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A B S T R A C T   

Globally, many studies on machine learning (ML)-based flood susceptibility modeling have been carried out in 
recent years. While majority of those models produce reasonably accurate flood predictions, the outcomes are 
subject to uncertainty since flood susceptibility models (FSMs) may produce varying spatial predictions. How
ever, there have not been many attempts to address these uncertainties because identifying spatial agreement in 
flood projections is a complex process. This study presents a framework for reducing spatial disagreement among 
four standalone and hybridized ML-based FSMs: random forest (RF), k-nearest neighbor (KNN), multilayer 
perceptron (MLP), and hybridized genetic algorithm-gaussian radial basis function-support vector regression 
(GA-RBF-SVR). Besides, an optimized model was developed combining the outcomes of those four models. The 
southwest coastal region of Bangladesh was selected as the case area. A comparable percentage of flood potential 
area (approximately 60% of the total land areas) was produced by all ML-based models. Despite achieving high 
prediction accuracy, spatial discrepancy in the model outcomes was observed, with pixel-wise correlation co
efficients across different models ranging from 0.62 to 0.91. The optimized model exhibited high prediction 
accuracy and improved spatial agreement by reducing the number of classification errors. The framework pre
sented in this study might aid in the formulation of risk-based development plans and enhancement of current 
early warning systems.   

1. Introduction 

Natural hazards like floods have become more frequent in recent 
decades, endangering human lives, property, agriculture, urban infra
structure, and socioeconomic conditions. Floods are projected to occur 
more frequently and with greater intensity due to unprecedented 
changes in the climate (Falah et al., 2019; Khosravi et al., 2019; Msabi 
and Makonyo, 2021). Traditional flood management strategies involved 
the construction of structural measures to reduce risk associated with 
floods. However, structural flood protection measures could encourage 

floodplain development by engendering a sense of safety (Di Baldassarre 
et al., 2013; Montz and Tobin, 2008). Therefore, the failure of structural 
flood interventions may exacerbate flood damages (Hui et al., 2016). 

A risk-based approach to flood management, which includes flood 
prediction and early warning system, has become the paradigm for flood 
control methods (Poussin et al., 2015). Accurate flood forecasting is 
essential for avoiding or reducing the effects of possible threats 
(Papaioannou et al., 2018). To forecast floods, both deterministic and 
probabilistic approaches are used (Apel et al., 2009; Di Baldassarre 
et al., 2010). The deterministic approach to floodplain mapping includes 
the use of various hydrodynamic physical flood models such as HEC-RAS 
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(Ardiclioglu et al., 2022; Brunner, 1995) and MIKE (Zhou et al., 2012), 
and Delft3D-FLOW (Muñoz et al., 2021) models, which aim to establish 
the relationship between rainfall and runoff to predict inundations. But 
these physical models are data-intensive and may have significant un
certainties, especially when water flows are projected beyond the 
observation intervals (Di Baldassarre et al., 2010). 

Floodplain mapping is challenging as floods are the result of complex 
interactions between a variety of factors related to hydro-meteorology, 
topography, and anthropogenic environments (Bui et al., 2016; Khos
ravi et al., 2019). To address this challenge, flood susceptibility mapping 
has been proved to be effective in identifying areas prone to flooding 
(Bui et al., 2016; Kjeldsen, 2010; Malik and Pal, 2021; Mansur et al., 
2018). The advancement of geospatial technologies (e.g., Geographic 
Information Systems (GIS) and remote sensing) have made important 
contributions to hydrological research in recent decades, by providing 
continuous data for flood forecasting and risk assessment (Haq et al., 
2012; Tehrany et al., 2014b; Dewan et al., 2006). A finer spatial and 
temporal resolution of remotely sensed data has provided researchers 
with access to historical soil, geomorphological, and hydrological pro
files of floodplains that are essential factors for flood susceptibility 
mapping (Haq et al., 2012; Kalantar et al., 2021; Msabi and Makonyo, 
2021; Tralli et al., 2005; Wang et al., 2019). 

To map flood susceptibility, researchers used both qualitative and 
quantitative methods (Msabi and Makonyo, 2021; Shafizadeh-Mogha
dam et al., 2018). The Analytic Hierarchy Process (AHP) is one of the 
qualitative methods for flood susceptibility mapping (Vojtek and 
Vojteková, 2019). Quantitative approaches can however be classified 
into two categories: statistical and machine learning-based approaches. 
Numerous statistical techniques have been used to predict floods over 
the years. Examples include the use of weights of evidence (Batar and 
Watanabe, 2021; Costache, 2019; Tehrany et al., 2014b), bivariate (Ali 
et al., 2020; Tehrany et al., 2013, 2014a) and multivariate approaches 
(Al-Juaidi et al., 2018; Tehrany et al., 2013, 2014a). However, statistical 
models were criticized for failing to capture the nonlinear relationships 
between flood episodes and their underlying causes (Bui et al., 2019; 
Khosravi et al., 2019; Nachappa et al., 2020). 

Machine learning (ML)-based models have gained increased atten
tion for flood forecasting in recent years due to their ability to handle 
large amounts of data and comprehend nonlinear relationships between 
floods and their indicators (Bui et al., 2019; Khosravi et al., 2019; 
Nachappa et al., 2020; Shahabi et al., 2020). Researchers employed both 
standalone and hybridized ML algorithms to determine flood suscepti
bility (Rahman et al., 2019; Siam et al., 2021). Traditional ML models 
are artificial neural networks (ANNs) in the form of Multi-Layer Per
ceptrons (MLPs) (Kia et al., 2012; Rezaeianzadeh et al., 2014; Youssef 
et al., 2011), support vector machine (SVM) (Islam et al., 2021; 
Nachappa et al., 2020; Tehrany et al., 2019), wavelet-based artificial 
neural network (Kumar et al., 2022), as well as nonparametric 

algorithms like k-nearest neighbor (KNN) (He and Wang, 2007; Liu 
et al., 2016; Shahabi et al., 2020), and Random Forest (RF) (Chen et al., 
2020; Lee et al., 2017). In addition, several hybridized ML models for 
flood prediction have been developed (Siam et al., 2021). Evidence from 
several works suggested that hybridized models are superior to stand
alone models in terms of accuracy and robustness (Rahman et al., 2019; 
Siam et al., 2021). 

Although a large number of standalone and hybridized ML-based 
FSMs have been developed, uncertainties may exist in the resultant 
floodplain maps. The choice of modeling approach could be a major 
source of uncertainty since each model responds to geographical region 
and sample size differently (Shafizadeh-Moghadam et al., 2018). Un
certainties may also arise due to: (1) spatial heterogeneity of the land 
surface (Zhao et al., 2019), (2) a lack of historical flood observation data 
(Adnan et al., 2020b), (3) complexities in selecting an optimal combi
nation of models (Shafizadeh-Moghadam et al., 2018; Shahabi et al., 
2020), (4) choice of input parameters (Shirzadi et al., 2020), (5) error in 
data (e.g., incorrect flood labels) (Crosetto et al., 2000), (6) inadequate 
sampling resolution (Avand et al., 2022; Crosetto et al., 2000; Saha 
et al., 2021), (7) dependency on experts’ opinions (e.g., 
knowledge-based methods) (Nachappa et al., 2020), and (8) combining 
heterogeneous models (Zhao et al., 2019). 

The majority of the existing studies on FSM focused on comparing 
several ML techniques in order to select the most accurate model. FSMs 
are often assessed using receiver operating characteristic curves (ROC), 
the non-parametric Freidman test, the Wilcoxon signed-rank test, sta
tistical evaluation measures (such as overall accuracy, the kappa sta
tistic, and root-mean-square error), and other performance indicators 
(El-Haddad et al., 2021; Shafizadeh-Moghadam et al., 2018). The ROC is 
a common form of model performance assessment indicator that pro
vides a comprehensive, informative, and visually appealing measure of 
accuracy (Tehrany et al., 2013). Such a method consists of two elements: 
establishing the model and comparing projected maps with indepen
dently observed data sets. But utilizing the aforementioned methods to 
choose the best model when several models perform similarly is neither 
an easy task nor even feasible. It is possible for two or more suscepti
bility maps with similar accuracy and prediction capabilities to differ 
spatially in terms of the heterogeneity of the predicted spatial pattern 
(Adnan et al., 2020a; Sterlacchini et al., 2011). 

Despite producing high prediction accuracy, recent studies were 
unable to adequately explain the pixel-by-pixel agreement1 across sus
ceptibility maps created using various flood prediction models (Das
gupta et al., 2018; Löwe et al., 2021; Sarker et al., 2019). Less attention 

Abbreviation description 

AHP Analytic Hierarchy Process 
ALOS Advanced Land Observing Satellite 
AUC Area under the receiver operating characteristic curves 
BARC Bangladesh Agricultural Research Council 
BMD Bangladesh Meteorological Department 
CEP Coastal Embankment Project 
DEM Digital Elevation Model 
FSM Flood susceptibility model 
GA Genetic algorithm 
GA-RBF-SVR Genetic algorithm-gaussian radial basis function- 

support vector regression 
GIS Geographic Information Systems 

KNN k-nearest neighbor 
ML Machine learning 
MLP Multilayer perceptron 
MSE Mean squared error 
NPV Negative predictive value 
OA Overall accuracy 
PPV Positive predictive value 
RF Random forest 
ROC Receiver operating characteristic curves 
SAR Synthetic aperture radar 
SPI Stream Power Index 
SVM Support vector machine 
TWI Topographic Wetness Index 
VIF Variance inflation factors  

1 In this study, “spatial agreement” refers to a high level of pixel-by-pixel 
correlation between the locations of the observed and modeled floods, 
whereas “spatial disagreement” is indicated by low correlation coefficients. 

M.S.G. Adnan et al.                                                                                                                                                                                                                            



Journal of Environmental Management 326 (2023) 116813

3

is given to investigate and improve spatial agreement among suscepti
bility maps generated by various models utilizing various ML-based 
models. To address the challenges noted above, this study proposes a 
method to minimize uncertainty in predicted spatial patterns in 
ML-based FSM. Therefore, two objectives were formulated: (1) to 
determine the degree of spatial agreement between four standalone and 
hybridized ML-based FSMs — RF, KNN, MLP, and GA-RBF-SVR; (2) to 
develop a regression-based FSM incorporating the outcomes of those 
four models to improve predicted spatial pattern. The study utilized the 
southwest coastal region of Bangladesh as a case, which is prone to 
multiple types of flooding (Adnan et al., 2019). 

2. Materials and methods 

This study includes five methodological steps: (1) observing flood 
events to develop a flood inventory map, (2) selecting flood causative 
factors, (3) developing FSMs, (4) identifying spatial dis (agreement) 
among various ML-based models, and (5) developing a framework to 
improve spatial agreement in FSMs. Fig. 1 shows an overview of the 
methodology followed in this study. 

2.1. Study area 

The study focused on Bangladesh’s southwestern coastal region 
(Fig. 2), which is vulnerable to several forms of flooding, including 
pluvial flooding, tidal flooding, and storm surges brought on by tropical 
cyclones (Adnan et al., 2019). The heavily engineered coastal region 
consists of 139 polders (a Dutch term describing enclosed coastal em
bankments). This study focused on 44 polders crisscrossed over five 
southwest coastal districts — Bagerhat, Jessore, Khulna, Pirojpur, and 
Satkhira — home to approximately 5.3 million people (Bondarenko 
et al., 2020). The area is approximately 5187 km2 in size, with a mean 
elevation of 3.2 m. The construction of polders in this region began in 
the 1960s as part of a major Coastal Embankment Project (CEP) (Ali, 
2002; Mirza and Ericksen, 1996). The CEP was designed to protect 
agricultural lands against saline intrusion, tidal flooding, and storm 
surge induced flooding (Warner et al., 2018). A series of polders were 
constructed in the coastal region from the 1960s to the 1980s (Adnan 
et al., 2020b). 

The initial success of polders construction in increasing agricultural 
productivity was hindered by geomorphological changes in the 
embanked region caused by the separation of floodplains from adjacent 
rivers. The embanked region has experienced both riverbed siltation, 
which lowers rivers’ capacity to retain water, and land subsidence (i.e., 
settling or sinking of the Earth’s surface), which encouraged surface 
depressions. The rate of land subsidence in the coastal region is, on 
average, roughly 2–3 mm/year (Brown and Nicholls, 2015). Besides, 
inadequate and depleted drainage systems have resulted in temporary or 
permanent waterlogging in a number of locations (Adnan et al., 2019; 
Auerbach et al., 2015). While a few studies attempted to develop 
deterministic (Haque et al., 2018) or probabilistic (Adnan et al., 2020b) 
flood models to simulate pluvial and/or tidal floods in the study area, 
uncertainties in those models are not well understood. 

2.2. Flood inventory mapping 

FSMs hypothesize that the likelihood of an area being inundated 
depends on a similar set of flood causative factors explicating in
undations during historical events. Thus, the accuracy of FSMs depends 
on the accuracy of historical flood observation data (Nachappa et al., 
2020). This study utilized a flood inventory map created by Adnan et al. 
(2020b), which was based on historical flood observations from 1988 to 
2012 that were generated from satellite data. The inventory map 
showed the ratio of the number of times a region flooded to the total 
number of observation years, which is referred to as “flood frequency”. 
The flood inventory map was used to determine random flood and 

non-flood locations (Tehrany et al., 2019). Using the flood inventory 
map, a total of 1000 random locations were generated, whereby flood 
and non-flood locations were 586 and 414, respectively (Fig. 2). 

2.3. Flood causative factors 

The choice of flood conditioning factors is crucial for the accurate 
mapping of flood susceptibility. The existing studies used diverse flood 
indicators (Khosravi et al., 2019; Nachappa et al., 2020; Tehrany et al., 
2019). Based on relevant literature review and with regard to local 
characteristics, this study selected 14 flood conditioning factors, clas
sified under five broad categories: topographical, hydrometeorological, 
anthropogenic, geological, and locational factors. Raster images of all 14 
factors were created at 30 m spatial resolution. Data sources of all flood 
conditioning factors are given in Table 1. 

Topographical factors included aspect, elevation, curvature, slope, 
and land subsidence (Fig. S1, Supplementary document). This study 
utilized Advanced Land Observing Satellite (ALOS) Digital Elevation 
Model (DEM) (JAXA, 2015) to develop raster layers of aspect, elevation, 
curvature, and slope. Aspect is a crucial component of flood suscepti
bility mapping, which describes slope’s orientation and the amount of 
precipitation and sunshine that an area is likely to receive (Nachappa 
et al., 2020). Surface elevation is considered to be one of the most 
important indicators of flooding since water usually flows from high to 
lowlands. Besides, elevation influences on other topographical features 
such as aspect, slope, and curvature (Khosravi et al., 2019). In the case of 
curvature, flat or concave surfaces are primarily susceptible to flooding 
(Tehrany et al., 2014b). Slope controls flooding by regulating the speed 
of surface runoff velocity and vertical percolation. Areas with lower 
slopes are typically more vulnerable to flooding (Youssef et al., 2011). 
Land subsidence is a significant cause of pluvial flooding in coastal 
Bangladesh (Brown and Nicholls, 2015). Land subsidence layer used in 
this study was obtained from Adnan et al. (2020b), who estimated 
subsidence in the southwest embanked region using 205 training mea
surement points turned into a raster layer using the natural neighbor 
interpolation method. 

Four hydrometeorological factors were considered in this study: 
precipitation, Stream Power Index (SPI), flow accumulation, and the 
Topographic Wetness Index (TWI) (Supplementary document, Fig. S2). 
An annual mean precipitation layer was created using 10-day gridded 
precipitation data from the Bangladesh Meteorological Department 
(BMD) from 1948 to 2012. SPI, TWI, and flow accumulation indicate the 
natural drainage characteristics of the study area. Flow accumulation 
explains cumulative volumes of water moving downslope. A flow 
accumulation layer was developed from a continuous drainage network 
developed from DEM (Tehrany et al., 2014b). The SPI illustrates the 
erosive impact of surface runoff (Nachappa et al., 2020). Significantly 
high SPI areas are more likely to experience flooding (Bannari et al., 
2017). TWI shows the amount of flow collecting at any point while 
taking gravity-driven downstream flow trends into account. It describes 
how wet a location is in relation to its surroundings (Khosravi et al., 
2019). The following equations were used to develop gridded data for 
SPI and TWI. 

SPI =As × tan β (1)  

TWI = ln
(

As
tan β

)

(2)  

where As and β are the specific catchment area (m2/m) and slope 
gradient, respectively. 

This work also selected five variables related to anthropogenic (land 
use), geological (soil texture and soil permeability), and locational 
(distance to adjacent rivers and drainage channels) characteristics of the 
study area (Fig. S3, Supplementary document). The pattern of land use 
in an area affects evapotranspiration, which measures the amount of 
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Fig. 1. Methodological flow of the study.  

Fig. 2. Location map of southwest embanked region of Bangladesh, with sample flood and non-flood points.  
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runoff and its velocity (Tehrany et al., 2019). Land use data utilized in 
this study was collected from Mukhopadhyay et al. (2018) that included 
12 classes (Fig. S3 (a)). Topsoil texture and soil permeability are two 
geological factors that determine the degree of infiltration. These 
datasets were collected from Bangladesh Agricultural Research Council 
(BARC). The characteristics of soil and land use of an area determine 
water balance (Tehrany et al., 2019). The polders in coastal Bangladesh 
are connected to many drainage channels and sluice gates to prevent 
saltwater intrusion during the dry season and drain surplus runoff dur
ing the wet season. A study by Adnan et al. (2020b) exhibited that the 
distance between an area and nearby drainage channels and rivers can 
be a good indicator of how susceptible it is to flooding. This study 
created two raster layers using the Euclidean distance algorithm to 
compute the distance between a particular location and neighboring 
drainage systems. Vector data of drainage channels were collected from 
Adnan et al. (2019). 

2.4. Multicollinearity analysis to select optimum number of factors 

In order to avoid flood conditioning factors that are susceptible to 
multicollinearity, this study evaluated variance inflation factors (VIF). It 
is a method that is frequently employed to assess the multi-collinearity 
of flood conditioning parameters (Yariyan et al., 2020). When a vari
able’s VIF value is > 2.5, bias is introduced into the model, and when it 
is > 10, multicollinearity is present (Midi et al., 2010). For the purposes 
of this study, factors with VIF values under 2.5 were chosen for modeling 
flood susceptibility. From 14 flood conditioning factors, 12 were 
included in the modeling purposes since the addition of TWI and flow 
accumulation greatly enhanced VIF values (Table 1). 

2.5. Data preprocessing 

Values of each of the 12 flood conditioning factors were extracted at 
random flood locations using GIS. The resulting dataset did, however, 
contain some missing values, which were pruned. Subsequently, 965 
samples altogether were used for to create the models. The models were 
created utilizing 70% of the total samples for training and the rest 30% 
for testing, which is consistent with previous studies (Pham et al., 2021; 
Tehrany et al., 2019). Finally, there were 675 training samples and 290 
test samples, respectively. The training samples’ corresponding ratios of 
flood and non-flood locations were 401 and 274. According to Islam 
et al. (2021), there should be a similar number of flood and non-flood 
samples to minimize bias. Therefore, the minority class — the 
non-flood class — was oversampled using the ‘ovun.sample’ function of 
the random over-sampling examples (ROSE) package in R. Conse
quently, oversampled train dataset contained a total of 389 non-flood 
and 401 flood locations. 

Several flood conditioning factors selected in this study have phys
ical dimensions. Equation (3) shows how all continuous variables were 

scaled using the z-score normalization technique to eliminate the 
physical dimensions. The ranges of each flood conditioning factor within 
the training and test datasets, respectively, before and after scaling are 
shown in the supplemental material (Table S1 and Table S2). 

z=
x − μ

σ (3)  

where μ and σ are the mean and standard deviation of a feature vector. 

2.6. Flood susceptibility mapping 

This study developed four supervised machine learning models for 
mapping flood susceptibility: random forest, k-nearest neighbor, 
multilayer perceptron, and hybridized genetic algorithm-gaussian radial 
basis function-support vector regression (GA-RBF-SVR). Equation (4) 
was used to estimate flood susceptibility scores (FS) on a pixel-by-pixel 
basis (Siam et al., 2021). 

FS=
∑n

m=1
wmxm (4)  

where n is the number of flood conditioning factors, xm is the flood 
conditioning factors, and wm is the weight of each factor. 

2.6.1. Multilayer perceptron (MLP) 
The Multilayer perceptron (MLP), one of the most widely used su

pervised machine learning models, offers a fundamental feedforward 
neural network architecture that can be applied for both classification 
and regression (Murtagh, 1991). This model consists of a single input 
layer, several hidden layers, and an output layer. The output of an input 
layer was sent as an input into the following layer. The procedure is 
repeated until the last hidden layer is reached. Several weights and 
biases in the model need to be adjusted throughout the training process. 
In this study, the Resilient Backpropagation algorithm (RPROP+) was 
used to train the MLP model to acquire the optimal weights and biases. 
Two hidden layers were used where the first and second layers included 
ten and three nodes, respectively. The maximum step for training was 
set at 106, and the threshold was set at 0.1. The MLP model was applied 
using the R ‘neuralnet’ library. The results of an MLP model vary from 
run to run because the input parameters can give various initial weights, 
which is one of its drawbacks (Ahmadlou et al., 2021). To address this 
issue, the model was iterated multiple times, and the model with the 
highest accuracy was chosen as the final. 

2.6.2. K-nearest neighbor (KNN) 
The k-nearest neighbor (KNN) is a supervised machine learning 

technique that utilizes the proximity or vicinity of data points or sam
ples, presuming that similar things are close to one other (Cover and 
Hart, 1967). The KNN model uses “feature similarity” to predict the 

Table 1 
Flood conditioning factors used in this study.  

No. Conditioning factor Data type Data Source VIF (Iteration 1) VIF (Iteration 2) 

1 Aspect Continuous Estimated from DEM 1.09 1.03 
2 Elevation “ DEM (JAXA, 2015) 2.15 2.11 
3 Slope “ Estimated from DEM 2.08 1.19 
4 Curvature Discrete “ 1.61 1.46 
5 Land subsidence Continuous Adnan et al. (2019) 1.57 1.56 
6 Precipitation “ http://www.bmd.gov.bd 2.33 2.32 
7 Flow accumulation “ Estimated from DEM 8.76 – 
8 SPI “ “ 6.88 1.34 
9 TWI “ “ 11.75 – 
10 Land cover Discrete Mukhopadhyay et al. (2018) 1.34 1.31 
11 Soil texture “ http://www.barc.gov.bd/ 1.23 1.23 
12 Soil permeability “ “ 1.51 1.50 
13 Distance to drainage channels Continuous Adnan et al. (2019) 1.09 1.09 
14 Distance to rivers “ WARPO (2018) 1.11 1.10  
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values of novel samples or data points. The novel sample is consequently 
assigned a value based on how similar it is to the sample in the training 
set. The distance function, which determines k neighbor samples or data 
points in the train set that are closest to the input, defines the proximity. 
The input label was predicted over the labels of the k samples or data 
points using the ‘majority-vote’ method. As a result, the model gets less 
sensitive to noise as k grows. Because KNN classifiers depend on every 
sample in the entire training set, their performance is computing 
intensive (Shahabi et al., 2020). This study utilized the Euclidean dis
tance algorithm as a distance function. Since k is a hyperparameter, the 
model used different values of it. This study noted that the model per
formed better when the value of k was set to five. The ‘knnreg’ function 
of ‘caret’ package in the R language was used to implement the KNN 
model. 

2.6.3. Random forest (RF) 
Random forest (RF) (Breiman, 2001) is one of the most popular su

pervised machine learning models for solving classification and regres
sion problems. The model creates a number of decision trees using 
training data. In order to achieve a greater accuracy or a minimum error, 
each decision tree generates an output, and the final output is produced 
by majority voting or averaging at the time of inference for classification 
and regression, respectively. RF does have certain limitations, especially 
when there are many trees included in the model. The computation 
becomes inefficient and slow as a result (Zhu and Zhang, 2022). This 
study used the ‘randomForest’ package in R to implement this algo
rithm. In order to improve model performance, the number of ‘trees’ was 
set to be 500, and three variables were randomly picked as candidates at 
each internal node in the tree. The parameter ‘cross’ was set to a value of 
10 to apply a 10-fold cross-validation approach on the training dataset to 
subdue bias. 

2.6.4. Hybridized GA-RBF-SVR model 
A hybridized genetic algorithm – gaussian radial basis function – 

support vector regression (GA – Gaussian RBF – SVR) model was also 
developed in this study to map flood susceptibility. The SVR is a widely 
used algorithm in flood susceptibility mapping that can define the 
relationship between the input and output data using equation (5). 

f (x)=wT ψ(x) + bias (5)  

where x ε Rn is the flood causative features, w ∈ Rn is the weight vector, 
and ψ(x) is the non-linear mapping function. Equation (6) exhibits the 
final solution to the constrained optimization problem in SVR utilizing 
the Lagrangian formulation. 

f (x)=
∑n

j=1

(
αj − αj

∗
)
k
(
x, xj

)
+ bias (6)  

where αj and αj* are the Lagrangian multipliers and k(xm, xn) =< ψ(xm),

ψ(xn) > denotes kernel function. Different types of kernels can be 
applied. This study however used the gaussian radial basis function 
(gaussian RBF) (equation (7)). 

k
(
x, xj

)
= e− γ‖x− xj‖

2

(7)  

where γ denotes the spread of the kernel, ε (epsilon) is the approxima
tion quality and the cost value which regulates the tradeoff between 
training error and model complexity. This study optimized these three 
parameters of the gaussian RBF-SVR model utilizing a genetic algorithm 
(GA). The objective function of GA was defined to be the negative 
quantity of the mean squared error (MSE) value on the test set predic
tion. Again, a 10-fold cross-validation technique was applied while 
training all the SVR models with different values of the parameters on 
the train set to circumvent overfitting. The model complexity was also 
evaluated in terms of the number of support vectors in order to model 
the train set. 

This study implemented the GA-Gaussian RBF-SVR model using the 
‘ksvm’ function of ‘kernlab’ package in R. ‘Epsilon regression’ was 
chosen as the function, and the value of ‘cross’ at 10. The kernel was set 
to ‘rbfdot’ in order to use the gaussian radial basis function kernel. The 
genetic algorithm was implemented utilizing the ‘ga’ function of the 
‘GA’ package in R. 

2.6.5. Sensitivity analysis and validation of flood susceptibility models 
(FSMs) 

In order to determine the best-performing FSM, this study calculated 
a number of cutoff-dependent and cutoff-independent validation in
dicators, including receiver operating characteristic (ROC) and area 
under the receiver operating characteristic (AUC) curves, overall accu
racy (OA), mean squared error (MSE), kappa statistic, positive predictive 
value (PPV), negative predictive value (NPV), sensitivity and specificity. 
Using Youden’s index, the optimal cutoff value for binarizing flood 
susceptibility scores predicted by the models was determined (Youden, 
1950). This was accomplished using the ‘optimal.cutpoints’ function in 
the R package ‘OptimalCutpoints’. The ‘roc’ and ‘plot.roc’ functions of 
the ‘pROC’ package were used to estimate the values of AUC. 

As part of the sensitivity analysis, the importance rank (%IncMSE 
and IncNodePurity) of each flood conditioning factor was estimated 
using the RF algorithm. The %IncMSE quantifies the proliferation in the 
mean squared error value of model prediction when the feature values 
get randomly permuted. The IncNodePurity metric measures the total 
curtailment of node impurities anticipated by the Gini Index that is 
averaged over each of the decision trees. Node impurities were predicted 
by the Gini Index via variable splitting. The higher values of %IncMSE 
and IncNodePurity indicators suggest that the model should place more 
emphasis on certain features and be more sensitive (Siam et al., 2021, 
2022). 

2.7. Identification of uncertainties in flood susceptibility maps 

To investigate uncertainties in the inter-model agreeability, pairwise 
flood susceptibility maps, developed using four standalone and hy
bridized algorithms, were compared. Pearson’s correlation coefficient 
was derived to investigate the extent of pixel-wise agreement between 
the six possible combinations of FSMs. The estimated correlation coef
ficient indicates the covariance of flood predictions, obtained by using 
two models, divided by the product of their standard deviations. The 
correlation coefficient can be anything from +1 to − 1, with 0 denoting 
complete disagreement, 0 to ±0.29 as low, ±0.30 to ±0.49 as moder
ate, ±0.50 to <±1 as high, and ±1 as perfect agreement. This method 
evaluates uncertainties between several models, but it does not provide 
information about inaccuracy in the estimation of the probability of a 
flood. 

2.8. Calibrating optimized FSM 

This study hypothesized that there are spatial inconsistencies in 
flood susceptibility maps developed using various combinations of ML 
models. Therefore, an optimized flood prediction map that integrated 
four susceptibility maps was developed to address uncertainties in 
various models. The optimized model was developed by adopting a 
strategy suggested by Adnan et al. (2020a) and Rossi et al. (2010). A 
logistic regression (LR) model was established that incorporated binary 
flood and non-flood locations (see section 2.2) as a dependent variable 
and the susceptibility scores of four standalone and hybridized ML 
models as independent variables. The regression coefficients obtained 
from the LR model were incorporated in Equation (8) to estimate opti
mized flood susceptibility scores (P) in the study area. 

P=
1

1 + e− z (8)  
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where z is the linear combination of flood causative factors, which was 
estimated using the following equation: 

z= θ0 + θ1x1 + θ2x2 + ⋯⋯ + θnxn (9)  

where θ0 is the model intercept, θi (i = 1, 2, …, n) represents the 
regression coefficients of independent variables, n is the number of flood 
causative factors, and xi (i = 1, 2, …, n) indicates the value of different 
independent variables. The sensitivity and validation of the optimized 
FSM were carried out using methods described in section 2.6.5. 

3. Results 

3.1. Flood potential areas 

Fig. 3 shows flood susceptibility maps of the southwestern embanked 
region of Bangladesh developed by using four standalone and hybridized 
algorithms. The flood potential zones were categorized into five classes 
using the quantile classification method. The results indicated that most 
of the areas are susceptible to floods, which can range in severity from 
moderate to extreme (Fig. 3). Significantly lower variability in the 
proportion of flood susceptible areas was observed within four stand
alone and hybridized ML models, with flood susceptible zones ranging 
from 59.7% to 59.9% of the total area (Fig. 4). The spatial distribution of 
flood potential zones, however, showed considerable variances (Fig. 3), 
indicating the presence of uncertainties in different models. 

Fig. 3. Flood susceptibility maps, obtained by four machine learning algorithms: (a) Multi-Layer Perceptron (MLP), (b) K-Nearest Neighbor (KNN), (c) Random 
Forest (RF), and (d) Gaussian approximation and Support Vector Regression (GA-SVR). 
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3.2. Spatial agreement between various FSMs 

In order to assess pixel-level flood probabilities between different 
FSMs and determine the degree of geographic agreement between them, 
this study used the Pearson correlation coefficients (Fig. 5). The findings 
revealed that there was a significant variation in the spatial agreement 
between FSMs created using four standalone and hybridized ML models, 
with pair-wise correlation coefficients ranging from 0.62 to 0.91. The 
hybridized GA-RBF-SVR model generally exhibited a better level of 
spatial agreement with other models, whereas the KNN model produced 
the lowest agreement. The GA-RBF-SVR and RF models had the highest 
correlation coefficient of 0.91 among the four models, whilst the MLP- 
KNN models had the lowest correlation coefficient value of 0.62. 

3.3. The optimized FSM 

This study developed an optimized FSM model by using the best- 
predicted pixels from different ML models to address uncertainty 
regarding spatial disagreement between the models. A multivariate LR 
model was established utilizing binary flood and non-flood locations as 
the dependent variable and estimated flood probabilities based on the 
four standalone and hybridized ML models as independent variables. 
Table 2 provides an overview of the results of the optimized model. The 
association between observed flood and non-flood locations and flood 
probabilities calculated using all four models was statistically significant 
(p-value < 0.05). With the coefficient of determinants (R2) of 0.81, the 
model showed its robustness in predicting flood inventories. Flood 
probabilities obtained by the KNN model were found to be negatively 
associated with flood locations. In relation to estimated regression co
efficients, the GA-RBF-SVR model had the highest influence on the 

Fig. 4. Flood susceptible areas derived via five models: MLP, KNN, RF, GA-RBF-SVR, and optimized model.  
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optimized model, followed by the RF, MLP, and KNN models. 
Estimated coefficients from the LR model were incorporated into 

equation (8) to generate the combined flood susceptibility map, which 

was then categorized using the Quantile classification method into five 
classes (Fig. 6b). About 59.9% of the total study area was classified as 
being susceptible to flooding of moderate to very high severity. Most of 
these places were inundated during various historical flood events 
(Fig. 6a). The optimized FSM produced higher levels of spatial agree
ment, with correlation coefficients between the optimized FSM and all 
four models ranging from 0.76 (KNN and optimized model) to 0.92 (RF 
and optimized model) (Fig. 5). 

3.4. Performance assessment of different FSMs 

The results of the various performance indicators are shown in Fig. 7 
and Table 3. All five models had very high prediction accuracy, with 
AUC values > 0.95. Among the four standalone and hybridized ML 
models, the RF model obtained the greatest AUC value of 0.984, fol
lowed by the hybridized GA – Gaussian RBF – SVR model (AUC – 0.983), 

Fig. 5. Correlogram, showing spatial agreement between the five flood sus
ceptibility models. 

Table 2 
Parameters and estimates of the optimized flood susceptibility model.  

Variables Coefficients Standard error z-value p-value 

Model intercept − 8.46213 0.96268 − 8.7902 <2.2e-16 *** 
GA-RBF-SVR 9.30307 2.74787 3.3856 0.0007104 *** 
KNN − 1.66782 0.82107 − 2.0313 0.0422262 * 
RF 7.76560 1.53413 5.0619 4.151e-07 *** 
MLP 4.26948 1.71665 2.4871 0.0128788 * 

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1. 
Log-Likelihood: − 131.46. 
McFadden R2: 0.81. 
Likelihood ratio test: chi-square = 1083.1 (p-value = < 2.22e-16). 

Fig. 6. (a) Inundation areas during historical flood events; and (b) simulated flood susceptible areas with optimized model.  

Fig. 7. Receiver operating characteristic (ROC) curves with corresponding 
values of area under the curves (AUC) of five models. 
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MLP (AUC – 0.969), and KNN (AUC – 0.956). The prediction accuracy of 
optimized FSM was greater, with an AUC value of 0.987 (Fig. 7). 

While AUC values show how well the models performed generally, 
they do not reveal which particular classes were misclassified. To assess 
the performance and provide further insights into the relationship be
tween observed and modeled flood and non-flood locations, a number of 
indices, including overall accuracy (OA), sensitivity, specificity, kappa 
coefficient, and mean squared error (MSE), were computed (Table 3). 
The RF model achieved the greatest OA value of 0.931 and the highest 
kappa statistic of 0.853 among the four ML models, while the hybridized 
GA – Gaussian RBF – SVR model came in second with an OA value of 
0.924 and a kappa statistic of 0.840. Besides, the RF model achieved the 
lowest MSE value of 0.064, followed by the hybridized GA – Gaussian 
RBF – SVR model (MSE = 0.070). The KNN and MLP models performed 
less well compared to the other two models. Again, the optimized model 
improved the values of all performance assessment metrics. 

3.5. Sensitivity analysis 

This study investigated sensitivity of five flood susceptibility models 
to various flood causative factors using RF algorithm’s %IncMSE and 
IncNodePurity scores. In general, all models were significantly impacted 
by surface elevation and the spatial pattern of land cover. A substantial 
degree of influence of precipitation was also observed. As model per
formance improved, the sensitivity of different models to flood in
dicators decreased. As a consequence, the optimized model had, the 
lowest values for %IncMSE and IncNodePurity for all flood causative 
factors when compared to the other four models (Fig. 8). 

4. Discussion 

Although GIS-based ML is a powerful tool for predicting natural 
hazards (such as floods, landslides, etc.), the results are subject to un
certainty because of model assumptions, the weighting of the criteria, 
and the quality and availability of the data (Rossi et al., 2010; Sterlac
chini et al., 2011). There have only been a few attempts to overcome 
uncertainty in ML-based flood susceptibility models so far. This study 
sought to present an approach to minimize spatial disagreement in flood 
prediction using four sample standalone and hybridized ML algorithms: 
GA-RBF-SVR, RF, MLP, and KNN. The premise behind this work was that 
flood prediction does change geographically based on the model uti
lized. The outcomes of these four models were combined to create an 
optimum model. The study concentrated on the southwest embanked 
region of Bangladesh, which is prone to various types of recurring floods 
(Adnan et al., 2019). 

The results of various models indicated that approximately 60% of 
the total land area is at risk of flooding. A number of recent studies 
produced results that were comparable (Adnan et al., 2019, 2020b). 
Despite obtaining similar extent of flood potential areas using various 
models, predictions were spatially heterogeneous. A comparison of the 
results of four different models revealed that the degree of model fit is 
not a reliable predictor of the model’s ability to forecast floods. 
Pixel-wise correlation coefficients across various models ranged from 
0.62 to 0.91. This study demonstrated that there exist uncertainties in 
ML-based flood prediction despite a high degree of prediction accuracy. 
This is because the degrees of influence of various flood conditioning 

factors on the chance of flooding vary across different models. For 
instance, elevation was found to be the most influential factor in MLP, 
RF, and GA-RBF-SVR models, while land use was the most significant 
parameter in KNN model (Fig. 8). In addition, other flood conditioning 
factors such as precipitation, curvature, and soil permeability had 
considerable levels of influence. However, spatial variation of weights 
was observed. Feizizadeh and Kienberger (2017) suggested that deter
mining uncertainties in GIS-based multicriteria decision analysis 
methods require a complete understanding of tradeoffs between various 
factors within a model. 

All models produced very high prediction accuracy as indicated by 
model performance assessment indices, with the AUC values ranging 
from 0.956 (KNN) to 0.984 (RF). Many recent studies also ascertained 
the high accuracy of standalone and hybridized ML algorithm-based 
flood susceptibility models (Khosravi et al., 2019; Nachappa et al., 
2020; Rahman et al., 2019; Siam et al., 2021, 2022). Although useful, 
the model performance assessment indicators cannot examine a model’s 
efficacy and reliability in their whole (Guzzetti et al., 2006; Rossi et al., 
2010). This study noted that an optimized model can improve flood 
prediction accuracy by minimizing the likelihood of spatial disagree
ment across various models. Combining the outputs of various ML-based 
models reduced the number of classification errors, compared to indi
vidual models (Fig. 7). Similar result was found in several studies 
(Ghorbanzadeh et al., 2018; Rossi et al., 2010). Additionally, the opti
mized models demonstrated a significantly lower variability in esti
mating susceptibility compared to the variability measured by the single 
models, indicating reduced uncertainties brought on by spatial 
disagreement (Guzzetti et al., 2006), thus guiding, more consistent flood 
susceptibility mapping. This is as a result of the improved FSM 
extracting the accurately determined flood and non-flood locations from 
each of the four models. The optimized model’s assertion of lower 
variability is supported by improved spatial agreements (Fig. 5) and 
improved prediction accuracy (Fig. 7). 

5. Conclusion 

Predicting natural hazards such as floods is a challenging task due to 
complex interactions among various causative factors. The focus of 
many recent studies was to select a suitable method for predicting flood 
hazards (Bui et al., 2019; Chen et al., 2020; Khosravi et al., 2019; 
Nachappa et al., 2020; Tehrany et al., 2019). Flood prediction maps 
developed based on sample flood inventory data could create un
certainties in its spatial prediction pattern. A few studies attempted to 
analyze uncertainties in multi-criteria decision analysis-based flood 
susceptibility modeling (de Brito et al., 2019; Feizizadeh and Kien
berger, 2017; Ghorbanzadeh et al., 2018). The variability in the spatial 
pattern that the ML-based FSM predict, however, has not received much 
attention. This study proposed an approach to enhance the geographical 
agreement of flood susceptibility across four ML-based FSMs: Multilayer 
perceptron (MLP), k-nearest neighbor (KNN), random forest (RF), and 
hybridized genetic algorithm-gaussian radial basis function-support 
vector regression (GA-RBF-SVR) models. The models were developed 
in the southwestern coastal region of Bangladesh. The outcomes showed 
that the RF model outperforms the other three, producing the highest 
prediction accuracy. But it was discovered that the flood predictions 
made by such models varied pixel by pixel. By combining the results of 

Table 3 
Results of model performance assessment.  

Models AUC Cut-off Overall accuracy Sensitivity Specificity Kappa coefficient MSE 

MLP 0.967 0.30 0.909 0.910 0.94 0.809 0.127 
KNN 0.956 0.372 0.904 0.938 0.865 0.798 0.083 
RF 0.984 0.476 0.942 0.937 0.957 0.879 0.064 
GA-RBF-SVR 0.983 0.552 0.945 0.942 0.955 0.886 0.070 
Optimized model 0.987 0.628 0.957 0.945 0.973 0.911 0.035  
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Fig. 8. Sensitivity of flood susceptibility models to flood causative factors, based on %IncMSE and IncNodePurity.  
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four models, an improved FSM was created to reduce such uncertainty in 
the predicted spatial pattern. When compared to the individual models, 
the optimized model had better spatial agreement and more accurate 
flood predictions, according to the models’ performance assessment 
metrics. 

Despite improving flood predictions, there are still certain areas 
where this study may be strengthened. For instance, flood inventory 
data used in this study was developed by analyzing the Landsat satellite 
images and validated through fieldwork (Adnan et al., 2020b). Due to 
the unavailability of cloud-free images during the monsoon season, 
flood maps were produced by comparing pre- and post-monsoon images 
(Adnan et al., 2019). The Synthetic-aperture radar (SAR) dataset, 
however, may allow for flood observation and the identification of 
inundation zones during the monsoon seasons. The sampling method
ology utilized for both the model’s training and testing represents 
another drawback. Different training and testing datasets are produced 
each time random sampling is utilized. As a result, the models generated 
using these datasets may differ. The optimal model can be chosen by 
repeatedly using the random sampling method to address this issue 
(Ahmadlou et al., 2021). In addition, the accuracy of the FSM depends 
on the input parameters used, especially the DEM. The 30-m resolution 
ALOS DEM of was used since it has reasonably low root-mean-square 
error (1.78 m) in vertical accuracy among the freely accessible DEMs 
(Hasan et al., 2020). High-resolution DEM use, however, could enhance 
the FSMs. 

Although there are certain drawbacks, the framework presented in 
this study may help water resources managers and policymakers create 
risk-based development strategies. A similar modeling framework may 
be used to other areas that are vulnerable to floods brought on by 
anthropogenic activity and climate change. In comparison to the current 
ML-based modeling techniques, the proposed optimized flood suscepti
bility model represents an improvement. The results of this study could 
be used to develop flood early warning systems in Bangladesh (Siam 
et al., 2022), supporting the improvement of the nation’s catastrophe 
resilience. 
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Muñoz, D.F., Yin, D., Bakhtyar, R., Moftakhari, H., Xue, Z., Mandli, K., Ferreira, C., 2021. 
Inter-model Comparison of Delft3D-FM and 2D HEC-RAS for Total Water Level 
Prediction in Coastal to Inland Transition Zones. JAWRA Journal of the American 
Water Resources Association. 

Murtagh, F., 1991. Multilayer perceptrons for classification and regression. 
Neurocomputing 2, 183–197. 

Nachappa, T.G., Piralilou, S.T., Gholamnia, K., Ghorbanzadeh, O., Rahmati, O., 
Blaschke, T., 2020. Flood susceptibility mapping with machine learning, multi- 
criteria decision analysis and ensemble using Dempster Shafer Theory. J. Hydrol. 
590, 125275. 

Papaioannou, G., Efstratiadis, A., Vasiliades, L., Loukas, A., Papalexiou, S.M., 
Koukouvinos, A., Tsoukalas, I., Kossieris, P., 2018. An operational method for flood 
directive implementation in ungauged urban areas. Hydrology 5, 24. 

Pham, B.T., Luu, C., Van Dao, D., Van Phong, T., Nguyen, H.D., Van Le, H., von 
Meding, J., Prakash, I., 2021. Flood risk assessment using deep learning integrated 
with multi-criteria decision analysis. Knowl. Base Syst. 219, 106899. 

Poussin, J.K., Botzen, W.W., Aerts, J.C., 2015. Effectiveness of flood damage mitigation 
measures: empirical evidence from French flood disasters. Global Environ. Change 
31, 74–84. 

Rahman, M., Ningsheng, C., Islam, M.M., Dewan, A., Iqbal, J., Washakh, R.M.A., 
Shufeng, T., 2019. Flood susceptibility assessment in Bangladesh using machine 
learning and multi-criteria decision analysis. Earth Syst. Environ. 3, 585–601. 

Rezaeianzadeh, M., Tabari, H., Arabi Yazdi, A., Isik, S., Kalin, L., 2014. Flood flow 
forecasting using ANN, ANFIS and regression models. Neural Comput. Appl. 25, 
25–37. 

Rossi, M., Guzzetti, F., Reichenbach, P., Mondini, A.C., Peruccacci, S., 2010. Optimal 
landslide susceptibility zonation based on multiple forecasts. Geomorphology 114, 
129–142. 

Saha, T.K., Pal, S., Talukdar, S., Debanshi, S., Khatun, R., Singha, P., Mandal, I., 2021. 
How far spatial resolution affects the ensemble machine learning based flood 
susceptibility prediction in data sparse region. J. Environ. Manag. 297, 113344. 

Sarker, C., Mejias, L., Maire, F., Woodley, A., 2019. Flood mapping with convolutional 
neural networks using spatio-contextual pixel information. Rem. Sens. 11, 2331. 

Shafizadeh-Moghadam, H., Valavi, R., Shahabi, H., Chapi, K., Shirzadi, A., 2018. Novel 
forecasting approaches using combination of machine learning and statistical models 
for flood susceptibility mapping. J. Environ. Manag. 217, 1–11. 

Shahabi, H., Shirzadi, A., Ghaderi, K., Omidvar, E., Al-Ansari, N., Clague, J.J., 
Geertsema, M., Khosravi, K., Amini, A., Bahrami, S., 2020. Flood detection and 
susceptibility mapping using sentinel-1 remote sensing data and a machine learning 
approach: hybrid intelligence of bagging ensemble based on k-nearest neighbor 
classifier. Rem. Sens. 12, 266. 

Shirzadi, A., Asadi, S., Shahabi, H., Ronoud, S., Clague, J.J., Khosravi, K., Pham, B.T., 
Ahmad, B.B., Bui, D.T., 2020. A novel ensemble learning based on Bayesian Belief 
Network coupled with an extreme learning machine for flash flood susceptibility 
mapping. Eng. Appl. Artif. Intell. 96, 103971. 

Siam, Z.S., Hasan, R.T., Anik, S.S., Noor, F., Adnan, M.S.G., Rahman, R.M., 2021. Study 
of Hybridized Support Vector Regression Based Flood Susceptibility Mapping for 
Bangladesh, International Conference on Industrial, Engineering and Other 
Applications of Applied Intelligent Systems. Springer, pp. 59–71. 

Siam, Z.S., Hasan, R.T., Anik, S.S., Noor, F., Adnan, M.S.G., Rahman, R.M., Dewan, A., 
2022. National-Scale flood risk assessment using GIS and remote sensing-based 
hybridized deep neural network and fuzzy analytic hierarchy process models: a case 
of Bangladesh. Geocarto Int. 1–28. 

Sterlacchini, S., Ballabio, C., Blahut, J., Masetti, M., Sorichetta, A., 2011. Spatial 
agreement of predicted patterns in landslide susceptibility maps. Geomorphology 
125, 51–61. 

Tehrany, M.S., Kumar, L., Shabani, F., 2019. A novel GIS-based ensemble technique for 
flood susceptibility mapping using evidential belief function and support vector 
machine: brisbane, Australia. PeerJ 7, e7653. 

Tehrany, M.S., Lee, M.-J., Pradhan, B., Jebur, M.N., Lee, S., 2014a. Flood susceptibility 
mapping using integrated bivariate and multivariate statistical models. Environ. 
Earth Sci. 72, 4001–4015. 

Tehrany, M.S., Pradhan, B., Jebur, M.N., 2013. Spatial prediction of flood susceptible 
areas using rule based decision tree (DT) and a novel ensemble bivariate and 
multivariate statistical models in GIS. J. Hydrol. 504, 69–79. 

Tehrany, M.S., Pradhan, B., Jebur, M.N., 2014b. Flood susceptibility mapping using a 
novel ensemble weights-of-evidence and support vector machine models in GIS. 
J. Hydrol. 512, 332–343. 

Tralli, D.M., Blom, R.G., Zlotnicki, V., Donnellan, A., Evans, D.L., 2005. Satellite remote 
sensing of earthquake, volcano, flood, landslide and coastal inundation hazards. 
ISPRS J. Photogrammetry Remote Sens. 59, 185–198. 
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