
ENSEMBLE LEARNING FOR

OPTIMAL CLUSTER ESTIMATION

Submitted in partial fulfillment of the

requirement of Doctor of Philosophy

by

Afees Adegoke ODEBODE

Department of Computer Science

Brunel University London

Abstract

This thesis addresses the importance of understanding the underlying

structure of high-dimensional datasets through clustering, considering the

vast amount of unlabelled available content on the internet and electronic

sources. While clustering ensembles have been proposed in the past,

the potential of heuristic search-based ensembles has been relatively un-

explored. The thesis presents a novel computational method that com-

bines heuristic search and clustering ensembles, focusing on two crucial

issues. Firstly, it establishes a representative solution by effectively sub-

setting ensembles. The thesis introduces a Gray code implementation that

maximises the spread across subsets while minimising differences between

them. Secondly, the exhaustive search for the best solution from the rep-

resentative pool becomes computationally expensive as the dimension and

volume increase. An alternative approach based on heuristic search is sug-

gested. This approach evaluates subsets incrementally, similar to the im-

plementation of Gray code, resulting in significant speed gain. However,

random mutation hill climbing (RMHC) in heuristic search suffers from find-

ing a suitable solution without guidance, particularly in larger search spaces.

The thesis presents an innovative seeding technique that leverages Fiedler

vector decomposition and minimum spanning tree (MST) to address this

challenge. This technique significantly improves both the quality of solu-

tions and computational efficiency. The proposed methodology is exten-

sively evaluated using simulated and benchmark clustering datasets, em-

ploying theoretical and empirical examples. The results demonstrate the

high effectiveness of the proposed approach. The key contributions of this

thesis include the introduction of Gray code subsetting of ensembles, the

incorporation of heuristic-search-based techniques into clustering ensem-

bles, and the novel improvement in search space convergence through ef-

fective seeding.

i

Acknowledgements

I would like to express my profound gratitude to the individuals who have

played a crucial role in making this work possible. Firstly, I am immensely

grateful to my supervisor, Dr Stephen Swift, whose unwavering support

and guidance have been invaluable throughout this research journey. De-

spite facing personal challenges and the additional difficulties posed by the

COVID-19 pandemic, Dr Swift’s patience and encouragement have been

instrumental in helping me overcome obstacles and achieve my research

objectives. I owe a great deal of my research accomplishments to his men-

torship and the resources he provided, which have allowed me to develop

my research skills.

I am also indebted to my second supervisor, Dr Allan Tucker, for his invalu-

able assistance in various aspects of my research. His passion for scientific

inquiry and wide-ranging knowledge across different fields have greatly en-

riched my thesis. I also want to express my gratitude to Dr Mahir Arzoky,

my mentor, whose meticulousness and insightful suggestions have been

integral to the success of this work. Additionally, I am thankful to my com-

mittee members, including Professor Steve Counsell and Dr Stasha Lauria,

for their constructive feedback and guidance throughout the research pro-

cess.

I extend my heartfelt appreciation to the members of the IDA group for their

warm welcome and support since my first day at the university. The de-

partment’s opportunities for enhancing my teaching skills through Gradu-

ate Teaching Assistantship roles have been beneficial to both my research

and academic development. I am grateful for the support and meaningful

conversations shared with my colleagues, including Ashley Mann, Faisal

Maramazi, Ben Evans, Fawzia Kara-Isitt, and many others, as they have

profoundly impacted my research.

ii

I would also like to thank my friends, including Zear Ibrahim, Anas, Futra,

and others, for their continuous encouragement and assistance throughout

this endeavour. Furthermore, I am grateful for the love and support of my

students and colleagues at BPC and Regent. I want to express my profound

appreciation to my parents and siblings for their unwavering love and sup-

port, which has been a constant source of motivation and inspiration.

Last but not least, I am incredibly thankful to my wife and children, whose

boundless patience, prayers, and love have propelled me towards the finish

line. Their unwavering support has been an endless source of strength and

encouragement throughout this journey.

iii

Declaration

The following papers have been submitted/accepted for publication as a

direct result of the research discussed in this thesis:

• Afees Adegoke Odebode, Allan Tucker, Mahir Arzoky, Stephen Swift,

2022 “Estimating the Optimal Number of Clusters from Subsets of En-

sembles” Proceedings of the 11th International Conference on Data

Science, Technology and Applications.

• Faisal Maramazi, Afees Adegoke Odebode, Stephen Swift, Ashley

Mann, Mahir Arzoky, 2023 “How Starting Points and Representa-

tions Affect Software Modularisation: An Empirical Analysis” Intelli-

gent System Conference (IntelliSys) 7- 9 September, 2023.

• Afees Adegoke Odebode, Allan Tucker, Mahir Arzoky, Ashley Mann,

Faisal Maramazi, Stephen Swift, 2023 “Using Clustering Ensem-

bles and Heuristic Search To Estimate The Number Of Clusters In

Datasets” Intelligent System Conference (IntelliSys) 7- 9 September,

2023.

iv

Contents

Contents v

List of Figures x

List of Tables xii

List of Equations xiv

1 Introduction 1

1.1 Motivation . 2

1.2 Methodology . 3

1.2.1 Overview of the critical stages in the thesis 4

1.3 Contributions . 7

1.4 Summary of Thesis . 9

2 Literature Review 12

2.1 Introduction . 12

2.2 Clustering . 12

2.2.1 Clustering Applications 14

2.2.2 Applications . 15

2.2.3 Measures of Similarity 17

2.3 Clustering Methods . 20

2.3.1 Partitioning Around Medoids (PAM) 23

2.3.2 X-Means . 25

2.3.3 Clustering Large Applications (CLARA) 26

v

2.3.4 Fuzzy Clustering . 28

2.3.5 Hierarchical Clustering 29

2.3.6 Density-based Methods 32

2.3.7 ccfkms:Clustering with Conjugate Convex Function . 34

2.4 Cluster Validity: Evaluating Clustering 34

2.4.1 Cluster Validity Index (CVI) 35

2.4.2 Evaluating Cluster Validity Index 36

2.4.3 Gap Statistics . 37

2.4.4 The Average Silhouette 37

2.5 Clustering Ensemble . 43

2.5.1 Advantages of Using Ensemble for Clustering 45

2.5.2 Clustering Ensemble Representation 47

2.5.3 Search Space . 49

2.6 Search Strategies: Exhaustive Search 51

2.7 Heuristic Search Algorithms 53

2.7.1 Genetic Algorithms and Exploratory Data Analysis . . 54

2.7.2 Greedy Search . 55

2.7.3 Hill Climbing Algorithms 56

2.7.4 Fitness in a Search Space 59

2.7.5 Convergence in a Search Space 61

2.7.6 Simulated Annealing 62

2.7.7 Genetic Algorithms . 64

2.8 Evolutionary Approaches to Clustering 65

2.9 Related Studies . 66

3 Description of Datasets 68

3.1 Introduction . 68

3.2 Dataset Description . 68

3.3 Data Collection and Pre-Processing 69

3.4 Dataset Characteristics and Features 71

vi

3.5 Clustering Ensemble Generation 78

3.5.1 R and The List of Packages 79

3.6 Variability by Method and Dataset 81

4 ESTIMATING NUMBER OF CLUSTERS USING THE ENSEM-

BLE FRAMEWORK 85

4.1 Introduction . 85

4.2 Background . 86

4.2.1 Why Gray Codes? . 88

4.2.2 How Does a Cluster Estimator Work? 89

4.3 Estimating the Number of Clusters 90

4.4 The Ensembles Framework 94

4.4.1 Subsets Generation 95

4.4.2 Determining The Best Subset 97

4.5 Quality Function Description 98

4.5.1 The Quality Function 98

4.5.2 The Update Quality Function (Q̂) 99

4.6 Results and Discussions . 102

4.6.1 Estimated Errors . 103

4.6.2 Quality Vs Update Quality 106

4.7 Recommendations . 108

5 HEURISTIC SEARCH BASED CLUSTERING ENSEMBLE 110

5.1 Introduction . 110

5.2 Background to The Study . 111

5.3 The Ensemble Framework . 112

5.3.1 Generation of the Base Clustering 113

5.3.2 Construction of The Wk Agreement Matrix 115

5.3.3 Sub-setting the Wk Agreement Matrix 116

5.3.4 Experimental data . 116

vii

5.3.5 Selection of The Best Subset 118

5.3.6 The Fitness Function 118

5.4 Methods . 120

5.4.1 The Exhaustive Approach 120

5.4.2 Random Mutation Hill Climbing (RMHC) 121

5.5 Experimental Procedure . 123

5.6 Results and Discussions . 125

5.7 Recommendations . 131

6 Seeding Using The Fiedler Vector Decomposition for Clus-

tering Ensemble Search 133

6.1 Introduction . 133

6.2 Minimum Spanning Tree . 135

6.3 Fiedler Vector Decomposition 136

6.4 Motivation for Seeding . 138

6.5 Arnoldi Iteration . 140

6.6 Average Quality of the Search Space 140

6.6.1 Empirical Proof of the Average Quality 141

6.6.2 Mathematical proof of Average Quality 142

6.7 Experimental Data . 147

6.8 Methods . 148

6.9 Experiments . 148

6.10 Results and Discussions . 150

6.10.1 Results by Quality . 150

6.10.2 Results by Convergence Points 152

6.10.3 Results by State . 153

6.11 Recommendations . 157

viii

7 Conclusions 159

7.1 Contributions . 162

7.1.1 Gray Code Subsetting 162

7.1.2 Assessing Subsets Based on Quality 163

7.1.3 Quality Metric Framework 163

7.1.4 Seeded RMHC . 164

7.1.5 Proof of the Search Space Fitness Average 164

7.2 Summary . 165

7.3 Limitations . 166

7.3.1 Generating Ensembles 167

7.3.2 Seeded RMHC . 167

7.4 Further Work . 168

Appendices 171

Appendix A: Results from Simulated Datasets 171

Appendix B : Datasets Description 172

Appendix C: Partioning adjacency matrix using FVD 173

Bibliography 176

ix

List of Figures

1.1 Basic Framework of the Ensemble 6

2.1 Figure Showing a Dendrogram of Iris Dataset 33

2.2 Steps in a General Exhaustive Search. 53

2.3 State Space Landscape of a Hill Climbing Algorithm. [1] . . . 58

3.1 Stages in Data Preprocessing 71

3.2 Visualisation of Atom Dataset 73

3.3 Visualisation of Hapta Dataset 74

3.4 Visualisation of Lsun Dataset 75

3.5 Visualisation of Tetra Dataset 75

3.6 Visualisation of LongSquare Dataset 77

3.7 Shapes Dataset Visualisation 78

3.8 Variability of Methods based on Weighted Kappa Values . . . 82

3.9 Variability of Datasets based on their Weighted Kappa values 83

4.1 Representation of Optimal Number of Clusters in a Dataset. . 90

4.2 Ensemble Framework . 94

4.3 Normalised Average Errors on the Twenty-Seven Datasets . 104

4.4 The speed gain for Exhaustive 106

4.5 The speed gain of Exhaustive Vs Q̂ 107

5.1 The Modified Ensemble Framework 113

x

5.2 A plot Showing the Linear Regression Model by Average and

Maximum Convergence Points. 129

5.4 The Accuracy of RMHC Compared with Exhaustive 130

5.3 RMModel vs Exhaustive Convergence point 130

6.1 A Simple Graph with Five Nodes 136

6.2 The Minimum Spanning Tree of The Graph 136

6.3 Fiedler vector decomposition 137

6.4 The Variability as Average Search Space Converges to Zero

(Simulated Dataset for Matrix Size 10 and 11) 142

6.5 Quality Value for Methods: Shows the Average Quality Val-

ues for Each Method. 153

6.6 Convergence Values Methods: The figure shows the conver-

gence values for each method in the legend on average from

data size 13 to 30 . 154

6.7 The figure shows the number of outcomes for State 3 of the

FVD for all datasets . 155

6.8 The Figure Shows the Efficiency by Dataset Size 156

xi

List of Tables

2.1 Showing list of methods for determining the optimal number

of clusters in datasets . 38

2.2 The Weighted Kappa guideline 48

3.1 Dataset by rows, columns and number of clusters 72

3.2 Description of methods used in clustering the dataset 81

4.1 A summary of the indices implemented in NBClust [2] 92

4.2 Errors from the Eight Methods and the Average Ensemble . . 102

4.3 Errors for the Ensembles(Fair, Moderate, Median and Aver-

age) . 103

5.1 Dataset, Attributes and Number of Clusters with kmax 117

5.2 Table of Experiments with the Methods, Datasets, Number

of Iterations, and Repeats. 125

5.3 A summary of the Average and Standard Deviation by Dataset126

5.4 A Summary of the Average and Standard Deviation by Input

Size . 128

6.1 FVD table of experiments: Showing the methods, datasets,

number of iterations, and repeats. 150

6.2 Table showing the quality values for dataset size 5 to 30

based on the methods . 151

6.3 State Distributions . 155

xii

List of Algorithms

2.1 The K-means Algorithm . 22

2.2 Partitioning Around Medoids (PAM) 25

2.3 CLARA (Clustering Large Applications) 27

2.4 Single Linkage Hierarchical Clustering 30

2.5 Complete Linkage Hierarchical Clustering 31

2.6 Average Linkage Hierarchical Clustering 32

2.7 Gap Statistics . 37

2.8 The Average Silhouette Algorithm 38

2.9 Random Mutation Hill Climbing (RMHC) 59

2.10 Simulated Annealing . 63

2.11 The Genetic Algorithm . 65

4.12 Gray Code Implementation of Exhaustive Search Algorithm . 97

5.13 Smallchange between Subsest 115

5.14 Random Mutation Hill Climbing (RMHC) 123

6.15 Prims Minimum Spanning Tree (MST) 137

xiii

List of Equations

2.1 Euclidean Distance . 18

2.2 Scaled Euclidean Distance . 18

2.3 Minkowski Distance . 19

2.4 Weighted Kappa . 47

2.5 Adjusted Rand Index . 48

4.1Quality Function . 99

4.2Average Fitness Function . 99

4.3 Update Quality Function . 101

4.6 Error Estimate . 105

6.4 Average Quality For Q̄ . 144

xiv

Notations

V Set of objects to be clustered

n Number of columns in the dataset, n = |V |

C Clustering arrangement

m The number of rows in a dataset

k Number of clusters

r Number of input methods (clustering arrangements)

E Set of input cluster

ei Individual input cluster

|X| Size of object X

i, j Index variable for notation

Wk Weighted Kappa matrix of size r by r

wij Weighted Kappa between cluster i and cluster j

Q(s, W, θ) Quality metric of subsets s applied to W with threshold θ

θ Quality function threshold

D Dataset of size n by m

ŝ Number of comparison when evaluating Q on s

µ(X) Average of object X

Q̂(s, W, θ) Updated version of Q

po Relative observed agreement among raters

pe Probability of chance agreement

G(D) Gold standard number of clusters for dataset D

H(X, D) Predicted number of clusters for method X on dataset D

A Agreement Matrix

Ed Euclidean Distance

Bk Between cluster sum of squares

Ck Cluster k

U Number of vertices

C(V, k) Number of combinations of selecting k elements from a set of V elements

xv

x, y x and y are vectors of equal dimensions

α weight in the scaled euclidean distance

trace The sum of diagonal elements of a square matrix.

DIFF Difference in the function when the number of groups in the partition is increased

ptbiserial Point biserial correlation

dCor The distance correlation between two variables x and y

cci The cluster centroid of cluster ci

Je(2) Error rate of the second largest eigenvalue

Je(1) Error rate of the largest eigenvalue

Cv Matrix representing the variability within the clusters for the k clusters

Cp The observed within cluster dispersion matrix for the k clusters

Si Silhoutte score for the ith data point

δkl The distance between the two centroids

d(Ci, Cj) The dissimilarity function between two clusters Ci and Cj

diam(Ck) Diameter of cluster Ck

xvi

Abbreviations

CV I Cluster Validity Index

BIC Bayesian Information Criterion

MST Minimum Spanning Trees

FV D Fiedler Vector Decomposition

CH Calinski and Harabasz Index

Duda Duda and Hart

KL Krzanowski and Lai

ARI Adjusted Rand Index

FCM Fuzzy C-means

CCC Cubic Clustering Criterion

KL Krzanowski and Lai

Trcovw Trace of Covariance Matrix

COV Covariance

Marriot Marriot index

Tracew Tracew index (assesses the quality of clustering in hierachical clustering

Friedman Friedman index

sDbw Scatter Density between clusters index

SDindex Scatter and Distance index

Dunn Dunn index

xvii

Chapter 1

Introduction

The exponential increase in data collection and generation from various

sources, such as mobile devices, sensors, and video surveillance, has led

to unprecedented growth of data available for analysis. With increased

accessibility to storage and data collection on cost-effective electronic

media [3], new opportunities arise for identifying the structures in datasets

through the number of clusters to understand the data selecting the right

number of clusters is important for algorithms such as k-means, and it can

also affect the interpretability of the clustering result. Cluster analysis is an

essential technique for pre-processing high-dimensional datasets. Like-

wise, most datasets require labelling or identifying the underlying structure;

for instance, data generated by the healthcare industry or data from social

media sources [4]. However, finding patterns or clusters within datasets is

still challenging, and it remains an unresolved issue in data analysis due to

the unambiguous definition of a “cluster”. The most intuitive way to extract

information from this unlabelled data is to establish similarity between the

objects and group objects into clusters based on their similarity, known as

data clustering. The main idea is that the objects are similar within a group,

and there are clear differences between groups [5].

1

Chapter 1: Introduction

In the recent past, several single clustering algorithms have been developed

and applied in different contexts and application areas, such as bioinformat-

ics [6], machine learning [7], data mining [8], market basket analysis, pattern

recognition and for image processing [9]. Single clustering algorithms per-

form well in some contexts or data types. They may perform poorly in others

because different clustering algorithms have different clustering criteria be-

sides being context or data-sensitive.

Additionally, varying the methods’ parameters produces different results for

the same dataset. Besides, the clustering process may involve choosing

between clustering techniques and setting the correct parameter, which is

often difficult for a single clustering method. Therefore, it is hard for prac-

titioners to determine which algorithm is most suitable for determining the

number of clusters in a dataset, especially for single clustering algorithms.

In recent times, there has been growing interest in the use of ensemble

techniques for cluster analysis. Ensemble clustering [10], rather than rely-

ing on a single algorithm, evaluates clustering from algorithms or multiple

instances of an algorithm to analyse clusters and estimate the number of

clusters in a dataset.

1.1 Motivation

This study is partly motivated by an earlier research on detection of outliers

for large smart meter datasets titled:“A Sampling-Based Clustering Scheme

for Large Datasets [11]”.The objective of this study is to analyse customers’

electricity consumption patterns by clustering them into distinct labels iden-

tified within the dataset. With the help of smart meters, which collect mil-

lions of records daily, it is crucial for Distribution Network Operators (DNOs)

2

Chapter 1: Introduction

to gain a comprehensive understanding of these records through analy-

sis. This understanding is essential to offer appropriate and efficient con-

sumer services. The study combines the k-means algorithm and k-nearest

neighbour to detect anomalies in the dataset. The study found that a single

clustering algorithm may not effectively handle large datasets and may fail

to detect anomalies in some cases. The current study expands the idea

and seeks more accurate and efficient methods for determining the num-

ber of clusters in datasets using ensembles instead of a single clustering

algorithms. This research is further motivated by the need to improve the

clustering solution’s quality and robustness across a wide range of high-

dimensional datasets. This thesis further proved the efficacy of combin-

ing a heuristic optimisation technique with clustering ensembles to improve

cluster estimates of high-dimensional datasets.

This work illustrates how combining heuristic optimisation with a cluster-

ing ensemble can effectively estimate the number of clusters in datasets.

Clustering ensembles allow flexible definitions of the objective function to

match various criteria and goals. Through rigorous experimentation and a

sound mathematical framework, the efficacy of clustering ensembles was

established, and new methods were designed for determining the number

of clusters in high-dimensional datasets.

1.2 Methodology

This thesis examines the development of a robust clustering ensemble

framework that correctly estimates the number of clusters in a dataset, care-

fully examining key components such as dataset selection, validation, gen-

eration of base clusterings, transformation into an agreement matrix, cre-

ation of subsets, formulation of quality metrics, and the establishment of

a novel evaluation framework for subset quality. Refer to Figure 1.1 for a

comprehensive process diagram illustrating the research stages.

3

Chapter 1: Introduction

1.2.1 Overview of the critical stages in the thesis

The following sections provide a brief overview of the critical stages involved

in this thesis:

Database Selection and Preprocessing

Like every data mining and exploratory data analysis, the initial phase of

the clustering ensemble involves the meticulous selection and preprocess-

ing of datasets. This process prioritises diversity, size, type, and domain

relevance to ensure a comprehensive dataset representation encompass-

ing various clustering problems and scenarios. Benchmark datasets are in-

cluded for analysis, and to establish a solid foundation, the reported number

of clusters for each dataset is cross-validated across multiple repositories,

ensuring reliability and correctness. Appendix B contains a list of datasets

used in the analysis, including metadata and sources.

Generation of Base Clusterings

Base clusterings serve as the foundation of any clustering ensemble sys-

tem. Diverse clustering algorithms are applied to the selected datasets to

enhance performance and reliability, generating varied base clusterings.

This diversity aims to capture different facets of the underlying data struc-

ture, increasing the likelihood of uncovering latent patterns and improving

overall clustering accuracy and the number of clusters in the dataset. Sim-

ilar concepts have been explored in works by Ayed et al. [12] and Swift et

al. [13].

Transformation into Agreement Matrix

Creating an agreement matrix is crucial for consolidating diverse perspec-

tives within the base clusterings. This matrix quantifies the agreement

4

Chapter 1: Introduction

among individual clustering results, providing a foundation for subsequent

ensemble processing. Consensus functions and similarity measures are vi-

tal in transforming the base clusterings into a unified representation.

Creation of Subsets

Utilising the agreement matrix as a foundation, subsets are systematically

generated, each offering a unique perspective on the dataset. The Gray

code subsetting methodology ensures minimal changes between subsets,

contributing to the overall robustness and stability of the clustering ensem-

ble used in this research. Chapter 4 and 5 provide a more detailed dis-

cussion on subsetting, including alternative methods adopted to improve

search strategy for heuristic search algorithms.

Formulation of Quality Metrics

Quality metrics are formulated to comprehensively evaluate various as-

pects, including clustering accuracy and cluster separation across different

subsets generated from the base clusterings. These metrics offer insights

into how well the ensemble captures intrinsic structures within the dataset

and the reported number of clusters.

5

Chapter 1: Introduction

Figure 1.1: Basic Framework of the Ensemble

Evaluation Framework

The thesis adopts a rigorous evaluation framework to thoroughly assess the

quality and effectiveness of different subsets in uncovering latent patterns

and enhancing clustering performance. This framework serves as a critical

tool for gauging the success of the clustering ensemble system. The eval-

uation framework is based on quality function further described in chapters

4, 5, and 6.

Method Comparison/Selection of Best Subset

A crucial aspect of this research involves a comparative analysis of various

methods employed for evaluating subsets. The optimal subset selection

is determined through a meticulous examination of performance metrics,

6

Chapter 1: Introduction

enabling the identification of the most effective clustering ensemble config-

uration for the given dataset, the index of the best subset corresponding

to the number of clusters in the dataset. The comparison encompasses

a range of standard techniques used to determine the number of clusters

compared with the clustering ensemble techniques developed in this the-

sis. The outcomes of these comparisons are detailed in Chapters 4, 5, and

6.

1.3 Contributions

The first significant contribution is the introduction of the Gray Code sub-

setting methodology. This approach systematically generates potential so-

lutions by creating subsets of ensembles derived from clusterings. These

subsets are meticulously constructed to exhibit minimal differences be-

tween them. An advantage of Gray Code sub-setting lies in its ability

to establish meaningful relationships among the generated subsets. This

relationship-based framework facilitates the calculation of fitness values

for each subset, significantly enhancing the efficiency of the search pro-

cess.

The second key contribution is the development of an enhanced fitness

function, which is pivotal in ensuring each subset’s quality and accuracy.

The fitness function is essential for assessing the quality of subsets used to

estimate the number of clusters in a dataset. It functions as a quantitative

measure, evaluating how well a subset represents the underlying structure

of the dataset. The fitness function assigns higher scores to subsets that

closelymatch the actual distribution of clusters, signifying their effectiveness

in estimating the number of clusters. Unlike conventional methods relying

on statistical formulas influenced by data characteristics, our proposed ap-

proach eliminates such dependencies. The method provides a robust and

7

Chapter 1: Introduction

objective measure of subset quality, incorporating the fitness function in

the evaluation process and utilising the agreement matrix. This innovative

approach introduces flexibility and may mitigate the limitations typically as-

sociated with statistical formulas used in traditional methods.

A third noteworthy contribution is the creation of a Quality Metric Frame-

work, establishing a mathematical basis for scoring subsets within the

evaluation process. This framework systematically evaluates weaker and

stronger subsets, considering a threshold value for relative strength com-

parison. Its flexibility allows adjustments to align with the unique character-

istics of the search space, offering a comprehensive and adaptable evalu-

ation process. This framework gives researchers and practitioners a struc-

tured approach to score subsets and evaluate their strengths.

The final major contribution addresses the inefficiencies of traditional Ran-

dom Mutation Hill Climbing (RMHC) as explained in Chapter 6. A Seeded

RMHC approach is proposed, utilising Fiedler vector decomposition for

seeding. This technique significantly improves search space exploration

by addressing limitations such as slow convergence and sensitivity to the

initial starting point.

In the context of traditional RMHC, one of the limitations is its susceptibil-

ity to local optima, where the algorithm may become trapped in subopti-

mal solutions, restricting its ability to explore the global search space effec-

tively [14]. Additionally, the reliance on random mutations in RMHC may

hinder thorough exploration, potentially overlooking diverse regions in the

search space [15]. The proposed Seeded RMHC technique aims to over-

come these limitations, demonstrating its effectiveness in achieving better

solutions in the search for optimal subsets.

8

Chapter 1: Introduction

1.4 Summary of Thesis

This thesis is delivered in seven chapters; and organised as follows:

Chapter 1 presents a concise overview of the thesis, including the motiva-

tion behind the research and a general introduction to the main contents.

It summarises the entire thesis, providing readers with a comprehensive

understanding of the work.

Chapter 2 provides a literature review of this research project’s concepts,

techniques and methods. The initial focus is on providing an overview of

clustering techniques, including partitional and hierarchical methods. Ad-

ditionally, various similarity metrics used in the clustering process are ex-

plained. Next, methods for estimating the optimal number of clusters and

cluster validity are described, followed by a review of heuristic search al-

gorithms and the ensemble technique applied to improve the search for

the optimal number of clusters. Finally, elements of meta-heuristic search

utilised for this research are described.

Chapter 3 outlines and describes in detail the datasets’ unique cluster-

ing characteristics, the techniques employed to generate the clusterings,

and the pre-determined parameters for selecting the dataset applied in

later chapters. A comprehensive analysis of the datasets was conducted,

sourced from multiple repositories and consisting of both artificial and stan-

dard clustering benchmark datasets. Selection of the datasets and reasons

for eliminating some of the datasets from experiments are provided in this

chapter. Equally, in the chapter, a variability analysis was conducted on the

selected datasets to serve as a guide in evaluating the stability and robust-

ness of the clustering results. Also, variability analysis helps estimate the

number of clusters in the datasets and supports understanding dataset pat-

terns providing valuable insights into the datasets’ hidden structures.

9

Chapter 1: Introduction

Chapter 4 introduces the ensemble framework for determining the number

of clusters in a dataset. The chapter is based on a published work [16], intro-

ducing Gray code sub-setting and its use in evaluating the subset’s quality

for estimating the optimal number of clusters in datasets. Lastly, this chap-

ter compares methods for combining the ensembles to achieve maximum

diversity with standard methods for estimating the number of clusters.

Chapter 5 introduces a heuristic search-based ensemble built on top of

the framework in Chapter 4. The aim is to further improve the speed of

execution for the same accuracy as the exhaustive search. The chapter in-

troduces specific algorithms and their application to enhance the ensemble

search for the best subset. The chapter detailed the search space and dif-

ferent methods to improve efficiency and accuracy. The algorithm used on

or modified to meet the specific requirement of the search space includes

Hill Climbing and Simulated Annealing (SA), both of which have earlier been

introduced in Chapter 2.

Chapter 6 presents the introduction of seeding in the ensemble search

space as a means to improve the search for optimal solutions. The chapter

explores the utilisation of concepts such as the Fiedler vector decomposi-

tion and Minimum Spanning Trees (MST) to identify an appropriate start-

ing point in the search and guide it towards optimal solutions. The effec-

tiveness of this approach is demonstrated through benchmarking, simu-

lations, and rigorous experimentation. Mathematical proofs are provided

to establish the average fitness value, which approximates zero. Further-

more, the chapter concludes with a comprehensive comparison of exhaus-

tive search, SA, RMHC, and seeded Fiedler vector approaches. The results

highlight that guided search significantly enhances both the outcome and

computational efficiency when determining the optimal number of clusters

in datasets.

10

Chapter 1: Introduction

Chapter 7 summarises the thesis and reports the main findings and con-

tributions. This chapter also acknowledges potential limitations inherent in

the proposedmethods and suggests promising avenues for future research.

The chapter provides a concise overview of the key points and outcomes

presented throughout the thesis, ensuring a comprehensive understanding

of the research conducted. It highlights the significance of the research, em-

phasising its relevance and implications for future work. Limitations of the

current approaches are critically assessed, acknowledging potential con-

straints or drawbacks that could have impacted some results or conclusions.

Finally, the chapter concludes by outlining possible directions for future re-

search work.

11

Chapter 2

Literature Review

2.1 Introduction

This chapter is a review of concepts applied in this research. The first part

of the review is an introduction to clustering, followed by methods for es-

timating the optimal number of clusters and cluster validity. The second

part reviews clustering ensembles and key terminologies. The last section

of the review is on the heuristic search algorithms applied to the ensemble

technique that has been used to improve the search for the optimal number

of clusters in the selected datasets

2.2 Clustering

Clustering can be described as an unsupervised learning process that

groups data into clusters so that data objects within a cluster are similar but

dissimilar to objects in other clusters [5]. Clustering is also the formal study

of methods and algorithms for grouping objects according to measured or

perceived intrinsic characteristics or similarities [5, 17, 18]. In grouping ob-

jects, clustering organises objects into patterns based on similarity; the pat-

12

Chapter 2: Literature Review

terns are usually points in multidimensional space where patterns that be-

long to the same cluster are closely similar compared to patterns that belong

to another cluster [5].

Clustering is an unsupervised technique that utilises observation values to

uncover the inherent structure within a dataset [19]. However, it is essential

to acknowledge that different clustering techniques can yield varying results

based on how the cluster patterns are formed and interpreted, as pointed

out by Christen [20]. To select an appropriate clustering methodology, re-

searchers should understand and consider the underlying data character-

istics exhibited by the clusters they aim to identify. Clustering plays a piv-

otal role in exploratory data analysis (EDA) by facilitating the identification

of inherent structures and patterns within datasets. As part of EDA, clus-

tering methods help reveal similarities and groupings among data points,

providing insights into the underlying distribution and relationships within

the data. Clustering algorithms, such as k-means, hierarchical clustering,

and DBSCAN, assign data points to clusters based on their intrinsic char-

acteristics, assisting analysts in discerning natural divisions in the dataset.

These unsupervised learning technique is particularly valuable for under-

standing complex datasets where relationships among variables may not

be immediately apparent. For instance, in a study by [3], hierarchical clus-

tering was employed to explore patterns in gene expression data, revealing

distinct gene expression profiles. Clustering, thus, serves as a powerful

tool in the exploratory phase, aiding researchers and analysts in uncover-

ing meaningful structures that may inform subsequent analyses or guide

further investigations [5].

Therefore, in Chapter 3, a variability analysis was conducted on the dataset

to gain insights into the effect of these characteristics. It is crucial to note that

the identified clusters should be viewed as valuable constructs that facilitate

13

Chapter 2: Literature Review

clarification and transparent comparison of cluster estimates in the dataset

rather than being perceived as the absolute truth in clustering [21]. Thus,

validation may be necessary to further verify the reliability and accuracy of

the clustering results.

2.2.1 Clustering Applications

A clustering arrangement can be defined as follows:

Let D be a dataset consisting of m data points, denoted as D =

d1, d2, ..., dm, where each di is a data point in the dataset. A cluster-

ing arrangement is a partitioning of D into k clusters, denoted as C =

{C1, C2, ..., Ck}, such that the following conditions holds:

1. Each cluster Ci is non-empty, meaning that Ci 6= ∅ for all i = 1, 2, ..., k.

2. The union of all clusters covers the entire dataset, meaning that

C =
k⋃

i=1
Ci

for all i = 1, 2, ..., k.

3. The clusters are pairwise disjoint, meaning that Ci ∩ Cj = ∅ for all

i 6= j, where i, j = 1, 2, ..., k.

4. Within each cluster, the data points share common characteristics or

features, while dissimilarity is observed between data points belong-

ing to different clusters. Thus, the data points in cluster Ci are less

similar to those in cluster Cj when i 6= j. This requirement ensures

that the clustering arrangement effectively differentiates between dis-

tinct groups of data points within the dataset.

In summary, a clustering arrangement groups the data points into k clus-

ters, ensuring that each cluster is non-empty and the clusters collectively

14

Chapter 2: Literature Review

cover the entire dataset with no overlap (crisp clustering). Relaxing the re-

quirement for disjoint clusters can provide more flexibility and adaptability

in clustering, particularly when dealing with complex, multidimensional, or

overlapping data sets. However, this relaxation can introduce challenges in

interpreting results and assessing the clustering quality.

2.2.2 Applications

Clustering is crucial in numerous applications, particularly when dealing with

high-dimensional datasets. Its versatility and usefulness extend across di-

verse fields and industries, providing valuable insights and practical solu-

tions to a wide range of problems. Below are some prominent areas where

clustering finds significant application.

Gene Expression Analysis

Molecular biology generates vast amounts of data comprising gene expres-

sion levels measured under various conditions, experimental parameters,

and environments, as well as from different individuals. Employing cluster-

ing approaches can be instrumental in validating the presence of diverse

measures, such as proteins or regulatory RNAs, within cells or membranes

[22]. Uncovering underlying patterns within these datasets is pivotal in bi-

ological research. For example, in gene expression data, each column

represents an individual, providing insights into their health status and the

presence of metabolic diseases. Clustering the data based on genetic re-

lationships and leveraging phenotypic features makes it possible to identify

specific disorders, enabling personalised treatment approaches [23] and fa-

cilitating early disease detection [24].

15

Chapter 2: Literature Review

Software Modularisation

Software clustering is another important application. It is a method used

in software engineering to cluster related software modules or components

into groups based on their similarity in terms of functionality or other rel-

evant characteristics; entities within the system with common features are

grouped, and entities with different features are kept apart. More details and

examples can be found in the following references [25, 26, 27]. Software

clustering can cluster related software components together, allowing de-

velopers to better manage and maintain them as a group, reducing the risk

of errors and simplifying the debugging process. Through software cluster-

ing, software systems scalemore efficiently by allowing developers to add or

remove components as needed. This can help prevent performance issues

and ensure the system handles the increased workload. Finally, Cluster-

ing will enable developers to reuse components across different software

systems, reducing development time and costs.

Customer Recommendation Systems

Another application of clustering is seen in customer recommendation sys-

tems, also known as recommender systems. In such scenarios, customers

can express their preferences for various products within a company by pro-

viding votes or ratings. Nowadays, recommendation systems are widely

deployed on numerous websites, catering to millions of customers and en-

hancing targeted marketing efforts [28, 29].

Text Documents Organisation

The huge collection of documents accessible from the Internet, digital li-

braries and repositories are piling up at an astronomic rate. These require

the effective and efficient organisation of text documents [30]. Clustering

16

Chapter 2: Literature Review

methods can be applied to organise a collection into meaningful groups.

Collections of text documents such as pages on the Web or data collected

through Web Scrapping can be transformed into high-dimensional feature

vectors, which may contain thousands of attributes grouped into different

themes. For example, online stores cluster customer responses to provide

collaborative recommendations [31]. The other application area includes

image processing [32] and anomaly detection [33].

2.2.3 Measures of Similarity

A similarity measure is a quantitative measure that determines how related

two objects are in a cluster [34]. It is commonly used in machine learning,

natural language processing, image recognition, and information retrieval

to compare and classify data. The similarity of objects within a cluster plays

a vital role in the clustering process. A well-defined similarity measure is

fundamental to identifying a cluster; distance measures differ for different

data requirements due to the variety of feature types and scales. An essen-

tial characteristic of a distance measure is that it should be symmetric [34].

The focus in this review of similarity measures will be limited to datasets

that exhibit continuous features, while relevant citations will be provided for

other measures. The standard similarity measures are Hausdorff distance

[35], Modified Hausdorff (MODH) [36], HMM-based distance [37], Euclidean

distance [38], Manhattan distance [39], Minkowski Distance [3], Hamming

distance [40] and Pearson Correlation [41]. Twomeasures will be described

here because of their relevance to the current research.

17

Chapter 2: Literature Review

Euclidean Distance

The Euclidean distance E between two points, say (x1, y1) and (x2, y2) is

the geometric distance between the points and is defined as:

E(x, y) =
√

(x2 − xi)2 + (y2 − y1)2 (2.1)

The formula can be extended to higher-dimensions, and it has many ad-

vantages; one is that adding a new object to the dataset does not affect the

existing distance between objects. However, the difference in scale can

strongly affect the dimension from which the distances are computed, and

it may not be suitable for some types of data. Euclidean distance is also

referred to as the L2 − Norm because it is calculated using the squared

value of the vector components. There is a variation of Euclidean distance

called the Scaled Euclidean Distance (SED) [42]; it considers the scale or

weight of each feature or dimension in a vector. Incorporating these scales

into the distance calculation gives higher scales more importance and less

to dimension with lower scales. The formula for calculating scale distance

is:

SED(x, y) =
√

(α1 · (x1 − y1))2 + . . . + (αn · (xn − yn))2 (2.2)

where x and y represent the vectors with corresponding feature values

(x1, x2, . . . , xn) and (y1, y2, . . . , yn), respectively. α is the vector of weights

or scales (α1, α2, . . . , αn) assigned to each dimension. The formula calcu-

lates the Scaled Euclidean distance by summing the squared differences

between each corresponding feature value, scaled by its respective weight,

and taking the square root of the sum.

18

Chapter 2: Literature Review

Minkowski Distance

Minkowski distance is a metric used to measure the distance between two

vectors in a Euclidean space of any dimension and a generalisation of the

Euclidean and the Manhattan distance (L1 − norm). The Minkowski dis-

tance between two vectorsX = (x1, x2, x3, ..., xn) and Y = (y1, y2, y3, ..., yn)

is defined as follows:

(n∑
i=1
|xi − yi|p

)1/p

where p ≥ 1 (2.3)

X and Y are vectors of equal dimensions and p controls the behaviour of

the distance metric. When p = 1, it is referred to as the Manhattan distance,

and when it is equal to 2, it is referred to as the Euclidean distance and when

p =∞ it is called the Chebychev metric [34].

Distance Correlation

Distance correlation is a statistical measure that quantifies the dependence

between two random variables or datasets [43]. It evaluates the similarity

of the underlying relationship by considering both linear and nonlinear as-

sociations. Unlike traditional correlation measures that only capture linear

dependencies, distance correlation considers all types of associations, in-

cluding nonlinear and higher-order relationships. The distance correlation

between two random variables X and Y denoted as Corr(X, Y), is calcu-

lated based on the distances between the observations in the joint space

of X and Y [44]. It is defined as the normalized covariance of the dis-

tances:

Corr(X, Y) = cov(x, y)√
var(x) · var(y)

X and Y are matrices of pairwise distances between the observations in x

19

Chapter 2: Literature Review

and y, respectively.

The distance correlation ranges from -1 to 1, where 0 indicates no depen-

dence or independence between the variables, and 1 represents a perfect

dependence or relationship. A distance correlation close to 0 suggests a

weak or negligible relationship, while a value close to 1 indicates a strong

association. Distance correlation is a versatile measure applied to various

data types, including continuous, discrete, and mixed-type variables. It is

useful in many areas of statistical analysis, such as feature selection, di-

mensionality reduction, and exploring complex relationships in data.

2.3 Clustering Methods

Clustering methods comprise various approaches, including partitional and

hierarchical clustering based on specific clustering characteristics [17, 21,

5]. Additionally, there are other families of techniques, such as density-

based and graph-based clustering, among others.

Hierarchical clustering groups data objects into a sequence of partitions,

from singleton clusters to a cluster including all individuals, referred to as

agglomerative hierarchical clustering. In contrast, divisive hierarchical clus-

tering repeatedly partitions data into its components; both types of hierar-

chical clustering build a tree-like representation called a dendrogram [34].

Furthermore, when data objects are directly divided into some predefined

number of clusters without creating any hierarchical structure, it is called a

partitional method [21]. Partitional clustering seeks k-partitions of dataset,

say D, where the partitions or clusters C is defined C = C1, ..., Ck (k ≤ V),

such that the following condition holds:

1. ci 6= ∅, i = 1, .., k;

2.
⋃k

i=1 ci = C;

20

Chapter 2: Literature Review

3. ci ∩ cj = ∅, i, j = 1, ..., k and i 6= j

The partitional methods are based on the iterative relocation of data points

between clusters using the similarity or characteristics uncovered from the

dataset. The aim is to produce clusters with a high degree of similarity within

members in the group and a low degree of similarity between the groups.

Partitioning methods finds a specified number of groups (k), say: c1, c2...ck

of the input dataset D that optimises a specific criterion. The criterion is

usually of the form:
k∑

i=1

k∑
x=si

p(x, µi)

Where µi represents the cluster centroid of ci and p(x, µi) represents the

distance metric (for example, Euclidean distance) between x and µi. Parti-

tional clustering methods are popular due to their simplicity, efficiency, and

ability to handle large datasets. They are suitable when the number of clus-

ters is known in advance or when a specific number of clusters needs to be

determined. However, they have limitations, such as sensitivity to the initial

parameter(s) values, convergence to local optima, and difficulty handling

noisy or overlapping clusters.

After outlining the concept of similarity measures as the foundation for iden-

tifying distinct groups or clusters within datasets, the subsequent section

provides examples of clustering algorithms. One such algorithm is the k-

means clustering [45], which is considered one of the most straightforward

partitional clustering algorithms [5]. The simplified version of the algorithm

is described in Algorithm 2.1. K-means algorithm takes input dataset D

consisting of m data points, with K cluster centroids c1, . . . , cK , and the

maximum number of iterations J as described in Algorithm 2.1. It operates

by iteratively updating cluster assignments and centroid locations. At each

iteration, the algorithm computes the Euclidean distance between each data

point and the cluster centroids, assigning the point to the cluster with the

21

Chapter 2: Literature Review

Algorithm 2.1 The K-means Algorithm

Input: Dataset D = d1, . . . , dP , initialisation for cluster centroids c1, . . . , cK ,

and maximum number of iterations J
1: for j = 1, . . . , J do

2: for p = 1, . . . , P do . Update cluster assignments
3: Ed = arg mink=1,...,K‖ck − dp‖2
4: end for

5: for k = 1, . . . , K do . Update centroid locations
6: Let Sk = the index set of points dp

7: ck =
1

|Sk|
∑

p∈Sk
dp . Update ck

8: end for

9: end for

10: for p = 1, . . . , P do . Update cluster assignments using final centroids
11: Ed = arg mink=1,...,K‖ck − dp‖2
12: end for

Output: C - Clusters and Cluster centroids

closest centroid. The centroid locations are then recalculated by comput-

ing the mean of the data points in each cluster. This process is repeated

for a specified number of iterations. Finally, the algorithm returns the clus-

ter assignments and centroid locations as the output. By minimising the

within-cluster sum of squares, the k-means algorithm optimises the cluster

assignments and centroid positions, offering a simple and efficient method

for clustering analysis. The three most popular version of k-means are:

Lloyd/Forgy[46], the MacQueen [47] and Hartigan and Wong algorithms

[48].

Lloyd/Forgy Algorithm

The Lloyd and Forgy’s algorithms are both batch and centroid-based algo-

rithms. The Lloyd and the Forgy algorithms differ in how they treat data

distribution; for the Lloyd algorithm, data distribution is discrete, while the

Forgy algorithm considers the distribution continuous but they are both slow

to converge and can result in empty clusters.

22

Chapter 2: Literature Review

Hartigan/Wong’s algorithm

Hartigan and Wong’s algorithm uses the within-cluster sum of squares to

allocate data to partitions, and the centroid is updated and data redistributed

to their nearest centroid. The iteration continues until convergence to avoid

a case where a further change would make the clusters more internally

distinct and more externally similar.

MacQueen algorithm

MacQueen’s is a partitional algorithm that follows an iterative optimisation

approach to find the optimal number of clusters in datasets; unlike Lloyd’s

algorithm, the centroids are recalculated after each iteration and updated

more regularly than the Hartigan. However, Hartigan and MacQueen store

the nearest clusters, thus the initial convergence can be fast [49].

k-means clustering is very useful in exploratory data analysis, and its ease

of implementation, low memory consumption and computational efficiency

have kept the k-means algorithm very popular. The next section introduces

an alternative algorithm to K-means known as Partitioning Around Medoids

(PAM). Although both algorithms share the common objective of partition-

ing a dataset into clusters, notable distinctions exist between them. One

significant difference lies in the choice of representative points, with PAM

utilising medoids instead of K-means’ centroids.

2.3.1 Partitioning Around Medoids (PAM)

PAM is a modification of the k-medoids clustering algorithm proposed by

Kaufman and Rousseeuw [50]. Kaufman and Rousseeuw described a

medoid as the representative object of a cluster where the average dissim-

ilarity to all the objects is the least. Object dissimilarity can be calculated

using metrics such as Euclidean distance. PAM and other k-medoid algo-

23

Chapter 2: Literature Review

rithms can handle outliers much better than k-means algorithms [5, 51]. The

following are the key steps in PAM:

1. Randomly select k objects as medoids to represent initial clusters

(centres) for the dataset;

2. Assign other objects to their nearest medoids;

3. Evaluate the clustering quality using the objective function. The clus-

tering solution that minimises the objective function is the best;

4. Determine the swapping cost for each pair of non-medoid andmedoid.

Swapping replaces a medoid with a non-medoid only if it improves the

objective function; otherwise, the medoid is retained;

5. Repeat steps 2, 3 and 4 until convergence (no more changes).

PAM has several favourable properties and advantages. Firstly, PAM is

flexible in choosing a distance metric, thereby allowing different metrics

to be applied in different contexts or clustering applications. This is not

possible with a k-means algorithm. Secondly, clusters are identified by

the medoids, which are robust representations of the cluster centres and

are less sensitive to outliers than other cluster profiles, such as the cluster

means of k-means [52]. However, the computational complexity of PAM is

higher than that of k-means, hence unsuitable for clustering large datasets.

The full algorithm is described in Algorithm 2.2 below. Unlike K-means,

the following section describes the X-means algorithms, which automate

the number of cluster determinations by iteratively refining them based on

statistical criteria.

24

Chapter 2: Literature Review

Algorithm 2.2 Partitioning Around Medoids (PAM)

Input: Dataset D, Number of clusters k
1: Initialize: Randomly select k data points from D as initial medoids.

2: repeat

3: Assign: Assign each data point to the nearest medoid.

4: Update: Calculate the total dissimilarity of the current clustering.

5: for each non-medoid point p do

6: for each current medoid q do
7: Swap: Replace medoid q with point p.
8: Calculate the total dissimilarity of the new clustering.

9: Newcludiss = New Clustering dissimilarity

10: Curcludiss = Current Clustering dissimilarity

11: if Newcludiss < Curclusdiss then

12: Accept the swap and update medoids.

13: end if

14: end for

15: end for

16: until No more improvements can be made

17: return Final medoids, clustering of data points.

2.3.2 X-Means

X-means is an extension of k-means, introducing a method to determine

the number of clusters through the iterative splitting of the parent cluster

based on local decisions about the current centroid subset to be split [53].

This algorithm efficiently explores the optimal value of k by specifying a

range of values in which the true k is likely to exist, relying on the computed

Bayesian Information Criterion (BIC) score for guidance.

The Bayesian Information Criterion (BIC), also known as the Schwarz crite-

rion, is a statistical measure for model selection among a set of candidate

models. It balances the model’s goodness of fit and complexity, penalising

overly complex models [54]. In the context of X-means, the BIC score is

utilised to guide the algorithm in determining the most appropriate number

of clusters.

The X-means algorithm alternates between two key steps. First, it runs

25

Chapter 2: Literature Review

conventional k-means to optimally identify clusters for a chosen value of k.

Subsequently, it assesses where a new centroid should appear by splitting

existing clusters based on local decisions about the subsets of the parent

cluster that best fit the data. This iterative process refines the clustering

and enhances the algorithm’s adaptability to the underlying structure of the

data.

The next clustering algorithm to be described is Clara; it excels in compu-

tational efficiency and noise robustness, which is particularly suitable for

larger datasets. Unlike PAM, which concentrates on medoid-based cluster-

ing with a user-specified cluster count, Clara employs a sampling strategy

for scalability, efficiently managing large datasets without needing a prede-

fined number of clusters. Additional details about Clara are provided in the

following section.

2.3.3 Clustering Large Applications (CLARA)

CLARA was proposed by Kaufman and Rousseeuw [55]. It is a k-med oid

clustering algorithm that builds on a major drawback of PAM. The main

drawback of PAM is that it iteratively replaces the current medoid with one of

the non-medoid points until it attains the optimal medoid with a high compu-

tational cost. CLARA reduces the search space through multiple sampling

to lower the computational cost. Rather than go through the entire search

space iteratively, CLARA first takes a sample from the originalm data points

and then calls PAM on the sampled data points to find k-medoid. Once the

optimal k-medoid is found, the remaining (nonsampled) data points are as-

signed to one of these k clusters based on their distance to the k-medoid.

Conceptually, both algorithms are graph-searching problems while PAM

greedily searches the graph until it cannot find a better neighbour asmedoid.

CLARA reduces the search space by searching a subgraph induced by the

26

Chapter 2: Literature Review

sampled data points. Technically, CLARA can deal withmuch larger dataset

than PAM [56], but the accuracy depends on the quality and size of sample

[21]. The full algorithm is in Algorithm 2.3, and the key steps in CLARA are

as follows:

1. Select randomly from the original data;

2. Partition the objects of the selected sample into k clusters using PAM;

3. Assign each object in the rest of the dataset to the nearest cluster;

4. Repeat the above process for a number of iterations (predetermined).

Algorithm 2.3 CLARA (Clustering Large Applications)

Input: dataset D, numSamples X,maxIter

1: Initialize: Select numSamples random subsets of D.

2: bMedoid = ClusterMedoids(samples, X)
3: for iteration = 1 to maxIter do

4: Assign: Assign data point to the closest medoid.

5: Update: Calculate the total dissimilarity of the current clustering.

6: for each non-medoid point p do

7: for each cMedoid q do
8: Swap: Replace medoid q with point p.
9: Calculate the total dissimilarity after the medoid swap.

10: if newCluDis < cCluDis then

11: Accept the swap and update cMedoids.

12: end if

13: end for

14: end for

15: if tDiss(cMedoids) < tDiss(bMedoid) then

16: Update bMedoid

17: end if

18: end for

Output: bMedoid and the clustering of data points

The algorithm to be discussed next is Fuzzy clustering, distinguished among

other clustering algorithms by its distinctive approach to handling data as-

signments. Unlike conventional methods that assign each data point to

a single cluster, Fuzzy clustering permits partial memberships, indicating

27

Chapter 2: Literature Review

the degree to which a point belongs to multiple clusters simultaneously.

This flexibility is particularly valuable in capturing complex relationships

within the data, allowing data points to share characteristics with more than

one cluster. A detailed description of the Fuzzy clustering algorithm fol-

lows.

2.3.4 Fuzzy Clustering

Fuzzy clustering is a clustering algorithm that allows data points to belong

to multiple clusters simultaneously with varying degrees of membership.

Unlike traditional partitional clustering algorithms, where each data point is

assigned to a single cluster, fuzzy clustering assigns objects to each cluster,

indicating the degree of belongingness [57].

In fuzzy clustering, the goal is to find the best fuzzy partition of the data

where each data point’s membership values sum up to 1.0 across all clus-

ters. The membership values represent the degree of association or sim-

ilarity between a data point and each cluster. Higher membership values

indicate a stronger association, while lower ones indicate a weaker associ-

ation.

The most widely used fuzzy clustering algorithm is the Fuzzy C-means

(FCM) algorithm [58]. FCM extends the traditional k-means algorithm by

allowing data points to have partial membership in multiple clusters. The

algorithm iteratively updates the cluster centres and the membership val-

ues until convergence. The update of cluster centres is similar to k-means.

Nevertheless, the update of membership values is based on the distances

between data points and cluster centres, considering the fuzzy membership

concept. Fuzzy clustering is beneficial when data points exhibit overlapping

characteristics or uncertainty in their membership assignments. It provides

a more nuanced representation of cluster membership, allowing for more

28

Chapter 2: Literature Review

flexible and granular clustering results. Fuzzy clustering has applications in

various fields, including pattern recognition, image segmentation, decision-

making systems, and data analysis where probabilistic or soft clustering is

desired.

The hierarchical clustering algorithm described next adopts a distinct ap-

proach by constructing a tree-like structure of nested clusters, organising

data points into a hierarchy according to their similarities. In contrast to

Fuzzy clustering, which allows flexibility in handling overlapping member-

ships, hierarchical clustering prioritises a structured, tree-based represen-

tation of relationships within the data. The following section provides a de-

tailed exploration of hierarchical clustering.

2.3.5 Hierarchical Clustering

Hierarchical clustering methods work by grouping data objects into a tree-

like structure. It produces a nested series of partitions based on a criterion

that merges or splits clusters using a similarity measure. Hierarchical clus-

tering techniques that start with the whole data object and split it are divi-

sive. In contrast, those that begin with singleton clusters and merge them

are called agglomerative, i.e. the hierarchy is formed in a bottom-up fashion

[59]. The clusters from hierarchical clustering suffer from inability to adjust

once a merge or a split has been concluded. It cannot backtrack in case a

poor choice has been made in the hierarchical decomposition, and it is not

scalable for large dataset. The process of allocating or dividing the cluster

into different groups is based on the closeness between the two clusters.

Well-known examples of hierarchical clustering include: BIRCH [60], clus-

tering Using REpresentatives–CURE [61] and CHAMELEON [62]. Several

common measures or distance metrics are used to determine the proxim-

ity between clusters. Some of the most widely used measures of cluster

proximity in hierarchical clustering include:

29

Chapter 2: Literature Review

Single-linkage Hierarchical Clustering

Single-linkage Hierarchical Clustering is a bottom-up agglomerative clus-

tering algorithm that forms clusters based on the similarity between data

points [5]. It operates by iteratively merging the two closest clusters until all

data points belong to a single cluster.

The algorithm starts by treating each data point as a separate cluster. It

then calculates the pairwise distances between all clusters using a chosen

distance metric, such as Euclidean distance. The algorithm merges the

two clusters with the smallest distance, forming a new cluster. This pro-

cess is repeated until all data points are in a single cluster. The output of

Single-linkage Hierarchical Clustering is a dendrogram, which is a binary

tree representation of the merging process.

Each node in the dendrogram represents a cluster, and the node’s height

indicates the distance at which the clusters were merged. Single-linkage

Hierarchical Clustering has several advantages, including its simplicity and

ability to handle non-convex clusters. However, it is sensitive to noise and

can suffer from the “chaining” effect, where clusters are elongated due to

the single-linkage criterion. The pseudocode for Single-linkage Hierarchical

Clustering is is described in Algorithm 2.4.

Algorithm 2.4 Single Linkage Hierarchical Clustering

Input: Dataset D
1: Initialise each data point as a separate cluster

2: while Number of clusters > 1 do

3: Calculate pairwise distances between clusters

4: Merge the two clusters with the smallest distance

5: end while

6: Build the dendrogram based on the merging process

Output: dendrogram representing the clustering hierarchy

30

Chapter 2: Literature Review

Complete Linkage Hierarchical Clustering

Complete linkage Hierarchical Clustering is a bottom-up agglomerative

clustering algorithm that forms clusters based on the maximum dissimilarity

between data points. It operates by iteratively merging the two clusters with

the smallest maximum dissimilarity until all data points belong to a single

cluster.

It then calculates the pairwise dissimilarities between all clusters using a

chosen dissimilarity measure, such as Euclidean distance. The algorithm

merges the two clusters with the smallest maximum dissimilarity, forming

a new cluster. This process is repeated until all data points are in a single

cluster. Complete linkage Hierarchical Clustering output is a dendrogram,

a binary tree representation of the merging process. Complete linkage Hi-

erarchical Clustering has several advantages, including its ability to handle

non-convex clusters and its robustness to noise. The pseudocode for Com-

plete linkage Hierarchical Clustering is as shown in Algorithm 2.5.

Algorithm 2.5 Complete Linkage Hierarchical Clustering

Input: Dataset D
1: Initialise each data point as a separate cluster

2: while Number of clusters > 1 do

3: Calculate pairwise dissimilarities between clusters

4: Merge the two clusters with the smallest maximum dissimilarity

5: end while

6: Build the dendrogram based on the merging process

Output: dendrogram representing the clustering hierarchy

Average Linkage Hierarchical Clustering

Average Linkage Hierarchical Clustering is a bottom-up agglomerative clus-

tering algorithm that forms clusters based on the average dissimilarity be-

tween data points. The average linkage is referred to as the minimum vari-

ance method and can be described as the mid-point of the two other mea-

31

Chapter 2: Literature Review

sures because it considers the distance between two clusters to be equal

to the average distance from any member of one cluster to any member

of the other cluster [59]. It operates by iteratively merging the two clusters

with the smallest average dissimilarity until all data points belong to a single

cluster.

The process is similar to the Single and Complete linkage; however, in

average-linkage clustering, the dissimilarity between two clusters is defined

as the average dissimilarity between all pairs of points belonging to differ-

ent clusters. Average Linkage Hierarchical Clustering has several advan-

tages, including its ability to handle non-convex clusters, its resistance to

outliers, and its tendency to produce compact and spherical clusters. The

pseudocode for Average Linkage Hierarchical Clustering is described in Al-

gorithm 2.6:

Algorithm 2.6 Average Linkage Hierarchical Clustering

Input: Dataset D
1: Initialise each data point as a separate cluster

2: while Number of clusters > 1 do

3: Calculate pairwise dissimilarities between clusters

4: Merge the two clusters with the smallest average dissimilarity

5: end while

6: Build the dendrogram based on the merging process

Output: dendrogram representing the clustering hierarchy

Using the popular Iris dataset widely used in machine learning and statis-

tics, the three different species: Setosa, Versicolor, and Virginica, can be

represented in a dendrogram as shown in Figure 2.1

2.3.6 Density-based Methods

Density-based clustering is centred on the concept of how closely inter-

connected points are with one another. This approach is non-parametric,

meaning it makes no assumptions about the number of clusters or their dis-

tribution.
32

Chapter 2: Literature Review

Species

E
u
c
lid
ia
n
D
is
ta
n
c
e

Figure 2.1: Figure Showing a Dendrogram of Iris Dataset

In data space, density-based clusters are contiguous, densely populated

regions separated by sparser areas. In this method, the density in the noise

areas is assumed to be lower than the density in any of the clusters. The

computation of density-based clusters can be done efficiently by performing

at most one region query per database object. Any sparse regions in the

data space are considered noise and are not assigned to any cluster.

In contrast to partition-based methods, if the density in the neighbourhood

exceeds a particular threshold, the cluster will continue to grow. For a given

radius, each data point in a cluster is a member of the neighbourhood if

it contains at least a minimum number of points. Density-based methods

help identify and filter possible outliers in a cluster and can identify clus-

ters of unusual shapes [63]. OPTICS is an example of a density-based

clustering algorithm, while DBSCAN (Density-Based Spatial Clustering of

33

Chapter 2: Literature Review

Applications with Noise) is another example. DBSCAN is suitable for large

spatial databases and can identify clusters of arbitrarily shaped data points

[64].

2.3.7 ccfkms:Clustering with Conjugate Convex Function

The ccfkms clustering algorithm uses conjugate convex functions [65], de-

rived from prototype vectors’ norm powers or a logarithmic norm transfor-

mation, aiming to enhance partition robustness. Internally, the algorithm

employs sparse data structures optimally, avoiding computations with zero

data values and eliminating the need to center the data. This approach,

however, may exhibit some inefficiency for dense data. When initial proto-

types are excluded, the user must specify the number of prototypes drawn

from the data without replacement or chosen with retries for the best solu-

tion. Furthermore, the algorithm incorporates tie-breaking mechanisms for

determining cluster memberships. These are just a few examples of clus-

tering methods and their applications to different datasets and data charac-

teristics.

2.4 Cluster Validity: Evaluating Clustering

Cluster validity pertains to evaluating the quality and usefulness of the re-

sults obtained from a clustering algorithm [66]. This review focuses on tech-

niques used to assess cluster validity, encompassing standardmethods and

publicly available indices. Although newer methods in the literature may not

have readily accessible tools or implementations [66], the emphasis here is

primarily on well-established approaches.

According to [67], there are threemain approaches to testing cluster validity:

external criteria, internal criteria, and relative criteria.

34

Chapter 2: Literature Review

External criteria involve comparing the clustering result with the dataset’s

external known labels or ground truth. These criteria measure how well the

clusters align with the pre-existing class labels. On the other hand, internal

criteria rely on information derived from the clustering process to evaluate

the quality of the result. These measures assess compactness, separation,

and cohesion within clusters. Relative criteria compare the clustering re-

sult with alternative clustering schemes. These criteria examine how the

clusters generated by the algorithm compare to other plausible clustering

solutions.

While some clustering algorithms can automatically estimate the number

of clusters, many others require the user to specify this parameter. The

performance of such algorithms heavily depends on the characteristics of

the dataset and the input parameters chosen. Incorrectly specifying the

number of clusters can result in clusters that do not accurately represent the

underlying structure of the dataset. Therefore, it is crucial to have reliable

guidelines for evaluating the clusters and determining the optimal number

of clusters for a given dataset. Hence the need for cluster validity indices

(CVIs).

Cluster validity indices provide quantitative measures to assess the quality

and coherence of clusters. These indices evaluate various aspects, such as

cluster compactness, separation, and overall structure. Calculating these

indices for different clusters can help identify the number of clusters that

best fit the dataset.

2.4.1 Cluster Validity Index (CVI)

Most clustering algorithms require some tuning of input parameters to deter-

mine the optimal number of clusters. For instance, the k-means algorithm

requires the user to specify the number of clusters, denoted as k, and the

35

Chapter 2: Literature Review

output quality strongly depends on the correctness of this value. To ad-

dress this challenge, cluster validity indices (CVIs) have recently emerged

as a valuable tool to guide the selection of input parameters, thus improv-

ing the accuracy of the resulting clusters [68]. By selecting an appropriate

CVI, the input parameters can be tuned to the optimal number of clusters,

thereby enhancing the quality of the resulting clusters. Estimating the op-

timal number of clusters is challenging, and various methods have been

proposed. In this thesis, the NbClust package [66] in the R programming

language was used; the package implements well-known indices for de-

termining the optimal number of clusters. The methods were used as a

benchmark to compare against our ensemble methods. The NbClust [66]

package is publicly available on the CRAN website and offers implementa-

tions of all indices reviewed in this study.

2.4.2 Evaluating Cluster Validity Index

The evaluation of cluster validity involves two primary criteria: compact-

ness and separability, as discussed by Arbelaitz et al. [68]. Compactness

measures the proximity of objects within a cluster, typically assessed by

variance or the degree of dissimilarity among objects. Lower variance indi-

cates a higher level of compactness within the cluster. Separability, on the

other hand, gauges the distinctness of clusters from one another.

To further categorise cluster validity indices (CVIs), they can be based on

the ratio of the intra-cluster distance to the inter-cluster distance. Promi-

nent examples include Dunn [69], Davies-Bouldin (DB) [70], and Calinski-

Harabasz [71]. Another category is determined by the weighted sum of

these two distances: inter-cluster and intra-cluster distances. Notable ex-

amples in this category include SD [72] and S_Dbw [73].

Table 2.1 provides a comprehensive list of methods for evaluating CVIs,

36

Chapter 2: Literature Review

accompanied by a brief description of the formulas employed for their cal-

culation.

2.4.3 Gap Statistics

Gap statistics are a popular method for estimating the optimal number of

clusters in a dataset [74]. It compares the observed data’s within-cluster dis-

persion with reference null datasets. If the clustering structure is meaning-

ful, the observed data should have a smaller within-cluster dispersion com-

pared to random reference data. The algorithm is described in 2.7.

Algorithm 2.7 Gap Statistics

Input: Dataset D, Kmax, B
1: Initialize arrays: Wobs, Wref

2: for k = 1 to Kmax do

3: Wobs[k]←Within-cluster dispersion of D with k clusters

4: for b = 1 to B do

5: Generate reference dataset Dref with the same dimensions as D
6: Wref[b, k]←Within-cluster dispersion of Dref with k clusters

7: end for

8: Wavg[k]← 1
B

∑B
b=1 Wref[b, k]

9: G[k]← log(Wavg[k])− log(Wobs[k])
10: end for

11: Kopt ← arg maxk G[k]
Output: Optimal number of clusters Kopt

The algorithm takes a dataset D, the maximum number of clusters Kmax,

and the number of reference datasets B as inputs. It calculates the within-

cluster dispersion for the observed data and reference datasets, computes

the gap statistic for different numbers of clusters, and returns the optimal

number of clusters based on the maximum gap statistic.

2.4.4 The Average Silhouette

The average silhouette method is a clustering validation technique used to

determine the optimal number of clusters in a dataset. It involves applying a

37

Chapter 2: Literature Review

clustering algorithm with varying numbers of clusters, calculating silhouette

scores for each data point to assess cohesion and separation within clus-

ters, and then computing the average silhouette score for each clustering

solution. The algorithm can be computed as follows:

Algorithm 2.8 The Average Silhouette Algorithm

Input: Dataset D, number of clusters K
1: Initialize array to store silhouette scores: S
2: for k = 2 to K do

3: Perform clustering on D with k clusters

4: Calculate the silhouette score for each data point

5: Calculate the average silhouette score S[k] for k clusters

6: end for

7: Find the optimal number of clusters: Kopt ← arg maxk S[k]
8: S ← S[Kopt]
Output: Average silhouette score S

This algorithm takes a dataset D and the number of clusters K as inputs

as described in Algorithm 2.8. It performs clustering with different numbers

of clusters, calculates the silhouette score for each data point, and com-

putes the average silhouette score for each number of clusters. Finally, it

determines the optimal number of clusters based on the maximum average

silhouette score and returns the average silhouette score S.

Table 2.1: Showing list of methods for determining the optimal number of

clusters in datasets

Index Formulae Ref

Calinski and Harabasz

CH =

trace(Bk)
k−1

trace(Ck)
n−k

, where

trace is the sum of diagonal elements

of a square matrix.

[75]

Cubic Clustering Criterion
CCC =

∑k
i=1
∑

x∈Ci
‖x− cci‖2∑k

i=1
∑k

j=1
∑

x∈Ci

∑
y∈Cj

‖x− y‖2
,

where cci is the cluster centroid of ci

[76]

Continued on next page

38

Chapter 2: Literature Review

Table 2.1 – Continued from previous page

Index Formulae Ref

Duda and Hart (Pseu-

dot2)

Duda =
Je(2)
Je(1) , where Je(2) = Error rate

of the second largest eigenvalue

Je(1) = Error rate of the largest eigenvalue

[77]

Krzanowski and Lai (KL)

KL =
DIFFk

DIFFk + 1 , where

DIFFk is a measure of difference between

successive partitions obtained at different

values of k.

[78]

Gamma

Gamma =
s(+)− s(−)
s(+) + s(−) , where

s(+) = number of concordant comparisons,

s(-) = number of discordant comparisons.

[79]

Gap

Gap(k) =
1
B

∑
log Cv − log Cp where

B = Number of referenced dataset generated.

Cv = matrix representing the variability

within the clusters for the k clusters.

Cp = the observed within-cluster dispersion

matrix for the k clusters.

[74]

Silhouette

Silhoutte =

∑n
i=1 Si

n

Si represents the Silhouette score

for the ith data point. where

Si = b(i)−a(i)
max(z(i);b(i))

bi measures how well the data point

fits into its neighboring cluster.

ai measures the compactness of

the data point within its assigned cluster.

zi is the maximum value between ai and bi

[80]

Hartigan
Hartigan =

trace(Ck)
trace(Ck+1) − 1)(n− k − 1),

where k ∈ 1, .., n− 2
[81]

Continued on next page

39

Chapter 2: Literature Review

Table 2.1 – Continued from previous page

Index Formulae Ref

Cindex

Cindex =
Sw − Smin

Smax − Smin
), Smin 6= Smax,

Cindex ∈ (0, 1), where

Sw number of concordant pairs

Smin number of pairs with tied predictions

Smax the total number of pairs

[82]

DB

DB =
1
k

k∑
k=1

max
δk + δl

δkl

where k, l = 1, ..., k = cluster number, and

δk is the average distance between

each points in cluster k and its centroid.

δkl is the distance between the two centroids.

[70]

Ratkowsky
Ratkowky =

S̄

k1/2 , where

S̄2 is the average sum of squares.

[83]

Scott

Scott = n log
(

det(T)
det(Ck)

)
, Where

det(T) is determinant of the total

variance-covariance matrix.

det(Ck) is determinant of the within-cluster

variance-covariance matrix for k partitions.

[84]

Marriot Marriot = k2det(Ck) [85]

Ball Ball =
Ck

k
[86]

Trcovw Trcovw = trace(COV (Ck)) [87]

Tracew Tracew = trace (Ck) [87]

Friedman Friedman = trace Ck
−1Bc [88]

Rubin
Rubin =

det(T)
det(Ck) , where

T is the total scatter matrix.

[88]

Continued on next page

40

Chapter 2: Literature Review

Table 2.1 – Continued from previous page

Index Formulae Ref

Beale

Beale = F ≡ p
q where

p = ratio of the between-cluster

variability to the sum of within cluster

variability and the between-cluster variability

q = represents measures of compactness

[89]

Ptbiserial

Ptbiserial =
S̄b − S̄w(NwNb/N2

t)1/2

sd

where

S̄w = Sw/Nw , S̄b = Sb/Nb

sd = standard deviation of all distances

[90]

Gplus

Gplus =
2s(−)

n(n− 1) ,

where

s(−)= the number of discordant comparison

[91]

Frey

Frey =

¯Sbj+1 − S̄bj

¯Swj+1 − ¯Swj

where

S̄b= mean between-cluster distance.

S̄w = mean within-cluster distance.

[70]

Tau
Tau =

s(+)− s(−)
[(n(n− 1)/2− t)(n(n− 1)/2]1/2 ,

where t = the number of tied pairs

[66]

McClain

McClain =
S̄w

S̄b

, where

S̄w = mean within-cluster distance

S̄b = mean between-cluster distance

[92]

Dindex Dindex = 1
k

k∑
q=1

1
n

∑
xi∈cc d(xi, ck) [93]

Dunn

Dunn =
min d(Ci, Cj)
max diam(Ck)

where

d(Ci, Cj) is the dissimilarity function

between two clusters Ci and Cj .

diam(Ck) = diameter of cluster Ck

[70]

Continued on next page

41

Chapter 2: Literature Review

Table 2.1 – Continued from previous page

Index Formulae Ref

SDindex

SDindex(q) =αScat(q) + Dis(q)

where α= weighing parameter.

Scat(q) = scatter index

Dis(q)= Distance index.

[72]

sDbw

sDbw =Scat(q) + bw(q)

where

Scat(q) is the same computed in SDindex

bw(q) is the inter-cluster density.

[72]

42

Chapter 2: Literature Review

2.5 Clustering Ensemble

Clustering Ensemble (CE) is a robust methodology combining multiple clus-

tering results to produce a cohesive set of clusters or reconcile clustering

information from diverse methods [94, 13]. Recognised as an NP-complete

optimisation technique, CE operates on the principles of the median par-

tition, demonstrating its computational complexity [95]. The methodology

involves four key stages: member generation, consensus function formula-

tion, optimisation, and evaluation.

In the initial member generation stage, an agreement matrix is systemati-

cally constructed to portray the extent of agreement between different input

methods. This matrix serves as a foundational representation of the rela-

tionships and discrepancies among the various clustering solutions. The

subsequent optimisation stage employs a fitness function applied to the

agreement matrix to explore and identify an optimal clustering arrange-

ment. CE excels at formalising the integration of diverse clustering arrange-

ments into a consensus representation, thereby unveiling the latent cluster-

ing structure inherent in the dataset.

A rich body of literature, including theoretical reviews and applications, con-

tribute to the understanding of clustering ensembles [96, 13, 7, 97]. Fur-

ther practical implementations showcase the versatility of CE, with notable

examples such as the R package diceR [98] and its related paper, which

explores the application of ensemble clustering methods. The authors fo-

cus on developing an information-based distance metric that addresses the

challenges inherent in clustering evaluation. They introduce a metric that

quantifies dissimilarity by considering shared and lost information between

clusterings, offering a robust solution rooted in information theory.

The Matlab package LinkCLuE also presents another avenue for practical

43

Chapter 2: Literature Review

implementation, offering users an efficient toolkit for clustering ensemble

analysis [10]. The toolkit was based on exploring the concept of cluster-

ing ensembles, focusing on developing models that capture both consen-

sus and weak partitions. The authors delve into the theoretical foundations

of clustering ensembles and propose models to address the challenges of

combining diverse clustering solutions. They emphasize the importance of

consensus in achieving robust clustering results and introduce methods to

handle weak partitions effectively.

The advantages of employing a clustering ensemble extend beyond those

typically associated with classification ensembles, which aim to enhance

predictive accuracy [99]. Some notable benefits of a clustering ensemble

include enhanced robustness, increased stability, and improved generali-

sation capabilities. By leveraging the collective insights from multiple clus-

tering algorithms, CE can effectively mitigate the impact of individual al-

gorithmic biases, resulting in more reliable and comprehensive clustering

solutions [7, 99].

Practical applications of clustering ensembles span various domains, such

as bioinformatics, image segmentation, and social network analysis. In

bioinformatics, CE has been employed for the identification of gene ex-

pression patterns and the delineation of biological pathways [100]. Image

segmentation tasks benefit from the ensemble approach by achieving more

accurate delineation of object boundaries and regions of interest [101]. So-

cial network analysis utilizes clustering ensembles to uncover community

structures, enhancing our understanding of complex network interactions

[97].

In summary, with its robust theoretical foundation and practical implementa-

tions, the clustering ensemble methodology proves to be a valuable tool for

addressing the inherent challenges in clustering analysis. Its versatility and

44

Chapter 2: Literature Review

its advantages make CE a compelling choice for researchers and practition-

ers seeking comprehensive and reliable clustering solutions across various

applications. Listed below are some of its application areas:

2.5.1 Advantages of Using Ensemble for Clustering

The following are some of the motivations for using a clustering ensem-

ble.

Enhanced quality of the solution

Unlike a single clustering solution, the ensemble approach considers the

biases and limitations of different clustering algorithms, leading to improved

and more accurate clustering results [96].

Robust clustering

Single clustering algorithms often assume specific underlying data charac-

teristics, which may limit the quality of the clustering outcome. By selecting

and aggregating results from multiple approaches, ensemble clustering can

improve the robustness and quality of the clustering process. Empirical re-

sults in document clustering [102] have demonstrated the effectiveness of

ensemble clustering in enhancing clustering quality.

Knowledge Reuse

Combining individual clusterings into ensembles is geared towards achiev-

ing a conclusive clustering solution characterized by stability and accu-

racy while concurrently promoting knowledge reuse [96]. Knowledge reuse

within clustering ensembles involves strategically leveraging insights from

various clustering runs or algorithms to inform subsequent analyses and

decision-making processes. This strategic approach entails capitalising on

45

Chapter 2: Literature Review

previously acquired knowledge about cluster assignments, structures, or

similarities between data points [10]. By integrating information derived

from diverse clustering sources, knowledge reuse contributes to a more

profound understanding of the underlying patterns present in the data, en-

riching the overall analytical process [7].

Increased stability and reliability

Clustering ensembles can provide excellent stability and reliability in the

clustering process. Ensemble methods can identify the common structures

or patterns consistently present across different algorithms because they

consider multiple clustering solutions, thereby reducing the impact of out-

liers or algorithm-specific requirements.

Handling uncertainty and ambiguity

Ensemble clustering methods prove highly beneficial in handling uncer-

tainty and ambiguity in clustering tasks, capturing diverse perspectives to

reveal intricate patterns when the underlying clustering structure is uncer-

tain [96, 10]. Integrating multiple clustering outcomes enhances stability,

reliability, and generalisation, making them robust in scenarios where the

optimal clustering solution is unclear [103]. Furthermore, ensemble clus-

tering serves as a risk mitigation strategy for unstable or noisy data, con-

tributing to removing uncertainties associated with variability in the dataset

[7]. This comprehensive approach fosters a nuanced interpretation of com-

plex datasets, reducing uncertainty and providing a reliable foundation for

subsequent analyses. Ensemble clustering is particularly adept at handling

ambiguity in data, offering an effective strategy to navigate uncertainty and

unveil latent structures embedded in complex datasets [7].

46

Chapter 2: Literature Review

2.5.2 Clustering Ensemble Representation

The clustering ensemble problem can be described as follows: Suppose

we are given a set of v data points in a dataset D = d1, d2, ...dv and a set of

partition C defined as C = {c1, c2, ..., ck}. The different partitions of D will

return a set of labels for each point Di, i = 1, ..., v: The task of a clustering

ensemble is to find the partition C∗ that aggregates the ensemble members

over a function µ such that C∗ is best in terms of consistency and quality

[10].

There are two primary approaches to achieving a consensus solution and

assessing the quality of each partition. The first approach involves em-

ploying the maximum likelihood formulation, which compares the labels as-

signed by individual solutions to the true consensus labels. Alternatively,

one can aim for a consensus that aligns most closely with the original clus-

terings [99]. The second approach involves measuring the similarity be-

tween different clusterings using well-known metrics such as the Adjusted

Rand Index (ARI) [94], Weighted Kappa, Normalized Mutual Information

(NMI) [96], and Variation of Information (VI) [104]. The following subsection

describes some of the metrics.

Weighted Kappa

The Kappa measure(wk) [105, 106] is a metric that can be used to compare

an expected accuracy with an observed accuracy based on the agreement

between the two raters. It is generally a more robust measure than a simple

percentage agreement because it accounts for the possibility of the agree-

ment occurring by chance. It is usually expressed, as shown in the equation

below:

wk = p0 − pe

1− pe
= 1− 1− p0

1− pe
, (2.4)

47

Chapter 2: Literature Review

Where po is the relative observed agreement among raters (identical to ac-

curacy), and pe is the probability of chance agreement. If the raters are

in complete agreement then wk = 1. If there is no agreement among the

raters, then wk = 0. If Kappa is negative, it implies no effective agreement

between the two raters or is worse than random. The Weighted Kappa de-

rives from the Kappametric; it allows weight to be assigned to disagreement

between two raters. It has an agreement strength between poor and very

good and is equivalent to the Adjusted Rand Index. The full guideline is

shown in Table 2.2 reproduced from [13].

Table 2.2: The Weighted Kappa guideline

Weighted Kappa Agreement Strength

0.0 ≤K ≤0.2 Poor

0.2 < K ≤0.4 Fair

0.4 < K ≤0.6 Moderate

0.6 < K ≤0.8 Good

0.8 < K ≤1.0 Very good

Adjusted Rand Index

The Adjusted Rand index (ARI) proposed by Hubert and Arabie [94] mea-

sures the similarity between two clusterings, which considers chance agree-

ments. The ARI is defined as:

ARI =
∑

i,j

(ni,j

2
)
− [
∑

i

(ai
2
)∑

j

(bj

2
)
]/
(n

2
)

1
2 [
∑

i

(ai
2
)

+
∑

j

(bj

2
)
]− [

∑
i

(ai
2
)∑

j

(bj

2
)
]/
(n

2
) (2.5)

where n is the total number of objects being clustered, ai is the number

of objects in cluster Ci in the first clustering, bj is the number of objects in

cluster Cj in the second clustering, and ni,j is the number of objects that

are in both Ci and Cj . The term
(ni,j

2
)
represents the number of pairs of

objects in the intersection of Ci and Cj that can be selected. The value

ranges between -1 and 1, with 1 indicating identical clusterings and 0 indi-

48

Chapter 2: Literature Review

cating random clustering. A higher value of ARI indicates a higher degree

of similarity between the two clusterings and the Adjusted Rand Index is

equivalent to the Weighted Kappa.

Agreement Matrix

An agreement matrix represents the level of agreement or similarity be-

tween different clustering solutions or clusterings generated by multiple

clustering algorithms. It is a square matrix that quantifies the degree of

concurrence between pairs of data points across the ensemble. The agree-

ment matrix, denoted as A, is an m × m square matrix, where each entry

Ai,j represents the level of agreement or similarity between data points i

and j across the ensemble. The agreement matrix quantitatively measures

agreement or similarity between different clustering solutions [107]. The

agreement matrix determines members’ agreement represented by spe-

cific numbers, each corresponding to a label or cluster in the dataset. The

Weighted Kappa Agreement matrix comprises the agreement matrix calcu-

lated from the clustering ensemble.

2.5.3 Search Space

The notion of the search space transcends various domains, spanning com-

puter science, optimization, artificial intelligence, and algorithms [108, 109].

This conceptual framework encompasses the potential solutions that an al-

gorithm or search process explores, necessitating evaluating these possi-

bilities to identify those that meet specific criteria or constraints.

In computer science, challenges associated with the search space are per-

vasive, arising in algorithmic problem-solving, pathfinding, and optimisation

tasks. For example, in algorithm design, the search space encompasses all

possible combinations of inputs and outputs, requiring an efficient naviga-

49

Chapter 2: Literature Review

tion strategy to pinpoint optimal solutions. Similarly, optimisation problems

entail exploring the entire search space to discover the configuration that

optimally aligns with a defined objective function.

Within the realm of a search space, several key concepts play a crucial role

in optimisation and problem-solving:

Neighbourhood: Defined as the set of solutions closely related to the cur-

rent solution, the Neighbourhood in the search space is a pivotal aspect

of optimisation algorithms. Exploring this proximity involves scrutinising

nearby solutions to identify potential enhancements, with the specific def-

inition of closeness dependent upon the problem domain and algorithmic

methodology.

Objective Function: Also referred to as a fitness or evaluation function,

the objective function quantifies the quality or desirability of a solution within

the search space. This numerical measure determines how well a solution

aligns with the goals or constraints of the problem, guiding search algo-

rithms in evaluating and comparing different solutions.

Solutions: These are specific points or configurations within the search

space, each characterised by a unique combination of parameters or vari-

ables. The overarching objective of the search process is to identify an op-

timal or satisfactory solution based on the criteria defined by the objective

function.

The integration of the search space concept extends beyond traditional

algorithms; it is also integral to heuristic search algorithms. These algo-

rithms leverage the search space, representing the states or configurations

available for exploration, and employ heuristics to guide the process intelli-

gently.

50

Chapter 2: Literature Review

2.6 Search Strategies: Exhaustive Search

In machine learning and AI, the term “search” pertains to exploring and eval-

uating various configurations, models, or parameters to discover an optimal

solution for a given task or problem. This search aims to identify the most

favourable settings or combinations that produce the desired outcome or

achieve the highest performance [110].

Search in machine learning, and AI encompasses a range of approaches

tailored to specific contexts and goals. It involves systematically examining

the space containing potential solutions and assessing their quality using

predefined criteria or metrics. The search process typically involves several

steps. Firstly, the search space is defined, which entails specifying the pos-

sible configurations, models, or parameters that can be explored. The def-

inition may include determining the range or set of values for each compo-

nent that can be adjusted or varied during the search. Secondly, an appro-

priate search strategy or algorithm is selected to explore the search space

efficiently. Different strategies possess distinct characteristics in terms of

exploration and exploitation. Common options include grid search [111],

random search, Bayesian optimisation [112], Genetic Algorithms [113], and

reinforcement learning-based search [114]. Grid search involves exhaus-

tively evaluating predefined combinations within a specified range, while

random search randomly samples configurations [111]. Bayesian optimi-

sation employs probabilistic models to guide the search towards promising

regions in the configuration space [115]. Genetic Algorithms utilise evolu-

tionary principles, evolving a population of candidate solutions over multi-

ple generations [113]. Reinforcement learning-based search, exemplified

by deep reinforcement learning, involves agents learning optimal configu-

rations through trial and error [116].Thirdly, an evaluation metric or criterion

is established to measure the quality or performance of the evaluated solu-

51

Chapter 2: Literature Review

tions. This metric can include accuracy, precision, recall, F1-score, mean

squared error, or other suitable measures depending on the specific prob-

lem. Subsequently, the search is executed by systematically exploring dif-

ferent configurations, models, or parameters based on the chosen search

strategy. Execution involves training and evaluating models, adjusting pa-

rameters, and assessing their performance using the defined evaluation

metric. Finally, the performance of different configurations or models is

compared to identify the most favourable solution. A common search ap-

proach is to use brute force, considering all possible combinations.

The exhaustive search [117], also known as brute-force search, is a straight-

forward algorithmic technique that systematically explores all potential so-

lutions within a search space to identify the optimal solution. This method

examines every possible combination, permutation, or configuration of el-

ements while adhering to the given problem constraints. In the present

scenario, the candidate solutions for each dataset are derived from subsets

of the Weighted Kappa agreement matrix. Although the exhaustive search

is conceptually simple and often yields successful results, it is sometimes

criticised for its lack of elegance in problem-solving [117] hence the need

for a heuristic search approach. The process of determining the optimal

subsets follows the steps illustrated in Figure 2.2 of the diagram.

52

Chapter 2: Literature Review

Figure 2.2: Steps in a General Exhaustive Search.

Exhaustive search algorithms are guaranteed to find the optimal solution

within the search space because they explore every possible solution.

However, they can be computationally expensive and impractical for large

search spaces due to their time and resource requirements. The time com-

plexity of exhaustive search algorithms is often exponential, growing rapidly

with the size of the search space.

2.7 Heuristic Search Algorithms

Heuristic search algorithms are a family of search algorithms that use

heuristics, which are problem-specific rules or knowledge, to guide the

search for a solution. Unlike exhaustive search algorithms, which exam-

ine every possible solution, heuristic search algorithms can quickly narrow

the search space and find a solution more efficiently.

53

Chapter 2: Literature Review

2.7.1 Genetic Algorithms and Exploratory Data Analysis

Genetic Algorithms (GAs), rooted in natural selection and genetics prin-

ciples, constitute a robust methodology for addressing intricate optimiza-

tion problems. These evolutionary algorithms iteratively advance a popula-

tion of potential solutions, employing genetic operators such as selection,

crossover, and mutation to dynamically adapt and refine the search strategy

(Holland, 1975). GAs find widespread applications across diverse domains,

encompassing optimisation problems (Goldberg, 1989), machine learning

(Mitchell, 1996), combinatorial optimisation (De Jong, 1975), and parameter

tuning (Eiben and Smith, 2003).

Conversely, Exploratory Data Analysis (EDA) is crucial for comprehend-

ing and extracting meaningful insights from data. EDA is centered around

systematically visualising, summarising, and interpreting datasets to unveil

inherent patterns, relationships, and structures (Tukey, 1977). This analyt-

ical approach is pivotal in preprocessing data before optimisation, ensuring

a comprehensive understanding of the problem space and facilitating in-

formed decision-making.

In contrast, Hill Climbing Algorithms represent optimization techniques that

iteratively traverse toward the peak (maximum) or valley (minimum) of

a function. These algorithms incrementally adjust the solution space to

reach the optimal point within the given constraints (Russell and Norvig,

2010).

Examples of Heuristic Algorithms

There are several types of heuristic search algorithms, some of which are

described below [118]:

54

Chapter 2: Literature Review

Best-First Search

The best-first algorithm explores a search space while prioritising the “best”

node using a heuristic evaluation function. The evaluation function esti-

mates the cost of reaching the goal from the current state [119]. It aims to

find the optimal solution efficiently by focusing on the most promising paths

rather than exhaustively searching all possible paths.

A* Search

This is a best-first search algorithm that combines the cost from the start

node and the heuristic evaluation function. A* search is widely used in

pathfinding and route planning problems. The heuristic function in A*

never overestimates the actual cost to reach the most promising paths

[119].

2.7.2 Greedy Search

This informed search algorithmmakes locally optimal decisions at each step

by choosing the most promising path based on a heuristic evaluation. It

focuses on the immediate benefits by selecting the most promising node

at every step. Essentially, this algorithm expands the node that appears to

be closest to the goal state according to the heuristic evaluation function.

However, this algorithm can get stuck in local optima [119].

Beam Search

This algorithm is a variant of best-first search that expands a fixed number

of the most promising nodes at each level of the search tree. Beam search

is commonly used in natural language processing and machine translation

tasks, for generating sequences such as sentences or translations. It is

a heuristic search algorithm that explores the most promising paths while

55

Chapter 2: Literature Review

keeping a limited number of the best candidate solutions, called the beam

width or beam size. The main characteristic of Beam search is that it main-

tains a limited number of candidate solutions at each step, discarding less-

promising candidates. It keeps only a subset of candidates; the search

space is pruned, thus allowing the algorithm to focus on the most promising

paths [120].

Iterative Deepening A*

This algorithm combines A* and depth-first searches. It first performs a

depth-limited search and gradually increases the depth limit until the goal is

found [121]. The key advantage of Iterative Deepening Search (IDS) is that

it combines the completeness of the Best First Search with the efficiency of

the Depth First Search. IDS avoids the pitfalls of Depth First Search getting

stuck in infinite paths by limiting the depth at each iteration.

Heuristic search algorithms have broad applications across domains, in-

cluding artificial intelligence, operations research, and robotics. However,

these algorithms’ efficacy largely depends on the fitness function’s qual-

ity and the search space’s structure. The following section discusses spe-

cific algorithms applied in the search for the best subset from the ensem-

bles.

2.7.3 Hill Climbing Algorithms

A Hill Climbing algorithm is a local search algorithm because it focuses on

exploring the immediate neighbourhood of the current solution. The algo-

rithm optimises problems to find a solution within a given search space. It

starts with an initial solution and iteratively explores neighbouring solutions

by making incremental changes in each iteration. The algorithm selects the

nearest solution that improves the objective function or evaluation metric

56

Chapter 2: Literature Review

and moves to that solution. This process continues until a locally optimal

solution is reached, where no further improvements can be made by explor-

ing the immediate neighbourhood.

Formally, let β be the search space of possible solutions, and f(β) be the

objective function or evaluation metric that quantifies the quality or fitness of

a solution β. The Hill Climbing algorithm can be described as follows:

1. select an initial solution β0.

2. Repeat the following steps until a stopping criterion is met:

• Generate the set s(β) of neighbouring solutions of current solu-

tion β.

• Evaluate the objective function for each neighbour s in s(β), i.e.,

calculate f(s).

• Select the neighbour s
′
from s(β) that maximises or minimises

the objective function f(s), depending on whether the problem is

maximising or minimising.

• If f(s′) is better than f(β), set β = s
′
(move to the neighbour s

′
).

• If f(s′) is not better than f(β), terminate the algorithm or restart

if applicable.

This algorithm may get trapped in local optima, where the current solution

is the best in its neighbourhood but suboptimal globally. Finding optimal

solutions is not always guaranteed, and a hill climbing algorithm can

sometimes become trapped in a state with a dead end. Hill climbing

algorithm is also called a generate and test algorithm because it generates

and tests each state as it moves towards the goal state. In summary,

there are three significant steps in a hill climbing algorithm. First, all

possible solutions are generated; second, the solutions are tested to

57

Chapter 2: Literature Review

ensure each is part of the expected solutions. The previous two steps

are repeated until there is no more improvement to the current solution

or the search reaches a convergence point. Heuristic algorithms may

appear to be intelligent, but they are not. They are only more efficient

because they take advantage of feedback from the data to direct the

search path. However, it has been proven to be highly efficient for specific

problems [118]. The diagram in Figure. 2.3 shows the possible regions

in a Hill Climbing algorithm. Several alternatives and variations have

been proposed to overcome this limitation, such as simulated annealing,

random restart Hill Climbing, and genetic algorithms. These variations

aim to escape from local maxima (or minima) and reach the global optimum.

Figure 2.3: State Space Landscape of a Hill Climbing Algorithm. [1]

.

Random Mutation Hill Climbing (RMHC) is a variant of the Hill Climbing al-

gorithm that incorporates random mutations to escape local optima and ex-

plore the search space more effectively. It aims to overcome the limitation

58

Chapter 2: Literature Review

Algorithm 2.9 Random Mutation Hill Climbing (RMHC)

Input: ITER (# of iterations)

1: Let θ be a random point in the search space,

2: let f be its fitness

3: for i← 1 to ITER do

4: Let θ̂ be a random point close to θ
5: Let f̂ be its fitness

6: if f̂ > f then

7: θ ← θ̂
8: f ← f̂
9: end if

10: end for

Output: θ - a solution

of traditional Hill Climbing (getting stuck in local optima), earlier discussed

in 2.7.3. In RMHC, the algorithm starts with an initial solution θ in the search

space. It iteratively explores neighbouring solutions by making incremental

changes θ̂, similar to the standard hill climbing algorithm. However, besides

evaluating the best neighbouring solution, RMHC incorporates random mu-

tations by making random changes to the current solution. These random

mutations allow the algorithm to explore solutions that may not be directly

reachable through incremental changes.

2.7.4 Fitness in a Search Space

Fitness refers to measuring or evaluating how well a particular solution or

candidate meets the objectives or criteria of the problem being solved. It

serves as a quantitative measure indicating the quality or suitability of a

solution within the search space. A fitness function assigns a numerical

value to each solution based on its performance or desirability with respect

to the problem’s objectives. Critical aspects of fitness in a search space

include:

59

Chapter 2: Literature Review

• Evaluation Metric: The fitness function defines an evaluation metric

based on accuracy, cost, or robustness, measuring how well a solu-

tion satisfies the problem’s criteria.

• Solution Comparison: Fitness enables comparing and ranking solu-

tions within the search space, with higher fitness values indicating

more better solutions.

• Search Space Exploration: The fitness function guides the search al-

gorithm in exploring the search space by evaluating the fitness of each

candidate solution. Promising solutions with higher fitness values are

prioritised for further exploration, leading to an efficient search pro-

cess.

• Iterative Improvement: The search algorithm aims to iteratively

improve the fitness of solutions through operations like mutation,

crossover, or local search. These operations modify the solutions to

explore the search space and identify solutions with higher fitness val-

ues.

• Convergence: The search algorithm strives to converge towards so-

lutions with high fitness values. As the search progresses, it focuses

on promising regions of the search space, leading to the discovery of

better solutions.

• Fitness Function Design: An appropriate fitness function is critical for

successful search algorithms and optimisation processes. It should

accurately capture the problem’s objectives and provide a meaningful

measure to guide the search towards desirable solutions.

In summary, fitness in a search space involves evaluating and quantifying

how well a solution meets the problem’s objectives. It is fundamental in

guiding the search process, comparing solutions, and driving exploration

60

Chapter 2: Literature Review

towards optimal or desirable solutions. Examples of its application and the

technical description can be accessed in this tutorial on properties of fitness

functions and search landscapes [122], and more detail on the specific fit-

ness application in this research can be accessed in Chapter 4.

2.7.5 Convergence in a Search Space

Convergence refers to the state or condition where a search algorithm has

reached a point where further exploration or optimisation is no longer pos-

sible or beneficial. It indicates that the search algorithm has found a sat-

isfactory solution or has reached an end where no better solutions can be

obtained within the given search space and constraints.

In optimisation algorithms, convergence implies that the algorithm has suc-

cessfully approached an optimal solution. The specific criteria for conver-

gence depend on the problem and the algorithm used. For example, in this

thesis, convergence is defined based on the objective function value and the

difference between consecutive iterations; in other cases, it might be deter-

mined based on reaching a predefined threshold of improvement.

When a search algorithm converges, it typically implies that it has found

the best or near-best solution available within the explored search space.

Convergence is desirable as it indicates that the algorithm has achieved the

desired outcome and can be terminated to save computational resources.

However, it’s important to note that convergence does not guarantee that

the obtained solution is the global optimum or the best. In some cases, the

algorithm may converge to a local optimum as described in the case of Hill

Climbing in Section 2.7.3, which is the best solution within a limited search

space region but not the globally optimal solution. Different algorithms and

techniques are employed to mitigate the risk of converging to local optima,

for example, the Random Mutation Hill Climbing alternative for traditional

61

Chapter 2: Literature Review

Hill Climbing.

2.7.6 Simulated Annealing

Simulated annealing is a metaheuristic algorithm used to find the global op-

timum of a function that may have multiple local optima. It is a probabilistic

algorithm based on slowly cooling a material to decrease its energy and

increase its stability. Kirkpatrick et al [123] first introduced a simulated an-

nealing application to optimisation problem; they were inspired by the phys-

ical process of annealing in metallurgy, where a material is heated and then

cooled slowly to reduce its energy and increase its stability. They demon-

strated how the algorithm could solve optimisation problems by iteratively

modifying a candidate solution and accepting it with a probability that de-

pends on the difference between the new and old solutions and a tempera-

ture parameter that decreases over time. Even in complex search spaces,

they demonstrated that the algorithm could find near-optimal solutions to

classical computing problems, such as the travelling salesman.

Ingber [124] proposes a modification to the simulated annealing algorithm

that improves its efficiency and speed using a numerical method called “min-

imisation by random search” to quickly find the best values for the temper-

ature parameter and cooling rate, which are critical to the performance of

simulated annealing. The modified algorithm, “very fast simulated anneal-

ing”(VFSA), uses these optimal values to perform a more focused search

of the solution space. Ingber shows that VFSA outperforms traditional sim-

ulated annealing on various optimisation problems, including the travelling

salesman problem and the quadratic assignment problem. Simulated an-

nealing has been applied to a wide variety of applications some of which

could be found in the following references [125, 126]. The Simulated An-

nealing algorithm is shown in Algorithm 2.10. The PR used in line 7 of Algo-

62

Chapter 2: Literature Review

Algorithm 2.10 Simulated Annealing

Input: To (Starting Temp), Iter (Number of Iterations), λ (The cooling rate)

1: Let s = a random solution

2: for i = 0 to Iter − 1 do

3: Let f = fitness of s
4: Make a small change to s to make s′

5: Let f ′ = fitness of new point s′

6: if f ′ is worse than f then

7: Let p = PR(f ′, f, Ti)
8: if p < UR(0, 1) then
9: Reject change (Keep s and f)
10: else

11: Accept change (Keep s′ and f ′)
12: end if

13: else

14: Let f = f ′

15: end if

16: Let Ti+1 = λTi

17: end for

Output: The solution s

rithm 2.10 computes the acceptance probability of a new fitness f ′ based

on the temperature Ti and the cost difference between f ′ and f . The differ-

ence between current fitness f and the new fitness f ′, referred to as ∆f ′,

is defined below. Also, the PR and the fitness difference are defined as

follows:

PR
(
f ′, f, Ti

)
= exp

(−∆f

Ti

)
where

∆f = |f − f ′|

The function UR(0, 1) generates a random number between 0 and 1, inclu-

sive. The number generated is compared against the acceptance probabil-

ity p to determine whether a change is accepted or rejected.

63

Chapter 2: Literature Review

2.7.7 Genetic Algorithms

Genetic Algorithms (GAs) are a class of search and optimisation algorithms

inspired by natural selection and genetics principles [127]. They are widely

used to solve optimisation problems where traditional search methods may

be inefficient or impractical. The central concept behind Genetic Algorithms

is to simulate the process of natural evolution to search for an optimal so-

lution within a population of candidate solutions [128]. The algorithm main-

tains a population of candidate solutions represented as chromosomes, typ-

ically binary strings. Each bit in a chromosome represents a gene, and the

population as a whole represents a subset of the search space containing

potential solutions. The GA iteratively evolves the population over gener-

ations using genetic operators such as selection, crossover, and mutation.

Selection involves choosing individuals with higher fitness to serve as par-

ents for producing offspring. Crossover (recombination) combines genetic

material from parents to create new individuals, mimicking genetic recom-

bination in biological reproduction. Mutation introduces random changes

in the chromosomes to maintain diversity in the population. The fitness of

each chromosome is evaluated based on its suitability to solve the problem.

Through successive generations, the GA promotes the survival of fitter indi-

viduals, gradually improving the population’s overall fitness. The fittest indi-

vidual in the final population is considered the solution to the problem. The

performance of a GA heavily depends on parameter settings, such as popu-

lation size, selection criteria, crossover and mutation rates, and termination

conditions. Fine-tuning these parameters is crucial for achieving good re-

sults. A simplified genetic algorithm is shown in Algorithm 2.11.

64

Chapter 2: Literature Review

Algorithm 2.11 The Genetic Algorithm

Input: Fitness function, POPULATIONSIZE, NBITS, GENERATIONS,

CROSSOVERRATE, MUTATIONRATE

Output: The fittest individual of the last population

1: Generate POPULATIONSIZE Valid Chromosomes of size NBITS bits

2: for i = 1 to GENERATIONS do

3: Crossover the Population to Create Children

4: Mutate the Population

5: Remove Invalid chromosomes

6: Apply Survival of the Fittest to the Population

7: end for

2.8 Evolutionary Approaches to Clustering

Evolutionary approaches have been widely used in clustering, applying ge-

netic algorithms and other related techniques to optimise clustering so-

lutions. Genetic Algorithms (GAs) are a prominent example of such ap-

proaches, drawing inspiration from natural selection and genetics principles

to search for optimal solutions within a population of candidate solutions

[129].

In the context of clustering, evolutionary techniques leverage stochastic

methods to solve optimisation problems. Evolutionary algorithms employ a

set of operators, including selection, recombination, and mutation, to evolve

a population of clustering structures; clustering is treated as an optimisation

problem. These operators work on encoded representations of candidate

clusterings known as chromosomes. Each chromosome is evaluated using

a fitness function that quantifies its quality, representing how well it fits the

clustering objective. The evolutionary process continues iteratively, gener-

ating new generations of clusterings until convergence.

Genetic Algorithms are one of the most widely used evolutionary techniques

for clustering [130, 131]. Other evolutionary approaches used in clustering

include Particle Swarm Optimisation [132], Evolutionary Programming (EP)

65

Chapter 2: Literature Review

[133], Evolutionary Strategies (ES) [134], and Estimation of Distribution Al-

gorithms (EDA) [135].

Evolutionary approaches offer several advantages in clustering. They pro-

vide a computationally efficient search space exploration compared to tra-

ditional randomised methods such as multiple runs of the k-means algo-

rithm. The inherent, implicit parallelism in genetic algorithms enables them

to evaluate multiple candidate solutions simultaneously. However, it is cru-

cial to carefully select and fine-tune parameters like crossover, mutation,

and recombination operators to ensure their effectiveness in achieving op-

timal clustering solutions [8].

2.9 Related Studies

Numerous studies have addressed the challenge of consolidating multiple

clustering results to enhance stability and robustness, aligning with the ob-

jectives of this research. Ensemble and Consensus Clustering techniques

have emerged as notable solutions, aiming to unify diverse clustering out-

comes into a cohesive output, overcoming limitations in individual clustering

approaches, and providing more reliable and accurate results.

This study extends the work of Samy et al. [12] - an investigation into

various selection techniques, encompassing manual methods and heuris-

tic searches. Experimental evaluations demonstrate the effectiveness of

these selection methods in improving the efficiency of Ensemble and Con-

sensus Clustering. Similar to the current research, the study incorporates

diverse datasets from various categories, emphasising practical applicabil-

ity by highlighting real-world data from repositories. The comprehensive

dataset collection, comprising 198 datasets with varied attributes and in-

stances, undergoes rigorous data cleansing for accuracy and proper for-

66

Chapter 2: Literature Review

matting. The authors enhance the reliability of the dataset collection by pro-

viding known expected clustering arrangements. Furthermore, the present

study utilises some of these datasets while incorporating additional ones to

broaden the research scope, specifically including datasets with outliers, as

discussed further in Chapter 3.

The concept of Seeding used in this study is partly motivated by earlier work

on software modularisation [136]; the study addresses the complex task of

modularising sequential source code software check-ins to evaluate major

changes using the Munch software clustering tool. The study employs a

search-based software engineering technique; the tool automatically de-

composes software systems into meaningful subsystems, facilitating the

understanding and maintenance of large, evolving systems. Introducing

a seeding approach based on prior modularisations accelerates the modu-

larisation process and reduces runtime. Through experiments on extensive

real-world datasets, the study validates the efficacy of the seeding strategy,

extending previous work by introducing a time-series dataset and applying

seeding to modularise sequential source code software versions.

The next chapter presents a concise discussion of the selection process of

datasets, accompanied by an overview of their variability and characteris-

tics. Careful consideration was given to ensure that these datasets are rep-

resentative and suitable for the experiments conducted in this study.

67

Chapter 3

Description of Datasets

3.1 Introduction

This chapter outlines the datasets, the techniques employed to generate the

clusterings, and the pre-determined parameters for selecting the dataset ap-

plied in later chapters. A thorough examination of the datasets was carried

out, since they were sourced from various repositories and comprised both

artificial and established standard clustering benchmark datasets.

3.2 Dataset Description

The datasets used for this experiment were selected from various data

repositories used by the machine learning community to analyse different

algorithms empirically. Within this thesis many yardsticks were used to

choose the dataset, emphasising both the benchmark and the real-world

dataset. The dataset collated was from a wide range of data categories

ranging from bio-medical and statistical to weather-related datasets. Some

of the datasets are available in UCI Machine Learning Repository [137],

Kaggle Repository [138], StatLib [139], Time Series Library [140], Univer-

68

Chapter 3: Description of Datasets

sity of Finland’s Clustering Basic Benchmark [141] and the Outlier Detection

Datasets [142], among others in various formats and dimensions.

The database currently holds two hundred and eighteen (218) datasets from

the above sources. The datasets were organised into a format that contains

different attributes and the cluster for the row. Through data scrubbing,

errors were identified, and duplicates and incorrect or inconsistent values

were removed, as well as general errors in the data. The accuracy and con-

sistency of all datasets were validated by comparing the data across multi-

ple sources, repositories and benchmarks. Where needed, variable trans-

formation and new variables were created to transform the datasets into a

suitable format for further analysis. Finally, the dataset was inputted into

different algorithms to generate ensembles. The dataset attributes, such

as the number of columns, range from 3 to 200, and instances ranges up to

5000. All datasets underwent a data cleansing process to ensure accuracy

and correct formatting before running them on the clustering methods. This

research reports the known number of clusters as the gold standard or the

expected clustering arrangements for each dataset.

3.3 Data Collection and Pre-Processing

The data cleaning stage includes handling missing data and outliers; com-

bining the data is data integration, especially if it is obtained from multiple

sources. Data transformation involves standardising the numerical features

to bring them to a similar scale, preventing any particular feature from dom-

inating the analysis. The data reduction process can include dimensionality

reduction, i.e. reducing the number of features in the dataset while preserv-

ing its essential information. Data Normalisation, however, is adjusting the

data distribution to have a specific range or distribution. The process of en-

suring the quality and integrity of the data is data validation, i.e. checking for

69

Chapter 3: Description of Datasets

inconsistencies, errors, or anomalies that may have been introduced during

the preprocessing steps. Each stage is essential and may be omitted or re-

peated several times depending on the requirement. Figure 3.1 shows the

different data preprocessing stages. The total number of datasets initially

collected for analysis are two-hundred and eighteen (218), some of which

were eliminated because of the above or a combination of the followings

reasons:

• Some datasets exhibit a discrepancy between the clusters obtained

through clustering methods and the expected number of clusters

based on a predefined gold standard.

• The data size is less than 100 instances (too small).

• Missing values are a common occurrence in datasets, and they often

pose a challenge for many clustering methods that are not equipped

to handle such missing values effectively.

A total of twenty-seven (27) datasets, as presented in Table 3.1, success-

fully satisfied the aforementioned criteria. These datasets were sourced

from diverse origins, including bio-medical, ecological, statistical, and time

series. The attributes within these datasets range from 3 to 100, while the

instances reached up to 3000.

It is important to note that the process of ensuring dataset consistency and

integrity of the published dataset characteristics varied significantly across

repositories. Hence, in our final analysis, we took measures to include only

those datasets that were verified across multiple repositories for consis-

tency and correctness.

70

Chapter 3: Description of Datasets

Figure 3.1: Stages in Data Preprocessing

3.4 Dataset Characteristics and Features

This section provides a comprehensive overview of the datasets used in

the study. The section sheds light on important features of some of the

datasets, such as the origin of the datasets, the range of attributes they

encompass, the number of instances available, and the measures taken

to ensure data consistency and integrity. Simple graphs of the clustering

characteristics are provided where available.

Understanding the characteristics of the datasets is crucial as it allows re-

searchers to gain insights into the nature of the data they are working with.

Furthermore, the section highlights the range of attributes present in the

datasets, providing insights into the dimensionality and complexity of the

data. The number of instances available in each dataset indicates the scale

and volume of the data being analysed. It is noteworthy that the number of

clusters provided in Table 3.1 corresponds to the numbers provided in the

repository from where the data were downloaded. The column indicating

71

Chapter 3: Description of Datasets

Table 3.1: Dataset by rows, columns and number of clusters

Datasets #Rows #Columns #Clusters

aml28 804 3 5

atom 800 4 2

bezdekIris 150 5 3

Blobs 300 3 3

cassini 1000 3 3

compound 399 3 6

curves1 1000 3 2

gaussian500 3000 3 5

glass 214 11 6

hepta 212 4 7

longsquare 900 3 6

lsun 400 3 3

pearl 266 3 3

pmf 649 4 5

shapes 1000 3 4

size1 1000 3 4

size2 1000 3 4

spherical_5_2 250 3 5

square2 1000 3 4

synthetic_control 600 62 6

tetra 400 4 4

tetragonular_bee 236 16 9

ThreeMC 400 3 3

triangle1 1000 3 4

vehicle 846 19 4

veronica 206 586 7

zelnik3 266 3 3

the number of clusters is based on metadata from the original source and

was not derived independently in this study.

Acute Myeloid Leukemia (aml28) Dataset

The dataset consists of sequenced primary tumour and relapse genomes

from eight acute myeloid leukaemia - AML patients. Most patients with AML

die from progressive disease after relapse, associated with clonal evolu-

tion at different levels. The dataset was meant to determine the mutational

spectrum associated with the relapse of hundreds of somatic mutations us-

72

Chapter 3: Description of Datasets

Figure 3.2: Visualisation of Atom Dataset

ing deep sequencing. The mutational spectrum enabled the definition of

clonality and precise identification of clonal evolution patterns at relapse.

More detail about the dataset can be accessed in the paper by Li Ding et al

[143].

The Atom Dataset

The Atom dataset consists of two three-dimensional clusters with a com-

pletely overlapping convex hull. Therefore, by definition [144], the Atom

dataset is linearly non-separable because the first cluster entirely encloses

the second one. Although both consist of 400 data points, the density at the

centre is more than the outer part, as shown in Figure 3.2.

The Hepta Dataset

The Hepta dataset has seven clusters, with two additional points added to

the central cluster. Thus, the density of the central cluster as described in

73

Chapter 3: Description of Datasets

Figure 3.3: Visualisation of Hapta Dataset

[145] is twice the size of the other six clusters Figure 3.3.

The Lsun Dataset

The dataset was initially published as a two-dimensional version in [146];

the challenge is the that the dataset has some special features such as non-

overlapping convex hulls with varying geometric shapes, elongated clusters

and pockets of outliers. Furthermore, the dataset contains 400 data points,

with two clusters containing 100 points and the third having 200 points.

Thus, Lsun is often problematic for clustering algorithms because of the dif-

ferences in the shapes of the clusters and the variance between the inner

clusters and the slight cluster separations.

The Tetra Dataset

The dataset comprises 400 data points separated into four spherical clus-

ters in [147]. The main challenge of the Tetra dataset is the large intra-

cluster distances and low inter-cluster distances, with the clusters nearly

touching one another as shown in Figure 3.5.

74

Chapter 3: Description of Datasets

Figure 3.4: Visualisation of Lsun Dataset

Figure 3.5: Visualisation of Tetra Dataset

75

Chapter 3: Description of Datasets

Tetragonular Bee Dataset

The tetragonular bee dataset is a genetic dataset for 236 tetragonular bees

from Australia and Southeast Asia, with location and species information

provided in [144]. The dataset delimitates clusters using the number of bee

species in the dataset and the bees that belongs to a species. Species are

defined by interbreeding, which means that a much more significant genetic

similarity is expected between species. Therefore, the distance matrix and

the geographical origin of the species are important to cluster the dataset.

The challenge lies in the smooth transition between clusters and outliers be-

cause clusters should have smaller intra-cluster than inter-cluster distances

while remaining coherent with the geographic origins. The raw data is avail-

able in the R package prabclus on CRAN [148].

Glass Dataset

The dataset was based on a study that seeks to classify the types of crime

based on the glass types found at the incident scene [149]. The glasses

at the scene of the crime were classified into seven categories as listed

below:

• building windows float processed

• building windows non-float processed

• vehicle windows float processed

• vehicle windows non-float processed

• containers

• tableware and headlamps

76

Chapter 3: Description of Datasets

Figure 3.6: Visualisation of LongSquare Dataset

LongSquare Dataset

The LongSquare (Figure 3.6) dataset is a synthetic dataset that combines

square1 and Long1 datasets. Although both datasets have 1000 observa-

tions, LongSquare has 900 observations [150].

Shapes Dataset

This dataset is synthetic and it can be generated using the R package ’ml-

bench’. It has four distinct shapes as shown in Figure 3.7.

Vehicle Dataset

This dataset is from the Turing Institute, Glasgow, Scotland. The purpose

was to find an appropriate method to distinguish 3D objects within a 2D

image using an ensemble of shape feature extractors. They used a rule

77

Chapter 3: Description of Datasets

Figure 3.7: Shapes Dataset Visualisation

tree classification method. It compares favourably with other methods, such

as MDC (Minimum Distance Classifier) and KNN (k-Nearest Neighbour), to

successfully discriminate between model cars silhouettes, vans and buses

when viewed from a certain angle of rotation. The number of clusters in the

dataset is 4.

3.5 Clustering Ensemble Generation

In the initial phase, forty clustering algorithms were considered for the ex-

periment. However, after careful evaluation and selection, the number of

clustering algorithms was reduced to thirty majorly because some of the al-

gorithms’ performed poorly across all datasets used for the experiment. For

example, algorithms removed from the ensemble have average weighted

kappa values less or equal to 0.1, which in the current interpretation meant

78

Chapter 3: Description of Datasets

that there were no clusters even when clear groupings were within the

dataset. On the other hand, the thirty methods selected for the rest of the

experiment have, on average weighted kappa values above 0.1 across the

datasets tested. A total of thirty clustering algorithms, referred to as input

methods, were employed in this study. Including a diverse set of methods to

create the ensemble ensures the reliability of the techniques and facilitates

the exploration of various combinations derived from them. The clusterings

were generated using the R language implementation of the algorithms.

Table 3.2 summarises the input methods chosen for this research and the

number of variations implemented for each technique. The next section

describes the R packages used in clustering the datasets.

3.5.1 R and The List of Packages

R stands out as a robust and highly adopted statistical environment, valued

by researchers, data scientists, and statisticians due to its versatility and rich

collection of packages. As an open-source platform, R offers various tools

for statistical analysis, data visualization, and machine learning. Its syntax

is designed to simplify data manipulation and analysis, making it well-suited

for various statistical tasks.

For this thesis, R was chosen as the statistical environment, and this deci-

sion was influenced by the diverse packages available that enhance func-

tionality and streamline specific analyses. The selection of packages is tai-

lored to the project’s requirements, and the following list itemizes some of

the critical packages utilized in this thesis:

1. dplyr: This package is fundamental for data manipulation and trans-

formation. It provides functions that make it easy to filter, arrange, and

summarize data.

79

Chapter 3: Description of Datasets

2. ggplot2: Widely recognized for its elegant and flexible plotting ca-

pabilities, ggplot2 is instrumental in creating informative and visually

appealing data visualizations.

3. stats: This is the core package for basic statistical functions, provid-

ing essential tools for hypothesis testing, probability distributions, and

summary statistics.

4. caret: Commonly used for machine learning tasks, caret streamlines

the process of building and evaluating predictive models, facilitating

model training and performance assessment.

5. tidyr: A package that complements dplyr, tidyr assists in reshaping

and tidying data, making it easier to work within the context of various

analyses.

6. glmnet: Useful for fitting generalized linear models, mainly when

dealing with high-dimensional data or when regularization techniques

are necessary.

7. forecast: Designed for time series analysis and forecasting, this

package offers a range of tools for modeling and predicting future val-

ues in time-dependent datasets.

8. tidyverse: While not a single package, the tidyverse collection, in-

cluding dplyr, ggplot2, tidyr, and others, promotes a consistent and

efficient data analysis and visualization workflow.

80

Chapter 3: Description of Datasets

Table 3.2: Description of methods used in clustering the dataset

Clustering Methods Description Variants

K-means

The following algorithms: Forgy, Lloyd,

Macqueen and Hartigan

were implemented in R “stats” package.

4

Hierarchical Clustering

The following agglomerative methods: Ward,

Single, Complete, Average, Mcquitty,

Median and Centroid using both Euclidean

and distance correlation methods

14

Model-based clustering
Model based clustering is implemented

using ”mclust” with five flavours
5

Affinity Propagation (AP) [103]

”apclust” a package in ’R’ was computed

using the following similarity metric:

negDistMat, expSimMat and linSimMat

3

Partitioning Around Medoids (PAM)

Two similarity methods:Euclidean and

Correlation were, it is available in

’cluster’ package

2

Clara Clara is available in the ’cluster package’ 1

X-means

X-means recursively partition data into two

disjoint sets available in ’clusternor’

package

1

DBSCAN It is available in ’R’ package ’dbscan’ 1

The following section discusses the datasets, features, and distinctive clus-

tering characteristics.

3.6 Variability by Method and Dataset

The degree of variability reported here is two-fold: variability by methods

and by datasets. In this sub-section, a comparison was made regarding the

degree of variability in each dataset with the rest of the data after manually

removing those that did not pass the initial tests for size, missing values,

and those with an unknown number of clusters. In data analysis, variability

refers to the extent to which data points or measurements differ. It mea-

sures how much the data points or measurements vary or deviate from the

81

Chapter 3: Description of Datasets

average or expected value. Variability is a critical concept in data analy-

sis, as it can significantly impact the results and conclusions drawn from

analysing a dataset. High variability can indicate that the data points are

spread widely, while low variability suggests that the data points are clus-

tered more closely. Understanding the variability of a dataset is crucial for

making accurate statistical inferences and identifying trends and patterns in

the data. It can be measured using a variety of statistical measures, such

as standard deviation, range, or interquartile range.

Figure 3.8: Variability of Methods based on Weighted Kappa Values

The variability by dataset and methods is based on the average Weighted

Kappa values from the twenty-seven methods and the thirty clustering tech-

niques used as inputs. Figures 3.8, 3.9] show the average Weighted Kappa

values, the standard deviation and the range of values (interquartile range)

in each of the twenty-seven datasets reported. There is medium variability

across all the twenty-seven datasets, with values ranging from 0.01 to 1.

The reduction in variability is due to the initial cleaning of the dataset by re-

82

Chapter 3: Description of Datasets

Datasets

W
e
ig
h
te
d
K
a
p
p
a
V
a
lu
e
s

Figure 3.9: Variability of Datasets based on their Weighted Kappa values

moving the dataset with missing values and through dataset normalisation.

The variability is detailed in Figures [3.8, 3.9].

In conclusion, a considerable number of clustering methods, including

ccfkms, HCSingle, HCAverage, HCCentroid, HCComplete, and specc, ex-

hibit higher variability compared to methods such as HCCentroid1, ClaraC-

Numc, and HCSingle1, which show lower variability. However, the latter

set of methods tends to produce outliers in the output. Similarly, a certain

degree of skewness is observed in HCCentroid1, HCSingle1, HCMedian1,

and other methods. Based on the above observations, significant variabil-

ity exists among the results obtained from the different clustering methods

applied to the datasets. When examining the variability across datasets,

the length of the box reveals that approximately 80% (22 out of 27) of the

datasets exhibit noticeable variability, as indicated by the spread of the mid-

dle 50% of the data. However, three datasets: atom, tetragonular_bee, and

vehicle, displayed outliers in their output, confirming the earlier findings re-

83

Chapter 3: Description of Datasets

garding the variability observed across different methods.

In conclusion, the variability analysis carried out in this chapter is vital for

several reasons. Firstly, it plays a crucial role in assessing data quality and

reliability. Inconsistencies and errors that may affect the analysis results

and outliers can be identified and eliminated during the initial data analysis

process, ensuring that conclusions drawn from the dataset are based on

reliable and representative information. Secondly, variability analysis aids

in feature selection and determining feature importance, i.e. the most in-

formative and significant features can be selected, allowing the exclusion

of irrelevant or low-variance features, resulting in more efficient and ac-

curate models. Furthermore, variability analysis provides insights into the

dataset’s values, patterns, and distribution range. This understanding of

data variability helps uncover underlying relationships, trends, and clusters,

contributing to a better understanding of the data patterns and facilitating

informed decision-making. Variability analysis is essential for data quality

assessment, feature selection, and understanding data patterns.

In the next chapter (Chapter 4), we introduce the ensemble method built

upon the framework discussed in Chapter 2; this approach employs a se-

quence of transformations to uncover the optimal solution. In the frame-

work, each potential solution is represented as a subset and meticulously

evaluated to ascertain its suitability for determining the ideal number of clus-

ters within datasets. Chapter 4 explores the ensemble framework and its

use in estimating the number of clusters.

84

Chapter 4

ESTIMATING NUMBER OF

CLUSTERS USING THE

ENSEMBLE FRAMEWORK

4.1 Introduction

This chapter focuses on the ensemble framework, which provides a way to

determine the number of clusters in a dataset. As noted in earlier chapters,

estimating the number of clusters in cluster analysis is often complicated

by the absence of a clear and universally accepted definition of what con-

stitutes a “cluster.” In addition to exploring strategies for ensemble-based

cluster analysis, this chapter also examines techniques for combining en-

sembles to achieve maximum diversity. The discussion draws from a re-

search paper presented at the International Conference on Data Science,

Technology and Applications, entitled ”Estimating the Optimal Number of

Clusters from Subsets of Ensembles” [16].

85

Chapter 4: The Ensemble Framework

4.2 Background

Clustering, as earlier defined, is assigning similar data points to the same

cluster and dissimilar points to different clusters without prior knowledge of

the members’ labels [5]. It often involves determining the number of clusters

by learning from similarity or dissimilarity between objects or points in the

dataset to be clustered. This process is a subtle way of unravelling the

pattern or the underlying structure in the dataset from where other analyses

can commence.

This chapter explores ensemble methods for estimating the number of clus-

ters in datasets. The concept of ensemble clustering was initially introduced

by Strehl and Ghosh in 2002 [96]. This technique has enhanced clustering

performance by generating multiple dataset partitions and merging them

to create a comprehensive summary clustering solution. In this thesis, the

goal is to extend the application and model of ensemble clustering to the

domain of unsupervised learning.

The utilisation of clustering ensembles raises two fundamental questions

that need addressing:

• What is the optimal way to generate clusterings and combine them

into representative solutions whilemaintaining diversity and promoting

accuracy?

• How can the best solution be optimally identified from the pool of rep-

resentative solutions (subsets)?

To address these questions, an exploration was conducted, which involved

creating all possible subsets of ensembles. Subsequently, an agreement

matrix was constructed, capturing cluster similarity across various cluster-

ing algorithms for each value of the number of clusters (k). Section 2.5 pro-

vides a detailed description of the agreement matrix. The subset exhibiting

86

Chapter 4: The Ensemble Framework

the highest agreement, as determined by a quality function, is considered

the best, and its index represents the estimated number of clusters in the

dataset. However, conducting an exhaustive search for the best subset can

be computationally demanding, particularly as the number of clusterings in-

creases.

A mapping technique that transforms the outputs from the agreement matrix

into Gray code subsets is utilised to overcome this challenge. For detailed

information regarding the description of Gray code subsetting, refer to Sec-

tion 4.2.1. This mapping process facilitates the generation of subsets that

are subsequently evaluated by the quality function. Gray code represen-

tations are advantageous because they have only a single-digit difference

between successive members. In Section 4.6, the runtime of the quality

function and the update quality function from Gray code implementation

show the algorithm’s efficiency is significantly improved.

This study emphasises the proposed approach’s effectiveness in achiev-

ing accurate outcomes across diverse datasets, distributions, and datasets

with outliers. The performance of the approach consistently surpasses that

of similar methods. Unlike certain approaches that heavily rely on specific

data distributions, such as the Gaussian distribution, the current approach

overcomes this limitation and mitigates the risk of overfitting. This adapt-

ability and resilience to various data distribution characteristics contribute to

the robustness and reliability of the proposed approach. An important factor

contributing to these advantages is using the Weighted Kappa agreement

matrix, derived from multiple clusterings, rather than solely relying on the

individual algorithms’ produced clusterings. This careful consideration en-

hances the quality and accuracy of the estimated clusters.

In a prior related study conducted by Samy Ayed [12], it was shown that

a substantial correlation exists between the average Weighted Kappa (w)

87

Chapter 4: The Ensemble Framework

of pairs of inputs and the average Weighted Kappa (w) of each input when

compared to the expected number of clusters (gold standard). This finding

implies that selecting the best subset, which corresponds to the subset with

the highest average Weighted Kappa, should strongly align with the gold

standard or the number of clusters in a dataset, even without prior knowl-

edge. In other words, it can serve as a reliable proxy for the gold standard.

Apart from this key insight, the research also presents the following contri-

butions:

• Development of a selection scheme that systematically generates a

solution space by creating subsets of ensembles from the clusterings.

• Formulation of an objective function that assesses the quality of a

subset and identifies the subset that optimises the objective function,

thereby maximising quality.

• Establishment of a mathematical framework for quality metrics. These

metrics enable larger subsets to be evaluated on an equal footing with

smaller subsets using a threshold value.

4.2.1 Why Gray Codes?

The Gray code, introduced by Frank Gray [151], is a type of code that ex-

hibits two important properties. Firstly, it is a single-distance code, meaning

that neighbouring code words differ by only one digit position. Secondly, it

is cyclic. The cyclic property of Gray code refers to the ability of the code

sequence to loop back to its initial value after reaching the maximum value.

In other words, the code sequence is designed to form a closed loop. This

property ensures that adjacent code words in the sequence differ by only

one digit position, even when transitioning from the last code word to the first

one. For example, consider a binary Gray code sequence for 3-bit numbers:

000, 001, 011, 010, 110, 111, 101, 100. If we continue the sequence after

88

Chapter 4: The Ensemble Framework

100, the next code word will be 000, completing the cycle.

This property is handy in various applications, such as minimising errors in

analogue-to-digital converters, reducing noise in communication systems,

and generating subsets or permutations of elements in combinatorial prob-

lems. It ensures smooth transitions between code words and minimises

the potential for errors or abrupt changes, which is particularly useful in our

current representation of subsets.

Leveraging the single-digit difference between successive subsets allows

subsequent quality values to be calculated from the previous quality using

the update quality function (Equation 5.2). With ten input algorithms, a total

of 1, 013Gray codes are generated, each consisting of at least twomembers

(subsets). The matrix below illustrates an example:

0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1 0 0



Consecutive members of the Gray code sample (matrix) below differ by a

single digit.

4.2.2 How Does a Cluster Estimator Work?

A typical estimator seeks to optimise an objective function, for example, the

sum of the square distance between each point in a dataset and its closest

or assigned centre, as shown in Figure 4.1. The figure describes the “peak

of a curve” based on different values of k (number of clusters) from 2 ...
√

n (n = number of objects to be clustered); see Section 5.3.3 for the mo-

tivation for
√

n. The peak is a cutoff point commonly used in heuristic and

89

Chapter 4: The Ensemble Framework

mathematical optimisation to determine where adding another cluster only

results in breaking the cluster into clusters within identified cluster rather

than any appreciable difference between clusters. The graph’s peak, as

shown in Figure 4.1, corresponds to the optimal value of the objective func-

tion; adding another cluster to it from that point does not model the dataset

better; instead, it may result in over-fitting.

k = 2 ...
√

n

M
e
tr
ic
s

Figure 4.1: Representation of Optimal Number of Clusters in a Dataset.

4.3 Estimating the Number of Clusters

There are numerous methods available for determining the number of clus-

ters in datasets, althoughmany of them are no longer considered up-to-date

or commonly used. A range of standard methods and indices were selected

to be compared with methods designed in this research to demonstrate their

performance. The first categories of techniques used are those that cluster

datasets and report the number of clusters as part of the output; essentially,

they are clustering algorithms. Three methods were considered in this cate-

90

Chapter 4: The Ensemble Framework

gory. First, x-means [53] for example, provides a framework for estimating

the number of clusters in datasets using k with the best Bayesian Informa-

tion Criterion [152] score. However, x-means assumes that the width of the

covariances is identical and spherical, thus limiting the method to specific

data distribution. x-means is one of the methods used in generating the

initial clusterings.

Harmer and Etkan [153] proposed the G-means algorithm. The algorithm

grows the value of k starting with a small number of centres and tests if the

data is from a Gaussian distribution using a statistical test. Those not from

Gaussian distribution are split into two repeatedly until all assume Gaussian

distribution. Although G-means work well, if the data is well separated, it

can encounter difficulty with overlapping data. In this category, Expectation-

Maximisation (EM) algorithm was considered; unlike distance-based and

hard clustering algorithms such as k-means, EM constructs statistical mod-

els of the data and accommodates categorical and continuous data fields

with varying degrees of data membership in multiple clusters.

The second set of methods evaluated in comparison to our ensemble tech-

niques consists of thirty classical methods from R’s NbClust package [2],

which are detailed in Table 4.1. Some of these methods will be explained,

with a focus on the top five based on their outputs/errors when compared to

the actual number of clusters in the dataset. One of the highlighted meth-

ods is Gap statistics, discussed in Chapter 2, Section 2.4.3. This method

assesses the total intra-cluster variation for various cluster values and com-

pares them to their expected values under specific distributions, such as the

null reference distribution. Although it is good at identifying well-separated

clusters, it can sometimes overestimate the number of clusters [154] for cer-

tain distributions, e.g. exponential distributions [155]. The methods were

also compared with the Silhouettes technique described in Chapter 2. The

91

Chapter 4: The Ensemble Framework

Table 4.1: A summary of the indices implemented in NBClust [2]

S/N Method Authors

1 "ch" Calinski and Harabasz 1974

2 "duda" Duda and Hart 1973

3 "pseudot2" Duda and Hart 1973

4 "cindex" Hubert and Levin 1976

5 "gamma" Baker and Hubert 1975

6 "beale" Beale 1969

7 "ccc" Sarle 1983

8 "ptbiserial" Milligan 1980, 1981

9 "gplus" Rohlf 1974; Milligan 1981

10 "db" Davies and Bouldin 1979

11 "frey" Frey and Van Groenewoud

1972

12 "hartigan" Hartigan 1975

13 "tau" Rohlf 1974; Milligan 1981

14 "ratkowsky" Ratkowsky and Lance 1978

15 "scott" Scott and Symons 1971

16 "marriot" Marriot 1971

17 "ball" Ball and Hall 1965

18 "trcovw" Milligan and Cooper 1985

19 "tracew" Milligan and Cooper 1985

20 "friedman" Friedman and Rubin 1967

21 "mcclain" McClain and Rao 1975

22 "rubin" Friedman and Rubin 1967

23 "kl" Krzanowski and Lai 1988

24 "silhouette" Rousseeuw 1987

25 "gap" Tibshirani et al. 2001

26 "dindex" (Lebart et al. 2000)

27 "dunn" Dunn 1974

28 "hubert" Hubert and Arabie 1985

29 "sdindex" Halkidi et al. 2000

30 "sdbw" Halkidi and Vazirgiannis 2001

92

Chapter 4: The Ensemble Framework

Silhouettes [80] technique uses partitions from the clustering and the col-

lection of proximities between the objects to construct the Silhouette plot.

Lastly, included in the list are Calinski Harabasz [156] (CH) index, Ball [86],

Ratkwosky [83], Krzanowski Lai [78], and Milligan [157] as implemented

in R’s NbClust package [2]. The Calinski index, like all the other indices,

maximises the CH index and is computed as shown in Equation 4.3. k is

the number of clusters, n is the number of data points, Bk is the between-

cluster sum of squares, and Ck is the within-cluster sum. The rest of the

methods in this category seek to maximise a value or an index. The top five

methods, as well as other standard methods such as Silhouette, Gap, and

Expectation Maximization (EM), were selected. Their results, along with a

comparison to the ensemble technique, are presented in the Results and

Discussion section (Section 4.7).

CH(k) = Bk/(k − 1)
Ck/(n− k)

In summary, the common theme of the above methods is that they are all

based on a single input method, such as k-means or hierarchical clustering,

for generating the clusterings. The current method explores multiple clus-

terings to increase diversity, thus encouraging inputs from both strong and

weak clusterings for the optimal estimate. However, it is important to note

that neither approach can guarantee optimal performance in all scenarios.

They are subject to over-fitting, under-fitting, or high computational com-

plexity. Nonetheless, an optimistic outlook is maintained, and it is believed

that the current method can effectively mitigate the problem of over-fitting.

Section 4.4 provides a detailed description of the ensemble framework, il-

lustrated in Figure 4.2. This framework is the foundation for the proposed

method and will be further elaborated, highlighting its key components and

93

Chapter 4: The Ensemble Framework

Figure 4.2: Ensemble Framework

functionality.

4.4 The Ensembles Framework

While the framework presented is general to most ensemble clustering in

that the ensemble technique reconciles clustering information [94] or de-

rives a single set of clusters from several clustering methods [13], the focus

of the revised framework is on two crucial processes: the pre-processing

and optimisation steps. The pre-processing step uses clusterings from the

input methods to construct the agreement matrix, while the optimisation de-

termines the optimal clustering arrangement using an objective function ap-

plied to the agreement matrix. More theoretical framework for clustering

ensemble can be found in the following references [96, 13, 7, 97]. With this

adjustment, the current ensemble design consists of four key stages:

• Generation of the base clusterings.

• Constructing an agreement matrix from the input clusterings.

• Creating all possible subsets from the agreement matrix.

• Determining the subset that optimises the objective function.

The primary motivation for creating subsets in this model is twofold. First,

94

Chapter 4: The Ensemble Framework

create the potential solutions from subsets’ similarity matrix with maximum

diversity. Second, search for the best subset from the pool of possible so-

lutions, thus reducing complexity. The objective is designed to search all

subsets in the current implementation. Figure 4.2 summarises the different

stages in the current implementation. To reduce the complexity associated

with an exhaustive search of the solution space, especially as the input clus-

tering increases and for large datasets, a mathematical framework and an

improved version of the search process are provided in the update quality

as shown in Section 4.5.2. The update quality function runs in linear time in

terms of the subset size with simulated data (simulated datasets were used

to assess the speed gain, not the accuracy).

4.4.1 Subsets Generation

Different approaches exist in the literature for producing the initial partitions,

including generating clusterings for different values from a single cluster-

ing method or using multiple clustering methods to generate clusterings.

The current approach combines both. In generating the subsets, sets of

input clustering arrangements ranging from k = 2 to k =
√

n.
√

n is the

commonly suggested maximum number of clusters when the number is

unknown [158]), where n is the number of observations. Thirty variants

of different clustering algorithms were ranked to select the clustering (m)

for input, and the top ten were selected. The reason for choosing the top

ten is based on the algorithms’ performance against the gold standard (ex-

pected number of clusters). Algorithms that performed poorly for the two

hundred and eighteen datasets initially selected for the experiment, for ex-

ample, cases where the Weighted Kappa is below 0.1 [12], were removed

from the clustering generation. The methods are listed below, more details

about the methods can be found in Chapter 3:

95

Chapter 4: The Ensemble Framework

• Three versions of k-means in the R ‘stats’ package (Macqueen,

Hartigan-Wong, and Lloyd)

• Two Hierarchical agglomerative methods (Complete and Average

methods)

• Partition Around Medoids - Robust version of k-means (R ‘cluster’

package)

• Clara deals with larger datasets effectively

• x-means - Partitions data into two disjoint sets as described in the

‘clusternor’ package.

• DBSAN (Density-Based Clustering of Applications with Noise (DB-

SCAN) and Related Algorithms)

• ccfkms - k-means based on conjugate convex functions which use

sparse data structures for centring found in the ‘cba’ package in R.

More detail about the methods can be found under the literature re-

view in Chapter 2

At the outset, it is crucial to ascertain the potential maximum number of clus-

ters, denoted as k, for each dataset since this information is often not readily

available. As previously mentioned, a widely recommended estimate for k

is
√

n [158], where n corresponds to the number of instances in the dataset.

Next, the clustering values of k from the input clusterings are compared and

evaluated using the Weighted Kappa metric described earlier in Chapter 2.

The degree of agreement between the clusterings establishes the agree-

ment matrix. The adjacent values of the input clusterings are compared

and assigned ratings to construct the agreement matrix.

The subsets are created using the agreement matrix for each k, the num-

ber of clusters. In the current experiment, ten clustering algorithms were

96

Chapter 4: The Ensemble Framework

used to generate the ensembles. The variable r represents the number of

input algorithms, corresponding to the number of clustering inputs utilised

in creating the ensemble. The binary codes of size 2r determine the to-

tal number of clusterings generated. Each subset contains a minimum of

two members. These subsets are formed by mapping the binary values

of the strings to the corresponding columns in the agreement matrix. For

instance, let’s consider a string with binary value 1000110110. This string

forms a subset that includes columns 1, 5, 6, 8, and 9 selected from the

Weighted Kappa agreement matrix. The next step involves finding the best

subset for the estimation. This process is explained in Equation 4.1, which

also includes the derivation of the quality metric.

Algorithm 4.12Gray Code Implementation of Exhaustive Search Algorithm

Input: m×m agreement matrix from clustering algorithms

1: for i = 0 to 2m−1 do
2: g = binary(i) . generate the ith binary Gray code

3: if nbits(g) > 1 then . test if the subset size > 1
4: s = subset(g) . create subsets
5: count = 0
6: q = Q(w, s, θ) . as per Equation 4.1

7: if (q > bestQ) then
8: bestSS = s
9: bestQ = q
10: end if

11: end if

12: end for

Output: Subset with the best quality

4.4.2 Determining The Best Subset

The process of determining the best subset is outlined in Algorithm 4.12. In

this algorithm, the variable “binary” represents either the regular 2m com-

binations or the binary codes representation from Gray code. For this par-

ticular experiment, threshold values of 0.4 and 0.6 are used, as described

in Section 2.2. These threshold values correspond to the categories of fair

97

Chapter 4: The Ensemble Framework

and moderate agreement. Additionally, two other measures of central ten-

dency, namely average and median, are employed and denoted as θ in the

quality function. The algorithm defines the best quality as bestQ and the

best subset as bestSS. The subsets are generated using the subset func-

tion, which implements the mapping from the agreement matrix to the Gray

code.

4.5 Quality Function Description

The quality function, also known as the objective function or fitness function,

is amathematical function used to evaluate the quality or fitness of a solution

or model. It quantifies how well a solution or model performs with respect to

a specific criterion or goal. The quality function takes input from the solution

or model space and assigns a numerical value that reflects the desirability of

the solution or model. The higher the value, the better the quality. In the cur-

rent case, as in most optimisation problems, the quality function helps guide

the search for an optimal solution by measuring how well each candidate

solution performs. It guides the search towards better solutions, allowing

algorithms to iteratively explore the solution space and converge towards

optimal or near-optimal solutions. This section describes the mathematical

framework for quality and the update quality functions used to determine

the best subset.

4.5.1 The Quality Function

The quality function (Q) is utilized to assess the accuracy of a subset (s)

in estimating the number of clusters in a dataset. It measures the sum of

agreements derived from the Weighted Kappa values of adjacent inputs,

considering a threshold value (θ). The quality of a subset is summarized by

Equations (4.1) and (4.2).

98

Chapter 4: The Ensemble Framework

The average Weighted Kappa value is employed to plot the elbow-like

graph, which indicates the peak average value (Av) that corresponds to

the estimated number of clusters in the dataset. However, if the average

Weighted Kappa value were used alone to determine the quality, it would

select a two-variable subset with the best pair from the subset (w). Instead,

the average (Av) is used for plotting purposes, as shown in an earlier ex-

ample in Section 4.1. The function described in Equation 4.1 determines a

subset’s quality and the average is in Equation 4.2.

Q =
∑|s|−1

i=1
∑|s|

j=i+1[w(si, sj)− θ] (4.1)

The average is

Av =
∑|s|−1

i=1
∑|s|

j=i+1
[w(si,sj)]
|s|(|s|−1)

2
(4.2)

where

ŝ = |s|(|s|−1)
2

Q = ŝ(Av − θ)
Q

ŝ
+ θ = Av

4.5.2 The Update Quality Function (Q̂)

On the other hand, the update quality function is used in iterative optimisa-

tion or learning algorithms to update the quality estimate of a solution. The

update quality function is often designed to incorporate new information or

adjust the quality estimate based on the feedback obtained during the opti-

99

Chapter 4: The Ensemble Framework

misation or learning process. It allows the algorithm to adapt and refine the

quality estimates over time, improving the accuracy and reliability of the op-

timisation or learning process. The current description of the update quality

uses the previous value of the subset as input for the next subset quality,

reducing the number of iterations significantly.

As represented by Equation (4.1), the quality function exhibits a quadratic

runtime complexity as the number of input clusterings increases because

each quality value is calculated at every iteration. Hence the need for an up-

dated version of the quality function built to leverage single-digit differences

between consecutive Gray codes. By exploring this property of Gray codes,

the updated quality function reduces computational overhead through incre-

mental changes between consecutive Gray codes rather than recalculating

the entire quality values for each subset.

The next quality is calculated from the previous quality value depending on

the bit difference between the Gray code; if the difference from the previ-

ous is a 0, then the column’s difference in the agreement matrix is added;

otherwise, it is subtracted. TheGray code version of the quality function dra-

matically speeds up the search process and avoids recomputing the qual-

ity values of subsets on every iteration. A mathematical derivation of the

updated quality function is described in Equations 4.3, 4.4, and 5.2. The

quality function Q is used to find the best quality from all possible subsets

of inputs, and the average quality is used to plot the elbow-like curve that

depicts the best subset in the diagram in Figure 4.1.The optimal subset

corresponds to the best quality and is determined based on the dataset’s

clusters. The index of this optimal subset is indicative of the number of clus-

ters present in the dataset. Consider the quality function denoted by Q, as

expressed in Equation 4.3:

100

Chapter 4: The Ensemble Framework

Q =
∑|s|

i=1

∑|s|
j=1

[w(si, sj))− θ] (4.3)

This function quantifies the quality of a given subset s by summing the pair-

wise difference between its elements using the weight function w(·, ·), ad-

justed by the threshold θ.

The update quality enhances the computation by calculating the next quality

from the previous, as represented below:

Q̂ =
∑ ˆ|s|−1

i=1

∑ ˆ|s|−1
j=1

[w(si, sj)− θ]

+2
∑ ˆ|s|−1

j=1
w(si, x)− θ

(4.4)

Furthermore, Equation 5.2 introduces a more concise representation of the

update quality function:

Q̂ =


Q + 2

∑ ˆ|s|−1
i=1 w(si, x)− θ positive,

Q− 2
∑ ˆ|s|−1

i=1 w(si, x)− θ otherwise.

(4.5)

Lastly, the Weighted Kappa guideline [13] is employed to select two thresh-

olds around the mid-point (0.4 ≡ fair, 0.6 ≡ good); the two thresholds were

used to ensure a combination of good subsets (high threshold) and fair sub-

sets in the cluster estimates. Also, an examination was conducted on the

choice of various threshold values and their impact on the estimated number

of clusters. This exploration enables the algorithm to consider all possible

solutions for identifying the best subset. Two standard statistical measures

- average and median Weighted Kappa were also included as part of the

measure. Intuitively the average Weighted Kappa was the best option in

the results, as shown in Table 4.3.

101

Chapter 4: The Ensemble Framework

Table 4.2: Errors from the Eight Methods and the Average Ensemble

Datasets EM CH Gap Silhouette PtBiserial Ratkwosky Ball KL Ensemble

Aml28 0.800 0.400 0.400 0.200 0.200 0.400 0.400 0.400 0.400

Atom 3.500 3.000 0.500 3.000 3.000 1.500 0.500 0.000 3.000

BezdekIris 0.333 0.000 1.000 0.333 0.333 0.333 0.000 0.333 0.000

Blobs 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.333 0.000

Cassini 1.333 0.667 0.333 0.333 0.333 0.667 0.000 0.667 0.000

Compound 0.800 0.600 0.400 0.600 0.600 0.400 0.400 0.200 0.400

Curves1 2.000 1.667 2.333 0.333 0.333 0.333 0.000 0.333 0.000

Gaussian500 0.000 0.000 0.000 0.000 0.400 0.200 0.400 0.200 0.000

Glass 0.429 0.143 0.429 0.714 0.714 0.571 0.571 0.714 0.429

Hepta 0.000 0.000 0.000 0.000 0.000 0.429 0.571 0.000 0.571

Longsquare 0.167 0.333 0.000 0.667 0.667 0.667 0.500 0.667 0.000

Lsun 0.667 1.000 1.000 0.667 0.333 0.000 0.000 1.000 1.000

Pearl 1.000 1.667 1.333 1.667 1.000 0.000 0.000 0.333 0.667

PMF 0.000 0.000 0.600 0.200 0.200 0.600 0.400 0.000 0.200

Shapes 1.250 0.500 0.500 0.000 0.000 0.250 0.250 0.500 0.000

Size1 0.000 0.000 0.000 0.000 0.000 0.250 0.250 0.000 0.000

Size2 0.000 0.000 0.000 0.000 0.000 0.250 0.250 0.000 0.000

Spherical_5_2 0.000 0.000 0.000 0.000 0.200 0.400 0.400 0.600 0.000

Square2 0.000 0.000 0.000 0.000 0.000 0.000 0.250 0.000 0.000

Synthetic_control 0.667 0.000 0.000 0.167 0.667 0.167 0.500 0.667 0.000

Tetra 0.000 0.000 0.000 0.000 0.000 0.000 0.250 0.000 0.250

Tetragonular_bee 0.111 0.111 0.111 0.111 0.111 0.667 0.667 0.667 0.333

ThreeMC 1.000 1.667 0.667 0.667 0.000 0.000 0.000 0.667 0.333

Triangle1 0.000 0.500 0.250 0.000 0.000 0.250 0.250 0.250 0.000

Vehicle 0.500 0.500 1.000 0.500 0.500 0.500 0.250 0.500 0.000

Veronica 0.143 0.000 0.429 0.000 0.000 1.143 0.571 0.000 0.000

Zelnik3 1.000 1.667 1.333 1.667 1.000 0.000 0.000 0.333 0.000

Average Errors 0.596 0.524 0.460 0.431 0.387 0.374 0.281 0.379 0.271

Correct Estimates 10 12 10 11 10 7 8 8 17

4.6 Results and Discussions

The methods in this research estimate the number of clusters in datasets

using subsets from the input selected from binary and the Gray code cluster-

ings. The results of four experiments were presented using different thresh-

olds of Weighted Kappa values: average, fair, moderate, and median. To

determine which of the four values most accurately predicts the number of

clusters in the datasets, cases were recorded where the predictions devi-

ated, noting how far the predicted results differed from the actual number

102

Chapter 4: The Ensemble Framework

of clusters. The cumulative errors of the twenty-seven datasets are shown

for each case in Table 4.2. The speed difference between the update and

quality was also measured, and the results are reported below.

Table 4.3: Errors for the Ensembles(Fair, Moderate, Median and Average)

Datasets Fair (0.4) Moderate (0.6) Median Average

Aml28 0.400 0.600 0.000 0.400

Atom 2.000 2.500 3.000 3.000

BezdekIris 0.000 0.000 0.000 0.000

Blobs 0.000 0.000 0.000 0.000

Cassini 0.333 0.333 0.333 0.000

Compound 0.200 0.600 0.400 0.400

Curves1 1.000 1.333 0.000 0.000

Gaussian500 1.000 0.600 0.400 0.000

Glass 0.571 0.143 0.429 0.429

Hepta 0.143 0.000 0.571 0.571

Longsquare 0.167 0.333 0.667 0.000

Lsun 0.000 0.000 1.000 1.000

Pearl 1.333 1.333 0.667 0.667

Pmf 0.600 0.000 0.200 0.200

Shapes 0.000 0.000 0.000 0.000

Size1 0.000 0.000 0.000 0.000

Size2 0.000 0.000 0.000 0.000

Spherical_5_2 0.000 0.200 0.000 0.000

Square2 0.000 0.000 0.000 0.000

Synthetic_ control 0.000 0.000 0.167 0.000

Tetra 0.000 0.000 0.250 0.250

Tetragonular_bee 0.333 0.333 0.333 0.333

ThreeMC 0.000 0.000 0.333 0.333

Triangle1 0.000 0.000 0.000 0.000

Vehicle 0.000 0.000 0.000 0.000

Veronica 0.000 0.143 0.000 0.000

Zelnik3 1.667 0.000 0.000 0.000

Average Errors 0.366 0.302 0.313 0.271

Correct Estimates 10 16 10 17

4.6.1 Estimated Errors

The cumulative errors calculated using Equation 4.6 for the twenty-seven

datasets shown in Section 4.2 is the average difference between the pre-

dicted values for each method and the number of clusters. The absolute

value of the difference is normalised, and the results are compared. There

are several reasons for normalising the errors in this context; here are a few

key reasons:

103

Chapter 4: The Ensemble Framework

Average Errors

M
e
th
o
d
s

Figure 4.3: Normalised Average Errors on the Twenty-Seven Datasets

• Scaling error to a common range makes it easier to compare the mag-

nitude of errors across different quality values which may sometimes

produce values that are significantly different from one another

• Normalising the errors makes them more interpretable and meaning-

ful. The significance or impact of the errors can be easily inferred by

scaling errors to a standard range or relative to the magnitude of the

data.

• Normalising errors can facilitate statistical analysis and inference.

Many statistical techniques and tests assume certain distributional

properties or require variables to be on a similar scale. Normalis-

ing errors ensure that these assumptions are met, enabling the use of

appropriate statistical methods.

104

Chapter 4: The Ensemble Framework

Error = |Estimate−#Clusters|
#Clusters

(4.6)

Table 4.2 presents the error values for the eight methods compared to the

ensemble (average). Across the different thresholds employed by the en-

sembles, the average threshold has the highest performance, correctly pre-

dicting seventeen datasets, followed by sixteen for the moderate threshold

and ten each for the fair and median thresholds. Thus, the average ensem-

ble serves as the benchmark for comparing other methods. In comparing

the results with the best-performing ensemble (average), the Calinski In-

dex (CH) method achieved the highest number of correct estimates with

twelve. However, its error value of 0.524 is twice that of the ensemble tech-

nique (0.271), despite both methods correctly predicting the same number

of clusters. Similarly, although the Ball method had the best error estimate

of 0.281, it only accurately predicted eight clusters compared to the ensem-

ble’s seventeen.

Further analysis focuses on datasets where the ensemble exhibited higher

errors than other methods; the following datasets: Atom, Compound, Glass,

Lsun, and Tetragonular_bee, were examined. Among these datasets, the

following methods: Ball, KL, CH, Ptbiserial, and Expectation maximisation,

outperformed the ensemble. Notably, the Atom dataset presents unique

clustering characteristics, with two clusters overlapping a convex hull, ren-

dering it linearly non-separable. While the ensemble had an error of 3.00

in predicting the number of clusters, the KL method provided accurate esti-

mates. However, on average, the KL method predicted correctly only eight

clusters, while the ensemble achieved seventeen. Detailed examination of

the Atom dataset’s agreement matrix will shed light on whether it’s shape

or unique characteristics contributed to the observed error margin.

105

Chapter 4: The Ensemble Framework

Figure 4.4: The speed gain for Exhaustive

Likewise, the Lsun dataset, as initially published in [146], presents chal-

lenges due to non-overlapping convex hulls, varying geometric shapes, and

pockets of outliers. Investigating factors such as cluster shapes, variances

between inner clusters, and cluster separations will help elucidate their in-

fluence on the ensemble’s higher error estimate for this dataset.

In conclusion, the average error of the four ensemble techniques is lower

across all datasets. Moreover, the clustering ensemble demonstrates a

higher number of datasets correctly estimated compared to the other meth-

ods, providing further evidence for its superiority compared to the methods

considered.

4.6.2 Quality Vs Update Quality

The update quality uses the previous subset quality value to calculate the

next quality. It compares the pairs of the subset (the unique pairs) for dif-

ference, and depending on the difference in combination, the next subset

106

Chapter 4: The Ensemble Framework

Figure 4.5: The speed gain of Exhaustive Vs Q̂

quality is calculated as an update Q̂ by adding or subtracting based on the

difference as shown in Equation 5.2. Using previous values of the quality

in calculating the next quality improves the time taken to calculate the sub-

sequent subset’s quality value and reduces the number of iterations. The

quality and update quality performance were evaluated using simulated in-

puts. Simulated data was chosen to prioritise accuracy and assess runtime

improvements. The simulated data consisted of a symmetric matrix gener-

ated using the random uniform distribution in the R programming language.

The values in the matrix ranged from 0.1 to 0.97 (which could be adjusted to

any range). The size of the symmetric matrix corresponded to the number

of input clusterings, ranging from 5 to 20.

As anticipated, the empirical results revealed a superior performance of

the Update quality implementation compared to the original quality function.

This enhancement is visually represented in the graph showcasing the ratio

107

Chapter 4: The Ensemble Framework

of quality (Q) to update quality (Q̂), as depicted in Figure 4.5. These empiri-

cal findings substantiate the earlier theoretical anticipation [159] of improved

speed and performance, as expressed in Equations 4.7 and 4.8.

The original quality function (Q) is defined by the equation:

n∑
k=1

k2
(

n

k

)
= 2n−2n(n + 1) Quality (Q) (4.7)

On the other hand, the update quality function (Q̂) is expressed as:

n∑
k=1

k

(
n

k

)
= 2n−1n Update Quality (Q̂) (4.8)

Consequently, the speed gain achieved through the update quality function

is quantified by the ratio Q/Q̂, given by:

Performance (Q)

Performance(Q̂)
= 2n−2n(n + 1)

2n−1n
(4.9)

= n + 1
2 (4.10)

These equations and their interpretations affirm the theoretical predictions,

highlighting the observed improvement in computational efficiency intro-

duced by the update quality function.

4.7 Recommendations

This chapter introduces a novel ensemble technique, employing subsets of

ensembles to estimate the number of clusters in datasets. Compared to

similar methods, our approach shows promising performance in predicting

the number of clusters and associated prediction errors, as demonstrated by

the output from the ten input methods. While foreseeing a potential speed

108

Chapter 4: The Ensemble Framework

challenge with an increase in the number of datasets and input methods,

it’s notable that the Gray code implementation addresses this concern, re-

ducing the speed gain from quadratic to linear time as the dataset size in-

creases. It would be interesting to explore whether a heuristic search ap-

proach could be applied to further speed up the speed in future implemen-

tations.

In conclusion, this chapter introduced a search-based ensemble method

that builds upon the framework discussed in Chapter 4. The primary goal of

this method is to improve the speed of execution while maintaining the same

level of accuracy as the exhaustive search. As datasets become larger and

the number of possible subsets from the ensemble increases, performance

becomes an issue.

Moving forward, Chapter 5 will focus on the detailed exploration and eval-

uation of the heuristic search algorithm, an improved version of the Gray

code implementation used as the update quality in this chapter. The chap-

ter will delve into the design and implementation of the heuristic algorithms,

assessing their effectiveness in achieving the desired speed enhancements

to the current update quality. Additionally, experimental results and anal-

ysis will be presented to validate the performance improvements achieved

by the heuristic search-based ensemble.

109

Chapter 5

HEURISTIC SEARCH BASED

CLUSTERING ENSEMBLE

5.1 Introduction

This chapter presents a heuristic search-based ensemble approach that

builds upon the framework introduced in Chapter 4. The objective is to en-

hance the execution speed while maintaining the same level of accuracy

as the exhaustive search method. As the dataset size grows and the num-

ber of potential ensembles increases, there is a growing need for improved

performance. To address this, we utilise algorithmic techniques such as Hill

Climbing, previously introduced in Chapter 2.

The content of this chapter is based on a research paper titled “Using Clus-

tering Ensembles and Heuristic Search to Estimate the Number of Clusters

in Datasets.” This paper will be presented at the Intelligent System Confer-

ence (IntelliSys) scheduled between September 7th and 9th, 2023.

110

Chapter 5: Heuristic Search-based Clustering Ensemble

5.2 Background to The Study

A heuristic search-based approach is employed to estimate the number of

clusters within a dataset, utilising an ensemble of clustering methods. In

contemporary data analysis, a significant portion of available datasets is un-

labeled. Examples include data from social media sources, such as billions

of Facebook posts and text messages, or healthcare industry data gener-

ated from automated record transactions in everyday life [4]. The question

is whether helpful information can be extracted from unlabeled data. For

this purpose, many heuristic algorithms are available [160, 161, 162, 163].

Typical methods include k-means, hierarchical clustering and Partitioning

Around Medoids (PAM) [56]. One primary requirement for many popular

and effective methods is apriori knowledge regarding how many clusters

the data should be arranged into. Getting this wrong or even slightly in-

accurate may result in a completely different clustering arrangement than

that being sought. More detail on the application of ensemble technique in

estimating the number of clusters in a dataset is laid out in Chapter 4, and

a survey of ensemble techniques can be found in the following references

[10, 164]. This chapter extends earlier work in Chapter 4 on estimating the

number of clusters in datasets, where previous finding confirmed the ability

of ensemble technique to better estimate the number of clusters in datasets

[16]. The motivation of the approach presented in this chapter is to improve

the time taken for the current exhaustive search of the solution space by

combining a heuristic search with the clustering ensemble. The clustering-

based ensemble requires a consensus on generating and combining the

ensemble to create a solution, which makes it different from the applica-

tion of an ensemble in classification. The novelty and contribution of the

approach are described below:

111

Chapter 5: Heuristic Search-based Clustering Ensemble

• A heuristic-based ensemble that consistently produces the same qual-

ity as the exhaustive search.

• A mathematical framework for the fitness function and a regression

model that estimates themaximum convergence point for the heuristic

search, vastly reducing the already improved runtime.

• Finally, deciding between a heuristic and an exhaustive search can

pose a challenge, taking into account the trade-off between accuracy,

consistency, and speed. The analysis presented here establishes the

optimal point for using the exhaustive search and when to employ the

heuristic approach.

In Chapter 2, various techniques for generating and combining ensembles

were introduced and the framework for the ensemble was introduced in

Chapter 4. This chapter extends the previous result, and is organised as

follows: Section 5.3 presents the modified ensemble framework, highlight-

ing the introduction of heuristic approach into clustering ensemble in Sec-

tion 5.4. Section 5.5 describes the experimental setup and the dataset em-

ployed in the study. The results of the experiments are presented in Section

5.6. Finally, Section 5.7 concludes the chapter by summarising the findings

and providing recommendations for future research.

5.3 The Ensemble Framework

This section presents the modified ensemble framework, which was pre-

viously introduced in Chapter 4, incorporating the addition of a heuristic

search. The modified ensemble approach is depicted in Figure 5.1, and it

encompasses four main stages:

112

Chapter 5: Heuristic Search-based Clustering Ensemble

Figure 5.1: The Modified Ensemble Framework

(i) Generation of the base clusterings

(ii) Construction of the agreement matrix from clusterings

(iii) Creation of subsets from the agreement matrix

(iv) Selection of the best subset using the objective function

5.3.1 Generation of the Base Clustering

The initial phase of the ensemble framework is base clustering generation,

which involves generating members used for building the ensembles. In

addition, the members should be different to each other to achieve diver-

sity. Diversity means the different representative subsets will be captured

as subgroups in the ensembles; specifically, it must reflect most variants of

the clusterings through a good combination of the ensembles as subsets.

Earlier research efforts suggested several options in the clustering context

to achieve diversity in generating subsets which includes the followings [96]:

113

Chapter 5: Heuristic Search-based Clustering Ensemble

• An iterative algorithm such as k-means can be employed to randomly

select the initial number of clusters, resulting in multiple dataset rep-

resentations for different values of k. These representations are then

combined to form ensembles.

• Ensembles can be created by combining the outputs of different algo-

rithms, such as k-means, DB-Scan, and a graph partitioning algorithm

to form an ensemble.

• Different dataset representations can be generated by selecting spe-

cific features, such as varying pixels or image coordinates in an image

dataset.

In this research, the number of algorithms has been increased to thirty to

generate more ensembles and further test the efficiency of the algorithms

as the number of inputs increases. Furthermore, new techniques were

proposed for subsetting ensembles to maximise diversity and spread and

sometimes to meet algorithmic requirements. These techniques were built

upon the methods introduced in Chapter 4.

The framework presented in Figure 5.1 wasmodified to enhance the ensem-

ble creation process. A heuristic search approach was incorporated in place

of the previous Gray code/exhaustive implementation described in Chapter

4. This heuristic-based approach utilised a small change operator based

on bit-flipping, which in theory is equivalent to the Gray code implementa-

tion because the objective is to minimise the difference between subsets;

in essence, it is directly mapped to the Gray code implementation.

Furthermore, a hill-climbing algorithm based on a generate and test ap-

proach was introduced for subsequent subsets, deviating from the sequen-

tial testing of each subset in the search space used in the Gray code im-

plementation. The small change operator, described in Algorithm 5.13, out-

114

Chapter 5: Heuristic Search-based Clustering Ensemble

lined the steps in modifying subsets using bit-flipping. Small change imple-

mentation further enhances the ensemble generation, resulting in a more

diverse and representative search space.

Small Change Operator

The Smallchange function creates a new subset value by reversing the bi-

nary digit; if the value is 1, it changes to 0, and vice versa.

Algorithm 5.13 Smallchange between Subsest

Input: Sold - A binary string of length n
1: Let S = Sold

2: Let i be a random integer between 1 and n inclusive

3: if si = 0 then

4: si = 1
5: else

6: si = 0
7: end if

Output: S - a new subset value close to Sold

5.3.2 Construction of The Wk Agreement Matrix

A representation is required to determine the level of agreement of mem-

bers in the subsets generated from the base clustering. The purpose is to

measure accuracy and consistency based on the agreement strength be-

tween adjacent pairs of partitions and the number of times objects co-exist in

the same cluster. The Weighted Kappa is an external validation index used

in this research to measure the accuracy of clustering ensembles, and it

ranges from −1 to 1. The Kappa metric serves as a measure of agreement

between two raters, which, in this case, are the clustering algorithms used in

the research. The previous approach of creating a database of clusterings

for the dataset is utilised, employing thirty different clustering algorithms as

input. The Weighted Kappa (w) metric is used to assess the agreement be-

tween the clustering algorithms. The Weighted Kappa assigns weights to

115

Chapter 5: Heuristic Search-based Clustering Ensemble

disagreements between the two raters. It provides an agreement strength

ranging from poor to very good, as detailed in the Kappa guideline found

in Section 2.5.2 of Chapter 2. The values for k and their corresponding

classifications in the Kappa guideline can be found in this publication [13].

These guidelines reference interpreting the agreement strength observed

in the clustering results.

5.3.3 Sub-setting the Wk Agreement Matrix

The subsetting of the agreement matrix follows a similar approach as the

exhaustive experiment conducted in Chapter 4. A binary string of length n

represents a subset, where a zero at position i indicates the exclusion of

the ith clustering method, and a one represents its inclusion in the subset.

This binary representation enables the generation of all possible subsets

using a range of input clustering arrangements from 2 to
√

n. The maximum

number of clusters suggested for subsetting is based on the square root of n,

where n represents the number of objects being clustered [158]. Additional

information regarding the subsetting process and the agreement matrix can

be found in Chapter 4.

5.3.4 Experimental data

The experiments were conducted in this chapter using the same twenty-

seven datasets as in Chapter 4. The reason was to ensure consistency and

facilitate progressive comparison between different methods. Asmentioned

in Chapter 4, these datasets are renowned for their challenging clustering

difficulties and diverse domains, making them widely accepted as standard

benchmark datasets.

To construct the clustering ensemble database, a combination of thirty clus-

tering algorithms (refer to Table 3.2) was employed along with various pa-

116

Chapter 5: Heuristic Search-based Clustering Ensemble

rameter settings. Some datasets failed to cluster effectively, while others

had insufficient instances or contained significant missing values.

For consistency and to facilitate performance assessment, the twenty-

seven datasets utilised in the experiments are identical to those used in

Chapter 4. These datasets now include the number of reported clustering

arrangements for each specific dataset, as indicated in Table 5.1. The de-

termination of the maximum number of clusters (kmax) for each dataset is

based on the square root of the total number of instances. For a compre-

hensive understanding of the dataset characteristics presented in Table 5.1.

Refer to the detailed description provided in Chapter 3.

Table 5.1: Dataset, Attributes and Number of Clusters with kmax

Datasets #Clusters Attributes #Instances kmax

1 Aml28 5 2 804 28

2 Atom 2 3 800 28

3 BezdekIris 3 4 150 12

4 Blobs 3 2 300 17

5 Cassini 3 2 1000 31

6 Compound 6 2 399 19

7 Curves1 2 2 1000 31

8 Gaussian500 5 2 3000 54

9 Glass 6 9 214 14

10 Hepta 7 3 212 14

11 Longsquare 6 2 900 29

12 Lsun 3 2 400 19

13 Pearl 3 2 266 16

14 Pmf 5 3 649 25

15 Shapes 4 2 1000 31

16 Size1 4 2 1000 31

17 Size2 4 2 1000 31

18 Spherical_5_2 5 2 250 15

19 Square2 4 2 1000 31

20 Synthetic_control 6 60 600 24

21 Tetra 4 3 400 19

22 Tetragonular_bee 9 15 236 15

23 ThreeMC 3 2 400 19

24 Traingle1 4 2 1000 31

25 Vehicle 4 18 846 29

26 Veronica 7 8 206 14

27 Zelnik3 3 2 266 16

Total 643

117

Chapter 5: Heuristic Search-based Clustering Ensemble

5.3.5 Selection of The Best Subset

In the selection stage, the goal is to assess the quality of subsets using qual-

ity metrics to determine the best subset. The evaluation of the quality of sub-

sets is essential but challenging, as there is no universally agreed standard

for measuring what constitutes good-quality clusters. Typically, accuracy

and consistency are considered the most important aspects when evaluat-

ing subsets or the clustering result. This study uses the Weighted Kappa

built into the fitness function to identify the best from subsets. The average

performance over repeated runs is used to measure consistency with dif-

ferent experimental set-up conditions represented as variance or standard

deviation.

5.3.6 The Fitness Function

The evaluation of subset quality is based on its fitness value, which can

be visualised as a point in a two-dimensional fitness landscape. In this

landscape, the altitude represents the fitness level of each subset. The

fitness function used in this chapter estimates the number of clusters by

calculating the Weighted Kappa agreement sum of adjacent inputs. The

details of this function are provided in Equation 5.1 and denoted asQ.

In contrast to the exhaustive approach discussed in Chapter 4, this chap-

ter introduces a notable difference in the application of the fitness function.

Previously, the update function was utilised to compute the fitness value,

but now it is used with the small change operator to calculate subsequent

fitness values. These values were then compared, and the best fitness

will be the new current fitness until convergence. In this chapter, the small

change operator plays a crucial role and differs from the pattern-based se-

quential Gray code implementation. It employs bit flipping to modify the next

fitness value at each iteration. By acting as a generate and test operator,

118

Chapter 5: Heuristic Search-based Clustering Ensemble

the small change operator facilitates the exploration of alternative fitness

values.

However, certain operations, such as the use of threshold values for sub-

sets, remain integral to the quality metric. The reason is that the subsets

from the ensemble, which serve as inputs to the fitness function, vary across

a range of clustering algorithms. Consequently, the quality of some subsets,

as expressed by their Weighted Kappa values, may be poor, necessitating

the selection of a threshold value to normalise the metric.

Research conducted by Odebode et al. [16] has demonstrated that the

average Weighted Kappa of the agreement matrix, denoted as θ, performs

best as a predictor of the number of clusters in a dataset (See Chapter 4).

This finding is consistent with similar research by Ayed et al. [12], which

supports the need to incorporate thresholds. The core premise of these

studies is that a correlation exists between the average Weighted Kappa

(w) of input methods and the gold standard (i.e., the number of clusters

published for each dataset).

Q =
|s|−1∑
a=1

|s|∑
b=a+1

[w(s(a), s(b))− θ] (5.1)

Q̂ =


Q + 2

ˆ|s|−1∑
i=1

w(si, x)− θ positive,

Q− 2
ˆ|s|−1∑
i=1

w(si, x)− θ negative.

(5.2)

In Chapter 4, the search for the optimal subset was significantly reduced

by employing a Gray code implementation, which linked subsets to their

preceding subsets. This approach allowed for the progressive evaluation

of fitness values. However, despite this optimisation, directly applying the

119

Chapter 5: Heuristic Search-based Clustering Ensemble

Gray code implementation to the search for the best subset remains ex-

haustive. In other words, every subset in the search space is explored.

As the size of the input increases, this exhaustive approach may become

infeasible.

This issue is addressed by introducing a heuristic approach in the algo-

rithm, specifically in the RMHC implementation described in Section 5.4.

This heuristic approach mitigates the computational burden by utilising ran-

domised methods and local search techniques to guide the search process

rather than evaluating the values of each subset to determine the optimal

subsets. The algorithm can efficiently navigate the search space by employ-

ing heuristics and identifying promising subsets without exhaustively eval-

uating every possible combination. This approach allows for more prac-

tical and feasible implementation, particularly as the size of the input in-

creases.

5.4 Methods

In this section, twomethods will be presented: The exhaustive and the mod-

ified RMHC.

5.4.1 The Exhaustive Approach

The exhaustive approach, previously discussed in detail in Chapter 4, will

be summarised here as it will be compared with the current approach. The

exhaustive approach searches for the best subset to represent the number

of clusters in the dataset. It takes advantage of the unique characteristics of

Gray code, such as single-digit differences, to create relationships between

subsets in evaluating the quality of each subset. This implementation oper-

ates on the assumption that there exists a subset value that maximises the

quality in relation to the threshold value of the Weighted Kappa. This value

120

Chapter 5: Heuristic Search-based Clustering Ensemble

corresponds to the estimated number of clusters in the dataset.

5.4.2 Random Mutation Hill Climbing (RMHC)

A heuristic is a general principle or a set of loose guidelines that can aid in

finding a solution to a problem. While the solution obtained through heuris-

tics is not guaranteed to be optimal, they are frequently utilised in Artificial

Intelligence to enhance the performance of search methods. A comprehen-

sive overview of heuristic search algorithms and related topics can be found

in Section 2.7 of Chapter 2.

One such heuristic search algorithm is the hill climbing algorithm. This al-

gorithm begins at a randomly selected point within the search space and

systematically evaluates each potential solution without exploring all possi-

ble alternatives. It selects the best successor node (subset) based on the

fitness function and commits the search to that particular node. The process

continues iteratively until no further improvement can be achieved, reaching

a convergence point.

As the name suggests, the Random Mutation Hill Climbing (RMHC) algo-

rithm combines random mutation with the hill climbing approach. It aims

to locate points in the search space that lead to an upward slope, max-

imising the search space. However, RMHC can sometimes converge to a

local optimum rather than a global one. Despite this limitation, it has proven

to be effective in numerous applications. Furthermore, RMHC is directly

applicable to the current fitness function definition. Considering the sig-

nificant role of the fitness function in a clustering ensemble, enhancing its

performance contributes to improving the effectiveness and efficiency of the

algorithm.

The RMHC version of the algorithm aims to enhance the Gray code imple-

mentation by incorporating progressive evaluation of subsets. This aspect

121

Chapter 5: Heuristic Search-based Clustering Ensemble

is crucial in hill climbing algorithms and directly aligns with the principles of

the Gray code version, only that the search is narrowed towards the op-

timum fitness value. However, it is not guaranteed. By incorporating the

ability of RMHC to evaluate and compare fitness values with its neighbour-

ing subsets, the search for the best subset can be further improved.

In Algorithm 5.14, specifically in lines 4 and 6, this enhancement is ex-

plained. This modification is anticipated to accelerate the search for the

optimal subset and significantly improve the search process while main-

taining accuracy, particularly as the dataset’s volume and dimension in-

crease. In theory, employing more powerful population-based algorithms,

such as Genetic Algorithm or Simulated Annealing [165] as applied in Chap-

ter 6, could potentially enhance the speed of the search process. However,

the crossover operator utilised in Genetic Algorithm introduces significant

changes that would prevent the utilisation of the update fitness value defi-

nition for the GA implementation. This restriction can considerably impact

the speedup gained since each subset is evaluated independently.

Hence, while alternative algorithms may offer potential speed improve-

ments, the independent evaluation of subsets achieved through RMHC re-

mains advantageous for maintaining accuracy and facilitating the search

process. The random mutation hill-climbing (RMHC) algorithm requires

a random starting point, which is generated using a random binary string

of size r as described in Algorithm 5.14. The quality of this starting sub-

set is calculated using the fitness function, and subsequent subsets’ qual-

ities are evaluated based on the fitness function rather than the updated

fitness.

In the modified version, similar to the Gray code representation, the random

binary string undergoes a random bit flip to generate a new subset ŝ close

to the previous subset. The original fitness value is only utilised once for the

122

Chapter 5: Heuristic Search-based Clustering Ensemble

Algorithm 5.14 Random Mutation Hill Climbing (RMHC)

Input: iter, w Matrix size r × r . w = Weighted Kappa

1: Let s be a random binary string of size r
2: F ← Q(s, w) . F = Fitness

3: for i← 1 to iter do . iter =Number of iterations
4: ŝ← smallChange(s) . ŝ = a new solution close to s
5: F̂ ← Q(s, F, ŝ, W) . F̂ = new fitness(Smallchange

6: if F̂ > F then

7: s← ŝ
8: F ← F̂
9: end if

10: end for

Output: The best solution(s)

initial starting point in the search. The fitness function and the small change

operator determine changes made to subsequent subsets.

5.5 Experimental Procedure

The twenty-seven datasets previously described in Section 4 were used

in testing the new algorithm’s effectiveness against the exhaustive algo-

rithms. Table 5.1 provides information on the dataset attributes, including

the reported number of clusters and the maximum value of k, denoted as

kmax.

The experiments were divided into three categories, as outlined in Table

5.2 (Table of Experiments).

In the first experiment, an exhaustive search was conducted on subsets of

the twenty-seven datasets to find the optimal subset using thirty algorithms

as inputs. This experiment was similar to the one conducted earlier in Chap-

ter 4, but with increased inputs. The objective was to determine the optimal

value of k for each dataset, ranging from 2 to
√

n, where n represents the

number of instances in the dataset. The threshold for the search was set as

123

Chapter 5: Heuristic Search-based Clustering Ensemble

the average Weighted Kappa of the agreement matrix, and the maximum

values reported for k in Table 5.1 were used as kmax. A total of 643 datasets

were obtained from the subset. The Update quality version of the algorithm

was used to expedite the process. This version, described in Chapter 4, is

a Gray code implementation that avoids recomputing the quality values of

the subset at every iteration, resulting in significantly reduced computation

time. Only the result of the average quality was reported, as it provided the

best threshold value.

However, due to the increasing input size, the exhaustive approach took an

excessively long time to run, as anticipated. As a result, an exploration of

the effectiveness of applying a heuristic search using the Random Mutation

Hill Climbing (RMHC) algorithm was conducted in the second experiment.

The RMHC algorithm was employed with a fixed number of iterations (ten

thousand iterations). Additionally, a model-based version of the algorithm

was designed to determine the average point of convergence at which the

algorithm performed comparably to RMHC. The search process was ini-

tiated from multiple regions within the search space, and this procedure

was repeated one hundred times. This approach mirrors a previous ex-

perimental setup described in this paper [136]. In Table 5.2, this method

was referred to as RM10K, while the model-based version was denoted as

RMModel (explained below) .

In the third experiment, the RMHC algorithm was applied to different in-

put sizes ranging from 5 to 30 for all datasets. The convergence points for

the different input sizes were used to generate a model. Linear regression

models were utilised to validate the models using the maximum conver-

gence points. This information was then used to run a reduced version of

the RMHC experiments, testing its efficacy further. The results of the RMHC

algorithm with 10,000 iterations over one hundred repeats, as well as the

124

Chapter 5: Heuristic Search-based Clustering Ensemble

performance of the model for the same number of repeats, were compared

to the results of the exhaustive search in Section 5.6.

Table 5.2: Table of Experiments with the Methods, Datasets, Number of

Iterations, and Repeats.

Methods Datasets # Iterations # Repeats

Exhaustive 27 1 1

RM10K 27 10,000 100

RMModel 27 Section 5.6 100

Total 129,243

5.6 Results and Discussions

The results are presented in the following summaries:

• Exhaustive by dataset and r (size) presented as average quality

• RM10K (hill climbing over ten thousand iteration) vs exhaustive

• RM10K Vs Model Improvement (RMModel)

The exhaustive performance versus the benchmark methods listed in Sec-

tion 4.6 Chapter four indicate that compared to the top eight methods, the

ensemble predicted seventeen of the twenty-seven dataset correctly com-

pared to twelve predicted by the Calinski Index (CH), the best among the

methods. Similarly, the best error estimate across all datasets for all meth-

ods was 0.281 for Ball. Although relatively close to the ensemble at 0.271,

the number of clusters predicted correctly by Ball was just eight (8) com-

pared to the ensemble correctly predicted seventeen (17).

Tables 5.3 and 5.4 provide a comparison of the accuracy between the

RMHC-based methods, namely RM10K and RMModel, and the exhaus-

tive search. The performance of these algorithms was evaluated both on a

dataset basis and as the input size increased. The error values, measured

in terms of the fitness function Q, reflect the consistency of the clustering

125

Chapter 5: Heuristic Search-based Clustering Ensemble

Table 5.3: A summary of the Average and Standard Deviation by Dataset

Exh RM10K RMModel RMModel vs RM10K RM10K vs Exh

Dataset Av SD1 Av SD Av SD Av SD Av SD

Aml28 18.30 9.59 18.13 9.65 18.15 9.65 0.08% 0.05% 0.90% 0.70%

atom 21.34 11.70 20.44 11.70 20.41 11.71 0.17% 0.09% 4.20% 0.01%

bezdekIris 11.27 10.71 11.17 10.70 11.18 10.71 0.07% 0.07% 0.89% 0.12%

blobs 18.20 9.36 17.97 9.48 17.95 9.47 0.07% 0.10% 1.28% 1.28%

cassini 23.66 10.50 23.55 10.57 23.55 10.57 0.02% 0.03% 0.47% 0.69%

compound 25.93 12.01 25.78 12.11 25.77 12.10 0.04% 0.03% 0.57% 0.85%

curves1 27.22 11.42 27.07 11.52 27.05 11.52 0.05% 0.04% 0.55% 0.84%

gaussian500 19.11 9.80 19.00 9.86 19.01 9.85 0.04% 0.09% 0.56% 0.64%

glass 21.59 11.66 21.58 11.64 21.57 11.64 0.03% 0.02% 0.07% 0.13%

hepta 19.55 11.48 19.24 11.59 19.25 11.58 0.05% 0.05% 1.59% 0.98%

longsquare 25.34 11.58 25.19 11.68 25.21 11.67 0.09% 0.07% 0.61% 0.84%

lsun 24.16 12.06 23.97 12.18 23.97 12.18 0.02% 0.02% 0.80% 1.01%

pearl 29.45 13.24 29.24 13.36 29.24 13.35 0.01% 0.06% 0.72% 0.90%

pmf 22.21 11.76 22.09 11.70 22.08 11.69 0.05% 0.06% 0.52% 0.50%

shapes 26.16 13.23 26.01 13.32 26.01 13.32 0.01% 0.01% 0.56% 0.66%

size1 18.33 9.13 18.13 9.23 18.14 9.24 0.07% 0.02% 1.08% 1.13%

size2 16.38 8.70 16.17 8.78 16.17 8.78 0.02% 0.02% 1.29% 1.00%

spherical_5_2 24.87 11.11 24.64 11.26 24.65 11.25 0.03% 0.10% 0.93% 1.34%

square2 18.85 9.13 18.69 9.23 18.69 9.23 0.05% 0.01% 0.87% 1.01%

synthetic_control 28.78 12.08 28.57 12.24 28.58 12.22 0.05% 0.15% 0.75% 1.25%

tetra 18.34 10.04 17.99 9.91 17.99 9.92 0.03% 0.05% 1.95% 1.24%

tetragonular_bee 31.18 20.13 30.91 20.22 30.94 20.20 0.09% 0.07% 0.87% 0.43%

threeMC 25.30 11.81 25.14 11.92 25.14 11.91 0.03% 0.05% 0.65% 0.90%

Triangle1 24.90 14.29 24.75 14.36 24.74 14.37 0.04% 0.04% 0.60% 0.49%

vehicle 24.43 14.39 24.40 14.39 24.40 14.40 0.01% 0.02% 0.13% 0.01%

veronica 30.39 20.33 30.22 20.39 30.22 20.39 0.03% 0.03% 0.56% 0.27%

zelnik3 29.49 13.22 29.30 13.35 29.29 13.35 0.01% 0.03% 0.65% 0.92%

Percentage Error 0.05% 0.05% 0.91% 0.75%

output obtained from the exhaustive search compared to the RMHC algo-

rithms.

Variability in the standard deviation of clustering algorithms can stem from

several factors, such as those observed in the RMHC algorithm and ensem-

ble clustering. In this experiment, the RMHC algorithm is evaluated using

RM10K and RMModel. RM10K involves running the RMHC algorithm for

10,000 iterations across 100 repeats. In contrast, RMModel leverages a

reduced run based on the maximum runtime determined by a linear regres-

sion model over the same number of repeats. These approaches yield sum-

mary results that include the average and standard deviation of error values

across datasets and input sizes, providing insights into the consistency of

RMHC’s performance compared to an exhaustive search, as shown in Ta-

ble 5.3. In ensemble clustering, non-zero standard deviation acrossmultiple

1A non-zero SD value for the exhaustive search results might seem unusual, but it is

noted that this table is a summary of different experiments (n = 2..30) which have different
exhaustive fitness results. The SD values are included for completeness/reference.

126

Chapter 5: Heuristic Search-based Clustering Ensemble

runs arises from the inherent challenge of conducting an exhaustive search

for the optimal number of clusters in a dataset. This search involves running

clustering algorithmsmultiple times with varying parameters, particularly the

number of clusters [96]. This diversity can enhance the robustness and ac-

curacy of the final consensus clustering solution [166]. However, different

base clusterings and combination strategies can also introduce variability in

the final clustering results, reflecting the process of exploring various clus-

tering parameters and consensus methods. This variability can be bene-

ficial for identifying the optimal number of clusters but may also point to

potential issues in the base clusterings or the consensus approach that re-

quire further investigation or adjustment [7].

Figure 5.2 presents the accuracy of the linear regression model in terms of

the average and maximum convergence points. This figure illustrates the

performance of the linear regression model in predicting the maximum con-

vergence points, which serve as the foundation for the RMModel. A consis-

tent pattern in the linear regression of the average and maximum runtimes

was observed as the input size increased. The plot of the linear regression

for the average and maximum runtimes against the input size resulted in a

linear predictor function that was subsequently used to determine the new

maximum in the model run. This analysis aimed to assess the performance

of the RMHC algorithm compared to the model. The linear equation derived

from the model is given by:

iter = 22× r − 52 (5.3)

Where “iter” represents the number of iterations, and “r” is the input size.

From Figure 5.2, it can be observed that the maximum runtime provides a

more accurate representation of the model compared to the average run-

time. The error between the RMModel and the actual RMHC runtime, as

127

Chapter 5: Heuristic Search-based Clustering Ensemble

shown in Table 5.4, was negligible (0.49%).

Table 5.4: A Summary of the Average and Standard Deviation by Input Size

Exh RM10K RMModel RMModel vs RM10K RM10K vs Exh

Size Av SD Av SD Av SD Av SD Av SD

5 4.16 1.25 4.16 1.25 4.16 1.25 0.01% 0.07% 0.07% 0.38%

6 4.89 1.69 4.89 1.71 4.89 1.71 0.01% 0.09% 0.16% 0.80%

7 6.88 2.32 6.87 2.34 6.87 2.34 0.01% 0.03% 0.15% 0.78%

8 9.33 3.20 9.32 3.22 9.32 3.22 0.01% 0.04% 0.12% 0.55%

9 12.15 4.01 12.14 4.03 12.14 4.03 0.00% 0.01% 0.10% 0.46%

10 14.99 4.97 14.98 4.98 14.98 4.99 0.02% 0.07% 0.08% 0.32%

11 18.56 6.34 18.54 6.36 18.54 6.36 0.00% 0.01% 0.08% 0.32%

12 18.83 6.13 18.81 6.15 18.81 6.16 0.02% 0.07% 0.09% 0.42%

13 18.98 6.07 18.94 6.13 18.94 6.13 0.00% 0.05% 0.21% 0.97%

14 19.30 5.97 19.23 6.08 19.24 6.07 0.02% 0.11% 0.35% 1.71%

15 19.71 5.97 19.60 6.13 19.60 6.13 0.01% 0.05% 0.55% 2.64%

16 20.16 6.21 20.01 6.43 20.01 6.43 0.00% 0.05% 0.78% 3.52%

17 20.62 6.58 20.37 6.91 20.39 6.88 0.10% 0.40% 1.23% 4.99%

18 21.29 7.22 20.90 7.64 20.90 7.64 0.01% 0.05% 1.84% 5.83%

19 24.79 7.49 24.46 7.87 24.48 7.85 0.07% 0.30% 1.32% 5.13%

20 25.04 7.40 24.72 7.80 24.72 7.77 0.03% 0.36% 1.28% 5.35%

21 25.07 7.40 24.71 7.82 24.73 7.81 0.08% 0.19% 1.42% 5.74%

22 25.10 7.41 24.72 7.88 24.73 7.86 0.05% 0.16% 1.53% 6.27%

23 29.42 8.23 29.14 8.59 29.12 8.63 0.09% 0.36% 0.94% 4.45%

24 30.08 8.75 29.71 9.21 29.71 9.21 0.02% 0.06% 1.25% 5.34%

25 34.77 9.77 34.46 10.16 34.46 10.17 0.01% 0.10% 0.88% 3.98%

26 35.65 10.01 35.34 10.41 35.33 10.44 0.03% 0.21% 0.87% 4.01%

27 35.66 10.00 35.30 10.49 35.30 10.49 0.01% 0.01% 1.01% 4.85%

28 35.75 9.97 35.35 10.50 35.35 10.50 0.01% 0.03% 1.10% 5.35%

29 38.42 10.70 38.07 11.16 38.08 11.14 0.03% 0.15% 0.90% 4.28%

30 43.27 11.75 43.02 12.10 43.00 12.12 0.03% 0.13% 0.59% 2.98%

Error(%) 0.33 (0.33) 0.68 (0.49)

An interesting observation was made regarding the linear model in Figure

5.2, which led to the derivation of a general equation. This equation was

then used to calculate results similar to those obtained using the RMHC

method. The results are presented in Tables 5.3 and 5.4, organized by

dataset and input size, respectively. The table displays the model’s re-

sults as RMModel, while the initial RM10K approach is used for compar-

ison.

The results based on the input size, which corresponds to the input algo-

rithms, showed that the RMModel was approximately 30 times faster than

RM10K while maintaining the same level of quality. The errors observed

in the dataset comparison indicated that the exhaustive approach had less

than one per cent error overall when compared to RM10K. On the other

hand, the RMModel exhibited an average error of less than 0.05 percent,

producing similar results 99.95 percent of the time.

128

Chapter 5: Heuristic Search-based Clustering Ensemble

Figure 5.2: A plot Showing the Linear Regression Model by Average and

Maximum Convergence Points.

Lastly, Figure 5.3 illustrates the convergence point’s growth as the input

size extends beyond seven. At this stage, combining a RMHC or a simi-

lar heuristic approach may be advantageous to reduce the runtime signifi-

cantly.

129

Chapter 5: Heuristic Search-based Clustering Ensemble

Figure 5.4: The Accuracy of RMHC Compared with Exhaustive

Figure 5.3: RMModel vs Exhaustive Convergence point

From the results there is no correlation between the values of k, the num-

ber of clusters and the error, whereas there is a positive correlation between

the input size and the error; this may be a result of the quality values (Q)

130

Chapter 5: Heuristic Search-based Clustering Ensemble

not being normalised. Figure 5.3 graphically shows the cutoff (number of

clustering ensembles used) between using the exhaustive search and the

RMModel-based approach and the trend as the input clustering algorithm in-

creases. The cut-off point is around input of size seven (7) from which point

the run time increases exponentially. Finally, the accuracy of RM10K en-

semble compared to the exhaustive shown in Figure 5.4 shows an average

minimum of ninety-two per cent (92%) accuracy with most estimates equal

to the exhaustive ninety-five per cent (95%) and above of the time.

5.7 Recommendations

This chapter presents a novel approach for estimating the number of clus-

ters in datasets by combining a clustering ensemble with a heuristic search

using the RMHC method. The key contribution of this approach is the in-

troduction of a heuristic search ensemble, which allows for a progressive

evaluation of subset quality while minimising the convergence time of the al-

gorithm. The introducedRMHCapproach demonstrates comparable results

to the exhaustive search but with significantly faster execution. It achieves

95% accuracy on average and is 30 times faster than the convergence point

of the RMModel when applied to the same datasets. The results highlight

the potential advantage of incorporating heuristic search into clustering en-

semble methods to reduce runtime, particularly in scenarios involving large-

scale datasets. It opens up possibilities for addressing big data clustering

problems more efficiently.

Chapter 6 will explore and investigate the starting point in the search pro-

cess using the Fiedler vector decomposition, as the starting point can some-

times lead to a local optimal in a hill climbing implementation. Therefore,

more advanced local search techniques, such as Simulated Annealing-

based approaches, will be investigated to improve efficiency further. Al-

131

Chapter 5: Heuristic Search-based Clustering Ensemble

though this work serves as proof of concept, it provides a promising direc-

tion for future research in the field.

132

Chapter 6

Seeding Using The Fiedler

Vector Decomposition for

Clustering Ensemble

Search

6.1 Introduction

In this chapter, we introduce additional concepts that complement the

framework established in Chapter 5. Our goal is to enhance the Random

Mutation Hill Climbing (RMHC) technique presented in Chapter 5 by incor-

porating various techniques such as Fiedler vector decomposition, Lapla-

cian of a graph, and Minimum Spanning Tree (MST). These techniques

are utilised to develop a guided search approach as an initial starting point

within the search space, acting as a seed for the exploration process.

The main objective of this guided search approach is to improve the ef-

ficiency of searching for the optimal subset from the clustering ensemble

133

Chapter 6: Seeding Using The Fiedler Vector Decomposition

and enhance the accuracy in determining the number of clusters within the

dataset. This approach provides a systematic exploration strategy focusing

on regions likely to contain high-quality solutions. Experimental evaluations

will be conducted to assess how well the approach enhances the efficiency

and accuracy of subset selection from the clustering ensemble.

The following section will introduce technical terms and definitions of con-

cepts used in constructing the graph decomposition, which forms the basis

for the guided search approach.

Definition 6.1.1 (Graph). A graph G is a pair (V, E) where V is a nonempty

set of vertices and E is a set of edges. Each edge in E is an unordered

pair of distinct vertices from V . The edges represent connections between

the vertices, and there is no restriction on the nature of these connections

[167].

Definition 6.1.2 (Laplacian of a Graph). The Laplacian matrix of a graph

is a matrix that encodes the local connectivity structure of a graph. It is

a symmetric matrix defined as the difference between the graph’s degree

matrix and adjacency matrix.

The Laplacian matrix of a graph is often denoted by L and can be defined in

multiple ways. One common definition is the unnormalised Laplacian:

L = Z −A

where Z is the degree matrix and A is the adjacency matrix.

Another common form is the normalised Laplacian, defined as:

Lnorm = I − Z−1/2AZ−1/2

where I is the identity matrix and Z−1/2 is the square root of the inverse

134

Chapter 6: Seeding Using The Fiedler Vector Decomposition

of the degree matrix. This research focuses solely on the unnormalised

Laplacian.

Definition 6.1.3 (Adjacency Matrix). If G is a graph on n vertices, its adja-

cency matrix A(G) is then an n × n symmetric matrix defined by aij = 1 if

{i, j} is an edge of G and 0 otherwise.

Definition 6.1.4 (Degree Matrix). Given a graph G = (V, E) and |V |= n,

the Degree matrix Z is a n× n diagonal matrix defined as [168]:

Zij =


deg(vi) if i = j

0 otherwise

Where the degree deg(vi) is the number of times an edge terminates at the

vertex.

6.2 Minimum Spanning Tree

A minimum spanning tree (MST) is a subgraph of a connected, weighted

graph that connects all vertices with the minimum possible total edge

weight. In other words, it is a tree that spans all vertices of the graph and has

the minimum possible sum of edge weights. Minimum spanning trees are

commonly used in network design, where the goal is to construct a network

with the minimum cost [108]. MSTs can provide an efficient way to traverse

the graphs created. A minimum spanning tree of a graph is a tree that

connects all nodes in the graph and has the minimum possible total edge

weight. MST makes it possible to break down a complex graph into simpler

subgraphs that can be more easily analysed. The most important edges in

a graph can also be identified using MST as shown in Figure 6.1.

135

Chapter 6: Seeding Using The Fiedler Vector Decomposition

s t

v

wu

2

3

5

1

2

1

Figure 6.1: A Simple Graph with Five Nodes

s t

v

wu

2

1

2

1

Figure 6.2: The Minimum Spanning Tree of The Graph

6.3 Fiedler Vector Decomposition

The Fiedler Vector Decomposition (FV D) is a technique used in graph the-

ory to analyse the structural properties of a graph by breaking it down into

a sum of subgraphs. Miroslav Fiedler introduced it in his work on alge-

braic connectivity [169, 170]. Each dataset can be viewed as a graph in

this method, where each point represents a node. The graph is then de-

136

Chapter 6: Seeding Using The Fiedler Vector Decomposition

Algorithm 6.15 Prims Minimum Spanning Tree (MST)

Input: G- a weighted graph (U - vertices, E- Edges)
1: Let x be a random node from U
2: Let Unew = {x}
3: Let Enew = {}
4: while Unew 6= U do

5: Choose an edge (z, g) with minimal weight,
6: such that z ∈Unew and g /∈ Unew
7: Unew = Unew ∪{g}
8: Enew = Enew ∪{(z, g)}
9: end while

Output: Gnew = (Unew, Enew)

composed into subgraphs based on the spectral properties of its adjacency

matrix.

The adjacency matrix of a graph is a square matrix that shows the con-

nections between its vertices [171]. FV D uses the eigenvalues and eigen-

vectors of the adjacency matrix to partition the graph into two or more sub-

graphs. Specifically, it involves finding the eigenvectors corresponding to

the second smallest eigenvalue of the adjacency matrix, which is then used

to identify the subgraphs as shown in Figure 6.3.

1

2

3 4

5

6

Figure 6.3: Fiedler vector decomposition

The FV D method finds practical applications in various domains, such as

network analysis, graph partitioning, and community detection [172, 173].

137

Chapter 6: Seeding Using The Fiedler Vector Decomposition

FV D is particularly useful for analysing the structure of complex networks or

clusters by identifying subgraphs that exhibit similar connectivity patterns.

These subgraphs can be regarded as distinct groups of nodes within the

graph. To better understand FV D, defining key terms such as a graph,

subgraph, Laplacian matrix, eigenvalue, and eigenvector is essential. For a

more comprehensive example on FV D, please refer to Appendix 7.4.

6.4 Motivation for Seeding

The main objective behind seeding the RMHC algorithm is to provide it with

an initial position closer to the optimal solution. When dealing with optimi-

sation problems, the search space can often be vast, making it challenging

for the algorithm to locate an appropriate solution without guidance. By in-

troducing a seed, the algorithm can initiate its search from a region in the

search space that is more likely to contain a good solution. There are few

publications in the literature that have introduced seeding in the clustering

process [174, 175].

Apart from providing a better starting point, another reason for seeding the

RMHC algorithm is to enhance its convergence speed. A well-chosen seed

can help the algorithm converge quickly to a good solution, avoiding unnec-

essary computation and significantly reducing the overall running time when

the matrix size or the number of inputs in the ensemble increases. Seeding

a Hill Climbing algorithm can also help improve the quality of the solutions

it generates. As demonstrated in the result section, starting the algorithm

from a good seed makes it more likely to find high-quality solutions closer

to the optimal solution.

The process involves converting each dataset’sWeighted Kappamatrix into

a graph and finding the graph’s MST. The Weighted Kappa matrix consists

138

Chapter 6: Seeding Using The Fiedler Vector Decomposition

of values ranging from −1 to 1. Each Weighted Kappa value entry in the

matrix is subtracted from 2 to convert its values to a weighted adjacency

matrix or an edge list representing a graph. Positive values are converted

to 1 or slightly higher, while negative values become 2 or more. Each cell

in the resulting matrix represents the weight of the edge between the corre-

sponding vertices in a graph.

The process begins by inputting the graph into a Minimum Spanning Tree

(MST) algorithm, as outlined in Algorithm 6.15. A minimum spanning tree is

a tree that connects all vertices of a graph with the least possible total edge

weight. The outcome of this algorithm is an adjacency matrix representing

a subgraph of the original graph. This subgraph includes all vertices and

ensures connectivity. Next, the degreematrix is derived from this adjacency

matrix. The Laplacian matrix is then determined using Equation 6.1. Figure

6.1 presents a graph consisting of five nodes, while its corresponding Mini-

mum Spanning Tree (MST) is illustrated in Figure 6.2. In Section 6.2, some

key features of a Minimum Spanning Tree are briefly discussed.

The laplacian matrix fromMST is then decomposed using the Fiedler vector

decomposition to obtain two subgraphs, as shown in Figure 6.3. The Fiedler

vector corresponds to the second smallest eigenvalue of the Laplacian ma-

trix or the adjacency matrix and captures essential information about the

graph’s connectivity.

The Fiedler vector, a concept derived from the Laplacian matrix of a graph,

is explained in detail in Section 6.3. The Laplacian matrix represents the

connectivity structure of the graph. The Fiedler vector can be obtained by

computing the eigenvectors and eigenvalues of the Laplacian matrix. This

vector plays a crucial role in partitioning the graph into two subgraphs based

on the sign of its values, as discussed in Appendix C (see 7.4). Once the

graph is partitioned, the quality of each resulting subgraph is evaluated us-

139

Chapter 6: Seeding Using The Fiedler Vector Decomposition

ing the fitness function described in Chapters 4 and 5. Further details on

the experiments can be found in Section 6.9.

6.5 Arnoldi Iteration

Within this thesis, the Arnoldi iteration [176], an iterative technique, was

applied to find approximate values of a specified number of eigenvalues

and eigenvectors for a large sparse matrix. Arnoldi iteration begins with an

initial vector and iteratively constructs an orthonormal basis for the Krylov

subspace [177]. This basis is then utilised to build an approximation to

the matrix using a smaller, easily diagonalisable Hessenberg matrix [178].

The primary reason for applying the Arnoldi iteration is its capability to tar-

get a specific number of eigenvalues and their corresponding eigenvectors,

allowing a focused computation rather than obtaining the entire spectrum

of the matrix (n = 2..30 in this chapter). This attribute proves valuable in

computing the second smallest eigenvalue for determining the seed in the

calculation of FVD.

6.6 Average Quality of the Search Space

This study’s evaluation of subset quality is based on a fitness function, as

discussed in Section 4.5.1. This function assesses the accuracy of each

subset in estimating the number of clusters in a dataset. It calculates the

sum of agreements derived from the Weighted Kappa of adjacent inputs,

considering a threshold value (θ). For a more detailed understanding of the

quality and update quality functions, refer to Section 4.5.1.

A previous study outlined in Chapter 4 discovered that the average fit-

ness yielded the best results compared to other scales within the Weighted

Kappa guideline. This discovery prompted an investigation into the average

140

Chapter 6: Seeding Using The Fiedler Vector Decomposition

fitness across various ranges of matrix sizes, corresponding to the number

of inputs to the ensemble. Surprisingly, it was observed that the average

fitness approximates zero within the search space. This intriguing result

prompted further examination, utilising empirical and theoretical proofs to

establish the average value.

6.6.1 Empirical Proof of the Average Quality

Rigorous experiments were conducted on simulated datasets from pseudo-

random numbers ranging from 0.1 to a maximum value of 0.9. The selection

of 0.1 as the lower bound was motivated by the possibility of datasets with

no clusters, where a value of 0 would indicate no clusters at all. There-

fore, a slightly higher value was chosen as the cut-off point for the initial

selection of algorithms used to generate the numbers. On the other hand, a

value of 0.9 represents the highest level of agreement between the cluster-

ings, indicating the presence of well-defined clusters and their correspond-

ing membership. Symmetric matrices of datasets of various sizes, ranging

from 5 to 30, were simulated, and the average quality of each subset was

calculated. Interestingly, for each matrix size, the average quality was zero.

For instance, Figure 6.4 shows two matrices of size ten and eleven, corre-

sponding to ten and eleven input algorithms, respectively, represented as

ensembles with one thousand and thirteen (1013) and two thousand and

thirty-seven (2037) subsets. The graph is a scatterplot of quality values (the

pseudo-random numbers), illustrating the values for positive and negative

axes, and the average quality converges to zero. This finding carries sig-

nificant implications. Values greater than zero in the search space can be

considered higher than the average, making them favourable starting points

or a good seed for exploration. Conversely, values lower than zero are as-

sumed to be random. Therefore, obtaining a value higher than the average

represents a promising starting point within the search space.

141

Chapter 6: Seeding Using The Fiedler Vector Decomposition

Figure 6.4: The Variability as Average Search Space Converges to Zero

(Simulated Dataset for Matrix Size 10 and 11)

6.6.2 Mathematical proof of Average Quality

This section presents the proof for the average fitness of the search space,

applicable to matrices of any size corresponding to the number of inputs

selected for the ensembles. This proof is of utmost importance as it allows

the Fiedler vector selected seed to initiate the search from a point higher

than the average, ultimately striving towards an exhaustive outcome, which

is the desired result of the search. By establishing the search average and

providing solid proof, any starting point surpassing the predetermined aver-

age can be confidently regarded as a promising seed.

Proof. Consider a weight matrix W with elements wij belonging to the set

Rn×n such that −1 ≤ wij ≤ 1 and wij = wji. Define the weight function

w(x, y) = wxy. Let L = [s] be a list containing all the elements of set s, and

s = {L} be a set containing all the elements of the list.

Note the relationship L = [{L}] and s = {[s]}. Define the set of indices

142

Chapter 6: Seeding Using The Fiedler Vector Decomposition

V = 1, 2, ..., n, such that s ⊆ V and |s|> 1. Also, let si = [s]i.

θ = 2
n(n− 1)

|s|−1∑
i=1

|s|∑
j=j+1

wij (6.1)

We can define Q as follows:

Q(s, W, θ) =
|s|−1∑
i=1

|s|∑
j=j+1

(w([s]i, [s]j)− θ) (6.2)

Let

W̄ =



θ w12 · · · · · · w1n

w12 θ · · · wij · · ·
...

...
. . .

...
...

... wji
... θ

...

w1n · · · · · · · · · θ


(6.3)

We can then infer that:

n∑
i=1

n∑
j=1

w̄(i, j) = 2
((n(n− 1)θ)

2

)
+ nθ = n2θ (6.4)

Equation (6.4) establishes the average quality of the search space based

on the defined weight matrix and threshold parameter. It indicates that the

sum of the modified weights in matrix W̄ is proportional to the square of the

matrix size n.

Definition 6.6.1. The new quality function Q̂ is defined as follows:

Given that si = [s]i then

Q̄ is defined as

Q̄(s, W̄ , θ) =
|s|∑

i=1

|s|∑
j=1

(w̄(si, sj)− θ)

143

Chapter 6: Seeding Using The Fiedler Vector Decomposition

we can infer that:

Q̄(s, W̄ , θ) = 2Q(s, W, θ)

E(V) is defined as the set of all of the possible solutions, in this case, the

set of all subsets in the ensemble and P (V) is the power set of V .

Definition 6.6.2. The power set of a set V , denoted by P (V), is the set of

all possible subsets of V , including the empty set and the set itself. In other

words, it is the collection of all subsets that can be formed by taking zero or

more elements from the original set V .

For a set V with n elements, the power set P (V)will have 2n elements. This

is because each element in V can be included or excluded from a subset,

leading to a total of 2 choices for each element.

Suppose V = {a, b, c}, then the power set P (V) would be:

P (V) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}

Here, ∅ represents the empty set, and each of the other subsets contains

elements from the original set V .

Theorem 6.6.1. The average fitness over the whole space, E(V), is zero.

Lemma 6.6.2. The number of times that any pair of elements from V ap-

pears together in one of the subsets of P (V) is 2n−2.

Consider a set with V elements. The number of ways to choose a pair of

elements from this set is given by the binomial coefficient C(V, 2), which is

calculated as: (
|V |
2

)
== |V |!

2! (|V |−2)! (6.5)

144

Chapter 6: Seeding Using The Fiedler Vector Decomposition

The above represents the possible combinations of 2 elements out of V .

However, each of these combinations can appear in different subsets of

the powerset. Generally, each pair of elements will appear in the powerset’s

2(n−2) subsets for a set with V elements.

Definition 6.6.3 (Set Subtraction). Let r and s be two sets. The set sub-

traction operation, denoted as r \ s, generates a new set that includes all

the elements belonging to r but not belonging to s. In other words, r \ s

contains the elements from set r that are not present in set s.

Theorem 6.6.3. Given that the powerset of the set V \ {r, s} has a cardi-

nality of 2n−2. This theorem establishes that when the elements r and s are

removed from the set V , the resulting set has a powerset (set of all possible

subsets without r and s) of size 2n−2.

Proof. Consider P ({r, s}), the power set of the set containing r and s. Each

element in this set can be combined (unioned) with every element of P (V \

{r, s}). Consequently, there are 2(n−2) sets that do not contain either r or

s, 2(n−2) sets that only contain r, 2(n−2) sets that only contain s, and 2(n−2)

sets that contain both r and s.

From definition 6.5, the sum of Q̄ over all subsets of P (V) can be formulated

as: Let ta = [P (V)]a

|P (V)|∑
a=1

Q̄(ta, W̄ , θ) =
n∑

i=1

n∑
j=1

2n−2(w̄(i, j)− θ) (6.6)

which can be expressed as

145

Chapter 6: Seeding Using The Fiedler Vector Decomposition

2n−2
n∑

i=1

n∑
j=1

(w̄(i, j)− θ) (6.7)

Equation 6.7 shows that the sum involves 2n−2 times the sum of the differ-

ences between the modified weights in W̄ and the threshold θ. Simplifying

further:

|P (V)|∑
a=1

Q̄(ta, W̄ , θ) = 2n−2
n∑

i=1

n∑
j=1

(w̄(i, j))−

2n−2
n∑

i=1

n∑
j=1

θ = 0
(6.8)

Recall that:

P (V) = E(V) ∪ {1} ∪ {2} · · · ∪ {n} ∪ φ (6.9)

It is important to note that Q̄({x}, W̄ , θ) for any x ∈ V is equal to w̄(x, x)−θ,

which is zero. Similarly, Q̄(φ, W̄ , θ) (the empty set) is also zero.

146

Chapter 6: Seeding Using The Fiedler Vector Decomposition

Thus, the sum of Q̄ over all subsets of E(V) is also zero, implying that the

average quality (Q) is zero.

The next section describes the dataset used to run the experiment.

6.7 Experimental Data

The dataset used in this chapter is based on the earlier chapters, and the

processes leading to adopting the dataset for this experiment are the same

as before. Continuing with the thirty clustering algorithms, a database of

the clustering ensemble was generated using the same parameter settings.

The best ensemble subset for each dataset was determined by evaluating

the quality value for each k; the index corresponding to k with the highest

quality is the number of clusters in the dataset. Further details can be found

in Chapter 4. Although the process of finding the best subset value is signif-

icantly the same, the search for the best subset has been modified to speed

up the process through a guided search approach with the introduction of

seeding to the search process or starting point for the RMHC, see Chapter

5 for more detail on the RMHC.

In this study, the same quality metrics used in Chapters 4 and 5 are em-

ployed, but with the implementation of seeded RMHC to accelerate the

search process while maintaining comparable accuracy to the exhaustive

approach in determining the best subset. While there is no universally

agreed-upon definition of what constitutes good-quality clusters, accuracy

and consistency are generally considered essential criteria. The experimen-

tal results presented in Section 6.10 demonstrate a significant improvement

in convergence while yielding similar outcomes to the exhaustive approach.

The fitness function utilised in this study builds upon the concept discussed

in Chapter 5. Consistency is evaluated by assessing the average perfor-

147

Chapter 6: Seeding Using The Fiedler Vector Decomposition

mance across multiple runs.

6.8 Methods

This section introduces three additional methods derived from the FVD:

QBestHC, QWorstHC, and RRHC2. It also describes the implementation

of SA. The results obtained from applying these techniques will be com-

pared with those from the exhaustive and RMModel discussed in Chapter

5.

The FVD obtains two starting points for the search space partitioning: QBest

and QWorst. QBest represents the maximum quality value result from the

partitioning, while QWorst represents the minimum. These quality values

serve as the starting points for the search, and the corresponding RMHC

values obtained from the search starting from QBest are referred to as

QBestHC; similarly, for QWorst, it is QWorstHC. The QBestHC result is ob-

tained by executing RMHC from QBest over a hundred repeats to assess

the consistency of the results. The experiment section provides further de-

tails on these approaches and their implementation.

6.9 Experiments

The experiments are broken into three, as described in the table of experi-

ments in Table 6.1. The three main experiments are:

• RMHC with QBest from Fiedler over ten thousand iterations

• RMHC with QWorst from Fiedler over ten thousand iterations

• Twice RMHC, five thousand from QBest and QWorst, return the High-

est QBestHC and QWorstHC from two sub-HC

148

Chapter 6: Seeding Using The Fiedler Vector Decomposition

The first experiment runs a RMHC algorithm using the QBest from the

Fiedler vector over a thousand iterations and for hundred repeats. The sec-

ond experiment is similar but from the QWorst, and the last experiment is

the average starting from QBest and QWorst but for half the number of it-

erations 5, 000 from both starting points.

Recall that in the earlier experiment in Chapter 5, we ran an exhaustive

search on the twenty-seven datasets for the best subset, the same as the

earlier experiment in Chapter 4, each for different algorithms but similar

implementation. The purpose was to find the optimal value of k for each

dataset, ranging from 2 to
√

n, where n is the number of instances in the

dataset. The total number of datasets from the subset is 643. Each dataset

is a n × n matrix corresponding to the number of inputs used to create the

ensembles. The update quality version of the quality function is described in

Chapter 5. The exhaustive search is the benchmark for the expected output

for the other algorithms. The result from the second experiment contains

RMModel described in the table of experiments in Table 6.1 in Chapter 5.

The last set of experiment repeats the above for a range of input sizes from

5 to 30. Each sub-matrix is derived from the dataset as a symmetric sub-

matrix from the 30× 30 matrix of each dataset, similar to the experiment in

Chapter 5 for the RMHC. The convergence points of different input sizes

and the quality result by dataset and input sizes are reported in the result

section in Section 6.10.

149

Chapter 6: Seeding Using The Fiedler Vector Decomposition

Table 6.1: FVD table of experiments: Showing themethods, datasets, num-

ber of iterations, and repeats.

Methods Datasets # Iterations # Repeats

Exhaustive 27 1 1

RMModel 27 see Section 5.6 100

QBestHC 27 10, 000 100

QWorstHC 27 10, 000 100

RRHC2 27 10, 000 100

SA 27 10, 000 100

Total 4,008,759

6.10 Results and Discussions

The results is presented as follows:

1. Results by Quality

2. Results by Convergence points

3. Results by state

6.10.1 Results by Quality

This subsection presents the quality values for dataset sizes ranging from

5 to 30. The benchmark result obtained from the exhaustive method is

denoted as Ex, and the results for the RMModel, QBestHC, QWorstHC,

RRHC2, and (SA) implementations are presented in Table 6.2. This ta-

ble provides a comprehensive overview of the quality values for each

method.

The results clearly demonstrate the effectiveness of using Fiedler Vector

seeding to guide the search for the best subset. Starting from QWorst

yielded consistently poor results compared to the benchmark - the exhaus-

tive. Similarly, the average performance of the QBest from two search

points in the search space, denoted as RRHC2 for 5000 iteration, was close

to the exhaustive method and even outperformed QBestHC. However, on

150

Chapter 6: Seeding Using The Fiedler Vector Decomposition

Table 6.2: Table showing the quality values for dataset size 5 to 30 based

on the methods

Dataset size Ex RMModel QBestHC QWorstHC RRHC2 SA

5 0.324 0.278 0.293 0.143 0.295 0.324

6 1.223 0.986 1.048 0.255 1.053 1.223

7 1.512 1.282 1.492 0.771 1.498 1.512

8 1.865 1.628 1.808 0.966 1.821 1.865

9 2.271 2.034 2.202 1.214 2.218 2.271

10 2.736 2.512 2.644 1.563 2.668 2.736

11 3.297 3.063 3.147 1.922 3.192 3.297

12 6.162 5.795 6.124 3.413 6.147 6.162

13 9.053 8.680 9.037 2.794 9.047 9.053

14 11.293 10.956 11.246 3.289 11.259 11.293

15 13.098 12.775 13.014 3.983 13.028 13.098

16 14.443 14.077 14.411 5.049 14.427 14.443

17 15.470 15.004 15.419 5.703 15.455 15.468

18 16.240 15.583 16.183 6.417 16.248 16.237

19 18.639 18.035 18.583 6.989 18.635 18.636

20 20.003 19.462 19.912 7.896 19.966 19.998

21 21.600 21.076 21.489 8.237 21.525 21.593

22 23.157 22 .658 22.973 8.286 23.025 23.139

23 26.403 25.931 26.237 8.990 26.282 26.395

24 27.468 26.973 27.210 9.822 27.282 27.441

25 30.969 30.517 30.752 10.625 30.813 30.943

26 33.296 32.894 33.149 14.389 33.199 33.269

27 35.012 34.655 34.888 14.380 34.930 35.005

28 36.647 36.291 36.500 15.125 36.557 36.637

29 39.290 38.969 39.161 16.962 39.214 39.287

30 43.272 42.995 43.160 18.830 43.213 43.263

average, QBestHC was 33% better than the RMModel, particularly as the

dataset size increased, as shown in the graph in Figure 6.5. Surprisingly,

the SA implementation performed the best on the estimate but the con-

vergence was very poor compared to other methods. Aside from slower

convergence, SA may not be suitable in the current context due to some of

the following reasons:

Sensitivity to temperature parameters: The performance of SA is highly

dependent on the selection of temperature parameters, such as the initial

temperature and the cooling schedule and choosing inappropriate tempera-

ture values or a suboptimal cooling schedule can result in poor convergence

and suboptimal solutions.

Difficulty in tuning parameters: SA involves several parameters that must

151

Chapter 6: Seeding Using The Fiedler Vector Decomposition

be appropriately tuned for optimal performance. Determining suitable val-

ues for parameters such as the initial temperature, cooling rate, and ac-

ceptance criteria can be challenging and time-consuming, requiring careful

experimentation and analysis.

Inefficiency for large-scale problems: SA can become computationally

expensive and inefficient for large-scale optimisation problems. The al-

gorithm sequentially explores the search space, and as the problem size

grows, the time required for exploration increases significantly. This scal-

ability issue can limit the applicability of SA to large and complex problem

domains.

Inability to seed SA: Unlike the current technique (FVD), SA does not lend

itself well to seeding because at the beginning of the optimisation process,

SA often accepts worse solutions to encourage exploration. As a result, it

tends to “run away” from the seed point rather than converging towards it.

This lack of control over the starting point can make it challenging to target

specific areas of the search space or guide the algorithm towards known

promising regions.

In conclusion, it is crucial to carefully assess these disadvantages concern-

ing the search space in the clustering ensemble and consider the ensemble

size, solution requirements, time constraints, and available domain knowl-

edge before choosing a suitable technique.

6.10.2 Results by Convergence Points

The convergence point of FVD is generally expected to increase as the

size of the input dataset grows due to the computational complexities asso-

ciated with the method. However, the results obtained for the convergence

points differ from this assumption, especially for lower data size, and sev-

eral reasons may contribute to this discrepancy. The results for the con-

152

Chapter 6: Seeding Using The Fiedler Vector Decomposition

Figure 6.5: Quality Value for Methods: Shows the Average Quality Values

for Each Method.

vergence points of dataset sizes greater than 13 are in Figure 6.6, showing

an increasing trend which aligns with the expected behaviour. Notably, the

RRHC2 method, utilises two different starting points in the search space,

and exhibits significantly higher convergence points than the other meth-

ods. However, QWorstHC, which employs the lower quality values as the

starting point, performs poorly in terms of convergence.

6.10.3 Results by State

In data analysis, the term “state” refers to the condition or configuration

of a system at a specific moment in time. Gaining insight into the state

of data analysis is crucial for researchers and analysts as it provides an

understanding of the current condition of the data and its behaviour over

time. This understanding enables the identification of patterns, trends, and

changes, which can be leveraged for making predictions and drawing data-

driven conclusions. In this research, three states are identified based on

153

Chapter 6: Seeding Using The Fiedler Vector Decomposition

Figure 6.6: Convergence Values Methods: The figure shows the conver-

gence values for each method in the legend on average from data size 13
to 30

the run of the experiment for different FVD implementations. The states

are:

1. FVD failed – No results/outcomes

2. FVD ≤ 0 – The results are equal or below the average search space

of zero.

3. FVD > 0 – the results are greater than the average search space of

zero.

The underlying assumption in this thesis is that any value greater than zero,

which corresponds to the average value in the search space, can serve as

a promising starting point for finding the optimal subset within the search

space. The implementation of this approach is evaluated based on the qual-

ity values and convergence points obtained from the experiments. The table

below shows the state distribution based on the above description:

The plot in Figure 6.7 illustrates values greater than 0 for the Fiedler Vector

154

Chapter 6: Seeding Using The Fiedler Vector Decomposition

Table 6.3: State Distributions

State Name State Count Percentage

FVD Failed 1 7 0.03%

FVD ≤ 0 2 756 4.52%

FVD > 0 3 15955 95.43%

(FVD) across datasets ranging from 5 to 30. Notably, a consistent upward

trend in the number of successful datasets indicates an outcome from the

Fiedler vector from a point towards the optimal solution from the correspond-

ing quality value. However, a slight dip is observed around the dataset size

of 11. The diagram shows a predominantly increasing pattern, further con-

firming significant poor outcomes for lower values of the dataset between 5

and 12.

Figure 6.7: The figure shows the number of outcomes for State 3 of the

FVD for all datasets

The efficiency of the FVD seeding method has been evaluated across var-

ious dataset sizes ranging from 5 to 30. The results showed that the av-

155

Chapter 6: Seeding Using The Fiedler Vector Decomposition

Figure 6.8: The Figure Shows the Efficiency by Dataset Size

erage efficiency across all dataset sizes was 38.7%, indicating a significant

improvement. Figure 6.8 provides a visual representation of the specific ef-

ficiency values for each dataset size, and those with positive outcomes and

the corresponding numbers are shown in Figure 6.7.

This analysis offers valuable insights into the effectiveness of the FVD seed-

ing approach for estimating the number of clusters in datasets and conduct-

ing cluster analysis. The average efficiency values comprehensively mea-

sure the method’s overall performance across the dataset sizes.

Based on the observed trend in the graph, it is evident that the FVD seeding

approach is not well-suited for small dataset sizes. In such cases, it is advis-

able to opt for the model alternative described in Chapter 5 (RMModel), as

indicated in the graph in Figure 6.7. However, as the dataset size increases,

employing a guided search alternative like Fiedler vector decomposition be-

comes increasingly beneficial. This approach harnesses the Fiedler Vec-

tor’s capability to decompose the graph and establish a meaningful starting

156

Chapter 6: Seeding Using The Fiedler Vector Decomposition

point within the search space. Leveraging this technique increases the ef-

ficiency and accuracy of subset evaluation from the clustering ensemble,

improving results, particularly for larger dataset sizes.

6.11 Recommendations

This chapter introduced seeding into the RMHC implementation, utilising

graph-based techniques and Fiedler vector decomposition. The utilisation

of seeding has been shown to enhance the search process by starting from

a seed point in the search space that is likely to contain the optimal so-

lution. However, introducing the Fiedler vector decomposition is computa-

tionally intensive, rendering it unsuitable for lower input values. Surprisingly,

this leads to prolonged search processes, potentially resulting in increased

convergence time or failure, as evidenced by the observed results on the

convergence points. Two plausible reasons may contribute to these out-

comes:

Firstly, seeding with the Fiedler vector decomposition is sensitive to the

initial conditions of the data, particularly the graph structure or adjacency

matrix. Even minor variations in these initial conditions can yield signifi-

cantly divergent results, making the method sensitive to data inaccuracies.

This sensitivity can potentially impact convergence time, as the quality of

the initial seed directly affects the efficiency of the search process; smaller

datasets ranging from 5 to 12 exhibit a substantial number of missing results

from the search, potentially due to these factors.

Secondly, the static nature of the seed, determined based on the graph

structure or adjacency matrix at the onset of the search process, may con-

tribute to the observed high convergence points for smaller dataset sizes.

Further investigation is required to confirm the above observations on the

157

Chapter 6: Seeding Using The Fiedler Vector Decomposition

convergence points.

The next chapter provides a comprehensive discussion of the major con-

tributions made throughout the research, summarises the key findings ob-

tained, acknowledges the limitations encountered, and outlines potential

research directions for future work.

158

Chapter 7

Conclusions

In conclusion, this thesis highlights the importance of cluster analysis and

the limitations of single clustering algorithms. It addresses the challeng-

ing task of determining the optimal number of clusters in datasets and pro-

poses novel methods that leverage ensemble techniques. These methods

overcome single clustering algorithms’ limitations, such as sensitivity to ini-

tialisation, difficulties in handling complex data structures, and scalability

issues. As presented in this thesis, applying ensemble methods in cluster

analysis enhances clustering results’ accuracy, stability, and interpretabil-

ity. The developed methods offer innovative approaches for navigating the

search space and provide more reliable and insightful data analysis out-

comes. The rest of this chapter summarises and draws conclusions on

earlier findings:

Chapter 1 serves as the introductory chapter of this thesis. It introduces the

research topic, establishes the study’s motivation, and lays the foundation

for heuristic optimisation in clustering ensembles. Furthermore, it provides

a general overview of the research, giving readers a comprehensive intro-

duction to the subject and setting the stage for the subsequent chapters that

address the specifics of the study.

159

Chapter 7: Conclusions

Chapter 2 presents a comprehensive literature review, focusing on the key

concepts relevant to the research. It introduces different clustering types

and discusses their distinctive characteristics, with a primary emphasis on

single clustering algorithms. The chapter underlines the limitations of single

clustering and underscores the importance of constructing ensembles us-

ing multiple algorithms as an alternative approach. Furthermore, the chap-

ter explores heuristic search algorithms and strategies, which play a critical

role in the optimisation process of clustering ensembles. It also introduces

various cluster indices that serve as quantitative measures for evaluating

clustering solutions’ quality and performance. Moreover, the chapter thor-

oughly describes the fitness of a search space and the convergence prop-

erties, particularly in the context of hill climbing and Simulated Annealing

algorithms applied in the research. These concepts are essential for under-

standing the optimisation techniques used in the study.

Chapter 3 of the research describes the datasets used in the experiments

and explains the data collection and pre-processing. The pre-processing

stages involved handling missing data, outliers, data integration (if obtained

from multiple sources), data transformation (standardisation), data reduc-

tion (dimensionality reduction), and data normalisation; after these steps, a

total of 27 datasets were chosen for further analysis. Chapter 3 concludes

by discussing the characteristics and specific dataset features, highlighting

their unique properties and clustering challenges. In conclusion, this chap-

ter presents a comprehensive variability analysis of the selected datasets.

The variability analysis allowed valuable insight into the hidden structures

and patterns within the datasets. This information is crucial for understand-

ing the characteristics and nature of the data. It also enables the assess-

ment of the consistency of clustering outcomes across different runs or vari-

ations in the input parameters.

160

Chapter 7: Conclusions

Chapter 4 focuses on estimating the number of clusters in a dataset using

the ensemble framework. It highlights the importance of determining the

number of clusters and the potential of ensemble clustering to enhance the

performance and accuracy of the estimated number of clusters. Chapter

4 addresses two fundamental issues in clustering ensembles: the optimal

way to generate and combine clusterings while maintaining diversity and

accuracy and identifying the best solution from subsets of ensembles in the

search space. It was shown in the chapter that the ensemble technique

consistently gives lower average errors across all datasets and correctly

estimates the number of clusters compared to similar methods. The sec-

tion recommends adopting the ensemble clustering method as a preferred

alternative. However, acknowledging the potential speed challenges as the

dataset and input method sizes increase is crucial. Further application of

heuristic search approaches to enhance the method’s efficiency is also sug-

gested for future work, as detailed in Chapter 5.

Chapter 5 introduces a heuristic search-based clustering ensemble ap-

proach to improve the speed of execution of the earlier work in Chapter

4, precisely the random mutation hill climbing. The goal is to address the

speed requirements as the dataset size and possible number of subsets

from the ensemble increase. The novelty and contributions of the approach

are outlined, including the development of a heuristic-based ensemble that

achieves the same quality as the exhaustive search, a mathematical frame-

work for the fitness function, and a regression model to estimate the maxi-

mum convergence point for the heuristic search were presented. The study

also addresses the trade-off between accuracy, consistency, and speed

when choosing between heuristic and exhaustive search methods.

Chapter 6 address the challenges associated with starting points and out-

lines strategies to overcome the limitations of traditional hill climbing algo-

161

Chapter 7: Conclusions

rithms identified in Chapter 5. The Fiedler vector decomposition allows for

a guided initialisation of the initial starting point in the search space. These

strategies enhance the exploration capability of the algorithm and increase

the likelihood of converging to global optima rather than getting trapped in

local optima. Addressing the starting point issue and proposing practical

solutions has improved the overall performance and reliability of the search

process, ultimately leading tomore robust and accurate results in the search

for the optimal number of clusters in datasets.

This thesis serves as a proof of concept and sets a promising direction

for future research. It contributes to cluster analysis by introducing novel

ensemble-based methods for determining the number of clusters and ad-

dressing the limitations of single clustering algorithms. The presented

methodologies offer promising avenues for future research, including apply-

ing heuristic search approaches to enhance efficiency and further exploring

the proposed concepts.

7.1 Contributions

This section is an overview of themain results presented in this thesis.

7.1.1 Gray Code Subsetting

The main goal of Gray Code sub-setting is to generate potential solutions

systematically by constructing subsets of ensembles with minimal variations

between subsets. This approach aims to accurately represent the search

spacewhile ensuring a diverse range of representative solutions. Gray code

sub-setting enhances the interdependence between subsets and is lever-

aged to compute fitness values, thereby improving efficiency in the search

process. This method converged to a higher average at a faster conver-

gence rate than some of the standard techniques used to compare, and

162

Chapter 7: Conclusions

it compares favourably to the exhaustive search method in the number of

clusters estimated correctly.

7.1.2 Assessing Subsets Based on Quality

Another significant outcome of this research is the introduction of an ob-

jective function that enables the evaluation and optimisation of each sub-

set’s quality, resulting in improved accuracy compared to conventional tech-

niques. Unlike many methods used for determining the number of clusters

that rely on statistical formulas that can be data or distribution dependent,

the proposed approach overcomes these limitations by utilising a weighted

kappa agreement matrix generated during the initial base clustering pro-

cess. This matrix ensures a robust and reliable assessment of subset qual-

ity, enhancing the overall accuracy of the analysis.

7.1.3 Quality Metric Framework

The research introduced a quality metric to assess the suitability of each

subset as a predictor of the number of clusters in the datasets. This metric

allows evaluating each subset among its pairs as a potential solution. The

results of the different metrics outlined in Chapter 4 guided the selection of

a suitable threshold for the datasets. They served as the basis of the search

towards the optimal subset. In summary, the research presented a mathe-

matical framework for quality metrics that facilitates the scoring of subsets,

considering both weaker and stronger subsets. Furthermore, incorporating

threshold values into the metric enhances the evaluation of subsets based

on their relative strength.

163

Chapter 7: Conclusions

7.1.4 Seeded RMHC

The implementation of RMHC may be inefficient in exploring the search

space, as it is limited to making small random changes to the current solu-

tion. This limitation can lead to the oversight of superior solutions that exist

further away. Additionally, RMHC requires a substantial amount of time to

converge to an optimal solution, especially in complex search spaces, and

the initial starting point can influence its performance. Hill climbing algo-

rithms are also prone to get trapped in local optima, i.e. Once the algo-

rithm reaches a peak in the search space, it may be unable to explore other

potentially better solutions that are further away. These challenges have

been addressed in Chapter 6 of this thesis using seeded RMHC. The re-

search proposes using the Fiedler vector decomposition to provide a guided

or good initial starting point in the search space. A rigorous set of experi-

ments in Chapter 6 shows the approach as a promising alternative to ear-

lier implementation in Chapter 5. The implementation results demonstrate

a significant enhancement in the search for the best subset, indicating the

effectiveness of this approach in overcoming the limitations of traditional

RMHC.

7.1.5 Proof of the Search Space Fitness Average

The search space fitness average has been established by conducting ex-

tensive experimentation and empirical analysis. This evaluation has en-

abled the assessment of the seeding process as viable starting points within

the search space. Determining the search space fitness average involves

rigorous testing and analysis to measure the performance and effective-

ness of the seeding process. Empirical proof has demonstrated that the

seeding process provides satisfactory initial configurations for the search

space. The evaluation of the search space fitness average is a valuable

164

Chapter 7: Conclusions

indicator of the quality and reliability of the seeding process. It provides

confidence in the effectiveness of the chosen starting points, allowing for

more efficient and accurate exploration of the search space. Researchers

and practitioners can make informed decisions regarding selecting and us-

ing the seeding process by utilising the established search space fitness

average. This proof optimises the overall search process, ensuring it starts

from a favourable position within the search space.

7.2 Summary

Much of the research on estimating the number of clusters in datasets still

relies on either clustering-based or statistical methods, as discussed in this

thesis. However, these approaches fail to consider the potential benefits

of incorporating diverse views of the data and exploring a range of search

possibilities to obtain accurate estimates of the number of clusters. The

proposed methodology of clustering ensemble offers a promising solution

by leveraging multiple clustering perspectives and searching for the best

subset that captures the underlying characteristics of the dataset. This ap-

proach improves accuracy and holds potential for application in various do-

mains beyond those explored in this thesis, including real-world datasets.

In summary, the methodology for estimating the number of clusters in an

ensemble, considering accuracy and effectiveness, will depend on the size

and selection of the candidate solutions in the ensemble. Here are some

recommendations:

1. Exhaustive method: When the number of clustering inputs is less

than or equal to seven (7), it is advisable to use the exhaustive

method. The exhaustive applies all possible combinations of clus-

tering inputs to find the optimal solution, and this approach ensures a

thorough exploration of the solution space.

165

Chapter 7: Conclusions

2. Model Method: If the number of clustering algorithms falls between

eight 8 and twelve 12, it is recommended to use a model-based ap-

proach such as RMModel. They can handle a moderate number of

algorithms effectively.

3. FVD Seeding: When dealing with more input algorithms (≥ 13) in

the ensemble, it is beneficial to employ Fiedler vector seeding. This

technique helps direct the search for the optimal number of clusters

and reduces the time required to converge further with similar accu-

racy to the exhaustive. Therefore, considering the number of clus-

tering algorithms and employing the appropriate method: exhaustive,

model-based, or Fiedler vector seeding can enhance the efficiency

and effectiveness of the clustering process, leading to better results

in finding the optimal number of clusters and minimising convergence

time.

In addition, the FV D approach proves particularly valuable as it provides

a guided starting point in the search space for clustering. Establishing the

search space average, supported theoretically and empirically, enhances

the effectiveness of the starting point. Further exploration can focus on

identifying even better starting points in the search process to improve the

prediction of the number of clusters in datasets. This avenue holds potential

for future research and development.

7.3 Limitations

Like any novel ideas, the methods proposed in this thesis are not without

their limitations. The following are the identified limitations of these meth-

ods.

166

Chapter 7: Conclusions

7.3.1 Generating Ensembles

One of the challenges associated with generating ensembles is the in-

creased computational complexity and resource requirements. Ensembles

typically involve combining multiple models or algorithms, significantly in-

creasing the computational load compared to using a single model, espe-

cially when dealing with large datasets or complex algorithms. Furthermore,

generating ensembles requires diverse and representative individual clus-

terings. Obtaining diverse clustering solutions can be challenging, espe-

cially when using complex algorithms or when there is limited availability of

different clusterings to combine. It may require generating clusterings with

different parameter settings, using different algorithms, or collecting data

from different sources to achieve the desired diversity. Another issue is the

potential for disagreement or conflicting predictions among the individual

subsets in the ensemble. While diversity is desired, conflicting predictions

can pose a challenge in decision-making or result interpretation. Resolving

conflicts and aggregating the predictions of different subsets in ameaningful

and effective way is a non-trivial task.

7.3.2 Seeded RMHC

Two notable limitations of the proposed methodology are identified. Firstly,

the sensitivity of seeding with the Fiedler vector to initial data conditions, par-

ticularly the graph structure or adjacency matrix, poses a challenge. Even

minor variations in these conditions can lead to significant differences in

the results, making the method susceptible to data inaccuracies. This sen-

sitivity may also affect the convergence time, as the initial seed’s quality

directly impacts the search process’s efficiency. Secondly, the static nature

of the seed, determined based on the graph structure or adjacency matrix

at the beginning of the search process, may contribute to the observed high

convergence points for smaller dataset sizes.

167

Chapter 7: Conclusions

7.4 Further Work

The thesis has introduced a novel approach for estimating the number of

clusters in datasets through clustering ensembles and a heuristic search

algorithm. This approach has demonstrated improved accuracy compared

to traditional methods by incorporating diverse data views and evaluating

subset’s quality. Future work in the research area could focus on several

aspects to further improve and expand the existingmethods. Here are some

potential avenues for future investigation:

MST threshold for graph creation: An exciting avenue would be in-

vestigating different threshold values for constructing the graph from the

Weighted Kappa (w) matrix. Researchers can gain insights into the im-

pact on the resulting graph structure by exploring various threshold values.

This analysis can lead to the identification of optimal threshold selection for

different datasets, thereby enhancing the accuracy of the clustering pro-

cess.

More efficient local search methods: It would be beneficial to apply

and evaluate more efficient local search methods to optimise the search

process. Advanced optimisation techniques can be investigated, such as

metaheuristic algorithms (e.g., particle swarm optimisation [179]) or ad-

vanced local search strategies like tabu search [180] or iterated local search

[181].

Suitability of the method for different datasets: Investigate and analyse

the characteristics of datasets for which the proposedmethod is more suited

and identify the types of data distributions, sizes, and structures where the

method exhibits superior performance. This analysis can provide valuable

insights into the strengths and limitations of the approach and guide its ap-

plication in various domains.

168

Chapter 7: Conclusions

Incorporation into outlier detection: Exploring the integration of the pro-

posed method into outlier detection techniques would be valuable. Evalu-

ating the method’s performance in identifying outliers within datasets and

assessing its effectiveness in outlier detection tasks. This integration can

provide a more comprehensive approach to data analysis.

Real-valued matrix versions of FVD: Currently, the FVD method primar-

ily deals with binary data. Extending the technique to handle continu-

ous or real-valued data would expand its applicability, enable its usage

on a broader range of domains and datasets, and open up new possibil-

ities.

Alternative methods to Arnoldi: Exploring alternative approaches to

eigenvalue computation, specifically for the Arnoldi method, is worth inves-

tigating. Full-spectrum exact methods can be explored for low-dimensional

cases where computational cost is less of a concern. Comparing the perfor-

mance and accuracy of these alternative methods with the Arnoldi method

in different scenarios will enable researchers to assess their suitability for

various problem sizes and dimensions. Such analysis will provide insights

into the trade-offs between accuracy and computational cost, given the dif-

ferences in time complexity between the Arnoldi method O(n2) and full-

spectrum exact methods O(n3).

169

Appendices

170

Appendix A

This appendix describes the results from the simulated datasets. The av-

erage fitness values are extremely close to zero, with at least eleven zeros

after the decimal point before the first non-zero digit. This indicates that the

values are almost indistinguishable from zero for most practical purposes.

Table showing the quality values for inputs 5 to 30 based and their average
fitness values

Matrix Size Range No of Simulation Average Fitness

5 32 26 −4.604× 10−13

6 64 57 −5.604× 10−14

7 128 120 −2.704× 10−12

8 256 247 −4.304× 10−12

9 512 502 5.901× 10−10

10 1024 1013 −4.699× 10−10

11 2048 2036 −5.894× 10−12

12 4096 4083 4.507× 10−11

13 8192 8178 −8.939× 10−11

14 16384 16369 −7.313× 10−11

15 32768 32752 3.752× 10−11

16 65536 65519 −6.800× 10−15

17 131072 131054 −6.800× 10−15

18 262144 262125 −7.351× 10−16

19 524288 524268 −4.013× 10−15

20 1048576 1048555 −2.920× 10−14

21 2097152 2097130 6.604× 10−11

22 4194304 4194281 −3.604× 10−13

23 8388608 8388584 −4.604× 10−15

24 16777216 16777191 −7.604× 10−15

25 33554432 33554406 −1.235× 10−11

26 67108864 67108837 6.457× 10−10

27 134217728 134217700 −2.125× 10−10

28 268435456 268435427 −5.231× 10−12

29 536870912 536870882 −2.604× 10−13

30 1073741824 1073741793 −3.321× 10−13

Total Simulation 2n − n 1610612675

171

Appendix B

This appendix describes the datasets and provide a short description on the

number of columns and rows as well as sources where they were collected.

Table showing the dataset and their description

Dataset names #rows #columns Source DOI Metadata Fair-Compliant

1 aml28.csv 3 804 https://github.com/milaan9/Clustering-Datasets/blob/master/02.%20Synthetic/aml28.arff N Y Y

2 atom.csv 4 800 https://cran.r-project.org/web/packages/FCPS/index.html 10.1016/j.dib.2020.105501 Y Y

3 bezdekIris.csv 5 150 https://archive.ics.uci.edu/dataset/53/iris 10.24432/C56C76 Y Y

4 blobs.csv 3 300 Data generated using Python package ’sklearn’ (sklearn.datasets.samples_generator) N Y Y

5 cassini.csv 3 1000 Data generated using R package ’mlbench’ 10.1198/106186005X59243 Y Y

6 compound.csv 3 399 https://cs.joensuu.fi/sipu/datasets/Compound.txt 10.1109/T-C.1971.223083 Y Y

7 curves1.csv 3 1000 https://github.com/milaan9/Clustering-Datasets/blob/master/02.%20Synthetic/curves1.csv N Y Y

8 gaussian500.csv 3 3000 generated two Gaussian clouds (R lang) N Y Y

9 glass.csv 11 214 http://odds.cs.stonybrook.edu/glass-data/ 10.1145/2830544.2830549 Y Y

10 hepta.csv 4 212 https://cran.r-project.org/web/packages/FCPS/index.html 10.1002/9780470316801 Y Y

11 longsquare.csv 3 900 https://github.com/milaan9/Clustering-Datasets/blob/master/02.%20Synthetic/longsquare.arff 10.1145/1276958.1277126 Y Y

12 lsun.csv 3 400 https://github.com/milaan9/Clustering-Datasets/blob/master/02.%20Synthetic/lsun.arff N Y Y

13 pearl.csv 3 266 https://github.com/milaan9/Clustering-Datasets/blob/master/02.%20Synthetic/pmf.arff N Y Y

14 pmf.csv 4 649 https://github.com/milaan9/Clustering-Datasets/blob/master/02.%20Synthetic/pmf.arff N Y Y

15 shapes.csv 3 1000 Data generated using R package ’mlbench’ N Y Y

16 size1.csv 3 1000 https://github.com/milaan9/Clustering-Datasets/blob/master/02.%20Synthetic/sizes1.arff 10.1109/cec.2005.1554742 Y Y

17 size2.csv 3 1000 https://github.com/milaan9/Clustering-Datasets/blob/master/02.%20Synthetic/sizes2.arff 10.1109/cec.2005.1554742 Y Y

18 spherical_5_2.csv 3 250 https://github.com/milaan9/Clustering-Datasets/blob/master/02.%20Synthetic/spherical_5_2.arff 10.1016/s0031-3203(01)00108-x Y Y

19 square2.csv 3 1000 https://github.com/milaan9/Clustering-Datasets/blob/master/02.%20Synthetic/square2.arff N Y Y

20 synthetic_control.csv 62 600 https://zenodo.org/record/4566804 N Y Y

21 tetra.csv 4 400 https://cran.r-project.org/web/packages/FCPS/index.html 10.1016/j.dib.2020.105501 Y Y

22 tetragonula_bee.csv 16 236 https://cran.r-project.org/web/packages/FCPS/index.html 10.1016/j.dib.2020.105501 Y Y

23 ThreeMC.csv 3 400 https://rdrr.io/github/mrc-ide/threemc/src/R/data.R 10.48550/arXiv.2108.09142 Y Y

24 triangle1.csv 3 1000 https://github.com/milaan9/Clustering-Datasets/blob/master/02.%20Synthetic/triangle1.arff N Y Y

25 vehicle.csv 19 846 https://archive.ics.uci.edu/ml/datasets/Statlog+%28Vehicle+Silhouettes%29 10.24432/C5HG6N Y Y

26 veronica.csv 586 206 https://ifcs.boku.ac.at/repository/data/veronica/index.html 10.1600/0363644042451071 Y Y

27 zelnik3.csv 3 266 https://github.com/milaan9/Clustering-Datasets/blob/master/02.%20Synthetic/zelink3.mat N Y Y

172

Appendix C

This section of the appendix describes the steps involved in Fiedler Vector

Decomposition (FVD) for an unweighted graph. Fiedler Vector Decomposi-

tion is a fundamental technique in graph theory utilised to partition graphs

into distinct clusters.

Step 1:

Consider the unweighted graph below:

12

3 4

5 6

C.1 Example of an unweighted graph

173

Chapter 7: Conclusions

The corresponding adjacency matrix A is shown below:

A =



0 1 1 0 0 0

1 0 1 0 0 0

1 1 0 1 0 0

0 0 1 0 1 1

0 0 0 1 0 1

0 0 0 1 1 0


Step 2:

The Laplacian matrix is a fundamental concept in graph theory, offering

valuable insights into a graph’s connectivity and structure. It is constructed

from the adjacency matrix and is a tool for analysing various graph proper-

ties. Specifically, the Laplacian matrix is obtained by subtracting the adja-

cency matrix from the degree matrix, thereby providing a means to examine

the graph’s connectivity and relationships between its nodes.

To calculate the Laplacian matrix L, we first compute the degree matrix Z,

which represents the degree (number of edges connected to a node) of

each node along the diagonal:

Z =



2 0 0 0 0 0

0 2 0 0 0 0

0 0 3 0 0 0

0 0 0 3 0 0

0 0 0 0 2 0

0 0 0 0 0 2


Then, we subtract the adjacencymatrixA from the degreematrixZ to obtain

the Laplacian matrix L:

L = Z −A

174

Chapter 7: Conclusions

L =



2 −1 −1 0 0 0

−1 2 −1 0 0 0

−1 −1 3 −1 0 0

0 0 −1 3 −1 −1

0 0 0 −1 2 −1

0 0 0 −1 −1 2


Step 3:

The calculated eigenvalues of L sorted in ascending, order are:

−0.586,−0.169,−0.169, 0.000, 0.169, 0.755 .

The second smallest eigenvalue, the Fiedler value, is crucial for graph

partitioning. The corresponding eigenvector, called the Fiedler vector, pro-

vides information about the optimal partitioning of the graph into two groups.

In this example, the Fiedler value is −0.169, and its corresponding eigen-

vector represents the optimal partitioning of the graph. Vertices with nega-

tive values in the Fiedler vector are assigned to one group, while vertices

with positive values are assigned to the other group. Based on the Fiedler

vector, the graph is partitioned into two groups as follows:

1

−0.586

2

−0.169

3

−0.169

4

0.000

5

0.169

6

0.755

175

Bibliography

[1] mygreatlearning, “An introduction to hill climbing algorithm,” 2023,

accessed March 07, 2023. [Online]. Available: https://www.

mygreatlearning.com/blog/an-introduction-to-hill-climbing-algorithm/

[2] M. Charrad, N. Ghazzali, V. Boiteau, and A. Niknafs, “Determining the

number of clusters using nbclust package,” MSDM, vol. 2014, p. 1,

2014.

[3] A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern

recognition letters, vol. 31, no. 8, pp. 651–666, 2010.

[4] C. C. Aggarwal, S. Y. Philip, J. Han, and J. Wang, “A framework for

clustering evolving data streams,” in Proceedings 2003 VLDB confer-

ence. Elsevier, 2003, pp. 81–92.

[5] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: A review,”

ACM computing surveys (CSUR), vol. 31, no. 3, pp. 264–323, 1999.

[6] D. Jiang, C. Tang, and A. Zhang, “Cluster analysis for gene expres-

sion data: a survey,” IEEE Transactions on knowledge and data en-

gineering, vol. 16, no. 11, pp. 1370–1386, 2004.

[7] X. Z. Fern and C. E. Brodley, “Solving cluster ensemble problems

by bipartite graph partitioning,” Proceedings of the 21st international

conference on Machine learning, p. 36, 2004.

176

[8] L. Rokach and O. Maimon, “Clustering methods,” in Data mining and

knowledge discovery handbook. Springer, 2005, pp. 321–352.

[9] C. Lin, C. Chen, H. Lee, and J. Liao, “Expert Systems with

Applications Fast K-means algorithm based on a level histogram for

image retrieval,” Expert Systems With Applications, vol. 41, no. 7,

pp. 3276–3283, 2014. [Online]. Available: http://dx.doi.org/10.1016/

j.eswa.2013.11.017

[10] A. Topchy, A. K. Jain, and W. Punch, “Clustering ensembles: Mod-

els of consensus and weak partitions,” IEEE transactions on pattern

analysis and machine intelligence, vol. 27, no. 12, pp. 1866–1881,

2005.

[11] A. A. Odebode, Q. Ye, S. Sampalli, and S. Dey, “Kd1: A sampling-

based clustering scheme for large data sets,” in 2018 IEEE In-

ternational Conference on Internet of Things (iThings) and IEEE

Green Computing and Communications (GreenCom) and IEEE Cy-

ber, Physical and Social Computing (CPSCom) and IEEE Smart Data

(SmartData). IEEE, 2018, pp. 822–827.

[12] S. Ayed, M. Arzoky, S. Swift, S. Counsell, and A. Tucker, “An ex-

ploratory study of the inputs for ensemble clustering technique as a

subset selection problem,” in Proceedings of SAI Intelligent Systems

Conference. Springer, 2018, pp. 1041–1055.

[13] A. Swift, H. Huang, and P. Green, “Consensus and stability in large

networks,” Physical Review E, vol. 69, no. 6, p. 065102, 2004.

[14] J. R. Sampson, “Adaptation in natural and artificial systems,” 1976.

[15] M. Mitchell, An introduction to genetic algorithms. MIT press, 1998.

177

[16] A. Odebode, A. Tucker, M. Arzoky, and S. Swift, “Estimating the op-

timal number of clusters from subsets of ensembles,” Proceedings of

the 11th International Conference on Data Science, Technology and

Applications, 2022.

[17] C. Fraley and A. E. Raftery, “How many clusters? which clustering

method? answers via model-based cluster analysis,” The computer

journal, vol. 41, no. 8, pp. 578–588, 1998.

[18] S. Swift, A. Tucker, J. Crampton, and D. Garway-Heath, “An improved

restricted growth function genetic algorithm for the consensus clus-

tering of retinal nerve fibre data,” in Proceedings of the 9th annual

conference on Genetic and evolutionary computation. ACM, 2007,

pp. 2174–2181.

[19] R. C. Dubes, “How many clusters are best?-an experiment,” Pattern

Recognition, vol. 20, no. 6, pp. 645–663, 1987.

[20] C. Hennig, “What are the true clusters?” Pattern Recognition Letters,

vol. 64, pp. 53–62, 2015.

[21] R. Xu and D. Wunsch, “Survey of clustering algorithms,” IEEE Trans-

actions on neural networks, vol. 16, no. 3, pp. 645–678, 2005.

[22] C. M. Koch, S. F. Chiu, M. Akbarpour, A. Bharat, K. M. Ridge, E. T.

Bartom, and D. R. Winter, “A beginner’s guide to analysis of rna se-

quencing data,” American journal of respiratory cell and molecular

biology, vol. 59, no. 2, pp. 145–157, 2018.

[23] M. A. Ginos, G. P. Page, B. S. Michalowicz, K. J. Patel, S. E. Volker,

S. E. Pambuccian, F. G. Ondrey, G. L. Adams, and P. M. Gaffney,

“Identification of a gene expression signature associated with recur-

rent disease in squamous cell carcinoma of the head and neck,” Can-

cer research, vol. 64, no. 1, pp. 55–63, 2004.

178

[24] H. Ng, S. Ong, K. Foong, P. Goh, and W. Nowinski, “Medical image

segmentation using k-means clustering and improved watershed al-

gorithm,” in 2006 IEEESouthwest Symposium on Image Analysis and

Interpretation. IEEE, 2006, pp. 61–65.

[25] M. Arzoky, “Munch: an efficient modularisation strategy on sequential

source code check-ins,” Ph.D. dissertation, Brunel University London,

2015.

[26] M. Saeed, O. Maqbool, H. A. Babri, S. Z. Hassan, and S. M. Sar-

war, “Software clustering techniques and the use of combined al-

gorithm,” in Seventh European Conference onSoftware Maintenance

and Reengineering, 2003. Proceedings. IEEE, 2003, pp. 301–306.

[27] M. Harman, S. Swift, and K. Mahdavi, “An empirical study of the ro-

bustness of two module clustering fitness functions,” in Proceedings

of the 7th annual conference on Genetic and evolutionary computa-

tion, 2005, pp. 1029–1036.

[28] B. M. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Recommender

systems for large-scale e-commerce: Scalable neighborhood forma-

tion using clustering,” in Proceedings of the fifth international con-

ference on computer and information technology, vol. 1, 2002, pp.

291–324.

[29] Z. Cui, X. Xu, X. Fei, X. Cai, Y. Cao, W. Zhang, and J. Chen, “Person-

alized recommendation system based on collaborative filtering for iot

scenarios,” IEEE Transactions on Services Computing, vol. 13, no. 4,

pp. 685–695, 2020.

179

[30] H. Sun, Z. Liu, and L. Kong, “A document clustering method based

on hierarchical algorithm with model clustering,” in 22nd International

Conference on Advanced Information Networking and Applications-

Workshops (aina workshops 2008). IEEE, 2008, pp. 1229–1233.

[31] A. Huang et al., “Similarity measures for text document clustering,”

in Proceedings of the sixth new zealand computer science research

student conference (NZCSRSC2008), Christchurch, New Zealand,

vol. 4, 2008, pp. 9–56.

[32] J. Lv, Z. Kang, X. Lu, and Z. Xu, “Pseudo-supervised deep sub-

space clustering,” IEEE Transactions on Image Processing, vol. 30,

pp. 5252–5263, 2021.

[33] J. Li, H. Izakian, W. Pedrycz, and I. Jamal, “Clustering-based

anomaly detection inmultivariate time series data,” Applied Soft Com-

puting, vol. 100, p. 106919, 2021.

[34] A. Saxena, M. Prasad, A. Gupta, N. Bharill, O. P. Patel, A. Tiwari,

M. J. Er, W. Ding, and C.-T. Lin, “A review of clustering techniques

and developments,” Neurocomputing, vol. 267, pp. 664–681, 2017.

[35] D. P. Huttenlocher, G. A. Klanderman, and W. J. Rucklidge, “Com-

paring images using the hausdorff distance,” IEEE Transactions on

pattern analysis andmachine intelligence, vol. 15, no. 9, pp. 850–863,

1993.

[36] M. Dubuisson and A. K. Jain, “Amodified hausdorff distance for object

matching,” in Proceedings of 12th international conference on pattern

recognition, vol. 1. IEEE, 1994, pp. 566–568.

180

[37] T. Oates, L. Firoiu, and P. R. Cohen, “Using dynamic time warping to

bootstrap hmm-based clustering of time series,” in Sequence Learn-

ing: Paradigms, Algorithms, and Applications. Springer, 2001, pp.

35–52.

[38] R. N. Aufmann, V. C. Barker, and R. D. Nation, College trigonometry.

Cengage Learning, 2007.

[39] F. Szabo, The linear algebra survival guide: illustrated with Mathe-

matica. Academic Press, 2015.

[40] M. Norouzi, D. J. Fleet, and R. R. Salakhutdinov, “Hamming distance

metric learning,” Advances in neural information processing systems,

vol. 25, 2012.

[41] I. Cohen, Y. Huang, J. Chen, J. Benesty, J. Benesty, J. Chen,

Y. Huang, and I. Cohen, “Pearson correlation coefficient,” Noise re-

duction in speech processing, pp. 1–4, 2009.

[42] S. Santini and R. Jain, “Similarity measures,” IEEE Transactions on

pattern analysis andmachine Intelligence, vol. 21, no. 9, pp. 871–883,

1999.

[43] G. J. Székely, M. L. Rizzo, and N. K. Bakirov, “Measuring and testing

dependence by correlation of distances,” The Annals of Statistics, vol.

35, No 6, 2769-2794, 2007.

[44] G. J. Székely and M. L. Rizzo, “The distance correlation t-test of in-

dependence in high dimension,” Journal of Multivariate Analysis, vol.

117, pp. 193–213, 2013.

181

[45] J. Macqueen, “Some methods for classification and analysis of mul-

tivariate observations,” Proceedings of the Fifth Berkeley Sympo-

sium on Mathematical Statistics and Probability, vol. 1, no. 233, pp.

281–297, 1967.

[46] S. Lloyd, “Least squares quantization in pcm,” IEEE transactions on

information theory, vol. 28, no. 2, pp. 129–137, 1982.

[47] J. MacQuuen, “Some methods for classification and analysis of mul-

tivariate observation,” in Proceedings of the 5th Berkley Symposium

on Mathematical Statistics and Probability, 1967, pp. 281–297.

[48] J. A. Hartigan, M. A. Wong et al., “A k-means clustering algorithm,”

Applied statistics, vol. 28, no. 1, pp. 100–108, 1979.

[49] L. Morissette and S. Chartier, “The k-means clustering technique:

General considerations and implementation in mathematica,” Tuto-

rials in Quantitative Methods for Psychology, vol. 9, no. 1, pp. 15–24,

2013.

[50] L. Rdusseeun and P. Kaufman, “Clustering by means of medoids,”

in Proceedings of the statistical data analysis based on the L1 norm

conference, neuchatel, switzerland, vol. 31, 1987.

[51] P. Berkhin, “Survey of clustering data mining techniques, 2002,” Ac-

crue Software: San Jose, CA, 2004.

[52] M. Van der Laan, K. Pollard, and J. Bryan, “A new partitioning around

medoids algorithm,” Journal of Statistical Computation and Simula-

tion, vol. 73, no. 8, pp. 575–584, 2003.

[53] D. Pelleg, A. W. Moore et al., “X-means: Extending k-means with

efficient estimation of the number of clusters.” in Icml, vol. 1, 2000,

pp. 727–734.

182

[54] A. A. Neath and J. E. Cavanaugh, “The bayesian information criterion:

background, derivation, and applications,”Wiley Interdisciplinary Re-

views: Computational Statistics, vol. 4, no. 2, pp. 199–203, 2012.

[55] L. Kaufman, P. K. Hopke, and P. J. Rousseeuw, Using a parallel com-

puter system for statistical resampling methods. Technische Univer-

siteit Delft, 1987.

[56] L. Kaufman and P. J. Rousseeuw, “Partitioning around medoids (pro-

gram pam),” Finding groups in data: an introduction to cluster analy-

sis, vol. 344, pp. 68–125, 1990.

[57] E. H. Ruspini, J. C. Bezdek, and J. M. Keller, “Fuzzy clustering: A

historical perspective,” IEEE Computational Intelligence Magazine,

vol. 14, no. 1, pp. 45–55, 2019.

[58] J. Nayak, B. Naik, and H. Behera, “Fuzzy c-means (fcm) clustering

algorithm: a decade review from 2000 to 2014,” in Computational In-

telligence in Data Mining-Volume 2: Proceedings of the International

Conference on CIDM, 20-21 December 2014. Springer, 2015, pp.

133–149.

[59] S. Kotsiantis and P. Pintelas, “Recent advances in clustering: A brief

survey,” WSEAS Transactions on Information Science and Applica-

tions, vol. 1, no. 1, pp. 73–81, 2004.

[60] T. Zhang, R. Ramakrishnan, and M. Livny, “Birch: an efficient data

clustering method for very large databases,” ACM sigmod record,

vol. 25, no. 2, pp. 103–114, 1996.

[61] S. Guha, R. Rastogi, and K. Shim, “Cure: An efficient clustering al-

gorithm for large databases,” ACM Sigmod record, vol. 27, no. 2, pp.

73–84, 1998.

183

[62] G. Karypis, E.-H. Han, and V. Kumar, “Chameleon: Hierarchical clus-

tering using dynamic modeling,” Computer, vol. 32, no. 8, pp. 68–75,

1999.

[63] J. Han, J. Pei, and H. Tong, Data mining: concepts and techniques.

Morgan kaufmann, 2022.

[64] E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu, “Dbscan

revisited, revisited: why and how you should (still) use dbscan,” ACM

Transactions on Database Systems (TODS), vol. 42, no. 3, pp. 1–21,

2017.

[65] K. Pötzelberger and H. Strasser, “Data compression by unsupervised

classification,” Department of Statistics, Vienna University of Eco-

nomics and Business, 1997.

[66] M. Charrad, N. Ghazzali, V. Boiteau, and A. Niknafs, “Nbclust: an

r package for determining the relevant number of clusters in a data

set,” Journal of statistical software, vol. 61, pp. 1–36, 2014.

[67] S. Theodoridis, A. Pikrakis, K. Koutroumbas, and D. Cavouras, Intro-

duction to pattern recognition: a matlab approach. Academic Press,

2010.

[68] O. Arbelaitz, I. Gurrutxaga, J. Muguerza, J. M. Pérez, and I. Perona,

“An extensive comparative study of cluster validity indices,” Pattern

recognition, vol. 46, no. 1, pp. 243–256, 2013.

[69] J. C. Dunn, “A fuzzy relative of the isodata process and its use in

detecting compact well-separated clusters,” Journal of Cybernetics,

1973.

184

[70] D. L. Davies and D. W. Bouldin, “A cluster separation measure,”

IEEE transactions on pattern analysis and machine intelligence, pp.

224–227, 1979.

[71] T. Calinski, “A dendrite method for cluster analysis,” in Biometrics,

vol. 24. International Biometric Society 1441 I ST, NW, Suite 700,

Washington, DC 20005-2210, 1968, p. 207.

[72] M. Halkidi, M. Vazirgiannis, and Y. Batistakis, “Quality scheme as-

sessment in the clustering process,” in PKDD, vol. 1910. Citeseer,

2000, pp. 265–276.

[73] M. Halkidi, “On Clustering Validation Techniques - Springer,”

pp. 107–145, 2001. [Online]. Available: https://link.springer.

com/content/pdf/10.1023{\%}2FA{\%}3A1012801612483.pdfhttp:

//link.springer.com/article/10.1023/A:1012801612483

[74] R. Tibshirani, G. Walther, and T. Hastie, “Estimating the number of

clusters in a data set via the gap statistic,” Journal of the Royal Sta-

tistical Society: Series B (Statistical Methodology), vol. 63, no. 2, pp.

411–423, 2001.

[75] T. Caliński and J. Harabasz, “A dendrite method for cluster analysis,”

Communications in Statistics-theory and Methods, vol. 3, no. 1, pp.

1–27, 1974.

[76] W. S. Sarle, “Sas technical report a-108, cubic clustering criterion,”

Cary, NC: SAS Institute Inc, p. 56, 1983.

[77] P. Duda and E. Hart, “Pattern classification and scene analysis,” John

Wiley, New York, NY, 1973.

185

[78] W. J. Krzanowski and Y. Lai, “A criterion for determining the number

of groups in a data set using sum-of-squares clustering,” Biometrics,

pp. 23–34, 1988.

[79] A. Dudek, “Cluster quality indexes for symbolic classification—an ex-

amination,” in Advances in Data Analysis: Proceedings of the 30th

Annual Conference of the Gesellschaft für Klassifikation eV, Freie

Universität Berlin, March 8–10, 2006. Springer, 2007, pp. 31–38.

[80] P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation

and validation of cluster analysis,” Journal of computational and ap-

plied mathematics, vol. 20, pp. 53–65, 1987.

[81] J. A. Hartigan, Clustering algorithms. JohnWiley & Sons, Inc., 1975.

[82] L. J. Hubert and J. R. Levin, “A general statistical framework for as-

sessing categorical clustering in free recall.” Psychological bulletin,

vol. 83, no. 6, p. 1072, 1976.

[83] D. Ratkowsky and G. Lance, “Criterion for determining the number of

groups in a classification,” Australian Computer Journal, 1978.

[84] A. J. Scott and M. J. Symons, “Clustering methods based on likeli-

hood ratio criteria,” Biometrics, pp. 387–397, 1971.

[85] F. H. C. Marriott, “Practical problems in a method of cluster analysis,”

Biometrics, pp. 501–514, 1971.

[86] G. H. Ball and D. J. Hall, “Isodata, a novel method of data analysis and

pattern classification,” Stanford research inst Menlo Park CA, Tech.

Rep., 1965.

[87] G. W. Milligan and M. C. Cooper, “An examination of procedures for

determining the number of clusters in a data set,” Psychometrika,

vol. 50, pp. 159–179, 1985.

186

[88] H. P. Friedman and J. Rubin, “On some invariant criteria for grouping

data,” Journal of the American Statistical Association, vol. 62, no. 320,

pp. 1159–1178, 1967.

[89] E. Beale, “Cluster analysis scientific control system,” 1969.

[90] L. E. Perez Perez, “Análisis de estabilidad de convertidores de se-

gundo orden con la metodología de optimización de suma de poli-

nomios cuadráticos,” Transaction on Energy Systems and Applica-

tions, 2020.

[91] F. J. Rohlf, “Methods of comparing classifications,” Annual Review of

Ecology and Systematics, vol. 5, no. 1, pp. 101–113, 1974.

[92] J. O. McClain and V. R. Rao, “Clustisz: A program to test for the qual-

ity of clustering of a set of objects,” Journal of Marketing Research,

pp. 456–460, 1975.

[93] L. Lebart, A. Morineau, and M. Piron, “Statistique exploratoire multi-

dimensionnelle, dunod, paris, france,” 2000.

[94] L. Hubert and P. Arabie, “Comparing partitions,” Journal of classifica-

tion, vol. 2, no. 1, pp. 193–218, 1985.

[95] H. Alqurashi and K. Barker, “Clustering ensemble algorithm based on

k-medoids optimization,” Computers, Materials & Continua, vol. 58,

no. 3, pp. 849–863, 2019.

[96] A. Strehl and J. Ghosh, “Cluster ensembles—a knowledge reuse

framework for combining multiple partitions,” Journal of machine

learning research, vol. 3, no. Dec, pp. 583–617, 2002.

[97] T. Li and C. Ding, “Solving consensus problems in cluster ensembles

by argmax transformation,” Computer Vision and Image Understand-

ing, vol. 106, no. 2-3, pp. 162–175, 2007.

187

[98] M. Meila and J. Shi, “Comparing clusterings—an information based

distance,” Journal of multivariate analysis, vol. 98, no. 5, pp. 873–895,

2007.

[99] J. Ghosh and A. Acharya, “Cluster ensembles,”Wiley interdisciplinary

reviews: Data mining and knowledge discovery, vol. 1, no. 4, pp.

305–315, 2011.

[100] X. Zhang and L. Wu, “Ensemble clustering in bioinformatics,” Brief-

ings in bioinformatics, vol. 19, no. 2, pp. 298–314, 2018.

[101] Y. Huang and D. Zhang, “Image segmentation using local variation

and global similarity optimization,” Pattern Recognition, vol. 44, no.

10-11, pp. 2502–2511, 2011.

[102] X. Sevillano, G. Cobo, F. Alías, and J. C. Socoró, “Feature diversity

in cluster ensembles for robust document clustering,” in Proceedings

of the 29th annual international ACM SIGIR conference on Research

and development in information retrieval, 2006, pp. 697–698.

[103] B. J. Frey and D. Dueck, “Clustering by Passing Messages

Between Data Points,” Science, vol. 315, no. 5814, pp. 972–976,

feb 2007. [Online]. Available: http://www.sciencemag.org/cgi/doi/10.

1126/science.1136800

[104] M. Meilă, “Comparing clusterings—an information based distance,”

Journal of multivariate analysis, vol. 98, no. 5, pp. 873–895, 2007.

[105] J. Cohen, “Weighted kappa: nominal scale agreement provision for

scaled disagreement or partial credit.” Psychological bulletin, vol. 70,

no. 4, p. 213, 1968.

188

[106] A. J. Viera and J. M. Garrett, “Understanding interobserver agree-

ment: the kappa statistic,” Family Medicine, vol. 37, no. 5, pp.

360–363, 2005.

[107] J. Li, S. Swift, and X. Liu, “The effect of cooling functions on ensem-

ble clustering using simulated annealing,” Intelligent Data Analysis,

vol. 14, no. 6, pp. 701–730, 2010.

[108] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction

to algorithms. MIT press, 2022.

[109] T. M. Mitchell, “Machine learning,” 1997.

[110] M. Kubat and J. Kubat, An introduction to machine learning.

Springer, 2017, vol. 2.

[111] J. Bergstra and Y. Bengio, “Random search for hyper-parameter

optimization,” Journal of Machine Learning Research, vol. 13, pp.

281–305, 2012.

[112] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian opti-

mization of machine learning algorithms,” Advances in neural infor-

mation processing systems, vol. 25, 2012.

[113] J. H. Holland, Adaptation in Natural and Artificial Systems. University

of Michigan Press, 1975.

[114] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduc-

tion. MIT press, 2018.

[115] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas,

“Taking the human out of the loop: A review of bayesian optimization,”

Proceedings of the IEEE, vol. 104, no. 1, pp. 148–175, 2016.

189

[116] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.

Bellemare, ..., and D. Hassabis, “Human-level control through deep

reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533,

2015.

[117] J. Nievergelt, “Exhaustive search, combinatorial optimization and

enumeration: Exploring the potential of raw computing power,” in Sof-

sem. Springer, 2000, pp. 18–35.

[118] S. Edelkamp and S. Schrodl, Heuristic search: theory and applica-

tions. Elsevier, 2011.

[119] S. J. Russell, Artificial intelligence a modern approach. Pearson

Education, Inc., 2010.

[120] C. Tillmann and H. Ney, “Word reordering and a dynamic program-

ming beam search algorithm for statistical machine translation,” Com-

putational linguistics, vol. 29, no. 1, pp. 97–133, 2003.

[121] R. E. Korf, “Depth-first iterative-deepening: An optimal admissible

tree search,” Artificial intelligence, vol. 27, no. 1, pp. 97–109, 1985.

[122] L. Kallel, B. Naudts, and C. R. Reeves, “Properties of fitness functions

and search landscapes,” Theoretical aspects of evolutionary comput-

ing, pp. 175–206, 2001.

[123] S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vecchi, “Optimization by

simulated annealing,” science, vol. 220, no. 4598, pp. 671–680, 1983.

[124] L. Ingber, “Very fast simulated re-annealing,”Mathematical and com-

puter modelling, vol. 12, no. 8, pp. 967–973, 1989.

190

[125] S. Bandyopadhyay, S. Saha, U. Maulik, and K. Deb, “A simu-

lated annealing-basedmultiobjective optimization algorithm: Amosa,”

IEEE transactions on evolutionary computation, vol. 12, no. 3, pp.

269–283, 2008.

[126] J. Cho and Y.-D. Kim, “A simulated annealing algorithm for resource

constrained project scheduling problems,” Journal of the Operational

Research Society, vol. 48, no. 7, pp. 736–744, 1997.

[127] A. Lambora, K. Gupta, and K. Chopra, “Genetic algorithm-a literature

review,” in 2019 international conference on machine learning, big

data, cloud and parallel computing (COMITCon). IEEE, 2019, pp.

380–384.

[128] H. John, “Adaptation in natural and artificial systems,” Ann Arbor,

1975.

[129] J. H. Holland, “Genetic algorithms,” Scientific american, vol. 267,

no. 1, pp. 66–73, 1992.

[130] L. Davis, Handbook of Genetic Algorithms. Santa Fe Institute, USA,

1991.

[131] D. E. Goldberg, Genetic algorithms. pearson education India, 2013.

[132] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Pro-

ceedings of ICNN’95-international conference on neural networks,

vol. 4. IEEE, 1995, pp. 1942–1948.

[133] X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made faster,”

IEEE Transactions on Evolutionary computation, vol. 3, no. 2, pp.

82–102, 1999.

[134] H.-G. Beyer and H.-P. Schwefel, “Evolution strategies–a comprehen-

sive introduction,” Natural computing, vol. 1, pp. 3–52, 2002.

191

[135] P. Larrañaga and J. A. Lozano, Estimation of distribution algorithms:

A new tool for evolutionary computation. Springer Science & Busi-

ness Media, 2001, vol. 2.

[136] M. Arzoky, S. Swift, A. Tucker, and J. Cain, “A seeded search for the

modularisation of sequential software versions.” J. Object Technol.,

vol. 11, no. 2, pp. 6–1, 2012.

[137] D. Dua and C. Graff, UCI Machine Learning Repository. University

of California, Irvine, 2017. [Online]. Available: http://archive.ics.uci.

edu/ml

[138] P. J. Anjula, “K-means, k-mediods clustering on uci seed

dataset,” https://www.kaggle.com/code/praanj/k-means-k-mediods-

clustering-on-uci-seed-dataset, 2022, accessed: 2020-09-30.

[139] K. Charles, “Statlib - datasets archive, carnegie mellon university,”

1989, accessed: 2019-09-30. [Online]. Available: http://lib.stat.cmu.

edu/datasets/

[140] R. Hyndman, “Time series library,” 2021, accessed: 2021-09-30.

[Online]. Available: https://datamarket.com/data/list/?q=provider:tsdl

[141] P. Fränti and S. Sieranoja, “K-means properties on six clustering

benchmark datasets,” pp. 4743–4759, 2018. [Online]. Available:

http://cs.uef.fi/sipu/datasets/

[142] S. Rayana, “ODDS library,” 2016. [Online]. Available: http:

//odds.cs.stonybrook.edu

192

[143] L. Ding, T. J. Ley, D. E. Larson, C. A. Miller, D. C. Koboldt, J. S.Welch,

J. K. Ritchey, M. A. Young, T. Lamprecht, M. D. McLellan et al.,

“Clonal evolution in relapsed acute myeloid leukaemia revealed by

whole-genome sequencing,”Nature, vol. 481, no. 7382, pp. 506–510,

2012.

[144] A. Ultsch, “Strategies for an artificial life system to cluster high dimen-

sional data,” in The Logic of Artificial Life: Abstracting and Synthesiz-

ing the Principles of Living Systems: Proceedings of the 6th German

Workshop on Artificial Life, 2004.

[145] Ultsch, “Maps for the visualization of high-dimensional data spaces,”

in Proc. Workshop on Self organizing Maps, 2003, pp. 225–230.

[146] M. C. Thrun and A. Ultsch, “Swarm intelligence for self-organized

clustering,” Artificial Intelligence, vol. 290, p. 103237, 2021.

[147] A. Ultsch, “Self-organizing neural networks for visualisation and clas-

sification,” in Information and classification. Springer, 1993, pp.

307–313.

[148] C. Hennig and B. Hausdorf, “Prabclus: functions for clustering

and testing of presence-absence, abundance and multilocus genetic

data,” 2020.

[149] I. W. Evett and J. S. Ernest, “Rule induction in forensic science. cen-

tral research establishment. home office forensic science service. al-

dermaston,” Reading, Berkshire RG7 4PN, 1987.

[150] N. Matake, T. Hiroyasu, M. Miki, and T. Senda, “Multiobjective clus-

tering with automatic k-determination for large-scale data,” in Pro-

ceedings of the 9th annual conference on Genetic and evolutionary

computation, 2007, pp. 861–868.

193

[151] R. W. Doran, “The gray code.” Journal of Universal Computer Sci-

ence., vol. 13, no. 11, pp. 1573–1597, 2007.

[152] R. E. Kass and L. Wasserman, “A reference bayesian test for nested

hypotheses and its relationship to the schwarz criterion,” Journal of

the american statistical association, vol. 90, no. 431, pp. 928–934,

1995.

[153] G. Hamerly and C. Elkan, “Learning the k in k-means,” Advances in

neural information processing systems, vol. 16, 2003.

[154] S. Dudoit and J. Fridlyand, “A prediction-based resampling method

for estimating the number of clusters in a dataset,” Genome biology,

vol. 3, no. 7, pp. research0036–1, 2002.

[155] C. A. Sugar and G. M. James, “Finding the number of clusters in a

dataset: An information-theoretic approach,” Journal of the American

Statistical Association, vol. 98, no. 463, pp. 750–763, 2003.

[156] R. Calinski and G. Harabasz, “A dendrite method for cluster analysis,”

Communications in Statistics, pp. 1–27, 1974.

[157] G. W. Milligan, “A monte carlo study of thirty internal criterion

measures for cluster analysis,” Psychometrika, vol. 46, no. 2, pp.

187–199, 1981.

[158] J. Kent, J. Bibby, and K. Mardia, “Multivariate analysis (probability

and mathematical statistics),” 2006.

[159] W. R. Inc., “Mathematica, Version 13.3,” champaign, IL, 2023.

[Online]. Available: https://www.wolfram.com/mathematica

194

[160] N. Arica and F. T. Yarman-Vural, “An overview of character recogni-

tion focused on off-line handwriting,” IEEE Transactions on Systems,

Man, and Cybernetics, Part C (Applications and Reviews), vol. 31,

no. 2, pp. 216–233, 2001.

[161] D. J. Higham, G. Kalna, andM. Kibble, “Spectral clustering and its use

in bioinformatics,” Journal of computational and applied mathematics,

vol. 204, no. 1, pp. 25–37, 2007.

[162] G. Vishnuvarthanan, M. P. Rajasekaran, P. Subbaraj, and A. Vish-

nuvarthanan, “An unsupervised learning method with a clustering

approach for tumor identification and tissue segmentation in mag-

netic resonance brain images,” Applied Soft Computing, vol. 38, pp.

190–212, 2016.

[163] Y. Zhang and Y. Zhao, “Automated clustering algorithms for classifi-

cation of astronomical objects,” Astronomy & Astrophysics, vol. 422,

no. 3, pp. 1113–1121, 2004.

[164] S. Vega-Pons and J. Ruiz-Shulcloper, “A survey of clustering ensem-

ble algorithms,” International Journal of Pattern Recognition and Ar-

tificial Intelligence, vol. 25, no. 03, pp. 337–372, 2011.

[165] D. Bertsimas and J. Tsitsiklis, “Simulated annealing,” Statistical sci-

ence, vol. 8, no. 1, pp. 10–15, 1993.

[166] H. G. Ayad and M. S. Kamel, “Cumulative voting consensus method

for partitions with variable number of clusters,” IEEE transactions on

pattern analysis andmachine intelligence, vol. 30, no. 1, pp. 160–173,

2007.

[167] D. B. West et al., Introduction to graph theory. Prentice hall Upper

Saddle River, 2001, vol. 2.

195

[168] L. W. Beineke, R. J. Wilson, P. J. Cameron et al., Topics in algebraic

graph theory. Cambridge University Press, 2004, vol. 102.

[169] M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak mathe-

matical journal, vol. 23, no. 2, pp. 298–305, 1973.

[170] Fiedler, “A property of eigenvectors of nonnegative symmetric matri-

ces and its application to graph theory,” Czechoslovak mathematical

journal, vol. 25, no. 4, pp. 619–633, 1975.

[171] R. J. Wilson, Introduction to graph theory. Pearson Education India,

1979.

[172] M. Wang, C. Wang, J. X. Yu, and J. Zhang, “Community detection in

social networks: an in-depth benchmarking study with a procedure-

oriented framework,” Proceedings of the VLDB Endowment, vol. 8,

no. 10, pp. 998–1009, 2015.

[173] M. A. Porter, J.-P. Onnela, P. J. Mucha et al., “Communities in net-

works,” Notices of the AMS, vol. 56, no. 9, pp. 1082–1097, 2009.

[174] L. Suresh, J. B. Simha, and R. Velur, “Seeding cluster centers of k-

means clustering through median projection,” in 2010 International

Conference on Complex, Intelligent and Software Intensive Systems.

IEEE, 2010, pp. 217–222.

[175] M. Arzoky, S. Swift, A. Tucker, and J. Cain, “Munch: An efficient

modularisation strategy to assess the degree of refactoring on se-

quential source code checkings,” in 2011 IEEE Fourth International

Conference on Software Testing, Verification and Validation Work-

shops. IEEE, 2011, pp. 422–429.

196

[176] W. E. Arnoldi, “The principle of minimized iterations in the solution

of the matrix eigenvalue problem,” Quarterly of applied mathematics,

vol. 9, no. 1, pp. 17–29, 1951.

[177] J. Liesen and Z. Strakos, Krylov subspace methods: principles and

analysis. Oxford University Press, 2013.

[178] R. A. Horn and C. R. Johnson,Matrix analysis. Cambridge university

press, 2012.

[179] R. Poli, “Analysis of the publications on the applications of particle

swarm optimisation,” Journal of Artificial Evolution and Applications,

vol. 2008, pp. 1–10, 2008.

[180] F. Glover, “Tabu search—part i,” ORSA Journal on computing, vol. 1,

no. 3, pp. 190–206, 1989.

[181] H. R. Lourenço, O. C. Martin, and T. Stützle, Iterated local search.

Springer, 2003.

197

