footage is also provided in mp4 format, named Video S1, in Supplementary 
materials section.  

4. Discussion 
In this study, we explored the capabilities of YOLOv8, the latest iteration in the series 

of real-time object detectors, specifically for the aerial automatic inspection of power lines. 
Our approach included the development of an original dataset comprising 2056 images 
that represent the complexity of real-world environments encountered during drone-
powered inspections. This dataset was curated to include a variety of angles and back-
grounds, reflecting the diverse conditions under which power line components—namely 
towers, insulators, and conductors (TICs)—are observed. Such diversity is critical, as it 
closely mimics the challenges of drone maneuverability in authentic operational scenar-
ios. The inclusion of different backgrounds and the inherent variability in the physical 
characteristics of the TIC components elevate the complexity of the detection task at hand. 
To enhance the utility of our dataset for broader applications, we annotated the images 
using both polygons and bounding boxes. This dual annotation approach not only facili-
tates instance segmentation but also augments the scope of object detection applications. 

Leveraging the YOLOv8 architecture, we conducted training sessions across models 
varying in layer depth. Our objective was to strike an optimal balance between accuracy, 
model size, and processing speed, which is paramount for on-board detection systems 
constrained by computational resources. The YOLOv8s model emerged as the most suit-
able variant, demonstrating a high-speed performance of 243 fps on an Nvidia GeForce 
RTX 3070, achieving an overall mean average precision (mAP) of 83.8%. These metrics 
underscore the model’s efficacy and its potential as a foundational model for further re-
search in power line inspection, including fault and defect detection. 

To validate the robustness of our TIC model, we conducted tests using the open-
source CPLID dataset, which includes images of defective insulators. The incorporation 
of our model’s weights enhanced the overall mAP to 99% and improved the F1-score for 
class predictions. This marked improvement, when compared to the base YOLOv8 
weights trained on the MS-COCO dataset, highlights the precision of our model in iden-
tifying defects. Moreover, our F1-score for detecting defective insulators reached 99.89%, 
positioning our results among the highest reported in the literature. 

It is essential to note that, while our work focuses on YOLO-based models, significant 
contributions in the literature [36–38] also present promising avenues for future research 
in this domain. Our investigation extends beyond the immediate application of TIC mod-
els for power line inspection. We envisage the future implementation of our models in 
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visual-based navigation tasks across transmission line networks. Preliminary results [6] 
indicate that our models, when deployed on unmanned aerial vehicles (UAVs) equipped 
with single-board computers (SBCs) featuring GPU processors and essential sensors (FHD 
camera, thermal sensor, and LiDAR), can facilitate real-time automatic inspection tasks 
effectively. This capability not only demonstrates the practical applicability of our models 
in field conditions but also paves the way for autonomous navigation and inspection sys-
tems that can operate independently of human intervention. 

In conclusion, our study provides a comprehensive evaluation of the YOLOv8 detec-
tor for aerial power line inspection tasks. Through a detailed analysis of our original da-
taset, model training and testing phases, we have demonstrated the model’s high perfor-
mance and its potential for future applications in automated inspection and navigation 
systems. By providing our original dataset and model weights publicly, we aim to con-
tribute to the open-source community and to the ongoing efforts in enhancing the relia-
bility and efficiency of power line maintenance and inspection protocols. 

Supplementary Materials: Inference on drone footage (VideoS1.mp4) is openly available at: 
hĴps://drive.google.com/drive/folders/1ZLePzH2bEddZNVCc389al3SokTV9EC7G?usp=sharing 
(accessed on 15 January 2024). 
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