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ABSTRACT This paper proposes a novel relay algorithm to optimize the communication throughput of
unmanned aerial vehicle (UAV) mobile relay formations while considering the challenges posed by obstacle
avoidance, channel complexity, high dynamics of UAVs, and real-time mission requirements. To tackle
the non-convex nature of this problem, we develop the unscented Kalman filter and hybrid particle swarm
optimization (UKF-HPSO) algorithm. Initially, real-time prediction of the source and destination of UAV
positions is accomplished using the UKF. Subsequently, these predicted coordinates serve as inputs for
achieving the optimal deployment of relay UAVs under the constraints imposed by HPSO. The superiority of
the UKF-HPSO algorithm compared to baseline approaches is demonstrated through extensive simulations.
System throughput is effectively optimized while maintaining real-time performance by our proposed
algorithm, which addresses the unique challenges of UAV communication in dynamic environments.

INDEX TERMS Unmanned aerial vehicle (UAV), relay communication, real-time optimization.

I. INTRODUCTION
Recently, with the advancement of unmanned aerial vehicle
(UAV) and the miniaturization of communication equipment,
UAVs equipped with communication devices have received
increasing attention due to their rapid deployment and flex-
ible operation [1]–[3]. To adapt to the burstiness of traffic
demand and the uneven distribution of traffic in time and
space, using UAVs as communication relay nodes for on-
demand deployment has gradually become a research hotspot
for beyond fifth-generation (B5G) and sixth-generation (6G)
wireless networks [4], [5].

A. UAV RELAY MECHANISM
The UAV relay mechanism refers to the process of establish-
ing a relay link with UAV as the intermediate node and trans-
mitting data between two distant nodes. Its main purpose is to
achieve data transmission between UAV and ground terminal
or UAV and UAV. From the perspective of the channel, it can
be divided into two aspects: Air-to-Ground (A2G) and Air-
to-Air (A2A).

Zhan et al. [6] proposed a communication system that uses
UAVs as relays between ground terminals and network base

stations. To quantify the link performance, they defined the
Ergodic Normalized Transmission Rate (ENTR) of the link
between the ground node and the relay. The results verified
the feasibility and excellent performance of using UAVs as
relays. This study has led the trend in research on UAV relay
communication, especially in the A2G direction, over the
past decade. Zhou et al. [7] introduced an A2G and A2A co-
operative vehicular networking architecture, where multiple
UAVs are utilized as relays to assist the ground vehicular sub-
network, forming an aerial sub-network. This two-layer coop-
erative networking scheme can be applied in various scenarios
such as disaster rescue and pollution area investigation. This
study explored the A2A direction of UAV relaying early on,
providing insights for extending its applications.

In [8], Zeng et al. usedUAVs asmobile relays to studymax-
imizing throughput in a mobile relay system, with practical
mobility constraints. The results show significant throughput
gains by optimizing the relay’s trajectory and power alloca-
tion, a method referenced in many later studies. For example,
Zhang et al. [9] developed a solution for joint optimization of
trajectory and power control, minimizing relay network inter-
ruption probability. The proposed scheme outperforms fixed
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power relays and circular trajectory schemes. Moreover, [10]
optimized UAV trajectories and scheduling in post-disaster
scenarios to provide wireless services for the ground equip-
ment of surviving Base Stations (BSs), enabling information
exchange between the disaster area and the outside world.

Researchers have consideredmore factors in the UAV relay
mechanism, such as forwarding methods, channel models,
and multiplexing techniques. In [11], reliability metrics were
used to explore relay forwarding methods, showing that De-
coding and Forwarding is more reliable than Amplify and
Forward. [12] conducted a study on the channel model, con-
sidering Path Loss exponents and Small-Scale Fading, and
constructed a practical wireless network analysis model. [13]
studied a UAV-based mobile cloud computing system using
Non-Orthogonal Multiple Access (NOMA) and Frequency
DivisionDuplex (FDD), achieving lower energy consumption
than local mobile execution methods.

Recently, the UAV relay mechanism has been combined
with cutting-edge communication technologies, such as Mo-
bile Edge Computing (MEC), Intelligent Reflecting Surfaces
(IRS), and Integrated Satellite-Unmanned Aerial Vehicle-
Terrestrial Networks (IS-UAV-TNs). In [14], UAVs and MEC
servers provided services to multiple IoT terminals, optimiz-
ing bit allocation, time slot scheduling, and power alloca-
tion to minimize total energy consumption. [15] proposed a
framework for an integrated relay systemwith UAVs and IRS,
improving communication between ground nodes and opti-
mizing system parameters. In [16], NOMA technology was
combined with Cognitive Radio technology in the IS-UAV-
TN framework to improve spectrum utilization. The paper
also derived expressions for primary and secondary network
traversal capacities, validating the mathematical derivation
through simulation results and analyzing the impact of system
parameters on transmission performance.

Overall, [6], [7] laid the foundation for relay research in
both A2G and A2A directions, while [8]–[11], [13] enriched
the relay mechanism in terms of throughput, forwarding
methods, and multiplexing technologies. However, they em-
ployed relatively simplified approaches to channel modeling
in communication scenarios, typically considering only line-
of-sight (LOS) links. [12] introduced a path loss index cor-
related with height and considered small-scale fading, but
did not construct a separate channel model for application
scenarios. [14]–[16] combined UAV relay communication
with cutting-edge technologies, taking channel conditions
only as the foundation and focusing more on optimization at
the application layer.

There is limited research on channel models in this field,
particularly for high-rise dense urban scenarios. The channel
parameters are not closely aligned with the real environment.
Most studies adopt simplified channel models, with relatively
few analyses of scenarios that simultaneously consider both
LOS and non-line-of-sight (NLOS) links.

B. UAV PATH PLANNING
The main purpose of UAV path planning is to determine
the most efficient and effective path for the UAV to reach
its designated destination while fulfilling the necessary relay
services. In order to achieve this goal, the path planning
algorithm must take into account various factors such as the
location and distribution of obstacles, the UAV’s speed and
altitude capabilities, the communication range of the relay
network, and the overall mission objectives.
The mobile relay method proposed by Zeng et al. [8] has

introduced research in the direction of path planning for UAV
communication.
In the past decade, the development of path planning al-

gorithms focused on two-dimensional (2D) environments has
grown exponentially. However, due to physical, geometric,
and time-related factors, these algorithms cannot help UAVs
navigate in three-dimensional (3D) environments [17].
Starting with the path selection algorithm for UAVs, Wang

et al. [18] studied the optimization of search path planning
in multi-UAV relay scenarios. By optimizing the decision
of choosing the information propagation path, the issues of
interruption and distortion in UAV communication were im-
proved. Wu et al. [19] designed an iterative algorithm based
on the block coordinate descent method and Successive Con-
vex Optimization (SCO) method, combined with UAV power
control and path planning to optimize the communication
scheduling of multiple users, and maximize the throughput
of a multi-UAV assisted communication system. Zhao et al.
[20] introduced Computational Intelligence (CI) methods into
the UAV system and proposed an efficient path planning
algorithm based on modeling and learning, which improves
the performance of the communication network.
With the development of 5G communication in recent

years, Al-Turjman [21] focused on network security issues,
proposing a more comprehensive and detailed concept, in-
cluding security behaviors such as network identification,
authorization, deployment control, confidentiality, and avail-
ability.
In general, the mainstream UAV planning algorithms can

be classified into different categories based on underlying
principles and methods [22], as illustrated in Figure 1.

FIGURE 1. Mainstream UAV Path Planning Algorithms

Despite the introduction of various intelligent algorithms in
[17], [19], current research in this field mostly involves non-
real-time simulations of the entire flight trajectory of UAVs.
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TABLE 1. Summary of Research on Optimization of UAV Communication

Reference Optimization Aspect Method Key Outcome

Anazawa [23] UAV Relay Trajectory Genetic Algorithm
Maximization of data throughput in the access
sequences of diverse user groups by optimizing
UAV relay trajectory.

Kalantari [24] UAV Relay Position Particle Swarm
Optimization

Optimal 3D positioning of UAV base stations
for specific user communication rates; Mini-
mized number of UAV stations.

Azari [25] UAV Flight Altitude Modeling Analysis
Optimal UAV altitude for maximum coverage;
Relationship between coverage area and signal-
to-noise ratio.

Mozaffari [26] Multi-UAVs Deployment Circle Packing Theory
Minimum number of UAVs for maximum cov-
erage; Enhanced downlink range with lower
power.

Lyu [27] Multi-UAVs Deployment Spiral Algorithm
UAVs approach target area from edge zone,
overcoming strip-based algorithm limitations
for minimum UAV coverage.

Arribas [28] UAV 3D Deployment Extreme Value
Optimization

Proposed framework for 3D UAV network de-
ployment and relocation for maximum cover-
age.

Ji and Wu [29] UAV 3D Deployment Gradient Descent
Improvement in UAV deployment performance
compared to fixed relay and equal power allo-
cation schemes.

These methods can meet overall functional requirements, and
can be combined with other metrics for joint optimization
[18], or incorporate cutting-edge thinking in the field [20].
However, planning the entire trajectory of UAVs directly
from the source point to the endpoint without performing
real-time calculations of UAV states at each point in time
does not align with actual engineering application scenarios,
indicating insufficient real-time performance.

C. UAV COMMUNICATION OPTIMIZATION
The optimization of UAV communication is a critical research
area that aims to enhance the efficiency and reliability of
communication inUAVnetworks by adjusting various param-
eters such as UAV position, speed, communication protocols,
and routing algorithms. To evaluate the performance of UAV
communication, researchers often use communication rate,
throughput, interruption probability, and other indicators.

In the context of UAV relay communication, it is essential
to deploy UAVs in three-dimensional space to ensure optimal
resource allocation and meet the communication require-
ments of users. However, this approach presents numerous
challenges, including power consumption, interference, and
limited coverage range. Over the years, many studies have
proposed innovative solutions to overcome these challenges,
and Table 1 summarizes some of the key research in this field.

The genetic algorithm utilized in [23] may encounter local
optima problems, where the population gets stuck and fails
to escape because selection and crossover operations rely
on the optimal solution of the current population. Similarly,
the particle swarm optimization algorithm in [24] may also
face the same issue, as some particles can get trapped in
local optima and fail to escape due to the restricted updating
mechanism. Although the spiral algorithm introduced in [27]
is a relatively new optimization algorithm that can search for
solutions in high-dimensional space, it is also susceptible to

the problem of getting stuck in local optima. This issue of
local optima is a common challenge faced by traditional op-
timization algorithms, especially when dealing with complex
optimization problems.
In [25], [26], the simulation scenarios were simplified and

did not consider practical constraints such as UAV flight
speed. The scenario considered in [28] is more comprehen-
sive, but the algorithm has strong limitations and is only suit-
able for solving specific problems. In [29], the 3D deployment
of UAVs is related to the amplification factor, and a com-
bination of Gradient Descent (GD) and convex optimization
algorithm is used, but the presence of obstacles in the flight
scenario is not taken into account. Currently, many algorithms
are designed for a single scenario and lack scalability, with
little consideration given to practical issues such as flight
speed and obstacle avoidance.
In previous works, various optimizationmethods have been

proposed to maximize throughput in multi-UAV communi-
cation systems [30]–[34]. For example, a block coordinate
descent and successive convex optimization (SCO) algorithm
was utilized in [35] to optimize communication scheduling,
power control, and path planning. Cache-enabled UAVs were
studied in [36], where enumeration search and caching opti-
mization techniques were employed for optimal deployment.
Another study [37] focused on throughput optimization in
a non-orthogonal multiple access (NOMA)-based cognitive
radio (CR) system with multi-UAV trunking, using a hybrid
search method combining particle swarm optimization (PSO)
and continuous genetic algorithm (CGA). However, these
studies have overlooked important factors such as NLOS
links and obstacle avoidance in complex flight scenarios.
Additionally, they often assume static or slow-motion relays,
which may not accurately reflect real-world UAV operations.
In addition, a number of reinforcement learning methods

are currently being applied in this area [38]–[42]. In [43],
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a novel multi-agent deep reinforcement learning based al-
gorithm called MAQMIX was developed for dual-hop UAV
to minimize data transmission time and improve network
throughput. In [44], the problem ofmaximizing the communi-
cation rate under guaranteed secure transmission constraints
was considered, and the optimization of trajectory and trans-
mit power was achieved using a proximal policy optimization
(PPO)-based approach. However, these reinforcement learn-
ing methods rely on pre-training and also require high com-
putational power in their derivation, which is not suitable for
the easy deployment and high real-time performance required
by algorithms for large-scale UAV application scenarios.

In this paper, we propose a novel approach that combines
the unscented Kalman filter (UKF) algorithm with the hybrid
particle swarm optimization (HPSO) algorithm to maximize
the throughput in complex channels. The major innovations
include

1) Amore realistic simulation environment is constructed,
i.e., relay nodes are considered to be moving at high
speeds in three dimensions and the channel model con-
tains NLOS and LOS factors.

2) A real-time high-precision 3D trajectory prediction al-
gorithm is developed to fit the non-linear motion char-
acteristics of UAVs.

3) Combining Simulated Annealing (SA), Adaptive In-
ertia Weights (AIW) and Penalty Function (PF), an
HPSO-based optimisation algorithm is proposed to
solve the non-convex problem of throughput optimiza-
tion.

The remainder of this paper is organized as follows. Section
II presents the channel model and the throughput model. Sec-
tion III demonstrates the proposed optimization mechanisms,
including an algorithm for real-time prediction of UAV 3D
trajectories and an algorithm for optimizing UAV formation
throughput. Section IV provides simulation results to validate
that the proposed technique has better performance compared
to baseline scheme. Finally, Section V concludes the paper.

II. SYSTEM MODEL
Fig. 1 shows a temporal discretization of the multi-UAV
relay process, where the total duration is T , divided into
N time points. Suppose that the source UAV (SUAV) and
the destination UAV (DUAV) are required to perform differ-
ent missions with uncorrelated trajectories and are therefore
likely to leave their respective communication areas. Coupled
with the presence of clutter channel fading and obstacles, it is
necessary to deploy a relay UAV (RUAV) to help re-establish
the communication link between the SUAV and the DUAV.
In our model, mobile relaying is performed by decode and
forward (DF) to ensure the reliability of data transmission,
with each UAV having the same transmit power Pt and a
sufficiently large buffer.

A. CHANNEL MODEL
To investigate the problem of relay communication in UAV
formations, we establish an air-to-air channel model between

t0 t1 t2 t3 T

S-UAV

D-UAV

R-UAV

tN…

S-UAV S-UAV
S-UAV

R-UAV

R-UAV

D-UAV D-UAV

D-UAV

FIGURE 2. Illustration of the multi-UAV relay communication model.

UAVs. Considering the blockage of buildings, the channel
transmission coefficient h is determined by the composite
fading model composed of a Friis equation and a fading
channel distribution with the height-dependent Rician factor.
Large-scale fading The large scale fading hL takes the

following form

hL =

(
λ

4πd

) ρ
2

10
RSS−Pt−Gt−Gr

10 (1)

where RSS(dB) stands for received signal strength with the
following form

RSS(dB) = Pt + Gt + Gr + 10 log10

(
c

4πdfc

)ρ

(2)

in which Pt is the transmit power, Gt is the transmit antenna
gain of the UAV, Gr is the receive antenna gain of the UAV,
fc is the communication frequency, c is the approximation of
the speed of light, d is the distance between the transmit and
receive antennas in meters, and ρ is the path loss exponent,
which is a constant corresponding to the flight environment.
Small-scale fading The probability density function of

small-scale fading f (x, h) can be written as

f (x, h) =
x

σ2(1 + K (h))

× exp

(
− x2 + K (h)x2

2σ2(1 + K (h))

)
I0

(
x
√

2K (h)
σ2(1 + K (h))

)
(3)

hS =

√
π/2σ(1 + K (h))√
E [x]2 + Var [x]

(4)

where x is the amplitude of the signal, hS represents the small-
scale fading coefficient. K (h) is the Rician factor dependent
on UAV flight height, σ2 is the power spectral density of the
noise, and I0 is the zero-order modified Bessel function to ac-
count for the effect of random phase on the signal amplitude,
E [x] =

√
π
2σ(1 + K (h)), Var [x] = 1

2 (1−
2
π )σ

2(1 + K (h)).
We set the channel composite fading coefficient h as the

product of hL and hS [45], which can be expressed as follows:

h =
(

λ

4πd

) ρ
2

10
RSS−Pt−Gt−Gr

10

√
π/2σ(1 + K (h))√
E [x]2 + Var [x]

(5)
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B. THROUGHPUT MODEL
Combining the channel conditions, the communication rates
of the SUAV and RUAV are as follows:

Csr [n] = B log2

(
1 +

hsr [n]Ps
Pn

)
(6)

Crd [n] = B log2

(
1 +

hrd [n]Pr
Pn

)
(7)

where B represents the bandwidth of the channel, Ps and Pr
denote the transmission power of the S-UAV and R-UAV, and
Pn is the noise power at the receiving end. hsr [n] and hrd [n]
represent the transmission coefficients based on (5).

At time n, the SUAV, DUAV, and RUAV are positioned re-
spectively, at Xs[n](sx [n], sy[n], sz[n]), Xd[n](dx [n], dy[n], dz[n])
and Xr[n](rx [n], ry[n], rz[n]). The Euclidean spatial distance
between the SUAV and RUAV is denoted as dsr [n], while the
distance between the RUAV and DUAV is denoted as drd [n].
To ensure communication stability, obstacle avoidance, and
adherence to UAV flight speed constraints, the formulated
system throughput maximization problem is as follows:

max

N∑
n=1

min(Csr [n],Crd [n])S

F
(

S
Csr [n]

+ Tint + Tdf
)
+ F

(
S

Crd [n]
+ Tint + Tdf

)
(8a)

s.t. Csr [n] ≥ Crd [n] (8b)

Dobs[n] ≥ Dmin[n] (8c)

|Xr [n+ 1]− Xr [n]| ≤ Vrmax (8d)

where F is the number of data packets transmitted, S is the
size of each data packet, Tint is the fixed inter-transmission
time, and Tdf is the relay processing time. The distances from
the obstacle and the minimum safe distance are denoted as
Dobs[n] and Dmin[n] respectively. Additionally, Vrmax repre-
sents the maximum flight speed of the RUAV.

III. PROPOSED OPTIMIZATION MECHANISM
A. REAL-TIME PREDICTION OF UAV 3D TRAJECTORIES
State Equation Based on the motion characteristics of the
UAV, 9 parameters including coordinates, velocities, and ac-
celerations in 3D are selected to construct the state equation:

Xk = AXk−1 + wk−1 (9)

where Xk represents the state vector at time k , A is the state
transition matrix and wk−1 is the process noise at time k − 1.
Observation Equation Suppose the observation point is

located at (x0, y0, z0), the observation is based on the Eu-
clidean distance in space, and the observation equation can
be formulated as:

Zk =
√
(x − x0)2 + (y− y0)2 + (z− z0)2 + vk (10)

where Zk and vk represent the observation vector and the
observation noise at time k , respectively.
Kalman filter assumes Gaussian distributions for states and

observed variables, limiting its applicability to linear sys-
tems. To handle the non-linear characteristics of UAV flight,

we incorporate the unscented transformation (UT) into the
Kalman filter framework. TheUT preserves the non-Gaussian
distribution and enables efficient numerical computation, as
demonstrated in Algorithm 1.

Algorithm 1 UKF-based UAV Trajectory Prediction
1: Input: Initial state X0, initial covariance matrix P0, pro-

cess noise covariance matrix Q, measurement noise co-
variance matrix R, state transition function f , observation
function h, number of sigma points n, scaling parameters
α, β, κ

2: Output: Predicted UAV position pk+1

3: for i = 0, . . . , 2n do
4: Calculate sigma-points X i

k−1 and weights W i
m, W

i
c

5: end for
6: for i = 0, . . . , 2n do
7: Propagate sigma-points X i

k−1 through f to get X i
k|k−1

8: end for
9: Compute predicted state Xk|k−1 and covariance Pk|k−1

using UT
10: for i = 0, . . . , 2n do
11: Transform propagated sigma-points X i

k|k−1 through h
to get Z ik|k−1

12: end for
13: Compute predicted observation Zk|k−1 using UT
14: Compute Kalman gain Kk = PxzS

−1
k using Pxz and Sk

15: Compute innovation yk = Zk − Zk|k−1

16: Update state estimate Xk = Xk|k−1 + Kkyk
17: Update covariance matrix Pk = Pk|k−1 − KkSkK T

k
18: Apply state transition function f to predicted state Xk|k−1

19: return predicted UAV position pk+1

B. UAV FORMATION THROUGHPUT OPTIMIZATION
Penalty Function (PF): The optimization problem formu-

lated in (8a) has some constraints, so we introduce the PF in
the fitness function of PSO to characterize these conditions
as shown in (11).

m̃ax

N∑
n=1

Crd [n]S

F
(

S
Csr [n]

+ S
Crd [n]

+ 2Tint + 2Tdf
)

+ λ1 min(0,Csr [n]− Crd [n])

+ λ2 min(0,Dobs[n]− Dmin[n])

+ λ3 min(0,Vrmax − |Xr [n+ 1]− Xr [n]|)

(11)

where λ1, λ2 and λ3 are penalty factors that control the effect
of the constraints on the fitness function, which can penalize
the particles that do not satisfy the constraints to prevent them
from entering the infeasible region and gradually approaching
the feasible region during the search.

Simulated Annealing (SA) Multi-UAV mobile relay op-
timization involves non-convex optimization under complex
conditions. However, PSO is prone to local optima due to ran-
dom initialization, limited global search and local information
exchange, especially when solving such complex problems.
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Algorithm 2 HPSO-based Throughput Optimization
1: Input: Coordinates of the SUAV Xs[n] and DUAV Xd[n],

UAV flight parameters, terrain and obstacle parameters,
penalty factors λ1, λ2 and λ3

2: Output: Maximum system throughput, optimal deploy
position of RUAV Xr[n]

3: Initialize: Initial temperature TSA, cooling rate λSA,
number of iterations max_iter , number of particles
pop_size, personal best position pbest , global best posi-
tion gbest , and channel transmission coefficients h

4: for t = 1 to M do
5: for i = 1 to N do
6: Update the particle position x t+1

i and velocity vt+1
i

7: Evaluate the fitness function f (x t+1
i )

8: Update the AIW ωt+1
i

9: end for
10: for i = 1 to N do
11: if x t+1

i violates constraints then
12: Apply the PF to x t+1

i
13: else
14: if f (x t+1

i ) ≥ f (pbest ti ) then
15: pbest t+1

i = x t+1
i

16: else
17: if TSA > 1 then
18: if rand() > e−|f (x t+1

i )−f (pbest ti )|/TSA then
19: pbest ti = x t+1

i
20: end if
21: TSA = TSA · λSA

22: end if
23: end if
24: end if
25: if f (x t+1

i ) ≥ f (gbest ti ) then
26: gbest t+1

i = x t+1
i

27: else
28: gbest t+1

i = gbest ti
29: end if
30: end for
31: end for

To overcome this limitation, we propose incorporating the
SA algorithm, a global optimization method based on random
jumping, into the search strategy of the PSO algorithm. The
SA algorithm simulates the crystallization process of metals,
randomly exploring the solution space and accepting non-
superior solutions with a certain probability [46]. This in-
creases the chances of finding the global optimum and the
probability can be expressed mathematically as:

p = exp

(
−∆f
TSA

)
(12)

where p is the probability of accepting a sampled solution,
TSA is the current temperature, and∆f gives the difference in
the fitness function for two generations of solutions. Adap-
tive Inertia Weight (AIW) The inertia weight is a crucial
parameter in the PSO algorithm that balances global and local

Optimization of the 
whole process

Predicted source UAV 
position and destination 

UAV position at time 
t + 1

HPSO

UKF
Optimal position of the 

relay UAV at time 
t + 1
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Inertia 
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Penalty 
Function

Particle 
Swarm 

Optimization

Simulated 
Annealing
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FIGURE 3. UKF-HPSO algorithm.

optimization during the search process [47]. Its classical form
is expressed as:

ωt = ωmax −
t(ωmax − ωmin)

tmax
(13)

where ωmax and ωmin represent the predetermined maximum
and minimum values of the inertia weight, and tmax denotes
the maximum number of iterations. In practical engineering
scenarios, UAVs demand high maneuverability and real-time
optimization performance. To address the unique solution
situation of each particle, we introduce AIW as in Eq. (14),
aiming to expedite algorithm convergence.

ωti =


ωmin + (ωavg − ωmin)

(f tmax−f (x ti ))
(f tmax−f tavg )

, f (x ti ) ≥ f tavg

ωmax − (ωmax − ωavg)
(f (x ti )−f tmin )
(f tavg −f tmin )

, f (x ti ) < f tavg

where ωmin and ωmax represent the predetermined minimum
and maximum inertia coefficients, and ωavg = ωmin+ωmax

2 .
f tavg, f

t
max, and f

t
min denote the average, maximum, and min-

imum fitness value of particles at the t-th iteration, respec-
tively.
After incorporating PF, SA and AIW into PSO, the al-

gorithm to optimize the throughput of multi-UAV mobile
relaying is presented in Algorithm 2.

C. UKF-HPSO ALGORITHM
In a practical real-time engineering scenario, it is necessary
to combine the proposed Algorithm 1 and Algorithm 2 to
form an optimal multi-UAV mobile relay communication
mechanism UKF-HPSO. The specific process is shown in
Fig. 2. At each point in time, the R-UAV initially predicts
the real-time trajectories of both the S-UAV and the D-UAV.
Then it calculates the optimal relay deployment position,
taking into account channel conditions and obstacle avoid-
ance requirements. Ultimately, the R-UAV navigates to the
position determined by the algorithm and re-establishes the
communication link between the S-UAV and the D-UAV.

IV. NUMERICAL RESULTS
In this section, we present numerical results evaluating the
performance of the proposed UKF-HPSO algorithm in com-
parison to other baseline schemes. The simulation parameters
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(a) Trajectory prediction (b) MSE comparison (c) Optimization process

(d) Comparison experiment: throughput (e) Ablation experiment: throughput (f) Computational complexity

FIGURE 4. Simulation results of the proposed UKF-HPSO mechanism and the baseline mechanisms. (a)-(c) Split Comparison, (d)-(e) Overall assessment.

TABLE 2. Simulation Parameters

Parameter Value Parameter Value
B 20 MHz α 1× 10−2

fc 2.4 GHz β 2
Ps 27 dBm κ 0
Pr 27 dBm ρ 2.6
Pn −90 dBm m 1
Gt 5 dBi n 9
Gr 5 dBi max_iter 200
Dmin 2 m pop_size 30
Tint 10 ms TSA 500
Tdf 50 ms λSA 0.95
S 1 Mb F 24

are outlined in Table 2 and the computational platform is a
laptop equipped with an AMD Ryzen 9 5900HX CPU and
32 GB RAM. In addition, since the PSO algorithm does not
contain constraints to execute (8b), (8c) and (8d) during the
flight, we add PF to PSO as the baseline.

We first evaluate the performance of the proposed UKF
algorithm and HPSO algorithm individually. Fig. 4(a) illus-
trates the superior real-time prediction results of the UKF
algorithm for UAV 3D trajectories compared to the baseline
KF. This difference is further quantified in Fig. 4(b) using the
mean squared error (MSE). Additionally, Fig. 4(c) presents
a comparison between HPSO and the baseline algorithm
PSO+PF at the 7th time point. PSO converges to 21.04 Mbps
after 127 iterations and becomes trapped in a local optimum.
In contrast, HPSO achieves convergence to 24.34 Mbps by
the 96th iteration, demonstrating significant improvement in
convergence speed and overcoming the issue of premature
convergence compared to PSO.

For the overall evaluation of the UKF-HPSO mechanism,
Fig. 4(d) compares it with KF-(PSO+PF) for experiments.

FIGURE 5. Demonstration of the complete flight trajectories optimized
based on KF-(PSO+PF) / UKF-HPSO.

The simulation results show that UKF-HPSO achieves bet-
ter optimisation results at each relay node, with an overall
throughput improvement of about 28%. The contribution of
SA and AIW is illustrated by the ablation of the individual
components in the HPSO in Fig. 4(e). Fig. 4(f) shows the
difference between UKF-HPSO and KF-(PSO+PF) in terms
of running time for optimizing this problem. The solution
of UKF-HPSO is faster in some of the complex nodes, i.e.,
nodes with low throughput due to building obstructions, but
KF-(PSO+PF) is superior in the simpler optimization points.
In general, the UKF-HPSO mechanism with the role of UT,
SA and AIW achieves better results in the multi-UAV mobile
relay throughput optimization problemwithout increasing the
computational complexity compared to the baseline mecha-
nisms. The flight trajectories of the multi-UAV mobile relay
formation are shown in Fig. 5.
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V. CONCLUSION
In this paper, we integrate concepts from automatic control
into non-convex optimization and enhance the PSO algo-
rithm, resulting in the development of the UKF-HPSO al-
gorithm. Our results demonstrate the ability to overcome
local optima and accelerate algorithm convergence without
significantly increasing computational complexity, highlight-
ing its superiority over the baseline approach. Compared to
reinforcement learning methods used in this study, the UKF-
HPSO algorithm offers advantages such as eliminating the
need for pre-training, reducing computing power require-
ments, and enabling deployment on UAV platforms. This
characteristic makes it highly suitable for large-scale UAV
applications in complex and dynamic environments like post-
disaster relief, military warfare, and resource exploration. By
utilizing the UKF-HPSO algorithm, UAVs can autonomously
navigate, make decisions, and ensure efficient and effective
operations in challenging and dynamic circumstances.
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