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Abstract. Recent years witnessed significant performance advance-
ments in deep-learning-driven natural language models, with a strong
focus on the development and release of Large Language Models
(LLMs). These improvements resulted in better quality AI-generated
output but rely on resource-expensive training and upgrading of mod-
els. Although different studies have proposed a range of techniques
to enhance LLMs without retraining, none have considered compu-
tational argumentation as an option. This is a missed opportunity
since computational argumentation is an intuitive mechanism that
formally captures agents’ interactions and the information conflict
that may arise during such interplays, and so it seems well-suited
for boosting the reasoning and conversational abilities of LLMs in a
seamless manner. In this paper, we present a pipeline (MQArgEng)
and preliminary study to evaluate the effect of introducing compu-
tational argumentation semantics on the performance of LLMs. Our
experiment’s goal was to provide a proof-of-concept and a feasibility
analysis in order to foster (or deter) future research towards a fully-
fledged argumentation engine plugin for LLMs. Exploratory results
using the MT-Bench indicate that MQArgEng provides a moderate
performance gain in most of the examined topical categories and, as
such, show promise and warrant further research.

1 Introduction
Since the introduction of the Transformer technology [34] in 2017,
the field of artificial intelligence has significantly advanced by mov-
ing towards a paradigm of ‘pre-training’ and ‘fine-tuning’ develop-
ment [40] ultimately leading to the establishment of the so-called
Large Language Models (LLMs). Indeed, as their name suggests,
LLMs are precisely scaled-up versions (from the architecture size
or data perspective) of pre-trained models. This increase in dimen-
sion entails interesting and unforeseen consequences1 impacting the
models’ capabilities, such as improved arithmetic, multi-task under-
standing, and enhanced multi-lingual operations [36]. There is also
research attesting how Theory of Mind (ToM), i.e. the (human) ap-
titude to impute mental state to others, may have spontaneously oc-
curred in LLMs as a byproduct of their training [22]. These models
thus seem to be endowed with a rich variety of skills that position
them far above simple statistical tools which are proficient in lan-
guage generation. Nonetheless, different scholars argue that LLMs
still lack reasoning skills, logical thinking and writing competencies
[24, 3, 16, 30]. Indeed, according to some recent studies [18], LLMs

1 Notice, however, that emergent abilities constitute a controversial topic and
some researchers even argue against their existence [29].

are essentially unable to capture the role of language beyond statis-
tics (and further scaling them up would not provide any adequate
solution to this). As an example, we could consider the understand-
ing these models have about causality: whilst they retain correlations
from their training data, these do not always reflect reality. Addition-
ally, LLMs can propose likely assertions but not definitive conclu-
sions, which may also change in different instances [18].

Computational argumentation has become increasingly central as
a core study within Artificial Intelligence [5] given its promising
paradigm of modelling reasoning in the presence of conflict and un-
certainty. Indeed, the main strength of this approach lies within the
natural use of arguments as a means to formalise non-monotonic
reasoning, showing how humans handle inconsistent information di-
alectically. In a nutshell, the idea is that correct reasoning concerns
handling only statements whose stance and embedded data can be
defended against any challenges moved by counterarguments.

Proposals of integration between computational argumentation
and LLMs have already been outlined in [9, 8], confirming the suit-
ability of such a combination. Building on these initial ideas, in this
paper, we developed a simple pipeline (MQArgEng) to enable test-
ing of the effectiveness of computational argumentation semantics in
enhancing LLMs performances. Our experiment goal was to provide
a proof-of-concept and a feasibility analysis in order to foster (or
deter) future research towards a fully-fledged argumentation engine
plugin for LLMs. Preliminary results suggest in favour of the former,
underscoring also how further studies can potentially yield greater
benefits.

The research original contributions presented herein are twofold
and focus on the questions: (1) Is it feasible to integrate computa-
tional argumentation within the Large Language Models workflow?
(2) Does this yield enhancements in their performance? MQArgEng,
the novel LLM and argumentation pipeline introduced here, aims to
address both issues. The paper is structured as follows. In Section
2, we describe the preliminary notions that ground the subsequent
work. Section 3 introduces the approaches and tools we leveraged
to structure the pipeline presented in Section 4, whose output is as-
sessed via the MT-Bench and recorded in Section 5. These findings
are then discussed in Section 6, whereas Sections 7 and 8 review
related research and outline potential future directions before con-
cluding in Section 9.
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2 Background
Before delving into the envisaged pipeline, we will briefly delineate
the formalism characterising the engine responsible for the LLMs
‘reasoning augmentation’, i.e., computational argumentation. After-
wards, we will detail the open-source LLM we harnessed in our
pipeline and the benchmark chosen for the final evaluation.

2.1 Computational Argumentation

Human interactions are mostly dialectical in nature and revolve
around exchanges of arguments and the dialogues that unfold from
such interplays. Arguments convey information and, throughout a
dispute, they may conflict with other statements. This means that
challenging or supporting one’s viewpoint often involves argumen-
tative reasoning. This paramount role is also underpinned by schol-
ars who claim that the function of reasoning is indeed argumentative:
“Reasoning has evolved and persisted mainly because it makes hu-
man communication more effective and advantageous” [25]. Draw-
ing from dialectical resolutions of inconsistent information as they
occur in everyday interactions, computational argumentation pro-
vides an intuitive approach to formally capture arguments and their
semantics in order to approximate human reasoning. Crucial to this
is the notion of argumentation frameworks, where arguments are
treated as abstract entities rendered as nodes in a graph, and every
directed edge connects the conflicting arguments of the network:

Definition 1 (Abstract AFs [12]). An argumentation framework
(AF) is a pair: AF = ⟨AR, C⟩ where AR is a set of arguments, and C
is the ‘attack’ binary relation on AR, i.e. C ⊆ AR × AR.

The idea conveyed by this formalism is that correct reasoning is
rendered via the acceptability of a statement: an argument is justified
(acceptable) only if it is defended against any counterarguments.

Definition 2 (Semantics for Abstract AFs [12]). Let AF = ⟨AR, C⟩,
and let S ⊆ AR be a set of arguments. Let also (X,Y) ∈ C denote the
conflict existing between an argument X and its target Y :

• S is conflict-free iff ∀X,Y ∈ S: (X,Y ) /∈ C;
• X ∈ AR is acceptable w.r.t. S iff ∀Y ∈ AR such that (Y,X) ∈ C:

∃Z ∈ S such that (Z, Y ) ∈ C;
• A conflict-free extension S is an admissible extension iff X ∈ S

implies X is acceptable w.r.t. S;
• An admissible extension S is a complete extension iff ∀X ∈ AR:

X is acceptable w.r.t. S implies X ∈ S. The minimal complete
extension (with respect to set inclusion) is called the grounded
extension, whereas a maximal complete extension (with respect to
set inclusion) is called a preferred extension;

• A stable extension S is such that iff ∀Y ∈ AR, if Y /∈ S, then
∃X ∈ S such that (X,Y ) ∈ C.

Figure 1. An abstract argumentation framework.

Figure 1 provides a graphical example of an AF, its arguments and
the conflicting relations existing between them. Following the se-
mantics described in Definition 2, we can identify the complete (i.e.,
{e}, {a, e}, {b, e}), grounded (i.e., {e}), preferred and stable (i.e., {a,
e}, {b, e}) extensions of the AF.

2.2 Mistral 7B

At the time of the design of this experiment, Mistral 7B [20] was
among the most popular and powerful open-source LLMs with
seven billion parameters. Engineered by Mistral AI2, the model
hinges upon a Transformer based architecture [34] characterised by
grouped-query attention [1] paired with sliding-window attention [4]
and other memory-saving features (i.e., rolling buffer cache, pre-
filling and chunking [20]). Such an LLM has proved to outperform
Llama 2 (7B and 13B [33]) on a variety of benchmarks and Llama
34B [32] in maths and coding tasks. Given its 8k token context length
and its viable inference computational requirement (which makes it
accessible also from a consumer-grade laptop), this model seemed a
good candidate for our study. However, we needed to run the model
in a conversational setting, thus we resorted to the fine-tuned version
hosted on the Hugging Face repository3. This version, i.e., Mistral-
7B-Instruct-v0.2, improves over the base model by increasing the
context length up to 32k tokens (without employing sliding-window
attention). That being said, discussing an LLM performance is mean-
ingful only when compared with its competitors on specifically de-
signed benchmarks, such as the MT-Bench.

2.3 MT-Bench

The crucial role that LLMs are starting to play in our daily lives has
rendered the evaluation aspects as pivotal as the training of mod-
els, tuning parameters, or development of new heuristics to increase
performance. A variety of benchmarks have thus been created to ex-
amine LLMs from different perspectives [10]. MT-Bench is a multi-
turn benchmark that presents 80 challenging queries, divided into
two sub-questions each, covering 8 different categories: writing, role-
playing, reasoning, math, coding, extraction, stem and humanities
[42]. The idea behind the benchmark is to appraise the conversa-
tional capabilities of the tested LLM on a broad range of topics using
another LLM as a judge. The evaluator can then focus on one of the
following assessment methods (or combine them): pairwise compar-
ison, single answer grading and reference-guided grading. The first
approach determines the best among two concurrent models accord-
ing to their replies to the specific MT-Bench questions. The second
assessment involves testing a single model’s responses to the afore-
mentioned query by scoring its output in a 1-10 range. On the other
hand, reference-guided grading may be employed by both of these
two previous approaches when a sample answer would help the eval-
uation. We decided to appraise our pipeline against the MT-Bench
due to the wide array of subjects it accounts for: even in the case that
the addition of the argumentation engine plugin will not outscore the
base model across all the benchmarks, we would still be able to sin-
gle out the categories in which it performs better than its contender.
Another equally important consideration is that MT-Bench ensures a
cheaper and quicker valuation compared to human assessors.

2 https://mistral.ai/.
3 https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2

https://mistral.ai/
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2


Figure 2. Examples of MT-Bench prompting templates for single question
reference guided (left) and standard (right).

Figure 3. Examples of MT-Bench prompting templates for multi questions
reference guided (left) and standard (right).

3 Methodology
The pipeline we devised consists of multiple components, the core
of which revolves around a plugin. The plugin we engineer can be
thought of as an argumentation engine, i.e., a piece of software that
leverages the power of computational argumentation to probe the re-
sponses of the underlying LLM in order to select the ones that contain
acceptable information. The APSARTIX Solver is the tool responsi-
ble for identifying arguments and semantics. Additionally, to make
the overall process more accessible and less resource-intensive, we
quantizated the underlying model. Finally, we designed the final out-
put of the system to be generated from a prompt including a Zero-
shot-Chain-of-Thought for a more precise outcome. In the following
sections, we briefly outline the mentioned methodologies.

3.1 Quantization

In its essence, quantization is a computational and memory costs-
saving approach. Initially described in [19], it is based on the idea
of representing the model parameters (i.e., weights and activations)

in low-precision data types, such as float16 or int8 rather than
float32. This procedure usually ensures a substantial reduction
in memory storage, energy consumption and yields faster inference
[15], but it is a trade-off with a (small) loss in accuracy as well. In
our experiment, we resort to a quantizated version of Mistral-7B-
Instruct-v0.2, henceforth denoted as MQInstruct. In particular, we
loaded the pre-trained model weights in 4-bit precision to decrease
memory footprint by (approximately) 4x times while also enabling
nested quantization to preserve further 0.4 bits/parameter. Addition-
ally, to speed up computation, we changed the data type from the
default float32 value to bfloat16.

3.2 ASPARTIX Solver

The primary goal underpinning computational argumentation theo-
ries is to enable the resolution of conflicting knowledge by identify-
ing the most appropriate (i.e. justified) pieces of information. Rein-
forcing this is the fact that decision-making processes can be encoded
as problems whose solutions are rendered by the calculation and
evaluation of AFs: an argumentation solver is essentially a reason-
ing tool driven by the same logic. Such an argumentative decision-
making apparatus can be a useful addition to any software application
concerning defeasible reasoning, as advocated by the comprehensive
study of Bryant and Krause [7]. In our pipeline, we leverage the AS-
PARTIX tool (first introduced in [14]) as a driving component of the
argumentation engine plugin. Its inner workings, summarized in Fig-
ure 4, consist of an Answer-Set-Programming (ASP) solver whose
input comprises a batch of ASP-Encodings prescribing the specific
computation to be applied on the input AF to achieve the required
output.

Figure 4. Overview of the ASPARTIX workflow [13].

3.3 CoT

In order to enhance LLMs’ logical thinking without resorting to un-
ceasing updates or retraining of the models, a number of strategies
were introduced by the AI community. Chain of Thought (CoT),
probably the most influential of such propositions, consists of a
prompting technique that details a series of intermediate reasoning
steps to achieve better performance in arithmetic, symbolic and com-
monsense inferences [37]. Zero-shot-CoT is a simplified version of
CoT that is task-agnostic and does not require few-shot examples
[21]. To work properly, this strategy necessitates a double prompt
comprising: extracting the rationale and extracting the actual answer
based on such an uncovered rationale. The first prompt of this ap-
proach, rendered by the standard template “Let’s think step by step”,
will also be a component of the final input conveyed into our pipeline.

4 MQArgEng
MQArgEng is the pipeline that we devised by leveraging MQInstruct
as the underlying model and an argumentation engine as a plugin



software in charge of guiding the overall workflow. The pipeline is
naive in the sense that we developed it as a simple proof-of-concept
to test our hypothesis: can formal argumentative reasoning enhance
LLMs performances? Figure 5 depicts the proposed pipeline’s high-
level operations, which can be delineated as follows:

1. User prompt. This component plainly refers to any input pro-
vided by the user. The same prompt is fed both to the underlying
LLM within the plugin and the model that would provide the final
system output.

2. Mistral 7B Instruct. It indicates the pivotal LLM that drives the
argumentation engine and leads to the output reply. In our experi-
ment, we made use of MQInstruct (i.e., the quantizated version of
Mistral-7B-Instruct-v0.2).

3. Argument generation. During this step, the user input is
rephrased in order to request that the underlying model produces
three short replies to the user prompt and lists three supporting ar-
guments for each generated answer. All the elicited responses will
thus compose the set of arguments AR.

4. Conflict detection. At this stage, MQInstruct will be requested to
analyse each argument included in AR to record any inconsistency
existing among the information they convey. The outcome of this
process will comprise the set of attack relations C.

5. Argumentation framework. This element overtly represents the
formation of an AF from the previously devised arguments (AR)
and their relations (C).

6. ASPARTIX. So far, the work of the argumentation engine has
produced an AF. Now, the ASPARTIX solver has all the required
ingredients to compute the grounded extension (or preferred in
case the grounded extension is empty) and its members.

7. Output reply. The final outcome of the system results from an
additional prompt to the LLM with the same initial user input,
augmented by the summarized information embedded in the com-
puted acceptable (grounded/preferred) arguments by ASPARTIX.
This additional data would guide the model reasoning to achieve
a more effective response.

Being quite minimal, the pipeline (MQArgEng) does not provide any
kind of fine-grained parsing of arguments throughout its procedures.
This usually entails that ‘oddly shaped’ arguments such as poetical
verses, lyrics and similar, mathematical formulae and lines of code,
were not properly accounted for. Nonetheless, given the simplicity in
recognizing the latter (mostly due to their indentation), we manage
to provide heuristics that approximately handle arguments containing
lines of code.

To appraise MQArgEng, we conduct an extensive assessment of
its and MQInstruct (i.e., the baseline) replies against the MT-Bench.

5 Evaluation

As is customary for the evaluation of the replies of MT-Bench [42],
we leveraged GPT-4 [28]4 as a judge and required it to score the
LLMs responses from both MQInstruct and MQArgEng in a range
of 1 to 10 according to the single answer grading approach. When
dealing with questions where reference answers were given5 (this

4 We made use of the version of GPT-4 available in https://chat.openai.com/
on January 2024.

5 We closely followed the MT-Bench prompts as recorded on HuggingFace.
There was only one exception (i.e., question id 103) in the benchmark
where we resorted to adding a reference answer since (judge) GPT-4 was
failing to recognize that the provided candidates’ responses should account
for the previous question’s logical riddle.

Figure 5. MQArgEng: Naive pipeline employing the argumentation engine.

mostly involves math, coding and reasoning topics) we opted for the
reference-guided grading. In particular, we adopted the prompting
templates depicted in Figure 2 and Figure 3. Notice that we also
acted as a human ‘second marker’ to check GPT-4 assessment. That
is because it is sometimes the case where the primary judge can-
not properly understand the question, erroneously considers wrong
right replies (or vice versa), or inconsistently grade them. As such,
we required GPT-4 to generate multiple evaluations, and (as a rule
of thumb) we decided the official grade was the numerical score that
was the mode and appeared at least three times. This has been also
made necessary by the fact that we could not harness the automated
MT-Bench evaluation proposed on FastChat, given that our pipeline
is not an LLM per se.

Table 1. Evaluation scores over the MT-Bench.

Categories MQInstruct MQArgEng ∆
Writing 8.15 8.05 ↓ −0.10

Roleplaying 6.80 6.75 ↓ −0.05
Reasoning 4.05 4.25 ↑ +0.20

Math 2.80 2.80 =
Coding 5.30 5.50 ↑ +0.20

Extraction 5.55 5.70 ↑ +0.15
STEM 7.35 7.60 ↑ +0.25

Humanities 7.75 8.10 ↑ +0.35
Average 5.96 6.09 ↑ +2,18%

6 Discussion

Before diving into the analysis, we should disclose the curious fact
that the total score of MQInstruct does not correspond to the one
presented on the current leaderboard6. This ensues for a series of
reasons. For example, the model we leveraged was a quantizated ver-
sion of Mistral-7b-Instruct v.02, which is supposedly less accurate.
Furthermore, we added Zero-shot-CoT to the prompt that, although

6 https://chat.lmsys.org/?leaderboard.

https://chat.openai.com/
https://huggingface.co/datasets/HuggingFaceH4/mt_bench_prompts
https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge
https://chat.lmsys.org/?leaderboard


Figure 6. Graphical rendering of the evaluation scores from Table 1.

Figure 7. Data distribution of the evaluation scores from Table 1.

helpful in the reasoning and maths questions, it is sometimes a dis-
advantage for writing and roleplaying. Also, consider that our eval-
uation slightly differed from the one presented in [42] since we in-
troduced a human moderator in the process, and we prompted GPT-
4 multiple times for the same question. That being said, our find-
ings are not affected by the difference in score with the leaderboard.
We conducted the experiment under the same conditions with both
the baseline model (MQInstruct) and the proposed pipeline, and the
only metrics we were interested in were the recorded performances
and their delta, as shown in Table 1. Figure 6 illustrates how MQAr-
gEng outscored its competitor in 5/8 categories (reasoning, coding,
extraction, stem, humanities) whilst tied in the math category of the
MT-Bench. These results are further corroborated by Figure 7 where
the interquartile range of the data distribution reflects the same im-
provements of MQArgEng over the baseline, accounting also for
the same number of outliers. Overall, given the exploratory stage of
the attempted experiment, the scores achieved against the appraised

benchmark are quite positive and warrant future research. In particu-
lar, the overall +2, 18% is well in scale with the usual improvement
granted by LLM research. For instance, the recently released Llama 3
70B-Instruct increased its performance by about 7% compared with
Claude 3-Sonnet on the same benchmarks (notice this improvement
is the result of a full cycle of pre-training and fine-tuning on over 15T
of data, thus definitely more resource intensive than our naive plugin
approach [26]). We can summarize the pros and cons of our findings
as follows.

6.1 Advantages

⋄ As developed herein, an argumentation engine plugin proves to
be scalable to any other model (potentially including Small Lan-
guage Models [27] or even future releases of new LLMs). Granted
the generation of multiple different responses and the capability
of comparing and detecting inconsistency among the information
they embed, there are indeed no restrictions on the underlying
model to be leveraged by the pipeline.

⋄ In addition, there are also no constraints in employing different
LLM architectures: designed as an external plugin, an argumenta-
tion engine operates regardless of the model structure whether it is
a Transformer, the recently introduced Mamba [17] or any other.

⋄ Even if the argumentation engine does not outscore the baseline
across the board (i.e., writing and roleplaying), it can be extremely
useful when deployed for those categories. For example, the plu-
gin could be triggered only when in the presence of such subjects,
thus enhancing the LLM output quality, and remain inactive oth-
erwise.

⋄ The final reply after the injection of the information summarized
by the argumentation engine leverages also zero-shot-CoT. It is
thus safe to assume that more advanced prompting techniques
could be employed, possibly leading to higher performances.

6.2 Limitations

⋄ The parsing of the arguments for further processing along the
pipeline was quite straightforward and did not account for nu-
ances in the argument syntax. This mostly affected when argu-
ments were written as lyrics/poems and maths formulae.

⋄ The overall output heavily relies on the quality of the argument
generated by the underlying model, which can slightly vary from
one iteration to the other.

⋄ Similarly, from the underlying model and the available hardware
depend the inference speed. For example, making use of a very
large LLM (e.g., the open source Grok-1 [38]) with inadequate
GPU support could suffice for generating output, but the latency
between each generation will render the plugin highly ineffective
to run.

⋄ The quality of the replies provided by the argumentation engine
within MQArgEng varies between the first and the second sub-
questions of the queries of the MT-bench. Indeed, the second sub-
questions may sometimes result in lower-score responses. The ex-
planation of this behaviour is related to the initial argument gen-
eration from the underlying LLM that may happen to focus on the
first half of the prompted queries. This, in turn, drives the engine
into reasoning only on one of the sub-questions ending in forcing
also the final output of the pipeline to concentrate only on a partial
answer.

The poor performance of MQArgEngine on maths-related questions
is thus not surprising given the aforementioned limitations (given



also that, in general, LLMs have proven to struggle with such top-
ics). The rough parsing of the generated arguments often failed to
recognize the math formulae belonging to the unfolding of an equa-
tion as a unique element, resulting in arguments consisting of in-
complete formulae. Similar consideration holds for the writing and
roleplay category, where poetical verses were not properly accounted
for. Nonetheless, there were much fewer requests for handling lim-
ericks or similar, hence the reason for such a high score in writing
subjects compared to maths. In addition, we argue that both writ-
ing and roleplay are affected by a somewhat reduced creativity due
to the summarized argument injection combined with the requested
step-by-step output generation (zero-shot-CoT).

7 Related Works

As previously anticipated, in an attempt to provide effective so-
lutions to LLMs reasoning shortcomings, several training-free ap-
proaches have been proposed in the literature. For example, Self-
Consistency Chain, Tree or Graph of Thoughts, respectively, CoT-
SC, ToT, and GoT. The limitations of the previously mentioned CoT
strategy mostly concern the absence of a procedure to plan or anal-
yse multiple reasoning paths before generating the output, and this
is exactly the enhancement yielded by CoT-SC, ToT and GoT. In-
deed, Self-Consistency Chain of Thought starts from standard CoT
promptings and samples a set of candidate outputs before selecting
the answer that is the most consistent among the generated reasoning
path [35]. Tree of Thoughts frames each problem as a search over a
tree, where each node is a partial solution [39]. Graph of Thoughts,
instead, envisages the information generated by an LLM as an arbi-
trary graph, distilling dependencies between such information units
and enhancing reasoning by focusing on the core elements of the
network [6]. Against these three options, we argue that endowing
LLMs’ pipelines with a reasoning engine driven by computational
argumentation may provide a more intuitive (e.g. grounded on di-
alectical logic, unlike CoT-SC), cheaper (e.g. less resource-expensive
to be implemented, unlike ToT and GoT) and comprehensive alter-
native (e.g., effective on a variety of topics, unlike the limited use
cases showed for ToT and GoT). Argumentative reasoning is par-
ticularly suited for models that parse, work and generate natural
language. Recall that AFs are graphs whose edges represent paths
determining the status of each node. Then, semantically computing
an argumentation framework allows planning the most appropriate
sequence of ‘thoughts’ (arguments) to achieve the desired result.
Such sequences account for divergent information, thus also mim-
icking and (potentially) outperforming the CCoT (Contrastive Chain
of Thought) prompting technique, which generally handles only one
contrastive sample at a time [11]. Unrelated to Chain of Thought, an-
other approach that elicits information from an external engine (i.e.,
MuJoCo [31]) can be found in Google’s Mind’s Eye [23]. Similarly
to our pipeline, it adds the output of MuJoCo to the LLM’s input
and proves how this increases the model reasoning capabilities under
the UTOPIA benchmark. Regardless, this procedure requires also the
presence of a text-to-code converter to encode data for the engine
whose proficiency strictly revolves around physics knowledge. On
the other hand, our approach presents a simplified pipeline (harness-
ing only one LLM), and it is driven by computational argumentation,
which ensures augmented capabilities across a broader range of top-
ics (as testified by the MT-Bench evaluation). One last interesting
technique to mention is the step-back prompting introduced in [41].
Indeed, the main idea concerns prompting an LLM to take a step back
from the main problem to ask a question about a high-level concept.

The answer will then guide the model reasoning about the solution to
the original issue. Despite the positive outcome, this method requires
the generation of step-back questions which are unique for each task
in order to retrieve the most relevant facts. On the contrary, our plu-
gin is more flexible and presents a one-size-fits-all design regardless
of the circumstances.

8 Future Directions
Given the positive outcome of the preliminary study reported herein,
we envisage a number of possible research extensions aimed at es-
tablishing the plugin’s usefulness and increasing its efficiency:

• We believe that employing a stronger underlying LLM (e.g., GPT-
4, Claude 3 [2]) would improve the overall pipeline output result-
ing in a higher score on the MT-Bench. That is mostly due to steps
a) the generation of arguments and b) the comparisons of argu-
ments to detect conflicting information, both of which solely rely
on the capabilities of the leveraged underlying model. Alterna-
tively, another option would be harnessing a separate model spe-
cialized to (or fine-tuned for) diversify argument generation and
comparison, thus taking charge of steps a) and b).

• Other lines of improvement could originate from the adoption of
more advanced prompting techniques to be employed in the final
input received by the model or by resorting to better LLMs that
would act as judges in the evaluation. This may occur by leverag-
ing the latest cutting-edge model or a fine-tuned version special-
ized in such an assessment task.

• We argue that better performances could be achieved by also com-
bining together the generated arguments and their supports into
single, more complete arguments. Similarly, we posit that a more
accurate fine-grained parsing of the ‘oddly shaped’ arguments
could improve the overall performance of the pipeline.

9 Conclusion
Is it feasible to integrate computational argumentation within the
Large Language Models workflow? Does this yield enhancements
in performance? Motivated by the present shortcomings faced by
LLMs with reasoning tasks, in this paper, we have addressed both
questions with a positive outcome. In order to do so, we proposed
MQArgEng, a pipeline that incorporates a computational argumenta-
tion engine to guide an LLM output process. We also evaluated it us-
ing an experiment to compare its performance to a standard (MQIn-
struct). The results proved how our proposed engine, a simple plugin
tool (characterised by having no constraints in terms of the underly-
ing model or their architecture), suffices to increase the MT-Bench
scores against the baseline. Such an improvement concerned most of
the examined categories, showing particular strength for questions
classed as humanities, stem, reasoning and coding whilst slightly
failing to achieve equally good scores in questions from categories
such as writing and roleplaying. Multiple research directions can lead
this study to further boost the plugin’s effectiveness by, for example,
resorting to state-of-the-art underlying models or employing a more
fine-grained parsing of the arguments involved. Overall, we can deem
this preliminary experiment as successful and showing promise and
warrant further work.
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