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Summary.
Alzheimer’s disease (AD) is a progressive disease that starts from mild cognitive
impairment and may eventually lead to irreversible memory loss. It is imperative to
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explore the risk factors associated with the conversion time to AD that is usually right-
censored. Classical statistical models like mean regression and Cox models fail to
quantify the impact of risk factors across different quantiles of a response distribu-
tion, and previous research has primarily focused on modeling a single functional
covariate, possibly overlooking the interdependence among multiple functional co-
variates and other crucial features of the distribution. To address these issues, this
paper proposes a multivariate functional censored quantile regression model based
on dynamic power transformations, which relaxes the global linear assumption and
provides more robustness and flexibility. Uniform consistency and weak convergence
of the quantile process are established. Simulation studies suggest that the pro-
posed method outperforms the existing approaches. Real data analysis shows the
importance of both left and right hippocampal radial distance curves for predicting the
conversion time to AD at different quantile levels.

Keywords: ADNI study; Censored quantile regression; Multivariate functional
data; Transformation model.

1. Introduction

Alzheimer’s disease (AD) is recognized as one of the majaitheare challenges. It is
characterized by a progressive decline in cognitive adsliin individuals (LaFerla et al.,
2007; Mattson, 2004; Rabin et al., 2019). Globally, over S50ian people are suffer-
ing from dementia, with AD being the leading cause. Timeljedgon of AD is crucial
because the disease can cause irreversible brain disardktherapeutic intervention is
generally more effective during the early stage of the disedild cognitive impairment
(MCI) is considered as a transitional stage between norgiajeand dementia state (Pe-
tersen et al., 1999). Therefore, it is imperative to expkady markers for the diagnosis
of AD and predict the progression from MCI to AD for targetegkttment.

Extensive clinical dathavebeen collected by scientists to investigate significamt ris
factors associated with the progression of AD. Our resdantiotivated by the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) study, which prdes a comprehensive set of
clinical measurements on the participants. These incledeapsychological assessments,
biomedical images, and genetic data (Lee et al., 2015; Bamd., 2021). Among the
imaging techniques used, magnetic resonance imaging (MR¥)dely employed for vi-
sualizing brain structure. Numerous studies have dematasithat the atrophy of medial
temporal lobe (MTL) structures, particularly the hippogars, is closely linked to an in-
creased risk of developing clinical dementia (Reiss ande@gd010; Young et al., 2013).
Figure 1 compares the T1-weighted horizontal (left panet) sagittal (middle and right
panels) brain images from a healthy individual (top panatg) an AD patient (bottom
panels) in the ADNI dataset. The left and right hippocampasw@arked in green and red.
Clearly, the AD patient’'s hippocampus shows significanbatty, reinforcing the strong
connection between hippocampal shape and cognitive famcti

In this study, the AD diagnosis is regarded as the survivahewof interest and pa-
tients are diagnosed as having AD if they meet the specifiasien criteria. Thus, the
conversion time from MCI to AD isa right-censored respons@revious research has ex-
tensively explored the prediction of time-to-event outesmsing functional data analysis
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Fig. 1. T1-weighted horizontal (left panels) and sagittal (middle and right panels) brain
images from a normal person (top panels) and an AD patient (bottom panels) in the ADNI
dataset. The left and right hippocampus are marked in green and red, respectively.

(Yan et al., 2017, 2018). Li and Luo (2017) utilized the stmmal shape of hippocam-
pus as the functional biomarker of interest. However, thedel only incorporated one
functional predictor, limiting the utilization of availédbdata and potentially affecting the
predictive power. Li and Luo (2019) proposed to use multiptagitudinal biomarkers to
predict the disease progression, but their method religthi@assumption of proportional
hazards, which may not hold in practice. Both Lee et al. (2@t& Kong et al. (2018)
developed the functional linear Cox regression modeldligigting the predictive value
of hippocampus surface data in MCI conversion. Nonetheddlssf these previous studies
exclusively adopteCox models which are inadequate for capturing the higher or lower
quantiles of the survival time.

The aim of this paper is to study the association betweendgheetsion time and var-
ious clinical, genetic and hippocampus surface variallleaseline within the framework
of quantile regression. However, the ADNI dataset presgpesific challenges due to (i)
correlations among multiple functional covariates (leftd aight hippocampus surface da-
ta) and (ii) the potential non-linear and complex relatlipsbetween the covariates and
the time-to-event outcome across different quantiles.séquently, a crucial question aris-
es: how can these data be effectively utilized to enhancedtimation of covariate effects
and identify the most effective early markers of AD convensi

In this paper, we developed a novel multivariate functianaintile regression model
to explore the predictor effects on the survival time in thesgnce of random censoring.
Censored quantile regression has gained significantiattefior exploring covariate effects
across different quantiles in survival data analysis (Keerand Geling, 2001; Bang and
Tsiatis, 2002; Chernozhukov and Hong, 2002). Existing imgshsuch as the recursively
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reweighted estimation procedure by Portnoy (2003) for tlagl&n-Meier estimator and
the martingale-based estimation method by Peng and Hu@@@)2are well-established
for classical censored quantile regression. In most casesitile estimation is performed
individually for each quantile level without any additidr@Earametric structure assumed
for the quantile coefficient functions. Frumento and Bof2di16, 2017)suggested using
a parametric model to describe quantile regression cosfiédunctions through a finite-
dimensional parameter vectoHowever, these methodologies primarily concentrate on
scalar predictors and do not incorporate functional catasi such as curves or images.
To the best of our knowledge, the existing research in thés & limited to Jiang et al.
(2020) and Wu et al. (2023), who investigated partially dinfinctional censored quantile
regression models. However, these methods are designeificadly for the case of a
single functional covariate and are not suitabledor multiple regression setting

To address this issue, this paplervelopsa new functional censored quantile regression
model to account for multiple correlated functional preclis. These functional covari-
ates can be defined on different domains, such as curves aggénwhich may differ in
dimension. Considering the commonly observed correlatamong these covariates, we
jointly model them as a multivariate functional predictada&mploy multivariate function-
al principal component (mFPC) analysis to extract usefidrmation (Happ and Greven,
2018). The scalar predictors and the estimated mFPC so@résam incorporated into the
survival model. Estimation is based on the martingale ptocedescribedn Peng and
Huang (2008). However, it should be noted that the theaktievelopment poses non-
trivial challenges due to two main reasons: (i) the covasat the model include estimated
mFPC scores, which are subject to contamination from esbmarrors; (ii) the number of
MFPCs is treated as a tuning parameter that diverges witsethele size. In addition, the
use of logarithmic transformation on survival time is wigakccepted in quantile regres-
sion. However, a common limitation is that the log transfation is typically implemented
uniformly across all considered quantile levels, which may accurately reflect the real
data and can lead to incorrect inferences. In contrast, the@®x transformation (Box
and Cox, 1964) is morsuitableto take into account different model structures in censored
quantile regression (Yin et al., 2008; Leng and Tong, 20hd))tae log transformation can
be obtained as a special case. Therefore, in this papertredirce the Box-Cox transfor-
mation into our proposed model to relax the traditional gladssumption of logarithmic
linearity. Specifically, the unknown transformation paeder is allowed to dynamically
vary with the quantile values. This extension eliminates gbtentially restrictive global
linearity assumption required in Peng and Huang (2008) aadiges flexible non-linear
structures at different quantile levels (Chu et al., 2021).

The main contributions of this paper are as follows. Fitst, piroposed model provides
a theoretically robust and computationally efficient apyatofor incorporating multivariate
functional covariates in the presence of random censoritignathe framework of quan-
tile regression. Such a procedure successfully accommedghamic transformations on
the response and functional predictors from diverse dospaind is generally applicable
in scenarios where predictors exhibit non-negligible elations, which are commonly en-
countered in practical applications. To address the issomudiicollinearity in the regres-
sion analysis, the informative signals are extracted usiR¢PC. Second, our procedure
is rigorously justified to enjoy favorable sampling projEst such as uniform consistency
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and weak convergence of the quantile process. Notablyeasaimple size increases, the
number of principal components in our model tends to infjnitigich presents challenges
to the theoretical analysis. Third, our procedure does @lgt an the restrictive global
linearity assumption, which makes our procedure more egbplé in real scenarios.

The rest of the paper is organized as follows. In Section 2deseribe the motivating
ADNI study and the data structure. Section 3 establisheféimsformed censored quan-
tile regression model for the multivariate functional potor. The estimation procedure
is constructed in Section 4. The large-sample propertigheproposed estimators are
discussed in Section 5. Extensive numerical studies in@e6étshow the performance of
the proposed method in various settings, especially in #8se evhere curves and images
are simultaneously collected as functional covariatese dimalysis of the ADNI data is
conducted in Section 7. Concluding remarks are given ini@e& Technical proofs and
extra numerical results are deferred to the Supplementatgnmals.

2. The Motivating ADNI Dataset

The development of the proposed method is motivated by tzbeliner's Disease Neu-
roimaging Initiative (ADNI) study, which collected varisuneuropsychological assess-
ments, brain images and clinical measurements of the jpatits. The ADNI study was
first launched in year 2004 as a global public-private pastmnip led by Dr. Michael W.
Weiner, a professor of radiology, medicine and neurologhatUniversity of Californi-

a San Francisco (UCSF). The primary goal of ADNI is to test tlvbe serial magnetic
resonance imaging (MRI), positron emission tomographyT()PEeuropsychological as-
sessments, and other biological markers can be combinextdotddlzheimer’s disease as
early as possible and identify ways to track the diseasergssgn with specific biomark-
ers. This research study aims to build a supportive envigrirfor researchers to develop
new treatments that could slow or stop the progression of AdDraduce the cost of clini-
cal trials. ADNI recruits participantsetween age 55 and @057 sites in the United States
and Canada. After obtaining informed consent, participamnidergo a series of tests, in-
cluding a neuropsychological evaluation, genetic testimgl MRI scans, to collect various
clinical, cognitive, genetic and imaging data. The firstgghaf ADNI (ADNI-1) enrolled
800 adults, including approximately 200 people for eldedwtrols, 400 people with MCI,
and 200 people with early AD. Subsequently, the three eikieeSADNI-GO, ADNI-2,
and ADNI-3, further recruited new participants into the oah All data generated by the
ADNI study are entered into the data repository hosted at #imratory of Neuroimag-
ing (LONI) at the University of Southern California. Quadifi researchers worldwide can
submit an online data access request and generally begig ASINI data within a few
days of request submission. For up-to-date informatioubAB®NI, see http://www.adni-
info.org.

In this paper, we selected 373 patients who had been diagmogeMCI from phase 1
of the ADNI study (ADNI-1) to assess the progression of MCdl anedict the conversion
time from MCI to AD. Among the 373 MCI patients, 161 individaaonverted to AD
during the study period while the remaining 212 subjectsrditiprogress further before
the end of the study. Therefore, the conversion time from KCAD is a right-censored
responseln addition, each individual’s clinical, genetic and hiigampus surface data at



Table 1. Summary statistics about ADNI data, including n = 373
participants’ clinical and genetic variables.

Variable Mean + SD / No.(%)
Age 74.95+ 7.33
Education length 15.653.03
ADAS-Cog score 11.5& 4.45
Gender

Male 237(63.5)

Female 136(36.5)
Handedness

Right 342(91.7)

Left 31(8.3)
Marital status

Married 300(80.4)

Widowed 45(12.1)

Divorced 24(6.4)

Never married 4(1.1)
Retirement

Yes 303(81.2)

No 70(18.8)
APOE<,

Carrier 169(45.3)

Non-carrier 204(54.7)

baseline are included to account for the potential risk® dimical covariates are Gender
(0 = Male; 1 = Female), Handedness (0 = Right; 1 = Left), Magtatus (1 = Married; 2
= Widowed; 3 = Divorced; 4 = Never married), Length of eduzatiRetirement (1 = Yes;
0 = No), Age and the ADAS-Cog score. Marital status is code@® ldgpgmmy variables:
“Widowed”, “Divorced”, “Never married”. The ADAS-Cog testas been widely used to
assess the severity of dysfunction in adults, with a higberssindicating poorer cognitive
function. The genetic covariates concern two ApolipogroEe(APOE) SNPs which define
a 3-allele haplotype, namely, the, €3 ande, variants. Among these variants, APQEis
known to be a risk factor for the early onset of AD (Peterseal.e2005). In this paper,
we specifically investigate the impact of APQEas the covariate of interest on disease
progression. The variant presence for these patientsasnalat from the ADNI database.

The demographic information summary about the data seesepited in Table 1. The
average age of subjects was 74.95 years with a standardtidevid 7.33 years. The
youngest person was 55 years old, while the oldest perso®@gears old. On average,
the participants had 15.65 years of education with a standieviation of 3.03 years. The
minimum education length was 4 years and the maximum lengd@® years. The average
ADAS-Cog score was 11.58 with a standard deviation of 4.480Ag all the individuals,
237 participants were male and 136 were female; 342 weréhighded and 31 were left-
handed; 303 were retired and 70 were not. Regarding Matéals 300 were matrried, 45
were widowed, 24 were divorced, and 4 were never marriedsslioee. As for the genetics
information on the APOE, 169 subjects carry at least one AlOdtlele and 204 subjects
are non-carriers.
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To investigate atrophy of the hippocampus, many reseasdtere conducted analysis
based on the volumes of brain structures (Cui et al., 2014t &li., 2013), while some other
studies have shown that surface-based morphology analgsimore advantages since it
provides pointwise effect estimation of the subregiongtyofor cognitive impairment (Li
and Luo, 2017; Wang et al., 2020). Mapped onto the hippocasystace, the subfields
are illustrated in Figure 1 of the Supplement. Thus, in tlipgy, we considered the hip-
pocampal radial distance (HRD) of the left and right hippuopal surface point (referred to
as vertex), which measures the distance from its medialtoazach vertex and represents
the thickness of hippocampus. For hippocampus 3D imagespsing, we followed the
procedure commonly used by Wang et al. (2011) and Luders €@Gil3). Given the 3D
MRI scans, we used FreeSurfer to segment hippocampal sahsts and automatically
reconstruct hippocampal surfaces. Then the left and rigitdcampal surfaces are con-
formally mapped to a two-dimensional (2D) rectangle plan®tm a feature image of the
surface. After registering each feature image to a commuoplee and calculating HRD
for all vertexes, the 2D image matrices are vectorized inedimensional (1D) radial dis-
tance curves defined on the interval [0,1] (Shi et al., 200342, which are incorporated
as the functional predictors into the proposed model. Faailéel information about the
hippocampus image processing procedure, readers coaldoe€olom et al. (2013).

Figure 2 displays the left and right hippocampal radialatise curves from 35 ran-
domly selected MCI subjects, where the red curves come fnenindividuals progressed
to AD prior to the end of study and the black curves come froenrtbn-converters whose
conversion times are censored. It is observed that the bgmppal radial distance curves
of the converters are generally lower than the non-conkgrite., the sizes of hippocampi
may be smaller for the patients who progressed quicker toAdfbough the overall trends
of the left and right hippocampal radial distance (HRD) @srghow similarities, there are
notable differences in terms of gradient and volatility. ekmplore the correlation between
these curves, the study conducted a heatmap analysis of3reuBre pairs shown in the
left panel of Figure 3. The analysis revealed that regioasisimg locations 0.2-0.8 of the
hippocampus exhibit correlation coefficients around éidating a significant relation-
ship between the left and right HRD curves. Further, we sdphrconducted univariate
functional principal component analysis (FPCA) for thé &fd right distance curves. The
right panel of Figure 3 shows the empirical correlationsheffirst three univariate FPCA
scores for the curves. Obviously, there is a nonnegligibleetation between the score
pairs of the two functional predictors, which may lead to ticollinearity issues in the
regression analysis if these correlated scores are intgzbin the model.

3. The Proposed Model

Let T denote the survival time(' denote the censoring time. Definé = T A C,
0 = I(T < C), whereA is the minimum operator anf{-) is the indicator function. The
covariates include g-dimensional vectoX € RP and a multivariate functional predictor

Z(s) = (Z1(s1),..., Za(sa)) T € R, where each functional elemeft(s;) : S; — R
is a stochastic process defined on the compact dofjaémd is assumed to be i (S;)
with possibly different domains; for j = 1,...,d. The argumens := (s1,...,s4) €

S := 81 x --- x 8. This setting allows curves and images to be simultanedneslyded
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Fig. 2. The left and right hippocampal radial distances curves from 35 randomly selected
MCI patients. The red curves are from the converters (individuals progressed to AD) and
the black curves are from the non-converters. The horizontal axis represents the consid-
ered hippocampal surface points which are scaled to [0,1] for simplicity.

as functional covariates in the model, which greatly exsaihé application of the regres-
sion model. Let{Y;,d;,X;,Z;} , be independent and identically distributed copies of
{Y,0,X,Z}. Conditional on the covariatdX, Z}, the censoring timé€’ is assumed to be
independent of the survival tinig.

Given the covariate§X, Z} andr € (0, 1), therth conditional quantile of the random
variableT" is defined ag)r(7|X,Z) = inf{t : P(T < t|X,Z) > 7}. Denoteh,(-) as
a family of monotonic transformations with an unknown pagteny, which includes the
following Box-Cox transformation (Box and Cox, 1964) as adpl case:

=L ify#0,
hy(T) =13 7 . 1)
log(T') ify=0.
Then the proposed transformed quantile linear regressadehis as follows:
Qo) (7 1 X, 25 8,0) = B(r) "X + ({ex(s,7), Z(s))), @
where~(7) is the unknown transformation parameter for a givea (0, 1), 3(7) is the
p-dimensional regression coefficient vector, an@, 7) = (ay (s1,7),...,aq(sq,7))"

is thed-dimensional vector of unknown square integrable coefiidienctions. As defined
in Happ and Greven (2018), the scalar prod{{ei(s, 1), Z(s))) = Z;l:l (j, Zj)y =
Z?:l Js @ (sj,7) Z; (sj) ds; and the norm induced b)) is denoted by - [||.

Based on the equivariance property of quantile regressitiiet monotone transforma-
tion 2, (-), we can obtain

th(ﬂ(T) (T ’ X, Z) = h’Y(T) (QT(T ‘ X, Z)) y TE (07 1)' 3)
Then model (2) is equivalent to the following expressiorgmts of the quantile function
of T

QT(T ‘ X,Z,,@,a,’y) = h—;(lT)

(BT X+ ((als. 7). Z(s)) o7 € (0.1), (@)
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Fig. 3. Heatmaps of the correlation matrix between the 373 left and right hippocampal
radial distances. Left Panel: Correlation between the left and right HRD curves; Right
Panel: Correlation between the seperate FPC scores of the left and right distance curves.

Whereh;(lT) is the inverse function af, . Therefore, the proposed model (4) relaxes the
traditional global linear assumption by introducing trensformatiort., .

A large literature exists about functional quantile regi@s when the responsg is
completely observed (Cardot et al., 2005; Chen and PouA®;2Cato, 2012). However,
whenT is randomly censored, studies of functional quantile regjs; models are quite
limited. For example, Jiang et al. (2020) and Wu et al. (20@8)stigated the partially lin-
ear censored quantile regression model with only a singletional covariate. In practical
applications, it is common to have multiple functional pogars that contain critical infor-
mation which should be included in the model. Hence, the @ged method in this paper
(Model 4) encompasses their model as a special case wheartbigohal predictoZ(s)
is univariate { = 1) and the transformation parametgrr) is zero(logarithmic transfor-
mation). In addition, existing approaches for multivegifitnctional regression are mainly
restricted to functions observed on the same finite, onexdgional interval (Ma et al.,
2019). In contrast, our proposed model can handle multiohetfonal predictors, which
are often correlated and defined on potentially distinctaios) such as curves and images.
By introducing a class of dynamic transformatidng,) into the functional censored mod-
el, our framework allows for flexible coefficient estimatioacross various quantile levels.
Uniform consistency and weak convergence are also showedtidd 5 for the parametric
and functional estimators.

Denote the conditional distribution function @fby Fr(t|X,Z) = P(T < t|X,Z).
A(t|X,Z) = —log {1 — Fr(t|X,Z)} is the cumulative hazard function &f conditional
on X, Z. DefineN;(t) = I(Y; <t,5; =1) to be the counting process for=1,...,n
andH (z) = —log(1—x). Following Peng and Huang (2008), we consider the martingale-
based estimation method. Specifically, define the martingal

Ml(t) :Nl(t) —A(t/\YHX“ZZ) (5)

Denotef,, ap and~y as the true values @3, o and~, respectively. Based on the condi-
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tional independent censoring assumption (Fleming andiftgion, 2011), we have

E[M;{Qr (1| Xi, Zi; By, oo, 70) }]
E[N;(Qr (7 | X4, Zi; By, @0,70)) — AQr (7 | Xy, Zi; By, o, 70) A Yil Xy, Zi)]
0. (6)

In the martingale above, the hazax¢|X;,Z;)(i = 1,...,n) are unknown functions.
However, due to the fact th&t- {Qr (7 | X;,Z;) | X, Z;} = 7, we have

AQ7(T | X4, Zi) NY; | X, Zi}
H(t)NH (Fr{Y; | X;,Z;})

_ /0 11 > Qrlu| XiZ:)) dH (u). ()

The stochastic integration i has a common grid-based approximation as

j—1
AQr (15| X, Zi) NY | X4, 2] = Y T[Y; > Qr (i | X4, Z;)] ®
k=0
X {H(mg41) — H(7y)},

wherer; € T, = {0 =79 <7 <--- <71 =7y < 1} with 7; an upper bound for es-
timable quantiles to avoid the identifiability issues duecémsoring (Peng and Huang,
2008). Certain theoretical constraints regardingare described in the asymptotic results,
specifically in Condition B5 outlined in Section 3 of the Siggpentary material. Denote
by |7L|l = supi<;<r, |7 — 7j-1| the size ofT;, . Then the mean zero property of the
martingales could be used to construct the estimating eguathe proposed estimators
{B(7),&(s,7),5()}, 7 € (0,7y] are right-continuous step functions which jump on the
grids of 7y,.

4. Estimation and computation

4.1. Multivariate Functional Principal Component Analysis
Considering the possible correlations among multiple fional predictorsZ;(s;),j =
1,...,d, this paper incorporates the multivariate functional ppal component analysis
(MFPCA) proposed by Happ and Greven (2018) to extract ugsfimimation for quantile
regression.

Define the mean function d&(s) asu(s) = E{Z(s)} = {u1(s1),...,pma(sa)} ",
wherey;(sj) = E{Z;(s;)}. Thed x d covariance matrix oZ(s) is

C(s,t) = B [{Z(s) - p(s)HZ(t) - p(t)}7]

with elements(?jj/(sj,tj/) = F [{Zj(Sj) - /Lj(Sj)} {Zj/ (tj/) — ,uj/(tj/)}], Where.S’j S
Sj,tj/ S Sj/ andj, ;' =1,...,d.

By the multivariate version of Mercer's Theorem (Happ and¥en, 2018)¢ (s, t) ad-
mits the spectral expansidis, t) = > 22 \eb,(8),(t) T, whereh; > Ay > -+ > 0
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are ordered eigenvalues afigd = (11, ... ,¢kd)T are the corresponding eigenfunctions
such that((yy, ¥.)) = [s ¥i(s) " (s)ds = I(k=Fk'). Based on the multivariate
Karhunen-Loeve Theorem, we can obt&ifis) = u(s) + > ooy px¥i(s), s € S, with
zero mean random variables = ((Z — p, ;) andcov (pg, prr) = M\l (k = K'). S-
incevy,(s), k € N is a sequence of orthonormal basis, the functional coefiici¢s, 7)
can be expressed as(s,7) = Y .o, a;x¥,(s). Supposeu(s) = 0 for simplicity.
Then the functional component in model (2) can be calculagfa(s,7),Z(s))) =
<<Z§11 aTj'l:bj(s)v Z/iil pk¢k(3)>> = Zzozl A7k Pk-

Although the number of principal components is infinitesicbmmonly assumed that
the relevant information regarding the response variabf@imarily captured by the first
m = m,, FPC scores. The truncated number satisfies m,, < n — 1 andm,, — oo
asn — oo. Then we can obtait(a(s, 1), Z(s))) ~ Y1, arkpr := a(7)' p, where
a(t) = (ar1s-- - arm) ,p = (p1,....pm)". The FPC scorefp; }7_, are unknown and
need to be estimated.

In practice, the functional predictors;(s;) may be observed on discrete grid points
{sii € §;,1 <1 < Ly} with measurement errors. This paper mainly considers the
dense observations for the functional predictors to canstconsistent theory proper-
ties. In this case, many linear smoothers, such as locadiregression technique (Fan
et al., 1996), local polynomial and regression splines, etmuld be used to recover the

true functionsz;;(s;) fori = 1,...,nandj = 1,...,d, leading to smoothed estimates
22(3) = (7:’1'1(81), e 72id(3d))—r-
Then, the mean and covarianceZifs) could be estimated by

Als) =n"' D 2i(s),
. - 9)
Cls,t) =n""> {2i(s) — fu(s)} {2:(t) — ()} .
=1

The spectral decomposition6fs, t) isC(s, t) = Y ore Moy (s)9,(8) T, where{ N\, k >

1} are the sample eigenvalues in decreasing ordel{a@ds), k > 1} are the correspond-
ing eigenfunctions. The truncated mFPC score estimatep.ate (pi1, . .., pim) | With

pir = ((Z; — ﬁ,fpk», k=1,...,m. As stated in Li et al. (2010), the approximation error
incurred by linear smoother is negligible ) with dense functional observations. The
choice of the truncation parameterwill be discussed in Section 4.3.

4.2. Estimation of Censored Transformation Model
Plugging the firstn estimated mFPC scores into model (4), we obtain the tramsfor
guantile regression model wigh+ m predictors as follows:

QT(T ‘ Xiaﬁi;ﬁaaav) = h_l

~(7) (5(T)TXz‘ + a(T)TiJi) ,7€(0,1). (10)

Note that, since our response variable is a time-to-eveticboe, we can assume that
Qr (0] X,Z; By, a0,7) = 0. Based on the grid approximation method, for eagh
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and anyy(;),j = 1,..., L, we subsequently obtai{)@(fy,rj), a(y,7;)} by solving the
following monotone estimating equation:

(/771870' Tj Z 7pz N {QT(Tj | Xivﬁi;ﬁ» CL,’}/)}

-1
—ZI{Y} > Qr (7 | Xz’;ﬁi;éadﬂ)} {H (Tpy1) — H(Tk)}] =0.
k=0

(11)
Similar to Chu et al. (2021), solving (11) is transformed timimizing a convex objective
function of {3 (7;) ,a (7;)} for a giveny. That s,

{B(v,7j),a(v,7)} Zﬁa(rg)m(in)i(% B,a,T;)

n

=argmin — Y [hy(r,) (Vi) = hory) (Qr (7 | Xi, i3 B, @,7))]
B(r)a(r) =
X |:N7, {QT(TJ ‘ X—Zapz7ﬁ7 a’7’7)}
j—1
- I[Y; > QT(Tk | lepmgvdvﬁ/)] {H(Tk-i-l) - H(Tk)}] .

k=0

(12)

To estimatey, this paper utilizes the standard grid search method. Feriassof grid

points in a given search interval ef we aim to find the minimizefy of the following
problem:

4 (15) =arg m)inf?(% B(). a(v). 1)
V(75
=arg min — Z [Y; — Q7(75 | Xi,foﬁﬁada’}’)]
v(7;) i=1
A (13)
X [Nz {QT(T] | Xiv ﬁm Bv dv 7)}
j—1
- I[Y; > QT(Tk | XZ»ﬁwB? &7/3/)] {H(Tk-l-l) _H(Tk)}] .
k=0

The final estimates of3(7;), a(r;)} are obtained by substituting the optimglr;) into
(12), i.e.,B(r;) = B(¥,7;) anda(r;) = a(4,7;). This two-stage estimation procedure
has been previously adopted by Buchinsky (1995). The abavievzation problems can
be easily solved in the Buantreg package (Koenker, 2012) and R functiggtim.

4.3. Selection of the Cut-off Level m
The number of mFPC scores plays an important role in the segne. There are many
criteria in the literature to choose the tuning parametan@land Cheng, 2014; Kong
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etal., 2018). Inspired by Jiang et al. (2020), this papegssts the following generalized
approximate cross-validation (GACV) objective function:

GACV (15, m, 3,a,7)
- Z [y () — {Br) TXs + alr) 5}
x <_N ok (B X+ aln)Thi | 14)
] ZI viz mit (B X+ a(n) 5]

X {H (ris1) = H (1)} )/ {n = Cu (m + )}

whereC,, = O, [{log(n)}'/2]. The cut-off leveln is selected by minimizing the averaged
GACV

L
AGACV =) " GACV (Tj,m,B, dﬁ) /L,
j=1

whereL is the number of quantile grid points ify, mentioned in Section 3.

One practical concern in the estimation is the choicé of the grid size off;. From
the proof of weak convergence in Section 5, it is known thairaer ofo(n~'/2) for || ||
is enough to ensure convergence. In this paper, we utilizeqaally spaced grid with a
grid size of 0.05 in the simulation study, which yields datisory results for parameter
estimation. Alternatively, as suggested by Peng and Hu2898), a finer grid size of
I72]] = 0.01 can be employed for more detailed analysis practicallyeiaiith slightly
higher computational costs. The detailed estimation mhoefor the proposed method is
summarized in Algorithm 1.

5. Asymptotics

In this section, we establish the estimation consistencjhaorem 1, the weak conver-
gence in Theorem 2, and the convergence of the functionai&str in Corollary 1.

First, definef’(t|X,Z) = P(Y < t|X,Z), F(t|X,Z) = 1 — F(t|X, Z),f(t\X, Z) =
P(Y <t,0 = 1X,2), f(t|X,Z) = dF(t|X,Z)/dt, f(t|X,Z) = dF(t|X,Z)/dt, and
f(t|X,Z) = dF(t|X,Z)/dt. The detailed conditions and theoretical derivations aee p
sented in Sections 1-2 of the Supplementary materials.

Theorem 1. Assuming that conditions A1-A4 and B1-B5 hold liifn,, .~ || 72| = 0,

then we haveup, c(, -, [5(7) = 20(7)] = 0, 5brc(u ) [ B3 7) = Bo(r)|| =+, 0, and
SUDre[v,r] [1@(F, T) — ao(7)|| =, 0, whered < v < 7.

After obtaining the above estimators, the estimationdg(s, 7) can be calculated as
a(s,m)=>,", -+, The convergency of this functional coefficient estimatshiewn
in the following Corollary 1.

Corollary 1. Assuming that conditions A1-A4 and B1-B5 holdliifn, . || 72| = 0,
thensup.¢p, -, [l&(s, 7) — ao(s, 7)[| —p 0, whered < v < 7.

v,Tu
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Algorithm 1 Estimation procedure for the proposed method
Input: The response variablg, the censoring indicata¥;, the scalar and functional co-
variates{X;,Z;(s)},i = 1,...,n, the set of cut-off levels\, the set of quantile
valuesTy, the grid search interval.
Output: The coefficient estimates f@(7), a(7),v(7) and the optimain.
for eachm € M do
EstimateC(s, t), A\, ¥ (s) by Equation (9);
Computep; with its element;, = ((2; — fi, ), k= 1,...,m;
for eachr; € 77, do
for eachy € G do
Find the solution3(v), a(~) for the minimization problem (12);
CompUteR(/% /8(7)7 d(’}/), Tj);
end for
Find the minimizery (TJ) — argmin R(v, B(v), a(y), 7 i);
Find the minimizer 3 (15),a(7j)} = argmin L(¥,8,a S Ti);
end for
Compute the criterid GACV = Y% | GACV (Tj, m, 3, d,ﬁ) /L:
end for
Find the optimaln to minimize AGACYV criteria.

return {B3(r;), a(r;), 4(r;) Yy, m

Theorem 2. Assuming that conditions A1-A4 and B1-B5 holdliif,, o, n'/2 || 77 || =

. T
0, then we havml/z [/3/(7_) - /70(7—)7 {B(’?v 7-) - 180 (T)}Tv {(A],(’S/, T) — Qo (T)}T:| con-
verges weakly to a Gaussian processiHar [v, 77|, whered < v < 7y7.

The proof of Theorem 2 reveals that the covariance matrik@fititing process of the
estimators consists of unknown conditional density fuorjf (¢|X, Z) andf (¢|X, Z). Es-
timating these functions typically requires numerical mpgmation methods, which may
lack stability with small or moderate sample sizes (Pengtdndng, 2008). To address
this issue, we propose to employ a simple resampling methiodafriance estimation by
generalizing the minimand perturbing technique of Jin e{2001) and Qian and Peng
(2010) to ensure computational stability.

The resampling procedure is described as follows. For ssdatwith sample size,
we fix the data values and generatéi.d variates(y, . . ., {, from a known nonnegative
distribution with mean 1 and variance 1, such as the stanelgsdnential distribution.
Then,~*(7;), B*(7;) anda*(r;) are sequentially obtained for eaghe {1,...,L} by
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solving the following objective functions perturbed b4, . .., ¢, }:

{B" (v,75),a" (v,75)} 26?11%; m(in)L*(% B.a,T;)

= arg m(in) = G [y (V3) = ooy (Qr (7 | Xy i3 By @,7))]
Tj ,a Tj i=1

X [Nz {QT(TJ |leﬁza/87a77)}

j—1
- ZI[Y; > QT(Tk | Xuﬁza/@*va*vly*)] {H(Tk-l-l) - H(Tk)}] )
k=0

v* (1) =argminR* (v, 8 (), a" (), 75)

¥(7;)

:arg(m)in — ZCZ [}/; - QT(Tj ‘ Xi7 pi;ﬁ*7 a’*7’7)]
AN} i=1

X [IN; {QT(Tj | Xi,p;:8%,a",7)}

j—1
- Z I[Y; > QT(Tk | Xi, ﬁm B*7 CL*, 7*)] {H(Tk-l-l) - H(Tk)}] )
k=0
whereQr (0 | X, p; 8%,a*,7*) = 0, and3*(1;) = B (v*,75), a*(1;5) = a*(v*, 7).
The resampling estimators are also defined as right-canimatep functions that jump at
75,5 = 1,...,L (Chu et al., 2021). With the data fixed at the observed vathesabove
procedure is repeated fd® times to obtain a large number of realizations, denoted by
{7 (1), BY(7), ar (1)}

In Section 3.3 of the Supplementary material, we show treattmditional distribution
of n'/2[y*(r) — 4(7)] given the observed data is asymptotically the same as thendiic
tional distribution ofn!/2[5(7) — 40(7)] as a process af € [v, 7], where0 < v < 7.
Thus, the variance of(7) can be estimated by the sample variancggf(7)}2 ;. A
confidence interval fory(7) can be constructed using a normal approximation. Similar
properties and inferences can also be obtained8tr), a(r)}. Justification for the pro-
posed resampling approach is provided in Section 3.3 of tipplBmentary material.

6. Simulation Study

In this section, we evaluate the finite-sample performaricthe proposed multivariate
functional censored quantile regression model (MFCQR)ubh Monte Carlo simula-
tions. In the first setting, we consider the Box-Cox transiation model with bivariate
correlated functional data on a one-dimensional intemdl@mpare the proposed method
with several existing estimation methods. In the secortthgetogarithmic transformation
is used to examine the adaptability of the proposed modetrevburves and images are
simultaneously incorporated as functional covariatessuRe are obtained based on 500
simulated datasets of sample size- 200 andn = 500.
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6.1. Functional Predictors on One-dimensional Intervals
In this setting, the event times are generated from theviatlg Box-Cox transformed
linear quantile regression model with heteroscedastarrr

Qr(r | X.2) = 12, (Bo(r)TX + ((@o(s.7), Z(s)))

2 1
= h;ol('r) (bO + b1 X1 +bXo + ZA OLj(S)Zj(S)dS + (1 + Xl)Qe(T|X, Z) ,
j=1

(15)
whereX; ~ N(0,0.5%), Xo ~ Unif[0,1] ande ~ N(0,0.25%). In this heteroscedastic
model, the quantile regressionefficientof X = (1, X1, Xo) " areB(r) = (Bo(7), B1(7),
Ba()T = (bo + Qe(7),b1 + Qc(7),b2) " With by = by = by = 1, where the first two
entries of3(7) are bothr-dependent.

The multivariate functional predictor B(s) = {Z1(s), Zs(s)} " with sample observa-
tionszy (s) = K e g (s) andzin(s) = K ¢ sy (s), wheree!!) ~ N (0, v, 1),
52(2) ~ N (0,v91), vy = k72, corr (55,?,552?) =0 fork #k K =20,¢; =1and
or(s) = V2cos{(k — 1)ms},s € S = [0,1] for k£ > 1. Following Wong et al. (2019),
we further setcorr (52(,1),52(,?) = p for ¥ = k and 0 otherwise, wherg € (0,1) is
a cross-correlation parameter controlling the strengtegfendence between functional
predictors. The coefficient functions atig(s) = S i, ajr¢k(s) With aj; = 1,050 =
0.8,aj3 = 0.6,aj4 = 0.4 anda,, = 8(k —2) 3 fork =5,..., K.

Similar to Chu et al. (2021), the transformation paramegér) is set to be 1 for <
0.4 and 0.5 forr > 0.4 with h;ol(T) (z) = (yo(r)z 4+ 1)) The censoring time is
generated from a uniform distribution Uit V') with V' = exp(co + X1 + X2), where
o is taken to be 2.2 and 1.5 to yield censoring rates of 20% af, 48spectively. The
discrete observations of each functional predictor arainbt on 100 equally spaced grid
points onS = [0, 1]: wyj; = zij (sij1) + €ijis €iji ~ N(0,0.25%) fori = 1,...,n;j = 1,2
and/ = 1,...,100. To obtain the standard errors of the estimators, we seegampling
size B = 300.

The proposed method (MFCQR) is also compared with somenaliees, namely the
transformed quantile model with separate FPCA (SFPCA, Ketnal., 2018), the func-
tional censored model with log transformation and B-s@iapproximation (Log-spline,
Jiang et al., 2020), the kernel-based local Kaplan-Meigmasor (KM) proposed by Leng
and Tong (2014) and the parametric modeling of quantileaegion coefficients combined
with MFPCA (FB, Frumento and Bottai, 2017). For comparigbe,empirical bias (Bias)
and the sample standard deviation (SD) are reported forraatihod. We also present the
average of the estimated standard errors (SE) based orsdrmapéng method and the cov-
erage probabilities (CP) of the 95% confidence intervalethas a normal approximation
for the proposed method.

Table 2 presents the estimation results with= 200, considering 40% censoring rate
at different quantile levels. For right-censored data,ntjleafunctions in the upper tail
may not be identifiable due to the censoring of event timeriédion (Wu et al., 2015; Fei
etal., 2023). In this case, we set the quantile interval #®be.7], which is wide enough to
cover different quantile levels and, in the meantime, essthie quantile parameters to be
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estimable in the presence of censoring. The determinatittre@pper bound for estimable
quantiles is discussed in Section 8. Compared with theratives, the proposed MFCQR
provides smaller biases and standard errors, which areffected by the high correlation
of the functional predictors. Moreover, the resamplingdzhstandard errors agree with
the empirical standard deviations quite well and the cayenarobabilities are close to
the 95% nominal level. By contrast, both SFPCA and Log-gptimethods incorporate
new variables with strong correlations, resulting in poerfprmace undep = 0.6. In
particular, Log-spline employs the log-transformatioredily, regardless of the dynamic
parametety, and thus behaves badly even with- 0.3 in this setting. With slightly larger
standard deviations, KM method performs well only in loweanqtile cases, probably due
to the unstability of the locally weighted kernel-basedneator for higher quantiles (Chu
etal., 2021). By imposing smoothness conditions on theficoait functions, FB method
performs well in the situation where the basis functionsa@mesistent with those in the
true model (Frumento and Bottai, 2017). However, in our $tion settings, there is a
dynamic transformation on the response variable, wherér#msformation parameter
varies dynamically with the quantile values, making it diffit to select a proper set of
basis functions for the parametric modeling of quantile@sgion coefficients.

The results for the case of 20% censoring rates are providédble 1 of the Supple-
mentary material to save space. As shown in Table 2, the npeatirmance experiences
a decline to a certain extent as the censoring rate increasegected. Estimation results
for n = 500 are included in Tables 2-3 of the Supplementary material.

To evaluate the performance of the functional estimatds), the integrated squared
error (ISE) ofa;(s), defined adSE (o) = fol {aj(s)— a;(s)}” ds, is used for compari-
son. Table 3 presents the averaged ISE8;¢§) for n = 200. The results are similar for
ao(s) and thus are omitted. Clearly, the proposed method denatestrobustness across
different settings and yields more accurate estimates aogdgdo alternative methods.

6.2. Functional Covariates Including Curves and Images

In this setting, eventtimes are generated from the logsframed quantile regression mod-
el, that is, the true transformation parameigfr) = 0 for all = € (0, 1) in the proposed
Box-Cox transformation method:

Qr(r | X,2) = exp (Bo(7) X + ((aw(s. 7). Z(s)))

2
=exp | bo + b1 X1 + b2 Xo + Z/S a;(s;)Z;j(s;j)ds;
=175

+ <1 +/S Zl(sl)dsl> Q.(1|X, Z)> .
1 (16)

The quantile regression coefficient¥f= (1, X1, X2) " is By(7) = (b + Qc(7),b1,b2) "
with by = by = by = 1, X7 ~ N(0,0.5%), X5 ~ Unif[0, 1] ande ~ N (0, 0.252). Notably,
the bivariate functional datd(s) = (21(815),22(82))T contains functions and images
simultaneously. To be specifig;(s) = mezl pPim¥,,,(8), where the principal compo-
nent,,(s) = (Y1m(s1),%2m(s2)) " has the same structure ags). As in Happ and
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Table 2. The estimation results for the scalar parameters with n = 200, in the setting of 40%

censoring rate.

0=20.3 0=20.6
T Method y Bo B B y Bo B B2

MFCQR Bias -0.076 0.037 -0.035 0.027 0.072 -0.039 -0.032029D.
SD 0.345 0.223 0.215 0.212 0.341 0.220 0.213 0.218
SE 0.367 0.241 0.207 0.203 0.324 0.229 0.201 0.224
CP 0.962 0.957 0.944 0.945 0.947 0.960 0.942 0.964

SFPCA  Bias 0.093 0.044 -0.034 -0.035 0.374 -0.265 0.323 060.3
SD 0.357 0.228 0.213 0.217 0.379 0.286 0.299 0.267
Log-spline  Bias - -0.487 0.514 0.499 - -0.519 -0.588 0.549
SD - 0.165 0.178 0.192 - 0.248 0.231 0.285

KM Bias -0.074 -0.041 0.036 0.038 0.078 -0.037 -0.044 0.039
SD 0.344 0.229 0.225 0.230 0.375 0.241 0.234 0.245

FB Bias - 0.361 -0.359 -0.383 - 0.365 0.353 -0.377
SD - 0.227 0.221 0.218 - 0.224 0.216 0.229

MFCQR Bias 0.063 0.035 -0.032 -0.024 0.068 -0.034 -0.030 2D.0
SD 0.313 0.206 0.201 0.199 0.315 0.213 0.205 0.216
SE 0.335 0.218 0.216 0.187 0.303 0.234 0.212 0.205
CP 0961 0.954 0.958 0.943 0.944 0.957 0.955 0.942

SFPCA  Bias 0.091 -0.038 -0.031 0.029 -0.404 -0.253 0.305 09.3
SD 0.346 0.224 0.193 0.205 0.371 0.278 0.284 0.265
Log-spline Bias - 0.458 0.476 -0.493 - 0.504 -0.517 -0.536
SD - 0.162 0.173 0.190 - 0.243 0.227 0.267
KM Bias -0.072 -0.035 0.031 0.033 0.073 -0.043 0.036 0.035
SD 0.324 0.226 0.218 0.221 0.372 0.232 0.227 0.235

FB Bias - -0.343 0.337 -0.355 - 0.349 -0.345 0.351
SD - 0.211 0.204 0.206 - 0.215 0.209 0.222

MFCQR Bias 0.060 -0.033 0.026 -0.021 -0.059 0.029 -0.027 24.0
SD 0.304 0.198 0.191 0.185 0.312 0.209 0.193 0.207
SE 0.319 0.193 0.205 0.173 0.301 0.217 0.182 0.194
CP 0.957 0.948 0.955 0.944 0.946 0.954 0.945 0.943

SFPCA  Bias -0.088 -0.035 0.032 -0.025 0.407 -0.259 0.327 19.3
SD 0.314 0.219 0.192 0.198 0.376 0.296 0.281 0.268
Log-spline Bias - 0.451 -0.467 0.484 - 0.478 0.514 -0.515
SD - 0.160 0.172 0.185 - 0.245 0.223 0.261
KM Bias -0.069 0.038 -0.029 0.027 -0.071 0.041 0.038 -0.036
SD 0.311 0.215 0.212 0.214 0.367 0.224 0.213 0.231

FB Bias - 0.322 -0.315 -0.326 - 0.331 0.329 0.338
SD - 0.205 0.197 0.193 - 0.218 0.202 0.214

MFCQR Bias 0.074 -0.038 0.031 -0.032 -0.078 0.034 0.035 7.03
SD 0.349 0.231 0.219 0.217 0.346 0.236 0.224 0.220
SE 0360 0.245 0.211 0.208 0.359 0.247 0.208 0.203
CP 0958 0.961 0.946 0.942 0.963 0.962 0.943 0.945

SFPCA  Bias -0.107 -0.042 0.047 -0.039 -0.418 -0.317 0.332.348
SD 0.364 0.248 0.235 0.246 0.388 0.301 0.296 0.277
Log-spline Bias - -0.474 0.528 0.533 - 0.495 0.558 -0.553
SD - 0.193 0.201 0.195 - 0.296 0.324 0.315
KM Bias 0.101 -0.051 -0.057 -0.043 0.106 -0.079 -0.083 0.079
SD 0.398 0.245 0.242 0.249 0.407 0.275 0.258 0.262

FB Bias - -0.351 0.343 0.358 - -0.354 0.347 -0.350
SD - 0.237 0.232 0.226 - 0.243 0.230 0.235
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Table 3. The integrated squared errors (ISE) of &4 (s) with » = 200 in the setting of 20% and 40%
censoring rates.

7 MFCQR SFPCA Log-spline KM FB MFCQR SFPCA Log-spline KM FB

o = 0.3, censoring rate=20% 0 = 0.6, censoring rate=20%
0.1 0.113 0.121 0.342 0.127 0.236 0.115 0.187 0.476 0.125450.2
0.3 0.105 0.118 0.329 0.124 0.221 0.109 0.181 0.468 0.121280.2
0.5 0.101 0.116 0.311 0.120 0.214 0.104 0.176 0.462 0.116170.2
0.7 0.110 0.119 0.332 0.132 0.227 0.112 0.183 0.469 0.128320.2
o = 0.3, censoring rate=40% 0 = 0.6, censoring rate=40%
0.1 0.122 0.135 0.351 0.133 0.254 0.124 0.194 0.485 0.13870.2
0.3 0.120 0.129 0.337 0.128 0.248 0.116 0.189 0.479 0.133%650.2
0.5 0.117 0.124 0.325 0.125 0.235 0.113 0.183 0.474 0.127440.2
0.7 0.1212 0.131 0.353 0.139 0.251 0.120 0.191 0.482 0.141570.2

Greven (2018), the first function element,, (s1) is generated by Legendre polynomials
onS; = [—1,1] and the second image elemet,, (s2) is formed by tensor products of
Fourier basis functions o = [0, 1] x [0, 1]. The scoreg;,, are independently generated
from N (0, v,,,) with exponentially decreasing eigenvalugs = exp(—(m + 1)/2). The
corresponding functional coefficient veciag(s, 7) = (a1 (s1) + Qc(7), az(s2)) T, where
Oéj(Sj) = Zile ajm¢jm with aj1 = 1,aj2 = 0.6,(1j3 = —0.4,aj4 = —0.1,aj5 = 0.05,
ajm = 2(=1)"Im=3 m > 6.

The censoring timé€' ~ Unif (0, ¢) with ¢ = exp(co+ X1+ X2), wherec is taken to be
3 and 2 to yield censoring rates of 20% and 40%, respectiVéky.functional observations
are discretized based on a grid290 equidistant points for the function elements and
100 x 100 equidistant points for the image elementis.

Table 4 shows the performance of the proposed method forstieatorsy and3 at
7 = 0.25,0.50,0.75 with n = 200, in the setting of 20% and 40% censoring rates. It is
seen that the estimation results are satisfactory acréfesatit quantile levels, indicating
the good adaptability of the proposed method to the logaiithransformation model.
The performance is further improved by larger sample size500, which is displayed in
Table 5 of the Supplementary material.

The estimation results for the functional coefficient veeig(s, ) are evaluated in
Figures 4 and 5 with. = 200 under the censoring rates of 20% and 40%. Figure 4 displays
the estimates and the empirical 95% confidence intervakh&first functional coefficient
elemento; (s1, 7). The true curves are well recovered and the confidence alsehave
stable performance under different settings. Figure 5 shbe estimates for the second
image coefficientvy(sq, 7), all of which have a nice approxiation to the true ones (the
left panels). Though the estimation errors increase witpelacensoring rate, the overall
performation is satisfactory. The results with= 500 is displayed in Figures 2-3 of the
Supplementary material.



20

Table 4. The estimation results for the scalar parameters with » = 200 in the setting
of 20% and 40% censoring rates.

censoring rate=20%

censoring rate=40%

-05 00 05 1.0 15

-05 00 05 1.0 15

-05 00 05 1.0 15

-05 00 05 1.0 15

-05 00 05 1.0 15

-05 00 05 1.0 15

T y Bo By Ba y Bo B B2

0.25 Bias -0.023 0.015 -0.018 -0.013 0.036 -0.024 0.029 270.0
SD 0.182 0.131 0.135 0.137 0.212 0.165 0.157 0.161
SE 0.171 0.146 0.127 0.149 0.201 0.178 0.160 0.167
CP 0.942 0.959 0945 0.956 0.944 0.958 0.949 0.953

0.50 Bias -0.019 -0.013 0.015 -0.012 -0.028 -0.020 0.024 23.0
SD 0.152 0.122 0.131 0.125 0.188 0.151 0.153 0.150
SE 0.144 0.137 0.140 0.132 0.195 0.163 0.145 0.146
CP 0.946 0.958 0.955 0.952 0.956 0.960 0.944 0.948

0.75 Bias -0.021 0.017 0.013 0.014 0.032 -0.028 0.022 -0.025
sD 0.176 0.139 0.135 0.130 0.207 0.173 0.167 0.162
SE 0.185 0.131 0.148 0.137 0.189 0.179 0.164 0.171
CP 0.962 0.945 0.960 0.956 0.943 0.954 0.948 0.955

1=0.25 7=0.50 1=0.75
| ] |

-1.0 -0.5

0.0

0.5

Fig. 4. Estimation results for the first coefficient function «;(s1,7) at quantiles 7 =
0.25,0.50,0.75 with n = 200 under censoring rates of 20% (top panels) and 40% (bot-
tom panels), respectively. The black solid lines are the true coefficient functions, the yellow
dashed lines represent the estimated functions and the brown dotted lines are the empirical
confidence intervals.
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Fig. 5. Estimation results for the second coefficient function as(s2,7) at quantiles 7 =
0.25,0.50,0.75 with n = 200 under censoring rates of 20% (top panels) and 40% (bottom
panels), respectively.The left panels are the true image coefficients and the others are
estimates under different quantiles.

7. Real Data Analysis

We applied the proposed Box-Cox transformed quantile ssjwa model to the ADNI da-
ta, using the IGACV criterion in Section 4.3 to select the emof mFPCs. The paper
finally selectsn = 4 at which the AGACV reaches its minimum value. The resampling
size is set as 500 to obtain the variance estimation. Tabtedepts the estimation results
for the transformation parametefr) and the regression coefficientg§) of 10 scalar
covariates: (Gender, Handedness, Widowed, Divorced, Neeagried, Length of educa-
tion, Retirement, Age, APOE4 carrier, ADAS-cog Score) with 95% bootstrap confidence
intervals at different quantiles. Since shorter conversiime represents faster disease pro-
gression, which is the main focus of researchers, we coresidbe estimation results at
the lower levels of quantiles = 0.15,0.30,0.45. It is seen that the transformation pa-
rameter estimates are significantly different from zerdjdating that it is necessary to
employ data-driven model structures at different quatgtels. The 95% confidence in-
tervals for 3g, Bs, B9, 10 do not contain O for all considered quantiles, showing that t
corresponding covariates, Length of education, Age, AR®Earrirer and ADAS-cog s-
core, are important predictors for AD. To be specific, high@ucation and older age at
baseline are associated with longer conversion time fronh td@D. Individuals carrying
the APOEe4 allele have a higher propensity to transition from MCI to A&Bmpared to
non-carriers suggesting the presencedéllele in APOE may increase the risk of devel-
oping AD and attaining a definitive AD diagnosis. These figdilso coincide with the
outcomes reported in Corder et al. (1993) and Da et al. (20h43ddition, patients with
larger ADAS-Cog scores are expected to experience a momdegiated transition to AD
diagnosis.
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Table 5. Estimates and 95% bootstrap confidence intervals (ClI) of the scalar parameters
at different quantile values for the ADNI data.

T

0.15

Y b1 B2 B3 Ba
estimate 0.345 0.264 0.119 -0.146 0.290
95% CI (0.237,0.426) (0.087,0.415) (-0.283,0.511) (-8,81149) (-0.268,0.883)
Bs Bs B Bs Bo
estimate 0.201 0.108 -0.355 0.042 -0.371
95% Cl (-0.052,0.414) (0.045,0.162) (-0.713,0.039) (0,01074) (-0.668,-0.105)
B1o

estimate -0.117
95% CI (-0.209,-0.056)

0.30

v B1 B2 B3 B
estimate 0.482 0.176 0.147 -0.139 0.225
95% Cl (0.426,0.541) (-0.128,0.462) (-0.142,0.471) 98,8.032) (-0.134,0.607)
Bs Bs B7 Bs Bo
estimate 0.286 0.279 -0.313 0.074 -0.396
95% Cl (-0.098,0.665) (0.142,0.438) (-0.641,0.022) (8,02113) (-0.718,-0.119)
B1o

estimate -0.149
95% CI (-0.283,-0.033)

0.45

Y B1 B2 B3 B
estimate 0.621 0.153 0.130 -0.181 0.175
95% Cl (0.515,0.709) (-0.087,0.431) (-0.198,0.455) (12,8.047) (-0.203,0.572)
Bs Bs B Bs Bo
estimate 0.107 0.296 -0.294 0.035 -0.423
95% Cl (-0.351,0.552) (0.118,0.512) (-0.655,0.087) (2,01069) (-0.812,-0.045)
B1o

estimate -0.263
95% ClI (-0.479,-0.048)
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Fig. 6. The estimated functional effects &;(s,7),j = 1,2 and the corresponding 95%
bootstrap confidence intervals at different quantile values. Top panels: effects of left hip-
pocampal radial distances. Bottom panels: effects of right hippocampal radial distances.

Figure 6 displays the estimated functional effectss, 7), j = 1,2 and the correspond-
ing 95% bootstrap confidence intervals at different quamdlues. The results imply that
both left and right HRDs are significant predictors acrogsghantiles and have positive
effects on the conversion time to AD. Therefore, the atroghlyippocampal morphology
will accelerate the MCI progress to AD, i.e., we may expecighér risk of AD conver-
sion for MCI patients with thinner hippocampal morpholo@iis result is consistent with
the finding that hippocampal radial distance is a good measiudeteriorating cognitive
functions and serves as an important functional predidt@® conversion time for M-
Cl patients (Li and Luo, 2019). Comparing the scaleg.pfandd,, we observe that the
effects of the left and right HRDs are not identical. For tbft hippocampus, regions s-
panning 0-0.8 have a strong impact at the lower quantie 0.15 and the effects reduce
slightly with contributing regions mainly lying is € [0,0.6] at the quantiler = 0.45.
For the right hippocampus, the locations between 0 and @y thle dominant role with
varying covariate effects at different quantile levelsu$hit is necessary to pay attention
to both left and right hippocampal radial atrophy and keemind the regional effects
differences at the same time. Based on the hippocampus ipragessing procedure, the
location in [0.1,0.4] is mainly concentrated at the CA1 anHisulum (Sub) subfields of
the hippocampus, which indicates that the thinner thesesare the hippocampus are, the
shorter the progression time is to AD. The map of the hippgemsubfields is illustrated
in Figure 1 of the Supplementary material.

Since the paper employs a Box-Cox transformation in the mdue marginal effects
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Fig. 7. Estimates and pointwise 95% confidence intervals for the marginal covariate effects
for an individual in the ADNI data, with the continuous or categorical covariates fixed at the
mean values or reference levels.

of the covariates are indeed functions of betr) and3(7). To examine the covariate
effects on the original scale of the survival time, we maysider their marginal effects.
Following Mu and He (2007) and Yin et al. (2008), if thith covariateX; is continuous,
then its marginal effect is given by3-Qr (7 | X,Z) = 8;(r) - Qr(r | X,Z)' ),
wheref;(7) is the jth component of3(7). For a discrete covariate taking values 0 and 1,
its marginal effect is defined a3 (7 | X, Z)[x,_; — Qr(7 | X,Z)|x -

The marginal effect ofX; at a specified set of covariat¢s, zo} is estimated by
plugging in(%, 3, &). For illustration, the continuous covariates are takenetéhie mean
values and the categorical covariates are fixed at referlenets. Figure 7 presents the
estimates and the pointwise 95% bootstrap confidence bandsd marginal covariate
effects. It is seen that the marginal effects vary with thardile values and the confidence
intervals are relatively stable across different quastile addition to the four significant
covariates identified from Table 5, we find that Gender may glay a role in the AD
progression. The positive effects of Gender indicate taatales have relatively longer
conversion time than males, though the impacts decrealdaxgfer quantile values. Other
covariates, such as Handedness and Marital status, seemuabt important with the
confidence intervals containing 0 at most quantiles. Thiemastd marginal coefficient
of the significant allele, APOE4, displays an increase from from1.83 (7 = 0.1) to
—0.95 (r = 0.5), indicating that the presence of allelé may have a greater detrimental
effect at lower quantiles. This finding, which remains uedtdble using conventional
mean-based models, highlights the importance of our pexbosethod. Compared with
the Cox proportional hazard model, the proposed quantildainim this paper presents
a global view of the association between the AD conversioe tand the covariates of
interest, which could provide more valuable referencelierdisease research.

The proposed method is also compared with three competimigimbased on the pre-
dictive performance. Model 1 employs the Log-spline methmhtioned in Section 5.2
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to analyze the same ADNI data with both left and right HRDs.d€ld only incorporates
the left HRDs and uses the univariant FPCA to handle thistfanal predictor. Model
3 replaces the HRD curve data with the hippocampal size, wisi@a scalar covariate.
To predict the conversion time, the full data set is randosglyt into a training set with
200 subjects and a test set with 173 subjects. The inteflgueahge is used as the pre-
diction interval. This random split is repeated 100 timeslitain the average of coverage
frequencies and interval widths for all the considered nmd&he coverage frequency
is calculated as the proportion of the interquartile preaiicintervals that cover the ob-
served conversion time. It is found that the proposed modekaes the best predictive
performance with a value of 0.521 for the coverage frequembyg deviation of Model 1
is significantly larger, leading to a frequency of 0.437. sTimdicates that the traditional
log-transformation is inadequate to fit the data. Model Zgrers much better with a fre-
quency of 0.462, and Model 3 achieves 0.441, both of whictirdegior to the proposed
model. This shows clearly that combining the left and rigitD$ could provide substan-
tially more information than only the left ones or the scalavariates and the technique of
multivariate FPCA successfully helps to extract imporiafdgrmation from the correlated
functional predictors.

8. Discussion

Alzheimer’s disease is an irreversible brain disorder amdfleustanding of its progression
is quite beneficial for early intervention. In this study, m@posed a censored quantile
transformation model with a multivariate functional predr and applied it to ADNI data
to investigate the risk factors of the MCI progression arefmt the conversion time to
onset of AD. The Box-Cox transformation is rather flexiblelémcludes a broad class of
model structures as special cases, thus relaxing the diobaf assumption in the previous
studies. To get rid of overlapping information in the caated functional predictors, we
carried out dimension reduction by means of multivariatecfional principal component
analysis. The resulting independent mFPC scores efféctiveid the multicollinearity in
the regression. Uniform consistency and weak convergefribe guantile process are de-
veloped for the proposed martingale-based estimatorsul&iimn studies suggest that the
proposed method outperforms the existing approachesciefipehe broad applicability
in the cases where curves and images are simultaneousdgisallas functional covariates.

Identifiability is an inherent and subtle issue in the ceadajuantile regression. Due
to the loss of event information in the upper tail, regresgjoantiles withr close to 1
may not be identifiable. In this paper, our focus is restddter € (0, 77| with 7y < 1.
Theoretically, selection of;; involves satisfying certain intrinsic identifiability cditions
as outlined in the Supplementary material, while pradiical; is initially chosen based on
the range of quantiles of interest and then adaptively &elju@Vu et al., 2015). For exam-
ple, if the optimization problem in the estimation becomdsasible for some regression
quantile atr; € (0, 7y], it suggests that;y may exceed the upper bound of identifiability
conditions and should be reset to a smaller value. Otheywisadjustment of;; is need-
ed or we can increment; by a small fraction to gradually push it to the largest eshilaa
quantile level.

The application to the ADNI study reveals that Length of extion, Age, APOE4
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carrirer and ADAS-cog score are important predictors for. ADese results are basically
consistent with those in the previous mean-based or Cox Is\dulé the proposed quantile
method apparently provides a more global view for the patanestimation at different
quantile levels, especially for lower quantiles, which ef@rimary interest to researcher-
S. Moreover, the data-driven transformation parametey is dynamically estimated to
reveal the non-linear and varying relationships betweerrigk factors and disease pro-
gression. It is also shown that including multiple funcabpredictors (both left and right
HRD curves) is necessary to improve the prediction accui@aypne MCI-AD conversion,
although some previous studies only demonstrated thaethbippocampal volume was
associated with delayed verbal memory. Based on the paatptiocessing of the hip-
pocampus scans, the significant CA1 and subicular subfieédgantified, which may
facilitate case studies for evaluating clinical efficacgiowing AD progression. Besides,
the proposed model can readily incorporate multiple bragian profiles as functional
predictors to assess their association with Alzheimessae. It is worth mentioning that
patients in the ADNI study undergo periodic examinationsiclw may result in interval-
censored conversion time. However, since the study wasuobed for a long period, the
uncertainty caused by interval-censoring has little @ftecthe analysis. Nevertheless, this
aspect represents an intriguing area for exploration, pittential applicability to other
research domains, warranting further investigation inreistudies.

According to the estimation procedure in Frumento and B2@17), the coefficient
functions can be obtained on the quantile process by imgasitoothness conditions on
the coefficients, which may facilitate interpretation of tlesults. In practice, the selection
of basis functions is critical to balance the parsimony aegilfility. In the absence of
prior knowledge, one may employ polynomials, known quaritiinctions, trigonometric
functions, splines, and combinations of the above. Howeéwgrortant criteria for model
selection are usually needed to compare numerous altegmatdels. In some complex
cases, it is not easy to select a proper set of basis fundtotise parametric modeling of
quantile regression coefficients. The performance of tharpaterized estimators merits
further investigations, which represents an importanjestitfor quantile regression.
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