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Summary.
Alzheimer’s disease (AD) is a progressive disease that starts from mild cognitive
impairment and may eventually lead to irreversible memory loss. It is imperative to
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explore the risk factors associated with the conversion time to AD that is usually right-
censored. Classical statistical models like mean regression and Cox models fail to
quantify the impact of risk factors across different quantiles of a response distribu-
tion, and previous research has primarily focused on modeling a single functional
covariate, possibly overlooking the interdependence among multiple functional co-
variates and other crucial features of the distribution. To address these issues, this
paper proposes a multivariate functional censored quantile regression model based
on dynamic power transformations, which relaxes the global linear assumption and
provides more robustness and flexibility. Uniform consistency and weak convergence
of the quantile process are established. Simulation studies suggest that the pro-
posed method outperforms the existing approaches. Real data analysis shows the
importance of both left and right hippocampal radial distance curves for predicting the
conversion time to AD at different quantile levels.

Keywords: ADNI study; Censored quantile regression; Multivariate functional
data; Transformation model.

1. Introduction

Alzheimer’s disease (AD) is recognized as one of the major healthcare challenges. It is
characterized by a progressive decline in cognitive abilities in individuals (LaFerla et al.,
2007; Mattson, 2004; Rabin et al., 2019). Globally, over 50 million people are suffer-
ing from dementia, with AD being the leading cause. Timely detection of AD is crucial
because the disease can cause irreversible brain disorder,and therapeutic intervention is
generally more effective during the early stage of the disease. Mild cognitive impairment
(MCI) is considered as a transitional stage between normal aging and dementia state (Pe-
tersen et al., 1999). Therefore, it is imperative to exploreearly markers for the diagnosis
of AD and predict the progression from MCI to AD for targeted treatment.

Extensive clinical datahavebeen collected by scientists to investigate significant risk
factors associated with the progression of AD. Our researchis motivated by the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) study, which provides a comprehensive set of
clinical measurements on the participants. These include neuropsychological assessments,
biomedical images, and genetic data (Lee et al., 2015; Jianget al., 2021). Among the
imaging techniques used, magnetic resonance imaging (MRI)is widely employed for vi-
sualizing brain structure. Numerous studies have demonstrated that the atrophy of medial
temporal lobe (MTL) structures, particularly the hippocampus, is closely linked to an in-
creased risk of developing clinical dementia (Reiss and Ogden, 2010; Young et al., 2013).
Figure 1 compares the T1-weighted horizontal (left panel) and sagittal (middle and right
panels) brain images from a healthy individual (top panels)and an AD patient (bottom
panels) in the ADNI dataset. The left and right hippocampus are marked in green and red.
Clearly, the AD patient’s hippocampus shows significant atrophy, reinforcing the strong
connection between hippocampal shape and cognitive function.

In this study, the AD diagnosis is regarded as the survival event of interest and pa-
tients are diagnosed as having AD if they meet the specific inclusion criteria. Thus, the
conversion time from MCI to AD isa right-censored response. Previous research has ex-
tensively explored the prediction of time-to-event outcomes using functional data analysis
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Fig. 1. T1-weighted horizontal (left panels) and sagittal (middle and right panels) brain
images from a normal person (top panels) and an AD patient (bottom panels) in the ADNI
dataset. The left and right hippocampus are marked in green and red, respectively.

(Yan et al., 2017, 2018). Li and Luo (2017) utilized the structural shape of hippocam-
pus as the functional biomarker of interest. However, theirmodel only incorporated one
functional predictor, limiting the utilization of available data and potentially affecting the
predictive power. Li and Luo (2019) proposed to use multiplelongitudinal biomarkers to
predict the disease progression, but their method relied onthe assumption of proportional
hazards, which may not hold in practice. Both Lee et al. (2015) and Kong et al. (2018)
developed the functional linear Cox regression models, highlighting the predictive value
of hippocampus surface data in MCI conversion. Nonetheless, all of these previous studies
exclusively adoptedCox models, which are inadequate for capturing the higher or lower
quantiles of the survival time.

The aim of this paper is to study the association between the conversion time and var-
ious clinical, genetic and hippocampus surface variables at baseline within the framework
of quantile regression. However, the ADNI dataset presentsspecific challenges due to (i)
correlations among multiple functional covariates (left and right hippocampus surface da-
ta) and (ii) the potential non-linear and complex relationship between the covariates and
the time-to-event outcome across different quantiles. Consequently, a crucial question aris-
es: how can these data be effectively utilized to enhance theestimation of covariate effects
and identify the most effective early markers of AD conversion?

In this paper, we developed a novel multivariate functionalquantile regression model
to explore the predictor effects on the survival time in the presence of random censoring.
Censored quantile regression has gained significant attention for exploring covariate effects
across different quantiles in survival data analysis (Koenker and Geling, 2001; Bang and
Tsiatis, 2002; Chernozhukov and Hong, 2002). Existing methods, such as the recursively
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reweighted estimation procedure by Portnoy (2003) for the Kaplan-Meier estimator and
the martingale-based estimation method by Peng and Huang (2008), are well-established
for classical censored quantile regression. In most cases,quantile estimation is performed
individually for each quantile level without any additional parametric structure assumed
for the quantile coefficient functions. Frumento and Bottai(2016, 2017)suggested using
a parametric model to describe quantile regression coefficient functions through a finite-
dimensional parameter vector.However, these methodologies primarily concentrate on
scalar predictors and do not incorporate functional covariates such as curves or images.
To the best of our knowledge, the existing research in this area is limited to Jiang et al.
(2020) and Wu et al. (2023), who investigated partially linear functional censored quantile
regression models. However, these methods are designed specifically for the case of a
single functional covariate and are not suitable forour multiple regression setting.

To address this issue, this paperdevelopsa new functional censored quantile regression
model to account for multiple correlated functional predictors. These functional covari-
ates can be defined on different domains, such as curves and images, which may differ in
dimension. Considering the commonly observed correlations among these covariates, we
jointly model them as a multivariate functional predictor and employ multivariate function-
al principal component (mFPC) analysis to extract useful information (Happ and Greven,
2018). The scalar predictors and the estimated mFPC scores are then incorporated into the
survival model. Estimation is based on the martingale proceduredescribedin Peng and
Huang (2008). However, it should be noted that the theoretical development poses non-
trivial challenges due to two main reasons: (i) the covariates in the model include estimated
mFPC scores, which are subject to contamination from estimation errors; (ii) the number of
mFPCs is treated as a tuning parameter that diverges with thesample size. In addition, the
use of logarithmic transformation on survival time is widely accepted in quantile regres-
sion. However, a common limitation is that the log transformation is typically implemented
uniformly across all considered quantile levels, which maynot accurately reflect the real
data and can lead to incorrect inferences. In contrast, the Box-Cox transformation (Box
and Cox, 1964) is moresuitableto take into account different model structures in censored
quantile regression (Yin et al., 2008; Leng and Tong, 2014) and the log transformation can
be obtained as a special case. Therefore, in this paper, we introduce the Box-Cox transfor-
mation into our proposed model to relax the traditional global assumption of logarithmic
linearity. Specifically, the unknown transformation parameter is allowed to dynamically
vary with the quantile values. This extension eliminates the potentially restrictive global
linearity assumption required in Peng and Huang (2008) and provides flexible non-linear
structures at different quantile levels (Chu et al., 2021).

The main contributions of this paper are as follows. First, the proposed model provides
a theoretically robust and computationally efficient approach for incorporating multivariate
functional covariates in the presence of random censoring within the framework of quan-
tile regression. Such a procedure successfully accommodates dynamic transformations on
the response and functional predictors from diverse domains, and is generally applicable
in scenarios where predictors exhibit non-negligible correlations, which are commonly en-
countered in practical applications. To address the issue of multicollinearity in the regres-
sion analysis, the informative signals are extracted usingmFPC. Second, our procedure
is rigorously justified to enjoy favorable sampling properties, such as uniform consistency
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and weak convergence of the quantile process. Notably, as the sample size increases, the
number of principal components in our model tends to infinity, which presents challenges
to the theoretical analysis. Third, our procedure does not rely on the restrictive global
linearity assumption, which makes our procedure more applicable in real scenarios.

The rest of the paper is organized as follows. In Section 2, wedescribe the motivating
ADNI study and the data structure. Section 3 establishes thetransformed censored quan-
tile regression model for the multivariate functional predictor. The estimation procedure
is constructed in Section 4. The large-sample properties ofthe proposed estimators are
discussed in Section 5. Extensive numerical studies in Section 6 show the performance of
the proposed method in various settings, especially in the case where curves and images
are simultaneously collected as functional covariates. The analysis of the ADNI data is
conducted in Section 7. Concluding remarks are given in Section 8. Technical proofs and
extra numerical results are deferred to the Supplementary materials.

2. The Motivating ADNI Dataset

The development of the proposed method is motivated by the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) study, which collected various neuropsychological assess-
ments, brain images and clinical measurements of the participants. The ADNI study was
first launched in year 2004 as a global public-private partnership led by Dr. Michael W.
Weiner, a professor of radiology, medicine and neurology atthe University of Californi-
a San Francisco (UCSF). The primary goal of ADNI is to test whether serial magnetic
resonance imaging (MRI), positron emission tomography (PET), neuropsychological as-
sessments, and other biological markers can be combined to detect Alzheimer’s disease as
early as possible and identify ways to track the disease progression with specific biomark-
ers. This research study aims to build a supportive environment for researchers to develop
new treatments that could slow or stop the progression of AD and reduce the cost of clini-
cal trials. ADNI recruits participantsbetween age 55 and 90at 57 sites in the United States
and Canada. After obtaining informed consent, participants undergo a series of tests, in-
cluding a neuropsychological evaluation, genetic testing, and MRI scans, to collect various
clinical, cognitive, genetic and imaging data. The first phase of ADNI (ADNI-1) enrolled
800 adults, including approximately 200 people for elderlycontrols, 400 people with MCI,
and 200 people with early AD. Subsequently, the three extensions, ADNI-GO, ADNI-2,
and ADNI-3, further recruited new participants into the cohort. All data generated by the
ADNI study are entered into the data repository hosted at theLaboratory of Neuroimag-
ing (LONI) at the University of Southern California. Qualified researchers worldwide can
submit an online data access request and generally begin using ADNI data within a few
days of request submission. For up-to-date information about ADNI, see http://www.adni-
info.org.

In this paper, we selected 373 patients who had been diagnosed with MCI from phase 1
of the ADNI study (ADNI-1) to assess the progression of MCI and predict the conversion
time from MCI to AD. Among the 373 MCI patients, 161 individuals converted to AD
during the study period while the remaining 212 subjects didnot progress further before
the end of the study. Therefore, the conversion time from MCIto AD is a right-censored
response. In addition, each individual’s clinical, genetic and hippocampus surface data at
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Table 1. Summary statistics about ADNI data, including n = 373
participants’ clinical and genetic variables.

Variable Mean ± SD / No.(%)
Age 74.95± 7.33
Education length 15.65± 3.03
ADAS-Cog score 11.58± 4.45
Gender

Male 237(63.5)
Female 136(36.5)

Handedness
Right 342(91.7)
Left 31(8.3)

Marital status
Married 300(80.4)
Widowed 45(12.1)
Divorced 24(6.4)
Never married 4(1.1)

Retirement
Yes 303(81.2)
No 70(18.8)

APOE-ǫ4
Carrier 169(45.3)
Non-carrier 204(54.7)

baseline are included to account for the potential risks. The clinical covariates are Gender
(0 = Male; 1 = Female), Handedness (0 = Right; 1 = Left), Marital status (1 = Married; 2
= Widowed; 3 = Divorced; 4 = Never married), Length of education, Retirement (1 = Yes;
0 = No), Age and the ADAS-Cog score. Marital status is coded by3 dummy variables:
“Widowed”, “Divorced”, “Never married”. The ADAS-Cog testhas been widely used to
assess the severity of dysfunction in adults, with a higher score indicating poorer cognitive
function. The genetic covariates concern two Apolipoprotein E (APOE) SNPs which define
a 3-allele haplotype, namely, theǫ2, ǫ3 andǫ4 variants. Among these variants, APOE-ǫ4 is
known to be a risk factor for the early onset of AD (Petersen etal., 2005). In this paper,
we specifically investigate the impact of APOE-ǫ4 as the covariate of interest on disease
progression. The variant presence for these patients is obtained from the ADNI database.

The demographic information summary about the data set is presented in Table 1. The
average age of subjects was 74.95 years with a standard deviation of 7.33 years. The
youngest person was 55 years old, while the oldest person was90 years old. On average,
the participants had 15.65 years of education with a standard deviation of 3.03 years. The
minimum education length was 4 years and the maximum length was 20 years. The average
ADAS-Cog score was 11.58 with a standard deviation of 4.45. Among all the individuals,
237 participants were male and 136 were female; 342 were right-handed and 31 were left-
handed; 303 were retired and 70 were not. Regarding Marital status, 300 were married, 45
were widowed, 24 were divorced, and 4 were never married at baseline. As for the genetics
information on the APOE, 169 subjects carry at least one APOE-ǫ4 allele and 204 subjects
are non-carriers.
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To investigate atrophy of the hippocampus, many researchers have conducted analysis
based on the volumes of brain structures (Cui et al., 2011; Liet al., 2013), while some other
studies have shown that surface-based morphology analysishas more advantages since it
provides pointwise effect estimation of the subregion atrophy for cognitive impairment (Li
and Luo, 2017; Wang et al., 2020). Mapped onto the hippocampal surface, the subfields
are illustrated in Figure 1 of the Supplement. Thus, in this paper, we considered the hip-
pocampal radial distance (HRD) of the left and right hippocampal surface point (referred to
as vertex), which measures the distance from its medial coreto each vertex and represents
the thickness of hippocampus. For hippocampus 3D image processing, we followed the
procedure commonly used by Wang et al. (2011) and Luders et al. (2013). Given the 3D
MRI scans, we used FreeSurfer to segment hippocampal substructures and automatically
reconstruct hippocampal surfaces. Then the left and right hippocampal surfaces are con-
formally mapped to a two-dimensional (2D) rectangle plane to form a feature image of the
surface. After registering each feature image to a common template and calculating HRD
for all vertexes, the 2D image matrices are vectorized into one-dimensional (1D) radial dis-
tance curves defined on the interval [0,1] (Shi et al., 2013, 2014), which are incorporated
as the functional predictors into the proposed model. For detailed information about the
hippocampus image processing procedure, readers could refer to Colom et al. (2013).

Figure 2 displays the left and right hippocampal radial distance curves from 35 ran-
domly selected MCI subjects, where the red curves come from the individuals progressed
to AD prior to the end of study and the black curves come from the non-converters whose
conversion times are censored. It is observed that the hippocampal radial distance curves
of the converters are generally lower than the non-converters, i.e., the sizes of hippocampi
may be smaller for the patients who progressed quicker to AD.Although the overall trends
of the left and right hippocampal radial distance (HRD) curves show similarities, there are
notable differences in terms of gradient and volatility. Toexplore the correlation between
these curves, the study conducted a heatmap analysis on the 373 curve pairs shown in the
left panel of Figure 3. The analysis revealed that regions spanning locations 0.2-0.8 of the
hippocampus exhibit correlation coefficients around 0.6, indicating a significant relation-
ship between the left and right HRD curves. Further, we separately conducted univariate
functional principal component analysis (FPCA) for the left and right distance curves. The
right panel of Figure 3 shows the empirical correlations of the first three univariate FPCA
scores for the curves. Obviously, there is a nonnegligible correlation between the score
pairs of the two functional predictors, which may lead to multicollinearity issues in the
regression analysis if these correlated scores are incorporated in the model.

3. The Proposed Model

Let T denote the survival time,C denote the censoring time. DefineY = T ∧ C,
δ = I (T ≤ C), where∧ is the minimum operator andI(·) is the indicator function. The
covariates include ap-dimensional vectorX ∈ R

p and a multivariate functional predictor
Z(s) = (Z1(s1), . . . , Zd(sd))

⊤ ∈ R
d, where each functional elementZj(sj) : Sj → R

is a stochastic process defined on the compact domainSj and is assumed to be inL2(Sj)
with possibly different domainsSj for j = 1, ..., d. The arguments := (s1, . . . , sd) ∈
S := S1 × · · · × Sd. This setting allows curves and images to be simultaneouslyincluded
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Fig. 2. The left and right hippocampal radial distances curves from 35 randomly selected
MCI patients. The red curves are from the converters (individuals progressed to AD) and
the black curves are from the non-converters. The horizontal axis represents the consid-
ered hippocampal surface points which are scaled to [0,1] for simplicity.

as functional covariates in the model, which greatly extends the application of the regres-
sion model. Let{Yi, δi,Xi,Zi}ni=1 be independent and identically distributed copies of
{Y, δ,X,Z}. Conditional on the covariates{X,Z}, the censoring timeC is assumed to be
independent of the survival timeT .

Given the covariates{X,Z} andτ ∈ (0, 1), theτ th conditional quantile of the random
variableT is defined asQT (τ |X,Z) = inf{t : P (T ≤ t|X,Z) ≥ τ}. Denotehγ(·) as
a family of monotonic transformations with an unknown parameterγ, which includes the
following Box-Cox transformation (Box and Cox, 1964) as a special case:

hγ(T ) =

{
T γ−1

γ if γ 6= 0,

log(T ) if γ = 0.
(1)

Then the proposed transformed quantile linear regression model is as follows:

Qhγ(τ)(T )(τ | X,Z;β,α) = β(τ)⊤X+ 〈〈α(s, τ),Z(s)〉〉, (2)

whereγ(τ) is the unknown transformation parameter for a givenτ ∈ (0, 1), β(τ) is the
p-dimensional regression coefficient vector, andα(s, τ) = (α1 (s1, τ) , . . . , αd (sd, τ))

⊤

is thed-dimensional vector of unknown square integrable coefficient functions. As defined
in Happ and Greven (2018), the scalar product〈〈α(s, τ),Z(s)〉〉 =

∑d
j=1 〈αj , Zj〉2 =

∑d
j=1

∫
Sj
αj (sj, τ)Zj (sj) dsj and the norm induced by〈〈·〉〉 is denoted by9 · 9.

Based on the equivariance property of quantile regression to the monotone transforma-
tion hγ(·), we can obtain

Qhγ(τ)(T )(τ | X,Z) = hγ(τ) (QT (τ | X,Z)) , τ ∈ (0, 1). (3)

Then model (2) is equivalent to the following expression in terms of the quantile function
of T :

QT (τ | X,Z;β,α, γ) = h−1
γ(τ)

(
β(τ)⊤X+ 〈〈α(s, τ),Z(s)〉〉

)
, τ ∈ (0, 1), (4)
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Fig. 3. Heatmaps of the correlation matrix between the 373 left and right hippocampal
radial distances. Left Panel: Correlation between the left and right HRD curves; Right
Panel: Correlation between the seperate FPC scores of the left and right distance curves.

whereh−1
γ(τ) is the inverse function ofhγ(τ). Therefore, the proposed model (4) relaxes the

traditional global linear assumption by introducing the transformationhγ(τ).
A large literature exists about functional quantile regression when the responseT is

completely observed (Cardot et al., 2005; Chen and Pouzo, 2012; Kato, 2012). However,
whenT is randomly censored, studies of functional quantile regression models are quite
limited. For example, Jiang et al. (2020) and Wu et al. (2023)investigated the partially lin-
ear censored quantile regression model with only a single functional covariate. In practical
applications, it is common to have multiple functional predictors that contain critical infor-
mation which should be included in the model. Hence, the proposed method in this paper
(Model 4) encompasses their model as a special case when the functional predictorZ(s)
is univariate (d = 1) and the transformation parameterγ(τ) is zero(logarithmic transfor-
mation). In addition, existing approaches for multivariate functional regression are mainly
restricted to functions observed on the same finite, one-dimensional interval (Ma et al.,
2019). In contrast, our proposed model can handle multiple functional predictors, which
are often correlated and defined on potentially distinct domains, such as curves and images.
By introducing a class of dynamic transformationshγ(τ) into the functional censored mod-
el, our framework allows for flexible coefficient estimations across various quantile levels.
Uniform consistency and weak convergence are also shown in Section 5 for the parametric
and functional estimators.

Denote the conditional distribution function ofT by FT (t|X,Z) = P(T ≤ t|X,Z).
Λ(t|X,Z) = − log {1− FT (t|X,Z)} is the cumulative hazard function ofT conditional
on X,Z. DefineNi(t) = I (Yi ≤ t, δi = 1) to be the counting process fori = 1, . . . , n
andH(x) = − log(1−x). FollowingPeng and Huang (2008), we consider the martingale-
based estimation method. Specifically, define the martingale

Mi(t) = Ni(t)− Λ (t ∧ Yi|Xi,Zi) . (5)

Denoteβ0,α0 andγ0 as the true values ofβ,α andγ, respectively. Based on the condi-
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tional independent censoring assumption (Fleming and Harrington, 2011), we have

E [Mi {QT (τ | Xi,Zi;β0,α0, γ0)}]
= E [Ni(QT (τ | Xi,Zi;β0,α0, γ0))− Λ (QT (τ | Xi,Zi;β0,α0, γ0) ∧ Yi|Xi,Zi)]

= 0. (6)

In the martingale above, the hazardΛ(·|Xi,Zi)(i = 1, . . . , n) are unknown functions.
However, due to the fact thatFT {QT (τ | Xi,Zi) |Xi,Zi} = τ , we have

Λ {QT (τ | Xi,Zi) ∧ Yi | Xi,Zi}
= H (τ) ∧H (FT {Yi | Xi,Zi})

=

∫ τ

0
I [Yi ≥ QT{u | Xi,Zi}] dH(u). (7)

The stochastic integration inΛ has a common grid-based approximation as

Λ̃ [QT (τj | Xi,Zi) ∧ Yi | Xi,Zi] =

j−1∑

k=0

I [Yi ≥ QT (τk | Xi,Zi)]

× {H(τk+1)−H(τk)} ,
(8)

whereτj ∈ TL = {0 = τ0 < τ1 < · · · < τL = τU < 1} with τU an upper bound for es-
timable quantiles to avoid the identifiability issues due tocensoring (Peng and Huang,
2008). Certain theoretical constraints regardingτU are described in the asymptotic results,
specifically in Condition B5 outlined in Section 3 of the Supplementary material. Denote
by ‖TL‖ = sup1≤j≤L |τj − τj−1| the size ofTL . Then the mean zero property of the
martingales could be used to construct the estimating equation. The proposed estimators
{β̂(τ), α̂(s, τ), γ̂(τ)}, τ ∈ (0, τU ] are right-continuous step functions which jump on the
grids ofTL.

4. Estimation and computation

4.1. Multivariate Functional Principal Component Analysis
Considering the possible correlations among multiple functional predictorsZj(sj), j =
1, . . . , d, this paper incorporates the multivariate functional principal component analysis
(MFPCA) proposed by Happ and Greven (2018) to extract usefulinformation for quantile
regression.

Define the mean function ofZ(s) asµ(s) = E{Z(s)} = {µ1(s1), . . . , µd(sd)}⊤,
whereµj(sj) = E {Zj(sj)}. Thed× d covariance matrix ofZ(s) is

C(s, t) = E
[
{Z(s)− µ(s)}{Z(t)− µ(t)}⊤

]

with elementsCjj′(sj , tj′) = E [{Zj(sj)− µj(sj)} {Zj′(tj′)− µj′(tj′)}], wheresj ∈
Sj, tj′ ∈ Sj′ andj, j′ = 1, . . . , d.

By the multivariate version of Mercer’s Theorem (Happ and Greven, 2018),C(s, t) ad-
mits the spectral expansionC(s, t) = ∑∞

k=1 λkψk(s)ψk(t)
⊤, whereλ1 ≥ λ2 ≥ · · · > 0
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are ordered eigenvalues andψk = (ψk1, . . . , ψkd)
⊤ are the corresponding eigenfunctions

such that〈〈ψk,ψk′〉〉 =
∫
S
ψk(s)

⊤ψk′(s)ds = I (k = k′). Based on the multivariate
Karhunen-Loeve Theorem, we can obtainZ(s) = µ(s) +

∑∞
k=1 ρkψk(s), s ∈ S, with

zero mean random variablesρk = 〈〈Z− µ,ψk〉〉 andcov (ρk, ρk′) = λkI(k = k′). S-
inceψk(s), k ∈ N is a sequence of orthonormal basis, the functional coefficientα(s, τ)
can be expressed asα(s, τ) =

∑∞
k=1 aτkψk(s). Supposeµ(s) = 0 for simplicity.

Then the functional component in model (2) can be calculatedas 〈〈α(s, τ),Z(s)〉〉 =
〈〈
∑∞

j=1 aτjψj(s),
∑∞

k=1 ρkψk(s)〉〉 =
∑∞

k=1 aτkρk.
Although the number of principal components is infinite, it is commonly assumed that

the relevant information regarding the response variable is primarily captured by the first
m = mn FPC scores. The truncated number satisfies1 ≤ mn ≤ n − 1 andmn → ∞
asn → ∞. Then we can obtain〈〈α(s, τ),Z(s)〉〉 ≈ ∑m

k=1 aτkρk := a(τ)⊤ρ, where
a(τ) = (aτ1, . . . , aτm)⊤,ρ = (ρ1, . . . , ρm)⊤. The FPC scores{ρk}mk=1 are unknown and
need to be estimated.

In practice, the functional predictorszij(sj) may be observed on discrete grid points
{sijl ∈ Sj , 1 ≤ l ≤ Lij} with measurement errors. This paper mainly considers the
dense observations for the functional predictors to construct consistent theory proper-
ties. In this case, many linear smoothers, such as local linear regression technique (Fan
et al., 1996), local polynomial and regression splines etc., could be used to recover the
true functionszij(sj) for i = 1, . . . , n andj = 1, . . . , d, leading to smoothed estimates
ẑi(s) = (ẑi1(s1), . . . , ẑid(sd))

⊤.
Then, the mean and covariance ofZ(s) could be estimated by

µ̂(s) = n−1
n∑

i=1

ẑi(s),

Ĉ(s, t) = n−1
n∑

i=1

{ẑi(s)− µ̂(s)} {ẑi(t)− µ̂(t)}⊤ .
(9)

The spectral decomposition of̂C(s, t) is Ĉ(s, t) =
∑∞

k=1 λ̂kψ̂k(s)ψ̂k(t)
⊤, where{λ̂k, k ≥

1} are the sample eigenvalues in decreasing order and{ψ̂k(s), k ≥ 1} are the correspond-
ing eigenfunctions. The truncated mFPC score estimates areρ̂i = (ρ̂i1, . . . , ρ̂im)⊤ with
ρ̂ik = 〈〈ẑi − µ̂, ψ̂k〉〉, k = 1, . . . ,m. As stated in Li et al. (2010), the approximation error
incurred by linear smoother is negligible in̂ρi with dense functional observations. The
choice of the truncation parameterm will be discussed in Section 4.3.

4.2. Estimation of Censored Transformation Model
Plugging the firstm estimated mFPC scores into model (4), we obtain the transformed
quantile regression model withp+m predictors as follows:

QT (τ | Xi, ρ̂i;β,a, γ) = h−1
γ(τ)

(
β(τ)⊤Xi + a(τ)

⊤ρ̂i

)
, τ ∈ (0, 1). (10)

Note that, since our response variable is a time-to-event outcome, we can assume that
QT (0 | X,Z;β0,α0, γ0) = 0. Based on the grid approximation method, for eachτj



12

and anyγ(τj), j = 1, . . . , L, we subsequently obtain{β̂(γ, τj), â(γ, τj)} by solving the
following monotone estimating equation:

Sn(γ,β,a, τj) = n−1
n∑

i=1

(X⊤
i , ρ̂

⊤
i ) [Ni {QT (τj | Xi, ρ̂i;β,a, γ)}

−
j−1∑

k=0

I
{
Yi ≥ QT (τk | Xi, ρ̂i; β̂, â, γ̂)

}
{H (τk+1)−H (τk)}

]
= 0.

(11)
Similar to Chu et al. (2021), solving (11) is transformed to minimizing a convex objective
function of{β (τj) ,a (τj)} for a givenγ. That is,

{β̂ (γ, τj) , â (γ, τj)} = argmin
β(τj),a(τj)

L̂(γ,β,a, τj)

= argmin
β(τj),a(τj)

−
n∑

i=1

[
hγ(τj) (Yi)− hγ(τj) (QT (τj | Xi, ρ̂i;β,a, γ))

]

×
[
Ni {QT (τj | Xi, ρ̂i;β,a, γ)}

−
j−1∑

k=0

I[Yi ≥ QT (τk | Xi, ρ̂i; β̂, â, γ̂)] {H(τk+1)−H(τk)}
]
.

(12)
To estimateγ, this paper utilizes the standard grid search method. For a series of grid

points in a given search interval ofγ, we aim to find the minimizer̂γ of the following
problem:

γ̂ (τj) =argmin
γ(τj)

R̂(γ, β̂(γ), â(γ), τj)

=argmin
γ(τj)

−
n∑

i=1

[
Yi −QT (τj | Xi, ρ̂i; β̂, â, γ)

]

×
[
Ni

{
QT (τj | Xi, ρ̂i; β̂, â, γ)

}

−
j−1∑

k=0

I[Yi ≥ QT (τk | Xi, ρ̂i; β̂, â, γ̂)] {H(τk+1)−H(τk)}
]
.

(13)

The final estimates of{β(τj),a(τj)} are obtained by substituting the optimalγ̂(τj) into
(12), i.e.,β̂(τj) = β̂(γ̂, τj) and â(τj) = â(γ̂, τj). This two-stage estimation procedure
has been previously adopted by Buchinsky (1995). The above minimization problems can
be easily solved in the Rquantreg package (Koenker, 2012) and R functionoptim.

4.3. Selection of the Cut-off Level m
The number of mFPC scores plays an important role in the regression. There are many
criteria in the literature to choose the tuning parameter (Tang and Cheng, 2014; Kong



A Quantile Model for Alzheimer’s Disease Data 13

et al., 2018). Inspired by Jiang et al. (2020), this paper suggests the following generalized
approximate cross-validation (GACV) objective function:

GACV (τj ,m,β,a, γ)

=−
n∑

i=1

[
hγ(τj) (Yi)−

{
β(τj)

⊤
Xi + a(τj)

⊤ρ̂i

}]

×
(
Ni

[
h−1
γ(τj)

{
β (τj)

⊤
Xi + a(τj)

⊤ρ̂i

}]

−
j−1∑

k=0

I
[
Yi ≥ h−1

γ̂(τk)

{
β̂ (τk)

⊤
Xi + â(τk)

⊤ρ̂i

}]

× {H (τk+1)−H (τk)}
)
/ {n− Cn (m+ p)} ,

(14)

whereCn = Op

[
{log(n)}1/2

]
. The cut-off levelm is selected by minimizing the averaged

GACV

AGACV =

L∑

j=1

GACV
(
τj,m, β̂, â, γ̂

)
/L,

whereL is the number of quantile grid points inTL mentioned in Section 3.
One practical concern in the estimation is the choice ofL or the grid size ofTL. From

the proof of weak convergence in Section 5, it is known that anorder ofo(n−1/2) for ‖TL‖
is enough to ensure convergence. In this paper, we utilize anequally spaced grid with a
grid size of 0.05 in the simulation study, which yields satisfactory results for parameter
estimation. Alternatively, as suggested by Peng and Huang (2008), a finer grid size of
‖TL‖ = 0.01 can be employed for more detailed analysis practically, albeit with slightly
higher computational costs. The detailed estimation procedure for the proposed method is
summarized in Algorithm 1.

5. Asymptotics

In this section, we establish the estimation consistency inTheorem 1, the weak conver-
gence in Theorem 2, and the convergence of the functional estimator in Corollary 1.

First, defineF (t|X,Z) = P(Y ≤ t|X,Z), F̄ (t|X,Z) = 1− F (t|X,Z), F̃ (t|X,Z) =
P(Y ≤ t, δ = 1|X,Z), f(t|X,Z) = dF (t|X,Z)/dt, f̄ (t|X,Z) = dF̄ (t|X,Z)/dt, and
f̃(t|X,Z) = dF̃ (t|X,Z)/dt. The detailed conditions and theoretical derivations are pre-
sented in Sections 1-2 of the Supplementary materials.

Theorem 1. Assuming that conditions A1-A4 and B1-B5 hold, iflimn→∞ ‖TL‖ = 0,

then we havesupτ∈[v,τU ] |γ̂(τ)− γ0(τ)| →p 0, supτ∈[v,τU ]

∥∥∥β̂(γ̂, τ)− β0(τ)
∥∥∥ →p 0 , and

supτ∈[v,τU ] ‖â(γ̂, τ)− a0(τ)‖ →p 0, where0 < v < τU .
After obtaining the above estimators, the estimation forα0(s, τ) can be calculated as

α̂(s, τ) =
∑m

k=1 âτkψ̂k. The convergency of this functional coefficient estimate isshown
in the following Corollary 1.

Corollary 1. Assuming that conditions A1-A4 and B1-B5 hold, iflimn→∞ ‖TL‖ = 0,
thensupτ∈[v,τU ] 9α̂(s, τ)−α0(s, τ)9 →p 0, where0 < v < τU .
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Algorithm 1 Estimation procedure for the proposed method
Input: The response variableYi, the censoring indicatorδi, the scalar and functional co-

variates{Xi,Zi(s)}, i = 1, . . . , n, the set of cut-off levelsM, the set of quantile
valuesTL, the grid search intervalG.

Output: The coefficient estimates forβ(τ),a(τ), γ(τ) and the optimalm.
for eachm ∈ M do

EstimateC(s, t), λk,ψk(s) by Equation (9);
Computêρi with its elementŝρik = 〈〈ẑi − µ̂, ψ̂k〉〉, k = 1, . . . ,m;
for eachτj ∈ TL do

for eachγ ∈ G do
Find the solution̂β(γ), â(γ) for the minimization problem (12);
ComputeR̂(γ, β̂(γ), â(γ), τj);

end for
Find the minimizer̂γ (τj) = argmin R̂(γ, β̂(γ), â(γ), τj);
Find the minimizer{β̂ (τj) , â (τj)} = argmin L̂(γ̂,β,a, τj);

end for
Compute the criteriaAGACV =

∑L
j=1GACV

(
τj,m, β̂, â, γ̂

)
/L;

end for
Find the optimalm to minimize AGACV criteria.
return {β̂(τj), â(τj), γ̂(τj)}Lj=1,m.

Theorem 2. Assuming that conditions A1-A4 and B1-B5 hold, iflimn→∞ n1/2 ‖TL‖ =

0, then we haven1/2
[
γ̂(τ)− γ0(τ), {β̂(γ̂, τ)− β0 (τ)}⊤, {â(γ̂, τ)− a0 (τ)}⊤

]⊤
con-

verges weakly to a Gaussian process forτ ∈ [v, τU ], where0 < v < τU .

The proof of Theorem 2 reveals that the covariance matrix of the limiting process of the
estimators consists of unknown conditional density functionsf(t|X,Z) andf̃(t|X,Z). Es-
timating these functions typically requires numerical approximation methods, which may
lack stability with small or moderate sample sizes (Peng andHuang, 2008). To address
this issue, we propose to employ a simple resampling method for variance estimation by
generalizing the minimand perturbing technique of Jin et al. (2001) and Qian and Peng
(2010) to ensure computational stability.

The resampling procedure is described as follows. For a dataset with sample sizen,
we fix the data values and generaten i.i.d variatesζ1, . . . , ζn from a known nonnegative
distribution with mean 1 and variance 1, such as the standardexponential distribution.
Then,γ∗(τj), β∗(τj) anda∗(τj) are sequentially obtained for eachj ∈ {1, . . . , L} by
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solving the following objective functions perturbed by{ζ1, . . . , ζn}:

{β∗ (γ, τj) ,a
∗ (γ, τj)} = argmin

β(τj),a(τj)
L∗(γ,β,a, τj)

= argmin
β(τj),a(τj)

−
n∑

i=1

ζi
[
hγ(τj) (Yi)− hγ(τj) (QT (τj | Xi, ρ̂i;β,a, γ))

]

×
[
Ni {QT (τj | Xi, ρ̂i;β,a, γ)}

−
j−1∑

k=0

I[Yi ≥ QT (τk | Xi, ρ̂i;β
∗,a∗, γ∗)] {H(τk+1)−H(τk)}

]
,

γ∗ (τj) =argmin
γ(τj)

R∗(γ,β∗(γ),a∗(γ), τj)

=argmin
γ(τj)

−
n∑

i=1

ζi [Yi −QT (τj | Xi, ρ̂i;β
∗,a∗, γ)]

× [Ni {QT (τj | Xi, ρ̂i;β
∗,a∗, γ)}

−
j−1∑

k=0

I[Yi ≥ QT (τk | Xi, ρ̂i;β
∗,a∗, γ∗)] {H(τk+1)−H(τk)}

]
,

whereQT (0 | X, ρ̂;β∗,a∗, γ∗) = 0, andβ∗(τj) = β∗(γ∗, τj), a∗(τj) = a∗(γ∗, τj).
The resampling estimators are also defined as right-continuous step functions that jump at
τj, j = 1, . . . , L (Chu et al., 2021). With the data fixed at the observed values,the above
procedure is repeated forB times to obtain a large number of realizations, denoted by
{γ∗r (τ),β∗

r(τ),a
∗
r(τ)}Br=1.

In Section 3.3 of the Supplementary material, we show that the conditional distribution
of n1/2[γ∗(τ) − γ̂(τ)] given the observed data is asymptotically the same as the uncondi-
tional distribution ofn1/2[γ̂(τ) − γ0(τ)] as a process ofτ ∈ [v, τU ], where0 < v < τU .
Thus, the variance of̂γ(τ) can be estimated by the sample variance of{γ∗r (τ)}Br=1. A
confidence interval forγ0(τ) can be constructed using a normal approximation. Similar
properties and inferences can also be obtained for{β̂(τ), â(τ)}. Justification for the pro-
posed resampling approach is provided in Section 3.3 of the Supplementary material.

6. Simulation Study

In this section, we evaluate the finite-sample performance of the proposed multivariate
functional censored quantile regression model (MFCQR) through Monte Carlo simula-
tions. In the first setting, we consider the Box-Cox transformation model with bivariate
correlated functional data on a one-dimensional interval and compare the proposed method
with several existing estimation methods. In the second setting, logarithmic transformation
is used to examine the adaptability of the proposed model, where curves and images are
simultaneously incorporated as functional covariates. Results are obtained based on 500
simulated datasets of sample sizen = 200 andn = 500.
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6.1. Functional Predictors on One-dimensional Intervals
In this setting, the event times are generated from the following Box-Cox transformed
linear quantile regression model with heteroscedastic errors:

QT (τ | X,Z) = h−1
γ0(τ)

(
β0(τ)

⊤
X+ 〈〈α0(s, τ),Z(s)〉〉

)

= h−1
γ0(τ)


b0 + b1X1 + b2X2 +

2∑

j=1

∫ 1

0

αj(s)Zj(s)ds+ (1 +X1)Qǫ(τ |X,Z)


 ,

(15)
whereX1 ∼ N(0, 0.52), X2 ∼ Unif[0, 1] andǫ ∼ N(0, 0.252). In this heteroscedastic
model, the quantile regressioncoefficientsofX = (1,X1,X2)

⊤ areβ(τ) = (β0(τ), β1(τ),
β2(τ))

⊤ = (b0 + Qǫ(τ), b1 + Qǫ(τ), b2)
⊤ with b0 = b1 = b2 = 1, where the first two

entries ofβ(τ) are bothτ -dependent.
The multivariate functional predictor isZ(s) = {Z1(s), Z2(s)}⊤ with sample observa-

tionszi1(s) =
∑K

k=1 ξ
(1)
ik φk(s) andzi2(s) =

∑K
k=1 ξ

(2)
ik φk(s), whereξ(1)ik ∼ N (0, ν2k−1),

ξ
(2)
ik ∼ N (0, ν2k), νk = k−2, corr

(
ξ
(j)
ik , ξ

(j)
ik′

)
= 0 for k′ 6= k, K = 20, φ1 = 1 and

φk(s) =
√
2 cos{(k − 1)πs}, s ∈ S = [0, 1] for k > 1. Following Wong et al. (2019),

we further setcorr
(
ξ
(1)
ik , ξ

(2)
ik′

)
= ̺ for k′ = k and 0 otherwise, where̺ ∈ (0, 1) is

a cross-correlation parameter controlling the strength ofdependence between functional
predictors. The coefficient functions areαj(s) =

∑K
k=1 ajkφk(s) with aj1 = 1, aj2 =

0.8, aj3 = 0.6, aj4 = 0.4 andajk = 8(k − 2)−3 for k = 5, . . . ,K.
Similar to Chu et al. (2021), the transformation parameterγ0(τ) is set to be 1 forτ ≤

0.4 and 0.5 forτ > 0.4 with h−1
γ0(τ)

(x) = (γ0(τ)x+ 1)1/γ0(τ). The censoring timeC is
generated from a uniform distribution Unif(0, V ) with V = exp(c0 + X1 + X2), where
c0 is taken to be 2.2 and 1.5 to yield censoring rates of 20% and 40%, respectively. The
discrete observations of each functional predictor are obtained on 100 equally spaced grid
points onS = [0, 1]: wijl = zij (sijl) + eijl, eijl ∼ N(0, 0.252) for i = 1, . . . , n; j = 1, 2
andl = 1, . . . , 100. To obtain the standard errors of the estimators, we set the resampling
sizeB = 300.

The proposed method (MFCQR) is also compared with some alternatives, namely the
transformed quantile model with separate FPCA (SFPCA, Konget al., 2018), the func-
tional censored model with log transformation and B-splines approximation (Log-spline,
Jiang et al., 2020), the kernel-based local Kaplan-Meier estimator (KM) proposed by Leng
and Tong (2014) and the parametric modeling of quantile regression coefficients combined
with MFPCA (FB, Frumento and Bottai, 2017). For comparison,the empirical bias (Bias)
and the sample standard deviation (SD) are reported for eachmethod. We also present the
average of the estimated standard errors (SE) based on the resampling method and the cov-
erage probabilities (CP) of the 95% confidence intervals based on a normal approximation
for the proposed method.

Table 2 presents the estimation results withn = 200, considering 40% censoring rate
at different quantile levels. For right-censored data, quantile functions in the upper tail
may not be identifiable due to the censoring of event time information (Wu et al., 2015; Fei
et al., 2023). In this case, we set the quantile interval to be(0, 0.7], which is wide enough to
cover different quantile levels and, in the meantime, ensures the quantile parameters to be
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estimable in the presence of censoring. The determination of the upper bound for estimable
quantiles is discussed in Section 8. Compared with the alternatives, the proposed MFCQR
provides smaller biases and standard errors, which are not affected by the high correlation
of the functional predictors. Moreover, the resampling-based standard errors agree with
the empirical standard deviations quite well and the coverage probabilities are close to
the 95% nominal level. By contrast, both SFPCA and Log-spline methods incorporate
new variables with strong correlations, resulting in poor performace under̺ = 0.6. In
particular, Log-spline employs the log-transformation directly, regardless of the dynamic
parameterγ, and thus behaves badly even with̺ = 0.3 in this setting. With slightly larger
standard deviations, KM method performs well only in lower quantile cases, probably due
to the unstability of the locally weighted kernel-based estimator for higher quantiles (Chu
et al., 2021). By imposing smoothness conditions on the coefficient functions, FB method
performs well in the situation where the basis functions areconsistent with those in the
true model (Frumento and Bottai, 2017). However, in our simulation settings, there is a
dynamic transformation on the response variable, where thetransformation parameterγ
varies dynamically with the quantile values, making it difficult to select a proper set of
basis functions for the parametric modeling of quantile regression coefficients.

The results for the case of 20% censoring rates are provided in Table 1 of the Supple-
mentary material to save space. As shown in Table 2, the modelperformance experiences
a decline to a certain extent as the censoring rate increasesas expected. Estimation results
for n = 500 are included in Tables 2-3 of the Supplementary material.

To evaluate the performance of the functional estimatorα̂j(s), the integrated squared
error (ISE) ofα̂j(s), defined asISE (α̂j) =

∫ 1
0 {α̂j(s)− αj(s)}2 ds, is used for compari-

son. Table 3 presents the averaged ISEs ofα̂1(s) for n = 200. The results are similar for
α̂2(s) and thus are omitted. Clearly, the proposed method demonstrates robustness across
different settings and yields more accurate estimates compared to alternative methods.

6.2. Functional Covariates Including Curves and Images
In this setting, event times are generated from the log-transformed quantile regression mod-
el, that is, the true transformation parameterγ0(τ) = 0 for all τ ∈ (0, 1) in the proposed
Box-Cox transformation method:

QT (τ | X,Z) = exp
(
β0(τ)

⊤
X+ 〈〈α0(s, τ),Z(s)〉〉

)

= exp


b0 + b1X1 + b2X2 +

2∑

j=1

∫

Sj

αj(sj)Zj(sj)dsj

+

(
1 +

∫

S1

Z1(s1)ds1

)
Qǫ(τ |X,Z)

)
.

(16)
The quantile regression coefficient ofX = (1,X1,X2)

⊤ isβ0(τ) = (b0 +Qǫ(τ), b1, b2)
⊤

with b0 = b1 = b2 = 1, X1 ∼ N(0, 0.52), X2 ∼ Unif[0, 1] andǫ ∼ N(0, 0.252). Notably,
the bivariate functional dataZ(s) = (Z1(s1), Z2(s2))

⊤ contains functions and images
simultaneously. To be specific,zi(s) =

∑25
m=1 ρimψm(s), where the principal compo-

nentψm(s) = (ψ1m(s1), ψ2m(s2))
⊤ has the same structure aszi(s). As in Happ and
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Table 2. The estimation results for the scalar parameters with n = 200, in the setting of 40%
censoring rate.

̺ = 0.3 ̺ = 0.6

τ Method γ̂ β̂0 β̂1 β̂2 γ̂ β̂0 β̂1 β̂2

0.1

MFCQR Bias -0.076 0.037 -0.035 0.027 0.072 -0.039 -0.032 -0.029
SD 0.345 0.223 0.215 0.212 0.341 0.220 0.213 0.218
SE 0.367 0.241 0.207 0.203 0.324 0.229 0.201 0.224
CP 0.962 0.957 0.944 0.945 0.947 0.960 0.942 0.964

SFPCA Bias 0.093 0.044 -0.034 -0.035 0.374 -0.265 0.323 -0.306
SD 0.357 0.228 0.213 0.217 0.379 0.286 0.299 0.267

Log-spline Bias - -0.487 0.514 0.499 - -0.519 -0.588 0.549
SD - 0.165 0.178 0.192 - 0.248 0.231 0.285

KM Bias -0.074 -0.041 0.036 0.038 0.078 -0.037 -0.044 0.039
SD 0.344 0.229 0.225 0.230 0.375 0.241 0.234 0.245

FB Bias - 0.361 -0.359 -0.383 - 0.365 0.353 -0.377
SD - 0.227 0.221 0.218 - 0.224 0.216 0.229

0.3

MFCQR Bias 0.063 0.035 -0.032 -0.024 0.068 -0.034 -0.030 0.027
SD 0.313 0.206 0.201 0.199 0.315 0.213 0.205 0.216
SE 0.335 0.218 0.216 0.187 0.303 0.234 0.212 0.205
CP 0.961 0.954 0.958 0.943 0.944 0.957 0.955 0.942

SFPCA Bias 0.091 -0.038 -0.031 0.029 -0.404 -0.253 0.305 0.309
SD 0.346 0.224 0.193 0.205 0.371 0.278 0.284 0.265

Log-spline Bias - 0.458 0.476 -0.493 - 0.504 -0.517 -0.536
SD - 0.162 0.173 0.190 - 0.243 0.227 0.267

KM Bias -0.072 -0.035 0.031 0.033 0.073 -0.043 0.036 0.035
SD 0.324 0.226 0.218 0.221 0.372 0.232 0.227 0.235

FB Bias - -0.343 0.337 -0.355 - 0.349 -0.345 0.351
SD - 0.211 0.204 0.206 - 0.215 0.209 0.222

0.5

MFCQR Bias 0.060 -0.033 0.026 -0.021 -0.059 0.029 -0.027 0.024
SD 0.304 0.198 0.191 0.185 0.312 0.209 0.193 0.207
SE 0.319 0.193 0.205 0.173 0.301 0.217 0.182 0.194
CP 0.957 0.948 0.955 0.944 0.946 0.954 0.945 0.943

SFPCA Bias -0.088 -0.035 0.032 -0.025 0.407 -0.259 0.327 0.319
SD 0.314 0.219 0.192 0.198 0.376 0.296 0.281 0.268

Log-spline Bias - 0.451 -0.467 0.484 - 0.478 0.514 -0.515
SD - 0.160 0.172 0.185 - 0.245 0.223 0.261

KM Bias -0.069 0.038 -0.029 0.027 -0.071 0.041 0.038 -0.036
SD 0.311 0.215 0.212 0.214 0.367 0.224 0.213 0.231

FB Bias - 0.322 -0.315 -0.326 - 0.331 0.329 0.338
SD - 0.205 0.197 0.193 - 0.218 0.202 0.214

0.7

MFCQR Bias 0.074 -0.038 0.031 -0.032 -0.078 0.034 0.035 0.037
SD 0.349 0.231 0.219 0.217 0.346 0.236 0.224 0.220
SE 0.360 0.245 0.211 0.208 0.359 0.247 0.208 0.203
CP 0.958 0.961 0.946 0.942 0.963 0.962 0.943 0.945

SFPCA Bias -0.107 -0.042 0.047 -0.039 -0.418 -0.317 0.332 -0.348
SD 0.364 0.248 0.235 0.246 0.388 0.301 0.296 0.277

Log-spline Bias - -0.474 0.528 0.533 - 0.495 0.558 -0.553
SD - 0.193 0.201 0.195 - 0.296 0.324 0.315

KM Bias 0.101 -0.051 -0.057 -0.043 0.106 -0.079 -0.083 0.079
SD 0.398 0.245 0.242 0.249 0.407 0.275 0.258 0.262

FB Bias - -0.351 0.343 0.358 - -0.354 0.347 -0.350
SD - 0.237 0.232 0.226 - 0.243 0.230 0.235
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Table 3. The integrated squared errors (ISE) of α̂1(s) with n = 200 in the setting of 20% and 40%
censoring rates.

τ MFCQR SFPCA Log-spline KM FB MFCQR SFPCA Log-spline KM FB

̺ = 0.3, censoring rate=20% ̺ = 0.6, censoring rate=20%

0.1 0.113 0.121 0.342 0.127 0.236 0.115 0.187 0.476 0.125 0.245

0.3 0.105 0.118 0.329 0.124 0.221 0.109 0.181 0.468 0.121 0.228

0.5 0.101 0.116 0.311 0.120 0.214 0.104 0.176 0.462 0.116 0.217

0.7 0.110 0.119 0.332 0.132 0.227 0.112 0.183 0.469 0.128 0.232

̺ = 0.3, censoring rate=40% ̺ = 0.6, censoring rate=40%

0.1 0.122 0.135 0.351 0.133 0.254 0.124 0.194 0.485 0.138 0.267

0.3 0.120 0.129 0.337 0.128 0.248 0.116 0.189 0.479 0.133 0.255

0.5 0.117 0.124 0.325 0.125 0.235 0.113 0.183 0.474 0.127 0.244

0.7 0.121 0.131 0.353 0.139 0.251 0.120 0.191 0.482 0.141 0.257

Greven (2018), the first function elementψ1m(s1) is generated by Legendre polynomials
onS1 = [−1, 1] and the second image elementψ2m(s2) is formed by tensor products of
Fourier basis functions onS2 = [0, 1]× [0, 1]. The scoresρim are independently generated
fromN(0, νm) with exponentially decreasing eigenvaluesνm = exp(−(m + 1)/2). The
corresponding functional coefficient vectorα0(s, τ) = (α1(s1)+Qǫ(τ), α2(s2))

⊤, where
αj(sj) =

∑25
m=1 ajmψjm with aj1 = 1, aj2 = 0.6, aj3 = −0.4, aj4 = −0.1, aj5 = 0.05,

ajm = 2(−1)m+1m−3,m ≥ 6.

The censoring timeC ∼ Unif(0, c) with c = exp(c0+X1+X2), wherec0 is taken to be
3 and 2 to yield censoring rates of 20% and 40%, respectively.The functional observations
are discretized based on a grid of200 equidistant points for the function elementszi1 and
100× 100 equidistant points for the image elementszi2.

Table 4 shows the performance of the proposed method for the estimatorsγ̂ andβ̂ at
τ = 0.25, 0.50, 0.75 with n = 200, in the setting of 20% and 40% censoring rates. It is
seen that the estimation results are satisfactory across different quantile levels, indicating
the good adaptability of the proposed method to the logarithmic transformation model.
The performance is further improved by larger sample sizen = 500, which is displayed in
Table 5 of the Supplementary material.

The estimation results for the functional coefficient vector α0(s, τ) are evaluated in
Figures 4 and 5 withn = 200 under the censoring rates of 20% and 40%. Figure 4 displays
the estimates and the empirical 95% confidence intervals forthe first functional coefficient
elementα1(s1, τ). The true curves are well recovered and the confidence intervals have
stable performance under different settings. Figure 5 shows the estimates for the second
image coefficientα2(s2, τ), all of which have a nice approxiation to the true ones (the
left panels). Though the estimation errors increase with larger censoring rate, the overall
performation is satisfactory. The results withn = 500 is displayed in Figures 2-3 of the
Supplementary material.
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Table 4. The estimation results for the scalar parameters with n = 200 in the setting
of 20% and 40% censoring rates.

censoring rate=20% censoring rate=40%

τ γ̂ β̂0 β̂1 β̂2 γ̂ β̂0 β̂1 β̂2

0.25 Bias -0.023 0.015 -0.018 -0.013 0.036 -0.024 0.029 -0.027

SD 0.182 0.131 0.135 0.137 0.212 0.165 0.157 0.161

SE 0.171 0.146 0.127 0.149 0.201 0.178 0.160 0.167

CP 0.942 0.959 0.945 0.956 0.944 0.958 0.949 0.953

0.50 Bias -0.019 -0.013 0.015 -0.012 -0.028 -0.020 0.024 0.023

SD 0.152 0.122 0.131 0.125 0.188 0.151 0.153 0.150

SE 0.144 0.137 0.140 0.132 0.195 0.163 0.145 0.146

CP 0.946 0.958 0.955 0.952 0.956 0.960 0.944 0.948

0.75 Bias -0.021 0.017 0.013 0.014 0.032 -0.028 0.022 -0.025

SD 0.176 0.139 0.135 0.130 0.207 0.173 0.167 0.162

SE 0.185 0.131 0.148 0.137 0.189 0.179 0.164 0.171

CP 0.962 0.945 0.960 0.956 0.943 0.954 0.948 0.955

Fig. 4. Estimation results for the first coefficient function α1(s1, τ) at quantiles τ =
0.25, 0.50, 0.75 with n = 200 under censoring rates of 20% (top panels) and 40% (bot-
tom panels), respectively. The black solid lines are the true coefficient functions, the yellow
dashed lines represent the estimated functions and the brown dotted lines are the empirical
confidence intervals.
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Fig. 5. Estimation results for the second coefficient function α2(s2, τ) at quantiles τ =
0.25, 0.50, 0.75 with n = 200 under censoring rates of 20% (top panels) and 40% (bottom
panels), respectively.The left panels are the true image coefficients and the others are
estimates under different quantiles.

7. Real Data Analysis

We applied the proposed Box-Cox transformed quantile regression model to the ADNI da-
ta, using the IGACV criterion in Section 4.3 to select the number of mFPCs. The paper
finally selectsm = 4 at which the AGACV reaches its minimum value. The resampling
size is set as 500 to obtain the variance estimation. Table 5 presents the estimation results
for the transformation parameterγ(τ) and the regression coefficientsβ(τ) of 10 scalar
covariates: (Gender, Handedness, Widowed, Divorced, Never married, Length of educa-
tion, Retirement, Age, APOE-ǫ4 carrier, ADAS-cog Score) with 95% bootstrap confidence
intervals at different quantiles. Since shorter conversion time represents faster disease pro-
gression, which is the main focus of researchers, we considered the estimation results at
the lower levels of quantilesτ = 0.15, 0.30, 0.45. It is seen that the transformation pa-
rameter estimates are significantly different from zero, indicating that it is necessary to
employ data-driven model structures at different quantilelevels. The 95% confidence in-
tervals forβ6, β8, β9, β10 do not contain 0 for all considered quantiles, showing that the
corresponding covariates, Length of education, Age, APOE-ǫ4 carrirer and ADAS-cog s-
core, are important predictors for AD. To be specific, highereducation and older age at
baseline are associated with longer conversion time from MCI to AD. Individuals carrying
the APOE-ǫ4 allele have a higher propensity to transition from MCI to ADcompared to
non-carriers suggesting the presence ofǫ4 allele in APOE may increase the risk of devel-
oping AD and attaining a definitive AD diagnosis. These findings also coincide with the
outcomes reported in Corder et al. (1993) and Da et al. (2014). In addition, patients with
larger ADAS-Cog scores are expected to experience a more accelerated transition to AD
diagnosis.
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Table 5. Estimates and 95% bootstrap confidence intervals (CI) of the scalar parameters
at different quantile values for the ADNI data.

τ γ β1 β2 β3 β4

estimate 0.345 0.264 0.119 -0.146 0.290

95% CI (0.237,0.426) (0.087,0.415) (-0.283,0.511) (-0.414,0.149) (-0.268,0.883)

β5 β6 β7 β8 β9

0.15 estimate 0.201 0.108 -0.355 0.042 -0.371

95% CI (-0.052,0.414) (0.045,0.162) (-0.713,0.039) (0.011,0.074) (-0.668,-0.105)

β10

estimate -0.117

95% CI (-0.209,-0.056)

γ β1 β2 β3 β4

estimate 0.482 0.176 0.147 -0.139 0.225

95% CI (0.426,0.541) (-0.128,0.462) (-0.142,0.471) (-0.308,0.032) (-0.134,0.607)

β5 β6 β7 β8 β9

0.30 estimate 0.286 0.279 -0.313 0.074 -0.396

95% CI (-0.098,0.665) (0.142,0.438) (-0.641,0.022) (0.026,0.113) (-0.718,-0.119)

β10

estimate -0.149

95% CI (-0.283,-0.033)

γ β1 β2 β3 β4

estimate 0.621 0.153 0.130 -0.181 0.175

95% CI (0.515,0.709) (-0.087,0.431) (-0.198,0.455) (-0.412,0.047) (-0.203,0.572)

β5 β6 β7 β8 β9

0.45 estimate 0.107 0.296 -0.294 0.035 -0.423

95% CI (-0.351,0.552) (0.118,0.512) (-0.655,0.087) (0.012,0.069) (-0.812,-0.045)

β10

estimate -0.263

95% CI (-0.479,-0.048)
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Fig. 6. The estimated functional effects α̂j(s, τ), j = 1, 2 and the corresponding 95%
bootstrap confidence intervals at different quantile values. Top panels: effects of left hip-
pocampal radial distances. Bottom panels: effects of right hippocampal radial distances.

Figure 6 displays the estimated functional effectsα̂j(s, τ), j = 1, 2 and the correspond-
ing 95% bootstrap confidence intervals at different quantile values. The results imply that
both left and right HRDs are significant predictors across the quantiles and have positive
effects on the conversion time to AD. Therefore, the atrophyof hippocampal morphology
will accelerate the MCI progress to AD, i.e., we may expect a higher risk of AD conver-
sion for MCI patients with thinner hippocampal morphology.This result is consistent with
the finding that hippocampal radial distance is a good measure of deteriorating cognitive
functions and serves as an important functional predictor of AD conversion time for M-
CI patients (Li and Luo, 2019). Comparing the scales ofα̂1 andα̂2, we observe that the
effects of the left and right HRDs are not identical. For the left hippocampus, regions s-
panning 0-0.8 have a strong impact at the lower quantileτ = 0.15 and the effects reduce
slightly with contributing regions mainly lying ins ∈ [0, 0.6] at the quantileτ = 0.45.
For the right hippocampus, the locations between 0 and 0.2 play the dominant role with
varying covariate effects at different quantile levels. Thus, it is necessary to pay attention
to both left and right hippocampal radial atrophy and keep inmind the regional effects
differences at the same time. Based on the hippocampus imageprocessing procedure, the
location in [0.1,0.4] is mainly concentrated at the CA1 and subiculum (Sub) subfields of
the hippocampus, which indicates that the thinner these areas on the hippocampus are, the
shorter the progression time is to AD. The map of the hippocampal subfields is illustrated
in Figure 1 of the Supplementary material.

Since the paper employs a Box-Cox transformation in the model, the marginal effects
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Fig. 7. Estimates and pointwise 95% confidence intervals for the marginal covariate effects
for an individual in the ADNI data, with the continuous or categorical covariates fixed at the
mean values or reference levels.

of the covariates are indeed functions of bothγ(τ) andβ(τ). To examine the covariate
effects on the original scale of the survival time, we may consider their marginal effects.
Following Mu and He (2007) and Yin et al. (2008), if thejth covariateXj is continuous,
then its marginal effect is given by∂∂Xj

QT (τ | X,Z) = βj(τ) · QT (τ | X,Z)1−γ(τ),

whereβj(τ) is thejth component ofβ(τ). For a discrete covariate taking values 0 and 1,
its marginal effect is defined asQT (τ | X,Z)|Xj=1 − QT (τ | X,Z)|Xj=0 .

The marginal effect ofXj at a specified set of covariates{x0,z0} is estimated by
plugging in(γ̂, β̂, α̂). For illustration, the continuous covariates are taken to be the mean
values and the categorical covariates are fixed at referencelevels. Figure 7 presents the
estimates and the pointwise 95% bootstrap confidence bands for the marginal covariate
effects. It is seen that the marginal effects vary with the quantile values and the confidence
intervals are relatively stable across different quantiles. In addition to the four significant
covariates identified from Table 5, we find that Gender may also play a role in the AD
progression. The positive effects of Gender indicate that females have relatively longer
conversion time than males, though the impacts decrease with larger quantile values. Other
covariates, such as Handedness and Marital status, seem notmuch important with the
confidence intervals containing 0 at most quantiles. The estimated marginal coefficient
of the significant allele, APOE-ǫ4, displays an increase from from−1.83 (τ = 0.1) to
−0.95 (τ = 0.5), indicating that the presence of alleleǫ4 may have a greater detrimental
effect at lower quantiles. This finding, which remains undetectable using conventional
mean-based models, highlights the importance of our proposed method. Compared with
the Cox proportional hazard model, the proposed quantile model in this paper presents
a global view of the association between the AD conversion time and the covariates of
interest, which could provide more valuable reference for the disease research.

The proposed method is also compared with three competing models based on the pre-
dictive performance. Model 1 employs the Log-spline methodmentioned in Section 5.2
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to analyze the same ADNI data with both left and right HRDs. Model 2 only incorporates
the left HRDs and uses the univariant FPCA to handle this functional predictor. Model
3 replaces the HRD curve data with the hippocampal size, which is a scalar covariate.
To predict the conversion time, the full data set is randomlysplit into a training set with
200 subjects and a test set with 173 subjects. The interquartile range is used as the pre-
diction interval.This random split is repeated 100 times toobtain the average of coverage
frequencies and interval widths for all the considered models. The coverage frequency
is calculated as the proportion of the interquartile prediction intervals that cover the ob-
served conversion time. It is found that the proposed model achieves the best predictive
performance with a value of 0.521 for the coverage frequency. The deviation of Model 1
is significantly larger, leading to a frequency of 0.437. This indicates that the traditional
log-transformation is inadequate to fit the data. Model 2 performs much better with a fre-
quency of 0.462, and Model 3 achieves 0.441, both of which areinferior to the proposed
model. This shows clearly that combining the left and right HRDs could provide substan-
tially more information than only the left ones or the scalarcovariates and the technique of
multivariate FPCA successfully helps to extract importantinformation from the correlated
functional predictors.

8. Discussion

Alzheimer’s disease is an irreversible brain disorder and understanding of its progression
is quite beneficial for early intervention. In this study, weproposed a censored quantile
transformation model with a multivariate functional predictor and applied it to ADNI data
to investigate the risk factors of the MCI progression and predict the conversion time to
onset of AD. The Box-Cox transformation is rather flexible and includes a broad class of
model structures as special cases, thus relaxing the globallinear assumption in the previous
studies. To get rid of overlapping information in the correlated functional predictors, we
carried out dimension reduction by means of multivariate functional principal component
analysis. The resulting independent mFPC scores effectively avoid the multicollinearity in
the regression. Uniform consistency and weak convergence of the quantile process are de-
veloped for the proposed martingale-based estimators. Simulation studies suggest that the
proposed method outperforms the existing approaches, especially the broad applicability
in the cases where curves and images are simultaneously collected as functional covariates.

Identifiability is an inherent and subtle issue in the censored quantile regression. Due
to the loss of event information in the upper tail, regression quantiles withτ close to 1
may not be identifiable. In this paper, our focus is restricted to τ ∈ (0, τU ] with τU < 1.
Theoretically, selection ofτU involves satisfying certain intrinsic identifiability conditions
as outlined in the Supplementary material, while practically, τU is initially chosen based on
the range of quantiles of interest and then adaptively adjusted (Wu et al., 2015). For exam-
ple, if the optimization problem in the estimation becomes infeasible for some regression
quantile atτj ∈ (0, τU ], it suggests thatτU may exceed the upper bound of identifiability
conditions and should be reset to a smaller value. Otherwise, no adjustment ofτU is need-
ed or we can incrementτU by a small fraction to gradually push it to the largest estimable
quantile level.

The application to the ADNI study reveals that Length of education, Age, APOE-ǫ4
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carrirer and ADAS-cog score are important predictors for AD. These results are basically
consistent with those in the previous mean-based or Cox models, but the proposed quantile
method apparently provides a more global view for the parameter estimation at different
quantile levels, especially for lower quantiles, which areof primary interest to researcher-
s. Moreover, the data-driven transformation parameterγ(τ) is dynamically estimated to
reveal the non-linear and varying relationships between the risk factors and disease pro-
gression. It is also shown that including multiple functional predictors (both left and right
HRD curves) is necessary to improve the prediction accuracyfor the MCI-AD conversion,
although some previous studies only demonstrated that the left hippocampal volume was
associated with delayed verbal memory. Based on the pointwise processing of the hip-
pocampus scans, the significant CA1 and subicular subfields are identified, which may
facilitate case studies for evaluating clinical efficacy inslowing AD progression. Besides,
the proposed model can readily incorporate multiple brain region profiles as functional
predictors to assess their association with Alzheimer’s disease. It is worth mentioning that
patients in the ADNI study undergo periodic examinations, which may result in interval-
censored conversion time. However, since the study was conducted for a long period, the
uncertainty caused by interval-censoring has little effect on the analysis. Nevertheless, this
aspect represents an intriguing area for exploration, withpotential applicability to other
research domains, warranting further investigation in future studies.

According to the estimation procedure in Frumento and Bottai (2017), the coefficient
functions can be obtained on the quantile process by imposing smoothness conditions on
the coefficients, which may facilitate interpretation of the results. In practice, the selection
of basis functions is critical to balance the parsimony and flexibility. In the absence of
prior knowledge, one may employ polynomials, known quantile functions, trigonometric
functions, splines, and combinations of the above. However, important criteria for model
selection are usually needed to compare numerous alternative models. In some complex
cases, it is not easy to select a proper set of basis functionsfor the parametric modeling of
quantile regression coefficients. The performance of the parameterized estimators merits
further investigations, which represents an important subject for quantile regression.
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Linera, M. Burgaleta, M.́A. Quiroga, P. C. Shih, et al. (2013). Hippocampal structure
and human cognition: Key role of spatial processing and evidence supporting the effi-
ciency hypothesis in females.Intelligence 41(2), 129–140.



28

Corder, E. H., A. M. Saunders, W. J. Strittmatter, D. E. Schmechel, P. C. Gaskell, G. Small,
A. Roses, J. Haines, and M. A. Pericak-Vance (1993). Gene dose of apolipoprotein e
type 4 allele and the risk of alzheimer’s disease in late onset families.Science 261(5123),
921–923.

Cui, Y., B. Liu, S. Luo, X. Zhen, M. Fan, T. Liu, W. Zhu, M. Park,T. Jiang, J. S. Jin,
et al. (2011). Identification of conversion from mild cognitive impairment to alzheimer’s
disease using multivariate predictors.PloS one 6(7), e21896.

Da, X., J. B. Toledo, J. Zee, D. A. Wolk, S. X. Xie, Y. Ou, A. Shacklett, P. Parmpi, L. Shaw,
J. Q. Trojanowski, et al. (2014). Integration and relative value of biomarkers for predic-
tion of mci to ad progression: spatial patterns of brain atrophy, cognitive scores, apoe
genotype and csf biomarkers.NeuroImage: Clinical 4, 164–173.

Fan, J., I. Gijbels, T.-C. Hu, and L.-S. Huang (1996). A studyof variable bandwidth
selection for local polynomial regression.Statistica Sinica, 113–127.

Fei, Z., Q. Zheng, H. G. Hong, and Y. Li (2023). Inference for high-dimensional censored
quantile regression.Journal of the American Statistical Association 118(542), 898–912.

Fleming, T. R. and D. P. Harrington (2011).Counting processes and survival analysis.
John Wiley & Sons.

Frumento, P. and M. Bottai (2016). Parametric modeling of quantile regression coefficient
functions.Biometrics 72(1), 74–84.

Frumento, P. and M. Bottai (2017). Parametric modeling of quantile regression coefficient
functions with censored and truncated data.Biometrics 73(4), 1179–1188.

Happ, C. and S. Greven (2018). Multivariate functional principal component analysis for
data observed on different (dimensional) domains.Journal of the American Statistical
Association 113(522), 649–659.

Jiang, F., Q. Cheng, G. Yin, and H. Shen (2020). Functional censored quantile regression.
Journal of the American Statistical Association 115(530), 931–944.

Jiang, S., Y. Xie, and G. A. Colditz (2021). Functional ensemble survival tree: Dynamic
prediction of alzheimer’s disease progression accommodating multiple timevarying co-
variates.Journal of the Royal Statistical Society: Series C (Applied Statistics) 70(1), 66
– 79.

Jin, Z., Z. Ying, and L. Wei (2001). A simple resampling method by perturbing the mini-
mand.Biometrika 88(2), 381–390.

Kato, K. (2012). Estimation in functional linear quantile regression.The Annals of Statis-
tics 40(6), 3108–3136.

Koenker, R. and O. Geling (2001). Reappraising medfly longevity: a quantile regression
survival analysis.Journal of the American Statistical Association 96(454), 458–468.



A Quantile Model for Alzheimer’s Disease Data 29

Kong, D., J. G. Ibrahim, E. Lee, and H. Zhu (2018). Flcrm: Functional linear cox regres-
sion model.Biometrics 74(1), 109–117.

LaFerla, F. M., K. N. Green, and S. Oddo (2007). Intracellular amyloid-β in alzheimer’s
disease.Nature Reviews Neuroscience 8(7), 499–509.

Lee, E., H. Zhu, D. Kong, Y. Wang, K. Sullivan Giovanello, J. Ibrahim, N. Initiative, et al.
(2015). Bflcrm: A bayesian functional linear cox regressionmodel for predicting time
to conversion to alzheimer’s disease.Ann. Appl. Stat 9, 2153–2178.

Leng, C. and X. Tong (2014). Censored quantile regression via box-cox transformation
under conditional independence.Statistica Sinica 24(1), 221–249.

Li, K. and S. Luo (2017). Functional joint model for longitudinal and time-to-event data:
an application to alzheimer’s disease.Statistics in medicine 36(22), 3560–3572.

Li, K. and S. Luo (2019). Dynamic predictions in bayesian functional joint models for
longitudinal and time-to-event data: An application to alzheimers disease.Statistical
methods in medical research 28(2), 327–342.

Li, S., O. Okonkwo, M. Albert, and M.-C. Wang (2013). Variation in variables that predict
progression from mci to ad dementia over duration of follow-up. American journal of
Alzheimer’s disease (Columbia, Mo.) 2(1), 12.

Li, Y., N. Wang, and R. J. Carroll (2010). Generalized functional linear models with
semiparametric single-index interactions.Journal of the American Statistical Associa-
tion 105(490), 621–633.

Luders, E., P. M. Thompson, F. Kurth, J.-Y. Hong, O. R. Phillips, Y. Wang, B. A. Gutman,
Y.-Y. Chou, K. L. Narr, and A. W. Toga (2013). Global and regional alterations of hip-
pocampal anatomy in long-term meditation practitioners.Human brain mapping 34(12),
3369–3375.

Ma, H., T. Li, H. Zhu, and Z. Zhu (2019). Quantile regression for functional partially
linear model in ultra-high dimensions.Computational Statistics & Data Analysis 129,
135–147.

Mattson, M. P. (2004). Pathways towards and away from alzheimer’s disease. Na-
ture 430(7000), 631–639.

Mu, Y. and X. He (2007). Power transformation toward a linearregression quantile.Jour-
nal of the American Statistical Association 102(477), 269–279.

Peng, L. and Y. Huang (2008). Survival analysis with quantile regression models.Journal
of the American Statistical Association 103(482), 637–649.

Petersen, R. C., G. E. Smith, S. C. Waring, R. J. Ivnik, E. G. Tangalos, and E. Kokmen
(1999). Mild cognitive impairment: clinical characterization and outcome.Archives of
neurology 56(3), 303–308.



30

Petersen, R. C., R. G. Thomas, M. Grundman, D. Bennett, R. Doody, S. Ferris, D. Galasko,
S. Jin, J. Kaye, A. Levey, et al. (2005). Vitamin e and donepezil for the treatment of mild
cognitive impairment.New England Journal of Medicine 352(23), 2379–2388.

Portnoy, S. (2003). Censored regression quantiles.Journal of the American Statistical
Association 98(464), 1001–1012.

Qian, J. and L. Peng (2010). Censored quantile regression with partially functional effects.
Biometrika 97(4), 839–850.

Rabin, J. S., H. Klein, D. R. Kirn, A. P. Schultz, H.-S. Yang, O. Hampton, S. Jiang, R. F.
Buckley, A. Viswanathan, T. Hedden, et al. (2019). Associations of physical activity and
β-amyloid with longitudinal cognition and neurodegeneration in clinically normal older
adults.JAMA neurology 76(10), 1203–1210.

Reiss, P. T. and R. T. Ogden (2010). Functional generalized linear models with images as
predictors.Biometrics 66(1), 61–69.

Shi, J., N. Lepore, B. A. Gutman, P. M. Thompson, L. C. Baxter,R. J. Caselli, Y. Wang,
and A. D. N. Initiative (2014). Genetic influence of apolipoprotein e4 genotype on
hippocampal morphometry: An n= 725 surface-based alzheimer’s disease neuroimaging
initiative study.Human brain mapping 35(8), 3903–3918.

Shi, J., P. M. Thompson, B. Gutman, Y. Wang, A. D. N. Initiative, et al. (2013). Surface
fluid registration of conformal representation: Application to detect disease burden and
genetic influence on hippocampus.NeuroImage 78, 111–134.

Tang, Q. and L. Cheng (2014). Partial functional linear quantile regression.Science China
Mathematics 57(12), 2589–2608.

Wang, Y., J. G. Ibrahim, and H. Zhu (2020). Partial least squares for functional joint
models with applications to the alzheimer’s disease neuroimaging initiative study.Bio-
metrics 76(4), 1109–1119.

Wang, Y., Y. Song, P. Rajagopalan, T. An, K. Liu, Y.-Y. Chou, B. Gutman, A. W. Toga,
P. M. Thompson, A. D. N. Initiative, et al. (2011). Surface-based tbm boosts power to
detect disease effects on the brain: an n= 804 adni study.Neuroimage 56(4), 1993–2010.

Wong, R. K., Y. Li, and Z. Zhu (2019). Partially linear functional additive models for
multivariate functional data.Journal of the American Statistical Association 114(525),
406–418.

Wu, C., N. Ling, P. Vieu, and W. Liang (2023). Partially functional linear quantile regres-
sion model and variable selection with censoring indicators mar.Journal of Multivariate
Analysis 197, 105189.

Wu, Y., Y. Ma, and G. Yin (2015). Smoothed and corrected scoreapproach to censored
quantile regression with measurement errors.Journal of the American Statistical Asso-
ciation 110(512), 1670–1683.



A Quantile Model for Alzheimer’s Disease Data 31

Yan, F., X. Lin, and X. Huang (2017). Dynamic prediction of disease progression for
leukemia patients by functional principal component analysis of longitudinal expression
levels of an oncogene.The Annals of Applied Statistics 11(3), 1649–1670.

Yan, F., X. Lin, R. Li, and X. Huang (2018). Functional principal components analysis
on moving time windows of longitudinal data: dynamic prediction of times to event.
Journal of the Royal Statistical Society: Series C (Applied Statistics) 67(4), 961–978.

Yin, G., D. Zeng, and H. Li (2008). Power-transformed linearquantile regression with
censored data.Journal of the American Statistical Association 103(483), 1214–1224.

Young, J., M. Modat, M. J. Cardoso, A. Mendelson, D. Cash, S. Ourselin, A. D. N. Ini-
tiative, et al. (2013). Accurate multimodal probabilisticprediction of conversion to
alzheimer’s disease in patients with mild cognitive impairment.NeuroImage: Clinical 2,
735–745.


