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A B S T R A C T

Virtual try-on models have been developed using deep learning techniques to transfer clothing product images
onto a candidate. While previous research has primarily focused on enhancing the realism of the garment
transfer, such as improving texture quality and preserving details, there is untapped potential to further
improve the shopping experience for consumers. The present study outlines the development of an innovative
multi-pose virtual try-on model, namely StyleVTON, to potentially enhance consumers’ shopping experiences.
Our method synthesises a try-on image while also allowing for changes in pose. To achieve this, StyleVTON
first predicts the segmentation of the target pose based on the target garment. Next, the segmentation layout
guides the warping process of the target garment. Finally, the pose of the candidate is transferred to the
desired posture. Our experiments demonstrate that StyleVTON can generate satisfactory images of candidates
wearing the desired clothes in a desired pose, potentially offering a promising solution for enhancing the virtual
try-on experience. Our findings reveal that StyleVTON outperforms other comparable methods, particularly in
preserving the facial identity of the candidate and geometrically transforming the garments.
1. Introduction

The 2D-based virtual try-on is a deep learning model that leverages
two inputs, an image of a product item and a person, to synthesise a re-
alistic representation of the individual adorned in the desired clothing.
Traditionally, the virtual try-on technology has been limited to preserv-
ing the pose of the individual and focused on enhancing the quality
of the generated images by retaining information from the source
image [1,2] or realistically rendering the texture of the garment [3,4].
However, there has been a growing interest among researchers to
explore the expansion of virtual try-on functionalities and other inno-
vative techniques that enhance consumer shopping experiences [5–7].

The works of AlBahar et al. [5], Sarkar et al. [8], and Zhao
et al. [6] have explored unconventional methods to achieve virtual try-
on. Specifically, AlBahar et al. and Sarkar et al. showcased techniques
for transferring garments between individuals. Zhao et al. developed
a method for converting 2D try-on images into 3D models, enabling
the consumer to view the garment from various angles. These studies
represent valuable contributions to the field of virtual try-on and
offer novel insights into enhancing the consumer experience in online
shopping.

In this study, we leverage a trio of images consisting of the candi-
date, clothing, and pose to synthesise a virtual try-on of the individual
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adorned in the desired upper garment while conforming to the desired
posture. Although the current model is built for upper garment gener-
ation, it would be readily to extend to full-body application (e.g. pants
and hats) if such a dataset is available. Our approach is designed to of-
fer consumers a more comprehensive understanding of the product and
influence their purchasing decisions positively. We anticipate that our
novel technique will stimulate consumer interest, resulting in increased
sales and greater customer satisfaction for businesses.

Our method employs a framework comprising three distinct mod-
ules. Firstly, the segmentation module utilises a U-Net architecture to
predict a segment layout of the target pose based on the target garment.
The resulting segment comprises the distinctive label of the torso and
arm. Secondly, the warping module utilises a spatial transformation
network (STN) to warp the garment, aligning it with the predicted
segment layout. A U-Net is then used to further refine the warped
garment. Thirdly, the pose transfer module aims to employ StyleGAN
blocks to effect a change in the candidate’s posture to the desired pose.
Ultimately, the new posture of the candidate is merged with the warped
garment, resulting in a realistic multi-pose virtual try-on image better
than previous studies.

The contributions presented in this paper are the following:
vailable online 17 May 2024
925-2312/Crown Copyright © 2024 Published by Elsevier B.V. This is an open access

https://doi.org/10.1016/j.neucom.2024.127887
Received 2 February 2024; Received in revised form 6 May 2024; Accepted 13 Ma
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

y 2024

https://www.elsevier.com/locate/neucom
https://www.elsevier.com/locate/neucom
mailto:tasin.islam2@brunel.ac.uk
mailto:alina.miron@brunel.ac.uk
mailto:xiaohui.liu@brunel.ac.uk
mailto:yongmin.li@brunel.ac.uk
https://doi.org/10.1016/j.neucom.2024.127887
https://doi.org/10.1016/j.neucom.2024.127887
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2024.127887&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Neurocomputing 594 (2024) 127887T. Islam et al.

G
v

2

2

r
w
e
f
n
o
r
w

[
n
o
c
i
b

G
t
a
i
r
f
a
u
n

t
T
d

2

t
G
h
a

s
A
(

• A novel approach employing a tripartite process of segmentation,
warping and pose transfer that facilitates both (1) the replace-
ment of the candidate’s garment and (2) simultaneously changing
their posture.

• Utilising input from both the target garment and target pose in
the segmentation module allows it to produce accurate segments
that conform to the candidate’s body, regardless of the target
clothing’s style or type.

• By using dual discriminators in the training of the warping mod-
ule, the network is able to preserve intricate clothing details with
accuracy, resulting in the generation of satisfactory images of the
warped garments.

• The creation of a novel source representation enables the pose
transfer module to effectively transfer the candidate’s posture,
irrespective of the target garment.

We share our source code and provide additional results on our
itHub repository located at https://github.com/1702609/multi_pose_
ton.

. Background

.1. Generative models

The advancement of Generative Adversarial Networks (GAN) has
evolutionised the field of image synthesis and generation. Prominent
orks such as those by Karras et al. [9,10] have demonstrated the
xceptional ability of GANs to produce photo-realistic images. The
undamental principle behind GANs is the adversarial training of two
eural networks, as proposed by Goodfellow et al. [11], where one
f the neural networks (i.e. generator) synthesises sample that closely
esembles the training dataset and the other (i.e. discriminator) predicts
hether the sample is genuine.

Moreover, the Conditional Generative Adversarial Network (cGAN)
12] has emerged as a valuable extension of GANs by allowing the
eural network to leverage input images to influence the generated
utcome. This capability of cGANs has found significant practical appli-
ations, such as in virtual try-on systems, where conditions such as an
mage of the person and clothes are considered. As such, cGANs have
ecome a valuable tool in tackling this problem.

Recent research has shown that diffusion models have outperformed
ANs in the realm of image synthesis [13]. Among these models,

he denoising diffusion probabilistic model (DDPM) [14] stands out
s a popular choice. DDPM employs a two-step process, with the
nitial chain introducing noise into the data while the subsequent chain
everses this process, converting noise back into meaningful data. The
orward chain is typically manually designed to gradually transform
ny data distribution into Gaussian noise, while the reverse chain
tilises deep neural networks to progressively restore the Gaussian
oise into a synthesised image.

Similar to GANs, diffusion models offer the capability to manipulate
he output images using textual descriptions [15] or input images [16].
his versatility opens up a wide range of potential applications for
iffusion models in the fashion industry.

.2. Virtual try-on

In the past, researchers have attempted to achieve realistic virtual
ry-on systems using 3D methods, as evidenced by studies such as
uan et al. [17] and Sekine et al. [18]. However, these approaches
ave proven to be computationally inefficient and challenging to obtain
ccurate 3D measurements, limiting their practicality.

In recent years, there has been an increased interest among re-
earchers in the utilisation of 2D methodologies for virtual try-on.
mong these methods, the Conditional Adversarial Generative Network
2

CAGAN), as outlined by Jetchev et al. [19], was the pioneer in this
field. This approach involves the substitution of an individual’s initial
clothing with a desired garment to produce a virtual try-on image.
Nevertheless, the CAGAN model necessitates the input of images of
both the target clothing and the original garment during the inference
stage. This requirement renders the model impractical for application
in real-world scenarios.

VITON [20] leverages Thin-Plate Spline (TPS) to geometrically
transform the garment and integrate it with the coarse body shape
of the candidate to generate the virtual try-on image. Meanwhile,
CP-VTON [21] improves TPS performance by incorporating a neural
network to forecast TPS parameters instead of solely relying on images.
Despite these strides, virtual try-on applications are frequently encum-
bered by obstructions or occlusions that may affect specific body parts,
such as the arms.

The development of VITON-GAN [22] drew upon a similar frame-
work to CP-VTON, with the addition of a discriminator to address
the issue of body-part occlusions. More recent models have adopted
the practice of generating body labels that harmonise with the tar-
get clothing, resulting in superior performance in occlusion scenarios.
For instance, SwapNet [23] and VTNFP [1], have demonstrated that
segment generation facilitates the alignment of target clothing and
enables better preservation of the individual’s body shape, pose, and
features. By generating labels, virtual try-on models can maintain the
intricate details of complex body parts such as the hand, ultimately
enhancing the quality of the try-on image. This has been demonstrated
by ACGPN [2] and VITON-HD [3].

Recent advancements in virtual try-on utilise specialised normali-
sation layers in neural network architectures to enhance synthesised
try-on image quality. For example, VITON-HD [3] addresses misalign-
ment issues by introducing the Alignment-Aware Segment (ALIAS) nor-
malisation, which generates realistic clothing textures for misaligned
regions. Similarly, the Context-Aware Normalisation (CAN) in the C-
VTON [4] model efficiently captures crucial contextual information
from conditional images.

Several methods have been proposed as an alternative to parser-
based techniques, which can be noisy or inaccurate [24]. PF-AFN [25]
and PF-VTON [26] utilise knowledge distillation to train their student
networks to generate virtual try-on images without relying on a parser.
This approach enables them to apply clothing on the person more
precisely than models that use a parser.

Some of the latest virtual try-on technologies use appearance flow-
based methods to warp garments. For instance, PFAFN [25] and FS-
VTON [27]. These methods are efficient in deforming the garment to
fit the wearer’s image. Appearance flows consist of a collection of 2D
coordinate vectors that indicate the pixels in the clothing image that
should be deformed to fill the corresponding regions in the person’s
image.

TryOnDiffusion is a diffusion model that performs garment transfer
from one person to another [28]. They have created a single model
called Parallel-UNet by combining two U-Nets. This model can both
preserve the clothing details and adjust the clothing to fit a different
body shape or pose. They use cross-attention [29] to perform warp-
ing on the clothing, and they blend the clothing and person image
simultaneously.

Our proposed method specifically employs segmentation and warp-
ing modules that are influenced by virtual try-on techniques. These
modules enable the garment to be accurately warped and fitted to the
desired posture, providing customers with more information and feel
about the clothing product.

2.3. Pose transfer

Pose transfer is the process of generating an image that transfers a
person from a source image to a desired posture. Numerous methods
have been developed to accomplish this using conditional generative

adversarial networks (cGANs) [12] such as [30–36]. Some methods
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use DensePose [37] to perform UV mapping, which is the process of
projecting a 3D object [38] onto a 2D image to display its surface tex-
ture [5,8,39,40]. Recently, newer methods have incorporated StyleGAN
to improve performance [5,8,41].

The Pose Guided Person Generation Network (PG) model represents
a deep learning-based approach for transferring an individual’s pose to
a desired position [30]. This architecture consists of two distinct mod-
els: the U-Net [12] and the Deep Convolutional GAN (DCGAN) [42].
Specifically, the U-Net model generates a coarse result that captures
the overall structure of the human body in the desired pose. To further
enhance the visual quality of the output, the DCGAN model refines the
image by generating photorealistic appearance details and improving
sharpness via adversarial training.

The Progressive Pose Attention Transfer Network (PATN) [31] aims
to generate a human figure in a specific pose progressively using Pose-
Attentional Transfer Blocks (PATBs). Siarohin et al. [32] addressed
misalignments in pose transfer by introducing deformable skip con-
nections in U-Nets. Pumarola et al. [33] proposed an unsupervised
pose transfer method with two generators and a novel loss func-
tion. Balakrishnan et al. [34] used a segmentation module and U-Nets
for accurate alignment in pose transfer. Tang et al. introduced Xing-
GAN [43], which updates shape and appearance simultaneously. Lastly,
Pose-Guided Non-Local Attention (PoNA) [44] outperforms PATN in
capturing critical regions for a target pose.

Neverova et al. [39] impaints the neural network by extrapolating
features to the rest of the body where the visible body part could not
be mapped. Their loss function only penalises the observed part of
the UV map and allows the neural network to predict remaining gaps
freely. Sarkar et al. [40] and StylePoseGAN [8] convert the partial UV
texture map into a full UV feature map by using a U-Net or encoder,
respectively. AlBahar et al. [5] developed the coordinate completion
model that improves the inpainting. The model has a neural network
that is guided by a human body mirror-symmetry image, and their
results show that they can preserve appearance exceptionally.

Dense Pose Transfer [39] uses a two-step method to perform the
pose transfer. First, the predictive module is a conditional generative
model that uses DensePose to conduct an initial pose transfer. Second,
the warping module aims to map the texture between the candidate
image and the target DensePose. It uses a Spatial Transformer Network
(STN) [45] that warps accordingly to DensePose observation, producing
a UV map of 24 body parts. Then, the UV feature map and target
DensePose are fed to a subsequent U-Net that completes the pose
transfer.

More recently, some researchers have utilised StyleGANs as a means
of pose transfer [5,8,41]. AlBahar et al. [5] and Sarkar et al. [8] have
employed the method of transferring the DensePose coordinate map
onto the StyleGAN framework, thereby synthesising the appearance of
a given individual in a new pose with a high degree of fidelity to the
original image.

The field of pose transfer is now incorporating the use of diffusion
models. One such model is PIDM, which is capable of transferring the
posture of the source image into a desired posture [46]. Compared to
models that do not utilise diffusion models, PIDM has shown to be
significantly more effective. This suggests that diffusion models are the
way forward for image synthesis.

Our framework utilises UV mapping and StyleGAN to transform
non-transfer body parts of the subject into the desired posture. This
process involves the generation of a highly realistic synthetic image of
the candidate’s body part in the desired posture, which can be used to
visualise how a garment will look in various positions.

2.4. Multi-pose virtual try-on

Recent literature has put forth a methodology for multi-pose virtual
try-on, albeit utilising image-to-image techniques that fail to maintain
3

the candidate’s identity [47–50].
MG-VTON [47] is one of the first virtual try-on models that synthe-
sis images in new postures. Similarly, Wang et al. [49] use semantic
maps to enhance appearance generation, focusing on facial details.
Zheng et al. [50] employ a GAN-based bi-stage strategy for multi-
pose try-on, warping garments in the first stage and using AB-GAN for
feature fusion in the second. In contrast, He et al. [48] adopt a single-
stage approach, leveraging the target pose to manipulate both garment
and source image features simultaneously.

In contrast to earlier methodologies, He et al. [48] reject a multi-
stage paradigm and instead employ a single-stage approach that cap-
italises on the target pose as a conditioning factor for manipulating
the target garment and source image. Drawing inspiration from the
StyleGAN [9] framework, their model furnishes a predictive set of style
vectors that enables the concurrent warping of feature maps extracted
from both the target garment and source candidate images.

Previous works have been found to have a significant drawback due
to their reliance on image-to-image methods when transferring poses.
This technique typically results in a loss of facial identity preservation.
To mitigate this limitation, we propose an innovative methodology,
namely StyleVTON. In the subsequent section, we shall provide a
detailed account of our proposed approach.

3. Method

We present our proposed Style Virtual Try-On Network (StyleV-
TON), which can effectively generate a new candidate image for virtual
try-on by leveraging input images of the desired clothing, pose, and
candidate. Our model consists of three key modules – the segmentation
module, the warping module, and the pose transfer module – each
playing a critical role in the overall synthesis process. How the input
images are used and the logical flow process are shown in Fig. 1. The
technical specification of the model is shown in Fig. 2.

3.1. Segmentation module

The segmentation module aims to produce accurate torso and arm
segments that are aligned with the target garment and pose. This
module generates a preview of how a garment would appear on a
person without them actually wearing it. It is imperative to ensure
that the generated segment reflects the correct length of arms for the
garment, as an erroneous segment can negatively affect the subsequent
module and result in an incorrect try-on outcome (e.g. a long-sleeved
target garment synthesised into a short-sleeved try-on). The generated
segment serves the critical purpose of providing precise spatial position-
ing information of the clothing and constraining the warping process.
This approach is in line with the findings of SVTON [51] and VITON-
HD [3], which also emphasise the importance of accurate segmentation
in generating correct try-on images.

To achieve the segmentation task, we utilise the target clothing
image 𝐶 and the target DensePose 𝐷𝑡𝑟𝑔 as input data for the segmenta-
tion module. In contrast to a standard human parser, we prefer using
DensePose [37] as it provides more accurate body part information and
is not affected by the current clothing worn by the candidate [52].
𝐷𝑡𝑟𝑔 is a visual representation of the body, which effectively facilitates
the U-Net’s [53] capacity to produce segmented outputs that are pro-
portionate and optimally positioned. The output of the segmentation
module is denoted as 𝑀𝑆

𝑊 .
The training process involves the use of the GAN framework. Here,

the generator and discriminator are trained by competing with each
other. The generator is the U-Net, while the discriminator follows the
pix2pix architecture [54]. This architecture evaluates the authenticity
of the image based on conditional input images, as illustrated in Fig. 2.
To assess the accuracy of each segment prediction, we utilise the
pixel-wise cross-entropy loss [55]. This loss function evaluates the
predictions of each pixel individually by comparing the depth-wise

pixel vector class predictions to our one-hot encoded target vector.
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Fig. 1. Logical flow of StyleVTON. (1) Segmentation is performed to match the body label with the target garment to ensure a perfect fit. (2) The clothing is warped to fit the
desired posture of the person. (3) The source image of the person is transferred to the desired posture and combined with the warped clothing to get the final image.

Fig. 2. Detailed overview of StyleVTON. (a) First, we use the segmentation module to generate an appropriate segment of the candidate’s body based on the target garment. The
module takes in the following: target garment image 𝐶 and target DensePose 𝐷𝑡𝑟𝑔 . The output is a 4-channel image 𝑀𝑆

𝑊 where each channel maps to the background, torso, and
left and right arm. (b) Second, the warping module warps the clothing item to the body shape of the candidate. 𝐶 and the generated torso label 𝑀𝑡 is fed to an STN [45] that
performs geometrical changes to the target garment, which we call 𝐶𝑎. 𝐶𝑎, 𝑀𝑡 and 𝑆 are concatenated and fed through the U-Net. The output is the warped garment 𝐶𝑤. (c)
Lastly, the pose transfer module transfers the candidate to the desired pose. The style block [10] requires two inputs: pose latent space and source feature. 𝐷𝑡𝑟𝑔 is encoded to
produce the pose latent space 𝐹𝑝𝑜𝑠𝑒. The coordinate completion model can reuse local features from the source image to the target pose. It uses a symmetry-guided image to guide
the neural network for inpainting the UV-space and warps the feature from the source pose to the target pose 𝑀𝑚𝑎𝑝. The source feature generator preserves the appearance of the
candidate by encoding into multiscale warped appearance features 𝐹𝑎𝑝𝑝𝑖 . We feed 𝐹𝑎𝑝𝑝𝑖 through the affine parameters network to generate scaling (𝛼) and shifting (𝛽) parameters
that are used to modulate style blocks. In the final step, we perform an element-wise addition of 𝐼ℎ and 𝐶𝑤 to get a final try-on image with a new pose 𝐼𝑓𝑖𝑛𝑎𝑙 .
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𝐿SM is the loss function for the segmentation module. It combines the
cross-entropy and discriminator losses, which are denoted as:

𝐿𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑥, 𝑦) = −
𝑁
∑

𝑖

𝑀
∑

𝑗
𝑥𝑖𝑗 log(𝑦𝑖𝑗 ) (1)

where 𝑁 denotes the number of labels, which are the background, torso
and arms; 𝑀 denotes the pixel coordinate of the image.

𝐿𝐺𝐴𝑁 (𝑥, 𝑦) = E𝑥,𝑦[log𝐷(𝑥, 𝑦)]

+ E𝑥[log(1 −𝐷(𝑥,𝐺(𝑥)))]
(2)

where 𝐷 denotes the discriminator from [54] that takes in condi-
tional images to determine the genuity of the image. ; 𝐺 denotes the
generator.

𝐿SM = 𝐿entropy(𝑀𝑆
𝑊 ,𝑀𝐺

𝑊 ) + 𝐿GAN(𝑀𝑆
𝑊 ,𝑀𝐺

𝑊 ) (3)

where 𝑀𝑆
𝑊 denotes the synthesised segmentation label and 𝑀𝐺

𝑊 is the
ground truth of what the segmentation label is supposed to look like.

3.2. Warping module

We refer to our warping module as a geometric matching module
(GMM), which is tasked with accurately positioning the target garment
𝐶 to fit within the generated torso segment 𝑀𝑡. This module is crucial
because it ensures that the garment appears naturally deformed and
realistic as if a person were wearing it. Simply binding the clothing
to an image of a person will not create a natural look. The warping
module ensures realism and accurate fitting of the virtual clothes to
the person. It is composed of two stages: first, an STN [45] performs
geometric transformations on the target garment to ensure that logos
and other details align with the candidate’s body; second, a U-Net [53]
is utilised to enhance the realism of the warped garment by adding
intricate textures. This module is based on [56]. We selected it for its
efficiency without compromising performance.

To generate the affine transformed garment, denoted by 𝐶𝑎, we pass
the generated torso label, 𝑀𝑡, through a convolutional encoder that
redicts the transformation parameter, 𝜗, for the affine transform. The
ffine grid takes in the target garment, 𝐶, and the transformation pa-
ameter, 𝜗, and performs a geometrical transformation on the clothing,
ncluding rotation and scaling.

The refined garment 𝐶𝑤 is generated through a U-Net architecture
hat is fed with concatenated channels of the warped garment 𝐶𝑎, RGB
keleton 𝑆, and torso label 𝑀𝑡. The U-Net [53] is designed to refine the
arped garment by ensuring that it is confined within the boundaries of

he torso label 𝑀𝑡 and is able to render the body parts where occlusion
ccurs. We utilised 𝑆 as the input data for the warping module since
t is already being used by state-of-the-art virtual try-on models such
s [2,3], and it produces sufficient deformation effect. Our analysis
emonstrated that using 𝐷𝑡𝑟𝑔 has an adverse effect on the colour of 𝐶𝑤
hile utilising 𝑆 does not.

We calculate losses for GMM by using L1, VGG perceptual [57], and
wo multi-scale discriminators [58]. We formulate the loss function as
GMM:

1(𝑥, 𝑦) = |𝑥 − 𝑦| (4)

VGG(𝑥, 𝑦) = |𝜙5(𝑥) − 𝜙5(𝑦)| (5)

here 𝐿VGG is the VGG perceptual loss [57] in which 𝜙5 represents the
utput of feature map of 𝑥 and 𝑦 from the fifth layer of the pre-trained
GG19 model.

𝐺𝐴𝑁 (𝑥, 𝑦) = E𝑥,𝑦[log𝐷𝑚(𝑥, 𝑦)]

+ E𝑥[log(1 −𝐷𝑚(𝑥,𝐺(𝑥)))]
(6)

here 𝐷𝑚 denotes the multi-scale discriminators from [58] and 𝐺
enotes the generator.

GMM = 𝐿1(𝐶𝑤, 𝐶𝑔𝑡) + 𝐿1(𝐶𝑎, 𝐶𝑔𝑡) + 𝐿VGG(𝐶𝑤, 𝐶𝑔𝑡) (7)
5

+ 𝐿GAN(𝑓, 𝐶𝑔𝑡)∕2
where the symbols represent as follows: 𝐶𝑔𝑡 denotes the ground truth
of the warped garment; 𝑓 denotes the channel concatenation of 𝑀𝑡 and
𝑆.

3.3. Pose transfer module

In Section 2, we discussed that methods that utilise StyleGAN archi-
tecture are the optimal model for transferring poses while maintaining
the candidate’s identity. To this end, we have adopted this approach
to effectively manipulate the positioning of non-targeted body parts –
such as the head and trousers – to align with the target DensePose 𝐷𝑡𝑟𝑔 ,
thus facilitating an accurate fit of the warped garment. Our approach
of using StyleGAN for pose transfer differs from other StyleGAN-based
models in one major way. Instead of transferring the entire body from
the source image, we only transfer the non-targeted body parts to
the desired posture. The pose transfer module consists of four sub-
networks: the pose feature generator, which produces the pose latent
space for the StyleGAN [10]; the coordinate completion model, which
has a neural network for inpainting the UV-space required by the target
pose; the source feature generator, which preserves the source image
appearance; and the affine parameters network, which produces the
scaling 𝛼 and shifting 𝛽 parameters to modulate the StyleGAN blocks.

The pose feature generator is an encoder that receives the tar-
get DensePose 𝐷𝑡𝑟𝑔 as input and performs encoding to produce the
16 × 16 × 512 pose feature 𝐹𝑝𝑜𝑠𝑒. The StyleGAN network subsequently
utilises 𝐹𝑝𝑜𝑠𝑒 to synthesise the desired pose of the candidate.

Inherent limitations arise when extracting only the visible body
surface through the UV mapping of the source image 𝐼 . This results in
an incomplete UV-space appearance of the target, potentially requiring
additional data on the regions that are not visible in the source image
𝐼𝑠𝑟𝑐 . To overcome this challenge, AlBahar et al. [5] have introduced
a coordinate completion model to inpaint the UV-space appearance
with the aid of a neural network that leverages human body mirror-
symmetry. The model endeavours to reutilise the local features of the
visible body parts of the candidate in the source image for the invisible
body parts (i.e., those not displayed in the source image) of the target
pose.

The source feature generator plays a pivotal role in ensuring the
preservation of the candidate’s visual appearance. Our proposed
methodology effectuates modifications to the source image, enabling
the candidate to undertake a try-on of their preferred clothing. As
shown in Fig. 2, we encode 𝐼𝑠𝑘𝑛 and 𝑀𝑠𝑟𝑐 into a multiscale features
𝐹 𝑠𝑟𝑐
𝑎𝑝𝑝𝑖

. The 𝑀𝑚𝑎𝑝 and 𝑀𝑡𝑟𝑔 will warp with 𝐹 𝑠𝑟𝑐
𝑎𝑝𝑝𝑖

to produce 𝐹 𝑡𝑟𝑔
𝑎𝑝𝑝𝑖 . Lastly,

we use the feature pyramid network [59] to produce multiscale warped
features 𝐹𝑎𝑝𝑝𝑖 .

The coordinate completion model produces 𝑀𝑚𝑎𝑝 that allows the
source feature 𝐹 𝑠𝑟𝑐

𝑎𝑝𝑝 to be warped to the target pose 𝐹 𝑡𝑟𝑔
𝑎𝑝𝑝. Next, we con-

catenated 𝐹 𝑡𝑟𝑔
𝑎𝑝𝑝 with 𝑀𝑡𝑟𝑔 and fed it to a feature pyramid network [59] to

produce multiscale warped appearance feature 𝐹𝑎𝑝𝑝. The average skin
colour embedded to 𝐼𝑠𝑘𝑛 helps the generator produce the arms that
match the candidate’s skin colour and give it a natural look. Removing
the torso from 𝑀𝑡𝑟𝑔 ensures that it does not generate artefact in that
region; we reserve the region for the warped garment 𝐶𝑤.

In order to obtain the requisite inputs 𝐼𝑠𝑘𝑛 and 𝑀𝑡𝑟𝑔 , we undertake
the following procedural steps:

𝐼𝑛𝑡𝑏 = 𝐼𝑠𝑟𝑐 ⊗ (1 −𝑀𝑠𝑟𝑐 ) (8)

𝐼𝑠𝑘𝑛 = 𝐼𝑛𝑡𝑏 + (𝑉 ⊗𝑀𝑠𝑟𝑐 ) (9)

We remove the torso from 𝑀𝑡𝑟𝑔 by:

𝑀𝑡𝑟𝑔 = 𝑀𝑡𝑟𝑔 ⊗ (1 −𝑀𝑡) (10)

where ⊗ denotes element-wise multiplication; 𝐼𝑠𝑟𝑐 denotes the can-
didate image; 𝑀𝑠𝑟𝑐 are obtained by segmenting 𝐼𝑠𝑟𝑐 with the human
parser from [60]; 𝐼 denotes the candidate image without their torso;
𝑛𝑡𝑏



Neurocomputing 594 (2024) 127887T. Islam et al.
Fig. 3. Generation process of 𝐼𝑠𝑘𝑛. To derive the non-targeted body-part image 𝐼𝑛𝑡𝑏, we
employ the mask 𝑀𝑠𝑟𝑐 to effectively eliminate the torso of 𝐼𝑠𝑟𝑐 . Subsequently, we fill
the torso region of 𝐼𝑛𝑡𝑏 with the average skin colour 𝑉 , thereby producing the resultant
image 𝐼𝑠𝑘𝑛.

𝑉 denotes the average skin colour of the candidate based on their arms;
𝐼𝑠𝑘𝑛 denotes the candidate image having 𝑉 to represent the targeted
body part; 𝑀𝑡𝑟𝑔 is obtained by determining the binary mask of 𝐷𝑡𝑟𝑔 .

In order to enhance the comprehensibility of the production of 𝐼𝑠𝑘𝑛,
we have additionally incorporated Fig. 3.

The affine parameter network plays a critical role in generating
scaling (𝛼) and shifting (𝛽) parameters for the convolution layer in each
style block. Using these parameters enables the style blocks to preserve
spatial details in the generated images effectively.

As data passes through a series of style blocks, a transformed image
𝐼ℎ is produced, where non-targeted body parts are relocated. Finally,
the transformed image 𝐼ℎ is combined with the original image 𝐶𝑤
through element-wise addition to produce the final output image 𝐼𝑓𝑖𝑛𝑎𝑙.

The loss function for the pose transfer module uses the L1, Face
Identity [61], VGG perceptual and StyleGAN discriminator [9] losses.
We present the formulas as:

𝐿face(𝑥, 𝑦) = 1 −
𝑆𝐹 (𝑥) ⋅ 𝑆𝐹 (𝑦)

max (‖𝑆𝐹 (𝑥)‖, ‖𝑆𝐹 (𝑦)‖, 𝜖)
(11)

where 𝑆𝐹 is the pretrained SphereFace model [61] which uses 𝐼ℎ and
𝐼𝑔𝑡 to output the feature space of faces; 𝜖 is a small number to prevent
𝐿𝑓𝑎𝑐𝑒 facing zero-division.

𝐿𝑃𝑇𝑀 = 𝐿1(𝐼ℎ, 𝐼𝑔𝑡) + 𝐿𝑓𝑎𝑐𝑒(𝐼ℎ, 𝐼𝑔𝑡) + 𝐿𝑣𝑔𝑔(𝐼ℎ, 𝐼𝑔𝑡) + 𝐿𝑎𝑑𝑣(𝐼ℎ, 𝐼𝑔𝑡) (12)

where the ground-truth 𝐼𝑔𝑡 which is produced by removing the torso
from the second pair of 𝐼𝑠𝑟𝑐 (same candidate but in different posture),
which we refer to as 𝐼𝑡𝑟𝑔 ; 𝐿𝑎𝑑𝑣 represents the StyleGAN discrimina-
tor [9]; 𝐿𝑣𝑔𝑔 refers to Eq. (5) and 𝐿1 refers to Eq. (4).

4. Experiments

4.1. Dataset

We have used two datasets to train StyleVTON: VITON-HD [3]
and DeepFashion [62]. The VITON-HD dataset contains 11,647 images
of frontal views of woman models paired with their clothing as the
training set and 2032 pairs as the testing set. We use this dataset to
train the segmentation and warping modules as they need to analyse
the clothing to fulfil their tasks. We add the RGB pose skeleton to
the dataset by using the pose estimators [63,64] since the warping
module requests it. The DeepFashion dataset has pairs of candidates
conducting several poses. The training set has 101,967 image pairs
and 8570 pairs as the testing set. The pose transfer module uses the
DeepFashion dataset to learn how to transfer the pose given a target
DensePose image. The resolution of both datasets is set to 348 × 512
to ensure that all modules are consistent and it becomes practical to
merge the images.
6

The evaluation involves the utilisation of three distinct datasets,
namely VITON-HD [3], Fashiontryon [50] and MPV [47], to conduct
a comprehensive evaluation of our approach as well as the existing
ones. The VITON-HD test set was evaluated in an unpaired setting,
wherein the candidates were matched with diverse clothing items and
positioned in distinct postures. On the other hand, the Fashiontryon
and MPV test sets, consisting of 7516 and 52 image trios, respectively,
were evaluated using a paired setting, where the candidates were
matched with original clothing items and positioned in a posture that
is congruent with the ground truth. Both qualitative and quantitative
assessments were carried out on all three datasets to evaluate the
effectiveness and robustness of our models.

4.2. Implementation

The segmentation and warping module employed a U-Net archi-
tecture, which is consistent with the design outlined by Ronneberger
et al. [53]. The U-Net’s encoder component comprises eight convo-
lutional layers, each with a kernel size of 3 and filter counts of 64,
64, 128, 128, 256, 256, 512, and 512. During the convolutional layer
operations, the feature map dimensions are reduced by two via max-
pooling at each stage. Additionally, the latent space is further processed
using two additional convolutional layers with a filter size of 1024.
The decoder component of the U-Net retains the hyperparameters of
the encoder, with the key difference being the use of upsampling in
place of max-pooling. The intermediate feature maps are upsampled by
a factor of two. The U-Net’s encoder and decoder are connected via skip
connections to facilitate information flow between the two components.

To accommodate large spatial deformation tasks, the warping mod-
ule incorporates an auxiliary network. Specifically, the STN [45] is
implemented as a preliminary step to facilitate the U-Net’s efficacy in
completing its task. The STN architecture comprises five convolutional
layers and a max pooling layer with a stride size of two, which enables
effective spatial transformation and enhances the U-Net’s performance
on tasks with significant deformation.

For our neural networks, we employed the Adam optimiser to
finetune the weight and bias. We established distinct learning rates for
each module: 0.0002 for the segmentation, 0.0001 for the generator,
0.0004 for the discriminator in the warping, and 0.002 for the pose
transfer. PyTorch library was utilised in the development of our models.

4.3. Training

The training process involved separate training of the individual
modules for varying numbers of epochs, with distinct datasets utilised
to facilitate each module’s task performance.

To train the segmentation module, we utilised the VITON-HD
dataset [3]. This module’s objective was to generate a suitably seg-
mented region based on the target clothing. We trained this module
for 45 epochs to attain optimal segmentation performance.

Similarly, we employed the VITON-HD dataset to train the warping
module, which is tasked with warping the garment to conform to
the candidate’s body and ensuring the warped garment looks natural.
This module was trained for 50 epochs to achieve the desired level of
warping proficiency.

To facilitate the task of pose transfer, we utilised the DeepFashion
dataset [62], which contains pairs of the same candidate in different
poses. We employed a pre-trained checkpoint from AlBahar et al. [5]
that utilises the same architecture as our module to expedite the train-
ing process. This approach enabled us to achieve the desired results
quickly and efficiently, with the module completing training in just 10
epochs.

Although we used different datasets to train various parts of the
network, each module produced outputs that were aligned with each
other. This was possible due to the similarity in the input data of the
target pose for all modules. As a result, it became feasible to fuse images
together and create a final try-on image.
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Fig. 4. Qualitative comparison. Qualitative comparison of our model against others,
including FashionTryOn [50] and Wang et al. [49]. Throughout the illustrations, our
method demonstrates high fidelity in preserving the facial identity of the candidate in
the new pose while offering more realistic virtual try-on results. It outperforms the other
multi-pose models and offers comparable results to the single-pose model HR-VITON
while performing a more challenging task of multi-pose virtual try-on.

4.4. Qualitative analysis

As illustrated in Figs. 4 and 5, our proposed model adeptly trans-
fers the pose of the candidate and accurately fits the target clothing
onto them, resulting in an output that appears highly realistic. We
demonstrate the versatility of our model by effectively replacing long-
sleeved garments with short-sleeved ones or vice versa, as shown in the
last row of Fig. 4 and the 3rd row of Fig. 5. Furthermore, our model
can effectively handle target clothing that has a similar length to the
candidate’s original attire. This demonstrates the effectiveness of our
segmentation module in synthesising appropriate segments that match
both the target clothing and the candidate’s body.

Fig. 4 shows the qualitative comparison results between our model
and other models, including FashionTryOn [50] and Wang et al. [49].
Among all the multi-pose models, our approach outperforms Fashion-
TryOn [50] and Wang et al. [49] in accurately dressing the body in the
desired clothing. This is due to the U-Net architecture of our warping
module, which enables us to refine the clothing image while utilising
the entire space of the torso segment. It is worth noting that methods
like FashionTryOn were specifically created to process lower-resolution
images. This is why they fail to preserve the face of the candidate
accurately, and the results appear low-quality.

Lastly, our model exhibits good preservation of non-targeted body
parts such as the face and trouser/bottom clothing. We demonstrate this
by comparing our model to HR-VITON in Fig. 6, one of the best single-
pose virtual try-on models [58], while the results from HR-VITON are
in the original pose but ours in a different target pose. Even though
our model performs a more challenging task on multi-pose, it achieves
7

Fig. 5. Multi-pose examples. More examples of unpaired settings in various poses.
Our approach can effectively synthesise realistic virtual try-on images, regardless of
the given pose. The showcased examples serve as evidence of our model’s ability to
capture intricate details and precisely warp the garment while also preserving the facial
identity of the candidate across all poses.

Fig. 6. Single-pose examples. We compared our model’s performance with a widely
known virtual try-on model called HR-VTON [58]. Our results show that our model
can achieve a comparable level of quality to single-pose virtual try-on models. While
HR-VTON is capable of preserving details from the original image, our model does not
preserve anything, yet it still produces good results.

comparable results to HR-VITON in terms of preservation and quality
of non-targeted body parts. We also demonstrate that in all rows of
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the figure, wherein the shape and colour of the trousers have been
accurately transferred from the original pose. Furthermore, our method
effectively preserves the facial identity of the candidate, which is a
challenging task. This is due to our pose transfer module’s ability
to map the source feature of the candidate to the target pose more
effectively than in previous work. Additionally, the face loss function
that we utilised played a crucial role in the effectiveness of our model
in preserving the candidate’s facial features.

We further present a series of exemplary results in Fig. 5 that
demonstrate the performance of our model in generating virtual try-
on images in a variety of poses. Our findings reveal a high degree
of consistency in both the accurate synthesis of the try-on and the
maintenance of the image’s quality throughout the process. The module
that is responsible for warping the garment has been shown to be
capable of precisely conforming to the target pose, ensuring a high-
fidelity representation of the desired outcome. Similarly, our pose
transfer module has demonstrated an impressive capacity to capture
facial details and map them onto the target pose with exceptional
precision. In the 1st and 2nd rows of Fig. 5, it is evident that our model
is capable of accurately preserving complex textures. The logos and
colours of these textures are preserved with high accuracy, showcasing
the model’s proficiency in texture preservation. Overall, these results
suggest that our model is well-suited for handling complex textures in
various postures.

The field of multi-pose virtual try-on is still relatively new, with only
a few studies available at the time of writing this study. In comparison,
single-pose virtual try-on is a more competitive field. Therefore, we
included HR-VITON in Fig. 6 to demonstrate that our model performs
exceptionally well and its quality can be compared to this state-of-the-
art single-pose virtual try-on model. Our model offers more flexibility
because it can change the posture of the person. What makes our work
even more impressive is that while single-pose virtual try-on preserves
non-targeted body parts, our method does not preserve anything and
performs large spatial transformations. This means that the whole
image is synthesised and still produces comparable results.

4.5. Quantitative analysis

The Structural Similarity (SSIM) metric [65] gauges the resem-
blance between the synthesised image and the corresponding ground
truth by evaluating the luminance, contrast, and structural similarities.
The magnitude of the SSIM index directly reflects the level of concor-
dance between the two images, with larger values indicating superior
correspondence.

The Fréchet Inception Distance (FID) metric [66,67] leverages the
widely used Inception network [68] to extract feature representations
from both real and synthesised images. Subsequently, it quantifies the
divergence between the two distributions of features by computing the
Fréchet distance. Notably, a lower FID score implies that the feature
distributions of the generated images are more closely aligned with
those of the real images.

The Inception Score (IS) [69] is a metric for evaluating the quality
of generative models. It measures the diversity and visual appeal of
the generated images by feeding them through a pre-trained classifier
and computing the score based on the output probabilities. Specifically,
the IS is calculated as the exponential of the expected value of the KL
divergence between the class distribution of the generated images and
the class distribution of a large set of real images. A higher IS indicates
that the generated images are more diverse and visually appealing.

The Learned Perceptual Image Patch Similarity (LPIPS) [70] metric
employs a pre-trained deep neural network that has been fine-tuned to
assess the perceptual similarity between images. The network is trained
to capture human perception in the context of image quality. To de-
termine the perceptual distance between two images, LPIPS calculates
the dissimilarity between their respective feature maps across multiple
spatial scales and computes the average of these values to yield an
8

Fig. 7. Pseudo ground-truth. Quantitative evaluation utilising the VITON-HD dataset
poses a significant challenge owing to the absence of ground truth. As a viable
alternative, the utilisation of pseudo-ground truth has been employed to enable the
assessment of image quality using established metrics, that is, FID and LPIPS.

Table 1
Quantitative comparisons of CP-VTON [21], MG-VTON [47], FashionTryOn [50], Wang
et al. [49] and our method on the VITON-HD, Fashiontryon, MPV dataset. The higher,
the better for SSIM and IS, and the lower, the better for FID and LPIPS.

Method SSIM ↑ FID ↓ IS ↑ LPIPS ↓

VITON-HD dataset

FashionTryOn – 51.240 2.886 0.258
Wang et al. – 42.208 2.862 0.256
Ours – 19.959 2.907 0.252

FashionTryOn dataset

FashionTryOn 0.699 53.911 3.291 0.211
Wang et al. 0.695 44.306 3.205 0.152
Ours 0.759 39.341 3.331 0.131

MPV dataset

CP-VTON 0.563 38.193 3.012 0.248
MG-VTON 0.705 22.418 3.136 0.202
Wang et al. 0.723 16.006 3.193 0.187
Ours 0.788 – 1.616 0.111

overall score. A lower LPIPS score indicates that the generated images
exhibit higher perceptual similarity to the real images.

While conducting quantitative evaluations on the VITON-HD
dataset [3], we faced the challenge of not having pairs that show the
same candidate in different poses, which means there is no ground
truth. To address this issue, we employed a pseudo-ground truth
approach that involved comparing a synthesised image of a candidate
with a random pose to the candidate in their original pose. We deter-
mined that the SSIM metric would not be appropriate for this purpose,
as significant changes in posture could lead to inaccurate calculations.
Instead, we opted for FID, IS, and LPIPS, which provide better alterna-
tives by assessing overall image quality and making comparisons based
on that. We illustrate in Fig. 7 how the pseudo-ground truth is utilised.

The Fashiontryon dataset [50] comprises a collection of clothing
person-person trios, with each trio consisting of an original garment
image and two candidates in varying poses. Due to the availability of
the ground truth, this dataset allows us to evaluate the ability of our
models to preserve crucial details when generating images in new poses
and to assess the level of fidelity between the synthesised try-on and the
ground truth.

The MPV dataset [47] shares a similar structure with the Fash-
iontryon dataset, but it is currently unavailable for public access.
We managed to obtain 52 clothing person-person trios from a third-
party repository, which is insufficient for conducting a comprehensive
evaluation. Despite this limitation, we proceeded with the experiment
using this small testing set to compare our results with those provided
by Wang et al. [49] at a time when the MPV dataset was publicly
available. This facilitated a preliminary comparison of the relative
performance of different methods and provided a rough indication
of their effectiveness. However, given the limited number of trios,
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Table 2
Ablation study. The outcomes of this table suggest that the utilisation of multiple
discriminators in the training of the warping module yields a notable enhancement
in the quality of the synthesised garments compared to the utilisation of a single
discriminator.

Method SSIM ↑ FID ↓ IS ↑ LPIPS ↓

Trained w/ 1 discriminator 0.942 23.317 4.786 0.0353
Ours 0.934 18.805 5.111 0.0328

we found that the FID metric was not an appropriate choice when
evaluating our method.

The results of our experiments, as presented in Table 1, provide
strong evidence of the superior performance of our approach compared
to the method of Wang et al. [49] and FashionTryOn [50] on both
the VITON-HD and Fashiontryon datasets. Our scores from the VITON-
HD dataset demonstrate that our synthesised images are significantly
higher quality and look more natural than previous work. On the
Fashiontryon and MPV dataset, our method achieved excellent SSIM
scores, indicating that our synthesised images more closely resemble
the ground truth and accurately preserve details from the source image.
Furthermore, our approach outperformed previous work by a substan-
tial margin in the FID metric (for the VITON-HD dataset), underscoring
its efficacy and superiority. The LPIPS score obtained from the MPV
dataset provides a preliminary indication that our approach gener-
ates more realistic virtual try-on images than earlier methods such as
CP-VTON [21] and MG-VTON [47].

4.6. Double discriminators in the warping module

We conducted an ablation study on the warping module to evaluate
its efficacy. The study consisted of two parts: training the module
with a single discriminator and training it with two discriminators.
The ablation study was conducted in a paired setting, wherein the
candidate donned the original clothing in the original pose, enabling
a comparison against the ground truth in the VITON-HD dataset.

The findings are presented in Table 2 shed light on the enhanced
image quality achieved through the utilisation of dual discriminators
during the training of the warping module. Notwithstanding the fact
that our ultimate methodology did not attain the highest rank in
terms of SSIM metric, this outcome can be attributed to the potential
inconsistency associated with affine transformation, which may lead
to the inadequate alignment of patterns and textures. Consequently,
the structure of the resulting output may not be identical to the
ground truth, thereby leading to dissimilarities between the two. This
result serves as a valuable complement to the research conducted in
HR-VTON [58]. Training with dual discriminators enables the neural
network to preserve intricate clothing details to an unparallelled extent.

Fig. 8 illustrates the discernible benefits of utilising a dual dis-
criminator approach during the training of the U-Net architecture, as
opposed to a single-discriminator configuration. The incorporation of
two discriminators has enabled the U-Net to effectively capture and
retain crucial image-based features, such as logos and other perti-
nent details, leading to a significant enhancement in the synthesis of
garments and a more realistic virtual try-on experience.

4.7. Limitations

The segmentation module in our method occasionally produces
inaccurate results, which leads to issues during the fitting stage. Specif-
ically, these errors arising from the segmentation module fail to accu-
rately define particular aspects of the clothing item.

A number of the failure cases are shown in Fig. 9. The first row
shows that the segmentation module fails to properly merge a garment’s
torso and arms, resulting in an improper fit. In the second row, the
9

Fig. 8. Examples of ablation study. The noticeable benefit is shown when utilising
two discriminators during the training of the warping module, as opposed to a single
discriminator. Specifically, this approach demonstrates a significant improvement in the
clarity of textual information and finer details within the warped garment.

algorithm mistakenly identifies the presence of long hair leading to the
synthesis of an unnatural gap around the shoulder. Finally, in the third
row, the segments caused unnatural artefacts to appear on the hip. We
believe that the absence of explicit distinction between head/torso and
torso/leg regions by DensePose contributes significantly to this issue,
and we will address it in future work.

Our model has another issue with the warping module. As seen in
Fig. 10, the first row demonstrates that the module is unable to handle
small and thin text, resulting in smudged outcomes that are difficult
to read. The second row shows how the warping module struggled
to maintain consistency with the striped pattern, leading to the lines
becoming overlapped and crooked.

Dataset bias is an inherent problem that we are keenly aware of in
the datasets we used in this work. In our current dataset, a large major-
ity of body shapes can be characterised as ‘average’, which inherently
limits the range of body types represented. This lack of diversity can
lead to inaccurate representations, particularly when processing images
of individuals who deviate from this ‘average’ body shape.

For example, if the input image features a person with a wider or
more full-bodied physique, the model, being influenced predominantly
by the ‘average’ shapes in its training data, may not accurately render
the true proportions of this individual. Consequently, the try-on image
might misleadingly depict them as slimmer than they are in reality.

This not only affects the accuracy of the virtual try-on but also raises
concerns about body positivity and representation. A model’s output
should respect and accurately represent the diversity of body shapes
rather than inadvertently promoting a singular or ‘average’ body type.
It is crucial for us to be mindful of this bias, as it has implications not
only for the technical accuracy of our work but also for its broader
societal impact. Unfortunately, there is a lack of diversity in publicly
available datasets. Some recent works [28] show promising steps in
improving diversity and representation, but for now, this dataset is
not publicly available. Unfortunately, our model is only capable of
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Fig. 9. Failed segmentation cases. In terms of generating realistic torso labels, the
segmentation module displays inconsistency. Specifically, in the first row, it fails to
properly connect the torso with the upper arm, resulting in the separation of clothing.
The second column depicts the segmentation module making an erroneous assumption
about the presence of long hair in front of the person, leading to the incorrect removal
of the clothing region around the shoulder. Additionally, the third column highlights
the segmentation module’s inability to generate a complete shape of the torso segment,
omitting a random area around the person’s hip.

extracting the texture of the input image and cannot capture the body
shape when generating the try-on image.

Fig. 10 shows that our model outperforms the previous studies
despite our mentioned weaknesses. We preserved facial details, kept
non-targeted body parts intact, and accurately fitted the garment.

Another limitation of the work is that the model is composed
of three independent components that are constructed individually.
Ideally, an end-to-end architecture would have been better for both
model training and operation efficiency. However, we are currently
facing a challenge in training the modules together as each is trained
on a different variant of the dataset. As a result, we are unable to train
them together. We will leave this as a future direction to improve the
model compactness and operation efficiency.

4.8. Comparison with 3D virtual try-on

3D virtual try-on models such as DRAPE [71] allow users to vi-
sualise how garments will look on them from different angles and
postures. These models offer a high degree of flexibility and freedom
for manipulating the 3D avatar, which can be beneficial for users who
want to experiment with different styles or fit options. However, im-
plementing 3D virtual try-on models is a complex process that requires
significant resources and expertise.

One of the main challenges with 3D virtual try-on models is the need
for 3D data, which is often difficult for users to produce. Additionally,
many of the experiments conducted using these models are run on sim-
ulated data rather than real products. This can limit the effectiveness
of the models when it comes to predicting how garments will look in
real life.

In contrast, our approach uses actual images, which makes it much
easier for businesses and users to work with. By using real product
images, our approach provides a more accurate representation of how
garments will look on users. Overall, our approach offers a more
practical and effective solution for businesses looking to provide users
with an engaging and informative virtual try-on experience.
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Fig. 10. The warping module has failed to perform its task effectively. The first row
demonstrates that the module is unable to handle small and thin text, resulting in
smudged outcomes that make it difficult to read. The second row shows the warping
module struggles to maintain the striped pattern’s consistency, leading to unsatisfactory
results. It is important to note that our method still performs better than the previous
studies in these examples.

M3D-VTON can generate a 3D representation of objects using still
images [6]. The 3D virtual avatars can be viewed from multiple angles
while wearing desired clothing. However, there is a significant draw-
back to the current model that synthesises 3D representations from 2D
virtual try-on images. This model does not allow the user to change the
posture of the avatar, which limits its usefulness. Unfortunately, there
is currently no ongoing research to address this limitation.

It may be possible to overcome the challenge faced by M3D-VTON
by adding components from our proposed model. By doing so, M3D-
VTON could potentially use our generated try-on images to create a 3D
avatar with multiple desired postures. This would significantly enhance
the usefulness of the technology and make it even more appealing to
users who want to create customised virtual avatars.

5. Conclusions

In this paper, we have presented StyleVTON, a new multi-pose
virtual try-on model that is capable of synthesising multi-pose virtual
try-on images better than the previous studies, in particular, on the
preservation of identity and clothing details.

StyleVTON presents a novel tripartite process that consists of seg-
mentation, warping and pose transfer, which allows for the simulta-
neous replacement of both the candidate’s garment and a change of
their posture. The segmentation module utilises useful input images to
produce accurate segments that correctly conform to the candidate’s
body. Additionally, the warping module employs dual discriminators
in training to ensure that intricate clothing details are preserved with
exceptional accuracy, resulting in the generation of high-quality gar-
ments. Finally, the creation of a novel source representation allows
the network to transfer the candidate’s posture, regardless of the target
garment.

With most of the previous work being largely based on single-
view generation, our multi-pose approach offers a more comprehensive
and flexible solution to the problem of 2D virtual try-on. Moreover,
experimental results have shown a significant improvement in fidelity
and detail preservation of the garment and candidate, such as texture,
logos and faces.

We have evaluated our method on various benchmark datasets,
including VITON-HD [3], Fashiontryon [50] and MPV [47], and our
results show that StyleVTON consistently outperforms previous state-
of-the-art methods in terms of quantitative metrics such as SSIM, FID, IS
and LPIPS score. Additionally, our approach produces visually superior
results, with fewer artefacts and better quality overall.
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