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Abstract—This paper studies an intelligent reflecting surface
(IRS)-aided communication system under the time-varying chan-
nels and stochastic data arrivals. In this system, we jointly
optimize the phase shift coefficient and the transmit power in se-
quential time slots to maximize the long-term energy consumption
for all mobile devices while ensuring queue stability. Due to the
dynamic environment, it is challenging to ensure queue stability.
In addition, making real-time decisions in each short time slot
also needs to be considered. To this end, we propose a method
(called LETO) that combines Lyapunov optimization with evo-
lutionary transfer optimization to solve the above optimization
problem. LETO first adopts Lyapunov optimization to decouple
the long-term stochastic optimization problem into deterministic
optimization problems in sequential time slots. As a result, it
can ensure queue stability since the deterministic optimization
problem in each time slot does not involve future information.
After that, LETO develops an evolutionary transfer method to
solve the optimization problem in each time slot. Specifically,
we first define a metric to identify the optimization problems
in past time slots similar to that in the current time slot, and
then transfer their optimal solutions to construct a high-quality
initial population in the current time slot. Since the evolutionary
transfer optimization effectively accelerates the search, we can
make real-time decisions in each short time slot. Experimental
studies verify the effectiveness of LETO by comparison with other
algorithms.

Index Terms—Evolutionary algorithm, dynamic environment,
evolutionary transfer optimization, Lyapunov optimization, intel-
ligent reflecting surface

I. INTRODUCTION

With the emergence of various innovative applications such
as immersive virtual reality, autonomous systems, and indus-
trial Internet of Things, the demand for high-data-rate and low-
latency communications continues to grow [1]–[4]. Therefore,
a lot of innovations for wireless communications have been
proposed in recent years, such as massive multiple-input-
and-multiple-output (MIMO) and millimeter wave (mmWave)
communications. Although these technologies can signifi-
cantly improve the spectral efficiency of wireless communica-
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tion systems, they require high hardware costs and/or energy
consumption [5].

Intelligent reflecting surface (IRS) [6], also known as recon-
figurable intelligent surface, has been recently proposed as a
promising technology to enhance the performance of wireless
communication systems through intelligently reconfiguring the
channel environment. Specifically, IRSs are two-dimensional
meta-surfaces composed of a large array of passive reflecting
elements, each of which can impose the required phase shift
on the incoming signal. By carefully adjusting the phase
shifts of the reflecting elements, the reflected signals can be
reconfigured to propagate towards their desired directions,
thereby improving the propagation environment [7]. Since
IRSs do not require any sophisticated signal processing opera-
tions but simply rely on passive signal reflection, they greatly
reduce the hardware cost and energy consumption. In addition,
IRSs exhibit great flexibility and compatibility in practical
deployment as they can be easily attached to building facades,
ceilings, road signs, etc.

To explore the benefits of IRSs in wireless communica-
tion systems, several efforts have been devoted to system
design and optimization for IRS-aided communication systems
[8]. For instance, Wu and Zhang [6] studied an IRS-aided
multiple-input single-output (MISO) communication system,
where the downlink information from an access point (AP)
to multiple users is transmitted with the help of an IRS.
To minimize the total transmit power at the AP, a power
minimization problem is formulated by jointly optimizing the
active and passive beamforming. Xu et al. [9] designed a phase
shift optimization method in an IRS-aided MISO downlink
scenario without the assumption of knowing channel state
information at the IRS. Souto et al. [10] employed particle
swarm optimization to study beamforming optimization with-
out channel state information. Yang et al. [11] considered an
IRS-aided orthogonal frequency division multiplexing system.
They then jointly optimized the transmit power allocation
and the passive array reflection coefficient to maximize the
achievable rate for the user. To compensate for the severe
path loss in mmWave communication systems, Wang et al.
[12] deployed multiple IRSs to enhance paths for mmWave
signals in a MISO downlink mmWave communication system.
In terms of IRS-aided MIMO communication systems, Zhang
and Zhang [13] jointly optimized the reflection coefficient
and the MIMO transmit covariance matrix to increase the
capacity of systems. To mitigate inter-cell interference, Pan
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et al. [14] deployed an IRS at the cell boundary of a multi-
cell system to assist multi-user multi-cell MIMO downlink
transmissions to cell-edge users. In addition, IRSs have been
applied to other systems. Wu and Zhang [15] studied an IRS-
aided simultaneous wireless information and power transfer
system, where an IRS is deployed to improve the wireless
power transfer efficiency for a group of energy harvesting
receivers. Bai et al. [16] exploited an IRS-aided mobile edge
computing system, where mobile devices (MDs) can offload a
part of computational tasks to the edge computing node with
the aid of an IRS. Peng et al. [17] adopted a genetic algorithm
(GA) to optimize the phase shift coefficient in an IRS-aided
multi-pair communication system.

Although the success of the above studies has been reported,
they all focus on the short-term performance of IRS-aided
communication systems. It is vital to study the long-term per-
formance of IRS-aided communication systems under dynamic
environments as it can provide an aggregate of short-term
performance over a long period, which is of great economic
and commercial significance [18]. Against the above back-
ground, this paper studies an IRS-aided uplink communication
system, where MDs send data to an AP with the aid of an IRS
under the time-varying channels and stochastic data arrivals.
We aim to minimize the long-term energy consumption for
all MDs. Note that, such long-term consideration introduces
significant complexity to the system optimization as we need
to take queue stability and real-time decision making into
account. The main contributions of this paper are summarized
as follows.

• We propose a method, named LETO, to jointly optimize
the phase shift coefficient of the IRS and the transmit
power of all MDs in sequential time slots to minimize
the long-term energy consumption for all MDs while
ensuring queue stability.

• To make decisions in each time slot without the assump-
tion of knowing the future channels and data arrivals,
LETO applies Lyapunov optimization to decouple the
original long-term stochastic optimization problem into
deterministic optimization problems in sequential time
slots. Since no future information is involved, it can
ensure queue stability by solving the deterministic op-
timization problem in each time slot.

• To satisfy real-time decision making in each short time
slot, we adopt evolutionary transfer optimization (ETO)
in LETO to solve the deterministic optimization problems
sequentially. Specifically, we first define a metric to
identify the optimization problems in past time slots that
are similar to that in the current time slot. Then, the
optimal solutions of these similar optimization problems
are transferred to construct an initial population in the
current time slot. In this way, we can accelerate the search
and improve computational efficiency.

• Extensive experiments are conducted to evaluate the
performance of LETO. The results show that LETO can
improve the overall performance of the studied system in
terms of energy consumption and queue stability.

The rest of this paper is organized as follows. Section
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Fig. 1. An IRS-aided uplink communication system involving K MDs, an
IRS, and an AP.

II establishes the system model and formulates the energy
minimization problem. In Section III, we describe the details
of LETO. The experimental studies are given in Section IV.
Finally, Section V concludes this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model
As shown in Fig. 1, we consider an IRS-aided uplink

communication system, which consists of a set of K MDs
(denoted as K = {1, 2, . . . ,K}), an IRS, and an AP. Due to the
obstacle of the high wall, there is no direct link from each MD
to the AP. Thus, an IRS equipped with a set of N reflecting
elements (denoted as N = {1, 2, . . . , N}) is deployed to assist
the uplink communication from K MDs to the AP.

We assume that the system operates in a time-slotted
structure, i.e., t ∈ T = {1, 2, . . .} with equal duration
τ . hhht

r,k ∈ CN×1 and hhht
a,r ∈ CN×1 represent channels of

links from the kth MD to the IRS and from the IRS to
the AP in the tth time slot, respectively. It is assumed that
they remain near-constant within each time slot and can be
estimated [16]. The phase shift coefficient of the IRS in the
tth time slot is represented by θθθt = [θt1, θ

t
2, . . . , θ

t
N ]T. Note

that, in this paper, the discrete phase shifts are considered
as they are more cost-effective to be implemented than the
continuous phase shifts [5], [19]. When each reflecting element
of the IRS has X levels, the set of discrete phase-shift values
is {0,∆θ, . . . , (X − 1)∆θ}, where ∆θ = 2π

X . Then, the
phase shift coefficient matrix of the IRS in the tth time slot
is ΘΘΘt = diag

{
ejθ

t
1 , ejθ

t
2 , . . . , ejθ

t
N

}
, where j represents the

imaginary unit. In addition, we assume that the amplitude
reflection coefficient is 1 for all reflecting elements [16].

We assume that the Rician fading channel model is used
for links from the MD to the IRS and from the IRS to the AP
[20]. Therefore, the channel of the link from the IRS to the
AP in the tth time slot can be expressed as [21]

hhht
a,r = PLt

a,r

(√
ε

ε+ 1
aaar(ϕ

t
r, θ

t
r) +

√
1

ε+ 1
hhht
a,r

)
, (1)
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where PLt
a,r denotes the path-loss from the AP to the IRS

in the tth time slot, ε denotes the Rician factor, aaar(ϕt
r, θ

t
r) ∈

CN×1 is the array response of the IRS, ϕt
r (θtr) denotes the

azimuth (elevation) angle of departure for the link from the
IRS to the AP in the tth time slot, and hhht

a,r denotes the non-
line-of-sight components in the tth time slot and its elements
are chosen from CN (0, 1) 1. Similarly, hhht

r,k is defined as

hhht
r,k = PLt

r,k

(√
ε

ε+ 1
aaar(ϕ

t′

r , θ
t′

r ) +

√
1

ε+ 1
hhht
r,k

)
, (2)

where PLt
r,k denotes the path-loss from the kth MD to the IRS

in the tth time slot, and ϕt′

r /θt
′

r denotes the azimuth/elevation
angle of arrival for the link from the kth MD to the IRS in
the tth time slot. According to [22] and [23], we have

aaar(ϕ
t
r, θ

t
r) = aaax(u)⊗ aaay(v), (3)

where ⊗ denotes the Kronecker product, u = 2πd cos (θtr)/λ,
v = 2πd sin (θtr) cos (ϕ

t
r)/λ, d denotes the antenna spacing,

and λ is the signal wavelength. In addition,

aaax(u) =
[
1, eju, . . . , ej(N1−1)u

]T
, (4)

and
aaay(v) =

[
1, ejv, . . . , ej(N2−1)v

]T
, (5)

where N1 and N2 represent the numbers of reflecting elements
in the horizontal and vertical directions of the IRS, respec-
tively.

As a result, the channel of the link from the kth MD to the
IRS to the AP in the tth time slot is

ht
k = (hhht

a,r)
HΘΘΘthhht

r,k. (6)

Remark 1: We assume that the locations of MDs are
fixed within each time slot, but they can be changed between
different time slots. More importantly, their locations in the
future time slots are unknown. Therefore, the future channels
are not available as they are related to the future locations of
MDs.

In this paper, all MDs communicate simultaneously with the
AP on different orthogonal sub-bands of equal size. Therefore,
the data rate from the kth MD to the AP in the tth time slot
can be given by

Rt
k = B log2

(
1 +

ptk|ht
k|2

σ2

)
, (7)

where B denotes the sub-band bandwidth, ptk denotes the
transmit power of the kth MD in the tth time slot, and σ2

denotes the variance of complex Gaussian channel noise.
Further, as shown in Fig. 2, we assume that the raw

data with size AAAt = [At
1, A

t
2, . . . , A

t
K ]T (in bits) arrives at

the queues of MDs in the tth time slot. Besides, At
k ∈

[At
k,min, A

t
k,max] follows an independent and identically uni-

formed distribution in different time slots with non-negative
integer values, with E {At

k} = λk [24]. As stated in
[25], At

k is dynamic and unpredictable. Then, let QQQt =

1CN (x, σ) represents the distribution of a complex Gaussian variable with
mean x and covariance σ.

Fig. 2. Queue of the kth MD in the tth time slot.

[Qt
1, Q

t
2, . . . , Q

t
K ]T denote the length of queues of all MDs

at the beginning of the tth time slot. Therefore, the queue
dynamic of the kth MD can be modeled as

Qt+1
k = max{Qt

k −Dt
k, 0}+At

k, (8)

where Dt
k = Rt

kτ represents the size of the data of the kth
MD sent to the AP in the tth time slot. Note that, Q1

k = 0.

B. Problem Formulation

In this paper, we aim to minimize the long-term energy
consumption for all MDs by jointly optimizing the phase shift
coefficient (i.e., θθθ = {θθθ1, θθθ2, . . . , θθθt, . . .}) and the transmit
power (i.e., ppp = {ppp1, ppp2, . . . , pppt, . . .}) in sequential time slots
while ensuring queue stability, where pppt = [pt1, p

t
2, . . . , p

t
K ]T

denotes the transmit power of MDs in the tth time slot. As a
result, the optimization problem is formulated as

min
θθθ,ppp

lim
T→∞

1

T

T∑
t=1

K∑
k=1

ptkτ (9a)

s.t. 0 ≤ ptk ≤ pk,max, ∀k, t, (9b)
θtn ∈ {0,∆θ, . . . , (X − 1)∆θ}, ∀n, t, (9c)

lim
T→∞

1

T

T∑
t=1

E{Qt
k} < ∞, ∀k, (9d)

where pk,max denotes the maximal transmit power of the kth
MD and (9d) ensures queue stability [26], [27].

Fig. 3 presents the flowchart of the long-term energy mini-
mization problem in the studied IRS-aided uplink communica-
tion system. Owing to the time-varying channels (i.e., hhht

a,r and
hhht
r,k) and the stochastic data arrival (i.e., AAAt), we need to make

decisions (i.e., θθθt∗ and pppt∗) in sequential time slots. Due to
the dynamic information in future time slots and the coupling
between optimization problems in different time slots, myopic
optimization in each time slot may compromise queue stability
[28]. The reason is that MDs may not or less transmit data
to the AP to save energy, which will cause the queue length
to increase continuously. Under this condition, to effectively
solve (9), there are two challenges:

• How to make decisions in each time slot for the long-
term energy minimization while ensuring queue stability
without the assumption of knowing the future channels
and data arrivals?

• How to make real-time decisions in each short time slot?
Remark 2: Although the studied optimization problem

in this paper and the most common dynamic optimization
problems [29]–[33] have the time-slotted structure, the latter
focus on the short-term performance in each time slot.
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Fig. 3. Flowchart of the long-term energy minimization problem.

III. PROPOSED APPROACH

To tackle the above two challenges, we propose a method
(called LETO), which combines Lyapunov optimization with
ETO to solve (9).

A. Lyapunov Optimization-Based Problem Decoupling

Regarding the first challenge, LETO applies Lyapunov op-
timization to decouple the long-term stochastic optimization
problem in (9) into deterministic optimization problems in
sequential time slots. Lyapunov optimization is particularly
suitable for optimizing the long-term performance in stochastic
network systems. By using it, system optimization can only
depend on current information [34], [35].

We first define Lyapunov function L(QQQt) and Lyapunov
drift ∆QQQt as [24]

L(QQQt) = 0.5
K∑

k=1

(Qt
k)

2, (10)

and

∆QQQt = E
{
L(QQQt+1)− L(QQQt)|QQQt

}
, (11)

where L(QQQt) represents a scalar measure of the length of
queues, and ∆QQQt represents the expected change in the
Lyapunov function from one time slot to the next. To stabilize
the queues, we need to make ∆QQQt as small as possible [36].

To minimize the long-term energy consumption for all MDs
while stabilizing the queue, we then minimize the following
drift-plus-penalty function in each time slot [34]:

∆QQQt + V
K∑

k=1

E
{
ptkτ |QQQt

}
, (12)

where V is a predefined tradeoff between energy consumption
and queue stability.

Since it is not a trivial task to minimize the drift-plus-
penalty function, similar to [27], [37], and [38], we instead
minimize the upper bound of the drift-plus-penalty function

in each time slot, which can be obtained as follows. First, we
have
∆QQQt =E

{
L(QQQt+1)− L(QQQt)|QQQt

}
=0.5

K∑
k=1

E
{
(Qt+1

k )2 − (Qt
k)

2
∣∣QQQt
}

=0.5
K∑

k=1

E
{
{max{Qt

k −Dt
k, 0}+At

k}2 − (Qt
k)

2
∣∣QQQt
}

≤
K∑

k=1

Qt
kE
{
At

k −Rt
kτ
∣∣QQQt
}
+ 0.5

K∑
k=1

E
{
(At

k)
2 + (Rt

kτ)
2
}

≤U +
K∑

k=1

Qt
kE
{
At

k −Rt
kτ
∣∣QQQt
}
.

(13)

Herein, U is a constant obtained as

0.5

K∑
k=1

E
{
(At

k)
2 + (Rt

kτ)
2
}

≤0.5

K∑
k=1

{
(At

k,max)
2 + (Rt

k,maxτ)
2
}
≜ U,

(14)

where Rt
k,max = B log2

(
1 +

pk,max|ht
k|

2

σ2

)
is the maximum data

rate from the kth MD to the AP in tth time slot.
Substituting (13) into (12), we have

∆QQQt + V
K∑

k=1

E
{
ptkτ |QQQt

}
≤U +

K∑
k=1

Qt
kE
{
At

k −Rt
kτ
∣∣QQQt
}
+ V

K∑
k=1

E
{
ptkτ |QQQt

}
=U +

K∑
k=1

Qt
kλi −

K∑
k=1

Qt
kE
{
Rt

kτ
∣∣QQQt
}
+ V

K∑
k=1

E
{
ptkτ |QQQt

}
.

(15)

Note that, the first two terms on the right-hand side of (15)
can be removed as they are not related to the decision vari-
ables (i.e., θθθt and pppt). According to opportunistic expectation
minimization [24], we can obtain the following optimization
problem in each time slot as:

min
θθθt,pppt

K∑
k=1

(
−Qt

kR
t
kτ + V ptkτ

)
s.t. 0 ≤ ptk ≤ pk,max, ∀k, t,

θtn ∈ {0,∆θ, . . . , (X − 1)∆θ}, ∀n, t.

(16)
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Algorithm 1 Overall process of DE for solving (21)
1: for t = 1, 2, . . . , tmax do
2: g = 0; // g denotes the generation number
3: Randomly generate NP solutions to form an initial population (de-

noted as Pt
g), where each solution represents the phase shift coefficient

in the tth time slot (i.e., θθθt);
4: Evaluate each solution in Pt

g according to (21);
5: while g < gmax do
6: Implement the crossover and mutation operators of DE on Pt

g to
generate an offspring population (denoted as Qt

g);
7: Evaluate each solution in Qt

g according to (21);
8: Perform the selection operator of DE to produce Pt

g+1 from Pt
g

and Qt
g ;

9: g ← g + 1;
10: end while
11: Obtain the optimal phase shift coefficient (denoted as θθθt∗) from Pt

g ;
12: Calculate the optimal transmit power (denoted as pppt∗) according to

(20);
13: Use pppt∗, θθθt∗, QQQt, and AAAt to obtain QQQt+1 according to (8);
14: t← t+ 1;
15: end for

Then, differentiating F =
∑K

k=1 (−Qt
kR

t
kτ + V ptkτ) by

ptk, we have

dF

dptk
=

−Qt
kτB|ht

k|2

ln2(σ2 + ptk|ht
k|2)

+ V τ. (17)

The local minimizer (denoted as p̄tk) can be obtained from
dF
dpt

k
= 0 by

p̄tk =
Qt

kB

V ln2
− σ2

|ht
k|2

. (18)

In addition, since we have

d2F

d(ptk)
2
=

Qt
kτBσ2|ht

k|4

ln2(σ2 + ptk|ht
k|2)2

> 0, (19)

p̄tk is the global minimizer of F . Considering the bound
constraint of ptk, the optimal ptk is obtained by

pt∗k = min{max{0, p̄tk}, pk,max}. (20)

Thus, (16) can be simplified to the following optimization
problem in each time slot:

min
θθθt

K∑
k=1

(
−Qt

kR
t
kτ + V pt∗k τ

)
s.t. θtn ∈ {0,∆θ, . . . , (X − 1)∆θ}, ∀n, t.

(21)

It can be seen that the optimization problem in (21) does
not involve future channels and data arrivals. Moreover, we
also consider queue stability in the objective function. As
a result, we can make decisions in each time slot for the
long-term energy minimization while ensuring queue stability
without the assumption of knowing the future channels and
data arrivals.

B. ETO-Based Problem Solving

Due to the discreteness of the phase shift coefficient, it
is generally hard to solve the optimization problem in (21).
Although deterministic optimization algorithms, such as the
branch-and-bound method, can obtain the optimal solution of
(21), they suffer from high computational complexity [39]. In

contrast, evolutionary algorithms (EAs) [10], [17], [40], [41],
such as GA, differential evolution (DE), and particle swarm
optimization provide higher efficiency for solving complex
optimization problems [42].

Algorithm 1 presents the overall process of DE to solve
(21) 2, which sequentially solves the optimization problems in
tmax time slots. The process of DE to solve the optimization
problem in the tth time slot is introduced as follows. In the
initialization, we first randomly generate NP solutions to form
an initial population (denoted as Pt

g), where each solution rep-
resents the phase shift coefficient in the tth time slot (i.e., θθθt).
Then, we evaluate each solution in Pt

g based on (21), During
the evolution, Qt

g is generated from Pt
g by using the crossover

and mutation operators of DE. Subsequently, each solution in
Qt

g is evaluated based on (21). Finally, the selection operator
of DE is performed to obtain the next-generation population
(denoted as Pt

g+1) based on Pt
g and Qt

g . The above procedure
is repeated until the stopping criterion is met, i.e., the maximal
generation (denoted as gmax) is reached. Afterward, we obtain
the optimal phase shift coefficient (denoted as θθθt∗) and the
optimal transmit power (denoted as pppt∗). After that, QQQt+1 is
updated by using pppt∗, θθθt∗, QQQt, and AAAt according to (8).

It can be seen that DE starts the search process from scratch
in each time slot. Therefore, it is difficult to satisfy real-time
decision making in each short time slot since each run usually
requires many generations [43]. In practice, the optimization
problems in different time slots share some similarities and
rarely exist in isolation. Using the knowledge gained from past
time slots may reduce the computational cost and improve
real-time performance in future time slots. Based on this
consideration, LETO adopts ETO to solve (21) in each time
slot. ETO is a paradigm that integrates EAs and the experience
gained in past related optimization problems to achieve better
optimization efficiency and performance [44]. It has been
applied to various optimization problems, such as multitask
optimization problems [45]–[47], dynamic optimization prob-
lems [48]–[50], and complex practical optimization problems
[51], [52].

When using ETO, LETO needs to address the following
three issues: when, what, and how to transfer [53].

• As we all know, a high-quality initial population in EAs
can speed up the evolutionary process. Along this line,
in the initialization of each time slot, we utilize the
experience obtained from the optimization problems in
past time slots to generate an initial population for solving
the optimization problem in the current time slot, which
corresponds to the first issue.

• For the second issue, we transfer the optimal solutions
of the optimization problems in past time slots. Note,
however, that to avoid performance degradation caused
by negative transfer, the optimization problems in past
time slots should be similar to that in the current time
slot. Therefore, a question which naturally arises is: how
to measure their similarity. Indeed, the optimal phase shift
coefficient is usually related to the locations of MDs [20].
Therefore, we design a metric to measure the similarity

2Other EAs can also be used as the search algorithm.
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solving the optimization 

problem in the current time 

slot

Fig. 4. Overall process of LETO to generate an initial population in the current time slot, where ■ represents the optimal solution of the optimization problem
in past time slots and ▲ represents the randomly generated solution.

between the optimization problems in different time slots
based on the locations of MDs:

m(Lta ,Ltb) = min

{
1

K

K∑
k=1

dta,tbk ,
1

K

K∑
k=1

dtb,tak

}
(22)

where Lta = {lllta1 , lllta2 , . . . , llltaK} and Ltb =
{llltb1 , llltb2 , . . . , llltbK} represent the set of locations of
all MDs in the tath and tbth time slots, respectively, llltak
and llltbk represent the location of the kth MD in the tath
and tbth time slots, respectively, and dta,tbk denotes the
Euclidean distance between llltak and the closest location
in Ltb . Therefore, 1

K

∑K
k=1 d

ta,tb
k is used to calculate

the average Euclidean distance between the locations of
all MDs in the tath time slot and their closest locations
in Ltb , and 1

K

∑K
k=1 d

tb,ta
k is used to calculate the

average Euclidean distance between the locations of all
MDs in the tbth time slot and their closest locations
in Lta . The smaller the value of m, the higher the
similarity. By comparing the value of m, we can identify
the optimization problems in past time slots which are
similar to that in the current time slot. Note that, to
improve the real-time performance, for the optimization
problem in the tth slot, we only search the similar
optimization problems between the (t − 1 − tlast)th to
the (t− 1)th time slots.

• With respect to the last issue, several novel methods have
been devised in ETO, such as autoencoding [50], [54],
transfer component analysis [48], and neural network-
based information transfer [55]. However, transfer com-
ponent analysis and neural network-based information
transfer may require a long training time [48], [55], and
autoencoding is usually used to model the linear relation-
ship among different optimization problems [50], [54].
As a result, they are difficult to use in this paper due to
the highly complex correlation between the optimization
problems in different time slots and the requirements of
real-time decision making. To this end, we directly reuse
the optimal solutions of similar optimization problems
in past time slots to construct a high-quality initial
population for solving the optimization problem in the
current time slot. Note that, at most NP/2 transferred
solutions are employed while the remaining solutions are
randomly generated to maintain the initial population’s
diversity.

Fig. 4 shows the overall process of LETO to generate an

Algorithm 2 Overall process of LETO for solving (21)
1: t = 1 and g = 0; // g denotes the generation number
2: Randomly generate an initial population (denoted as Pt

g);
3: Evaluate each solution in Pt

g according to (21);
4: while g < gmax do
5: Implement the crossover and mutation operators of DE on Pt

g to
generate an offspring population (denoted as Qt

g);
6: Evaluate each solution in Qt

g according to (21);
7: Perform the selection operator of DE to produce Pt

g+1 from Pt
g and

Qt
g ;

8: g ← g + 1;
9: end while

10: Obtain the optimal phase shift coefficient (denoted as θθθt∗) from Pt
g ;

11: Calculate the optimal transmit power (denoted as pppt∗) based on (20);
12: Use pppt∗, θθθt∗, QQQt, and AAAt to obtain QQQt+1 according to (8);
13: t← t+ 1;
14: while t ≤ tmax do
15: g = 0;
16: Directly reuse the optimal solutions of the similar optimization prob-

lems in past time slots as a part of the initial solutions of Pt
g ;

17: Randomly generate the remaining solutions of Pt
g ;

18: Evaluate each solution in Pt
g according to (21);

19: while g < gmax do
20: Implement the crossover and mutation operators of DE on Pt

g to
generate Qt

g ;
21: Evaluate each solution in Qt

g according to (21);
22: Perform the selection operator of DE to produce Pt

g+1 from Pt
g

and Qt
g ;

23: g ← g + 1;
24: end while
25: Obtain θθθt∗ from Pt

g ;
26: Calculate pppt∗ based on (20);
27: Use pppt∗, θθθt∗, QQQt, and AAAt to obtain QQQt+1 according to (8);
28: t← t+ 1;
29: end while

initial population in the current time slot. The overall process
of LETO for solving (21) is presented in Algorithm 2. It is
similar to Algorithm 1 except for one modification. That is, we
directly reuse the optimal solutions of the similar optimization
problems as a part of the initial solutions of Pt

g , as shown in
line 16 of Algorithm 2.

Remark 3: Although reusing the optimal solutions of simi-
lar optimization problems in past time slots is a simple transfer
method, its effectiveness has been investigated in experimental
studies by comparison with autoencoding.

IV. EXPERIMENTAL STUDIES

A. Parameter Settings

To evaluate the performance of LETO, we studied an IRS-
aided uplink communication system, in which all MDs move
at random speeds between 0 and 5 m/s on a circle centered at
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Fig. 5. Dynamics of the average queue length of all MDs obtained by LETO
and myopic optimization. (a) N = 25 and K = 30. (b) N = 100 and
K = 50.

[100, 100, 0] m with a radius of 80 m, and the IRS and the
AP are located at [0, 100, 2] m and [100, 1, 1] m, respectively.
At

k obeys the uniform distribution, whose range is between [1,
200] KB. As for the channels, the path loss in dB is expressed
as [16]

PLt = PL0 − 10β log(
dt

d0
) (23)

where PL0 = 30 dB is the path loss at the reference distance
(i.e., d0 = 1 m), β = 2.2 represents the path loss exponent,
and dt denotes the distance from the transmitter to the receiver
in the tth time slot. In addition, the duration of each time slot
was set to τ = 1 s, the number of levels of each reflect element
was set to X = 16, the sub-band bandwidth was set to B = 1
MHz, the maximal transmit power was set to pk,max = 0.1
W, the number of time slots was set to tmax = 100, and the
tradeoff between energy consumption and queue stability was
set to V = 1× 1013.

In LETO, the “DE/best/1” mutation operator and the bino-
mial crossover operator [56] were adopted. The population size
was set to NP = 30, and the crossover control parameter and
the scaling factor of DE were set to CR = 0.9 and F =0.9,
respectively. The maximal generation of each time slot was
set to a small number (i.e., gmax =10) since LETO has a high
convergence speed. The number of optimization problems in
past time slots was set to tlast = 30. Besides, 20 independent
runs were implemented on LETO. We implemented all the
experiments in MATLAB and tested them on a computer with
Intel Core i7-6700 CPU @3.40 GHz and 16 GB of RAM.

B. Effectiveness of Lyapunov Optimization in LETO

To ensure queue stability, we adopted Lyapunov optimiza-
tion to decouple the original long-term stochastic problem into
deterministic optimization problems in sequential time slots.
To verify its effectiveness, we compared the performance of
LETO with that of myopic optimization. Myopic optimization
removed Lyapunov optimization from LETO to minimize the
long-term energy consumption for all MDs in each time slot
while ignoring queue stability. Fig. 5 presents the dynamics
of the average queue length of all MDs obtained by LETO
and myopic optimization. It can be observed that the average
queue length of all MDs obtained by myopic optimization
continues to increase over time slots while LETO can keep
the average queue length stability, indicating that LETO can

1 2 3 4 5 6

1013

0

0.02

0.04

0.06

A
ve

ra
ge

 e
ne

rg
y 

co
ns

um
pt

io
n 

(J
)

0.6

0.8

1

1.2

1.4

0.6

0.8

A
ve

ra
ge

 q
ue

ue
 le

ng
th

 (
M

B
)

Fig. 6. Results of LETO with six different values of V when N = 25 and
K = 30.
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Fig. 7. Overall performance of LETO and LDE in terms of energy consump-
tion and queue stability. (a) Different numbers of reflecting elements when
K = 30. (b) Different numbers of MDs when N = 25.

achieve long-term queue stability; thus, the effectiveness of
Lyapunov optimization is verified.

Lyapunov optimization introduces an important parameter
V in (12) to balance queue stability and energy consumption
for all MDs. One may be interested in its effect on the per-
formance of LETO. We tested LETO with six different values
of V : V = 1 × 1013, 2 × 1013, . . . , 6 × 1013 on an instance
with N = 25 and K = 30. Two performance indicators
were employed here: (1) the average energy consumption for
all MDs: 1

K∗tmax

∑tmax
t=1

∑K
k=1 p

t
kτ , and (2) the average queue

length of all MDs: 1
K∗tmax

∑tmax
t=1

∑K
k=1 Q

t
k. Fig. 6 presents the

results obtained by LETO with six different values of V . It
can be seen from Fig. 6 that as the values of V increase,
the average energy consumption for all MDs continues to
decrease, while the average queue length of all MDs continues
to increase. This is because when the values of V increase,
LETO prefers the second term in (12), which leads to lower
energy consumption and longer queues.

C. Effectiveness of ETO in LETO

To make decisions quickly, LETO made use of ETO to solve
the optimization problem in (21) in each time slot. To study the
effectiveness of ETO, ETO in LETO was replaced with DE, re-
sulting in a variant of LETO (called LDE). Then, we compared
their overall performance in terms of energy consumption and
queue stability: 1

tmax

∑tmax
t=1

∑K
k=1 (Q

t
kR

t
kτ − V ptkτ). Note here

that a larger value indicates better overall performance. As
shown in Fig. 7(a), we compared the overall performance of
LDE and LETO under different numbers of reflecting elements
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TABLE I
AVERAGE RUNTIME OF LETO TO MAKE DECISIONS IN EACH TIME SLOT.

N 25 36 49 64 81 100
T (s) 0.014 0.016 0.016 0.017 0.018 0.018
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Fig. 9. Overall performance of LETO and autoencoding in terms of energy
consumption and queue stability. (a) Different numbers of reflecting elements
when K = 40. (b) Different numbers of MDs when N = 49.

when K = 30. We can observe that LETO performs better than
LDE on each instance. In addition, the advantage of LETO
consistently increases as the number of reflecting elements
increases. To be specific, their gap is about 2 × 1012 when
N = 25, but when N = 100, their gap reaches up to
5 × 1012. Moreover, we compared LDE and LETO under
different numbers of MDs when N = 25 in Fig. 7(b). From
Fig. 7(b), LETO provides an increasing advantage over LDE
as the number of MDs grows. Fig. 8 presents the dynamics
of the objective values of LETO and LDE when N = 25
and K = 30. As shown in Fig. 8, the main advantage of
LETO can be attributed to the fact that it starts from some
good initial solutions instead of totally randomly generated
solutions. In addition, we recorded the average runtime of
LETO to make decisions in each time slot. As shown in Table
I, the average runtime of LETO to make decisions in each
time slot is much less than the duration of each time slot (i.e.,
τ = 1 s), which means that LETO can meet the requirements
of real-time decision making.

In order to utilize the previous experience, LETO directly
reused the optimal solutions of the optimization problems in
past time slots. As stated in Section III-B, many methods
have been proposed, such as autoencoding, transfer component
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Fig. 10. Overall performance of LETO and LETO-R in terms of energy
consumption and queue stability. (a) Different numbers of reflecting elements
when K = 50. (b) Different numbers of MDs when N = 64.
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analysis, and neural network-based information transfer. In
this subsection, we compared the performance of LETO and
autoencoding. Autoencoding adopts a single-layer denoising
autoencoder to transfer the optimal solutions in past time slots
to the initial solutions in the current time slot [50]. Fig. 9
presents the overall performance of LETO and autoencoding
in terms of energy consumption and queue stability. As shown
in Fig. 9, LETO outperforms autoencoding on all instances.
This phenomenon can be explained as follows. In general,
autoencoding models the linear relationship among different
optimization problems. However, the studied optimization
problems between different time slots have highly complex
nonlinear relationships. Besides, in the studied optimization
problems, the optimal solutions of the similar optimization
problems may also be similar; therefore, it is effective to di-
rectly reuse the optimal solutions of the optimization problems
in past time slots.

D. Discussions

1) Effectiveness of the Similarity Metric: A similarity
metric was proposed in LETO to identify the optimization
problems in past time slots similar to that in the current time
slot. To verify the effectiveness of the proposed metric, an
additional experiment was performed, in which the similar
optimization problems in past time slots were randomly se-
lected, and the resultant algorithm was recorded as LETO-R.
As shown in Fig. 10, the overall performance of LETO is
better than LETO-R in terms of energy consumption and queue
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Fig. 12. Overall performance of LETO with 25 different combinations of F
and CR when K = 30 and N = 100.
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Fig. 13. Overall performance of LETO and LETO-GA in terms of energy
consumption and queue stability. (a) Different numbers of reflecting elements
when K = 40. (b) Different numbers of MDs when N = 49.

stability. The above results suggest that the proposed similarity
metric can effectively search the similar optimization problems
in past time slots.

2) Effect of the Ratio of Transferred Solutions: In LETO,
some initial solutions in the current time slot were transferred
from the optimal solutions in past time slots. To study the
effect of the ratio of the transferred solutions in the initial
population, we tested 11 different cases: 0, 10%, . . . , 100%.
Fig. 11 presents the overall performance of LETO in terms
of energy consumption and queue stability when K = 50 and
N = 100. It can be seen from Fig. 11 that LETO performs
well when the ratio of the transferred solutions in the initial
population is between 40% and 90%, and performs the worst
when no solution is transferred.

3) Sensitivities of F and CR to the Performance of
LETO: We tested LETO with 25 combinations of F and
CR to investigate their sensitivity. Specifically, we se-
lected F and CR from two sets {0.1, 0.3, 0.5, 0.7, 0.9} and
{0.1, 0.3, 0.5, 0.7, 0.9}, respectively. Fig. 12 shows the overall
performance obtained by LETO with 25 combinations of F
and CR when K = 30 and N = 100. As shown in Fig. 12,
LETO performs better as the value of CR increases, and its
performance remains almost the same when F ≥ 0.3.

4) Effect of the Search Engine: In this subsection, we
studied the effect of the search engine on the performance
of LETO by replacing DE with GA. The resultant variant is
called LETO-GA. As shown in Fig. 13, there is no significant
performance difference between LETO and LETO-GA, which
means that LETO is not sensitive to the search engine.

V. CONCLUSION

In this paper, we studied an IRS-aided uplink communica-
tion system. To minimize the long-term energy consumption
for all MDs in the studied system, a method combining
Lyapunov optimization with ETO, called LETO, was proposed
to jointly optimize the phase shift coefficient and the transmit
power in sequential time slots while ensuring queue stability.
LETO first decomposed the long-term stochastic optimization
problem into deterministic optimization problems in sequential
time slots. To quickly solve the optimization problem in
each time slot, we then transferred the optimal solutions of
the similar optimization problems in past time slots to the
initial solutions in the current time slot. LETO was applied to
various instances with different numbers of MDs and reflecting
elements. The results demonstrated the effectiveness of LETO.
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