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Abstract
The role of cybersecurity in cyber‐physical power systems (CPPS) is reviewed, focusing
on the applications of dynamic state estimation (DSE) techniques. These DSE techniques
are particularly relevant with the integration of phasor measurement units (PMUs) and
advanced communication infrastructure. A comprehensive review on DSE techniques
and applications to efficiently protect CPPS against cyberattacks is classified into three
cyber resilience phases including prevention, detection, and mitigation. The DSE tech-
niques in the prevention phase are surveyed to improve the observability of the CPPS by
the robust design of the Kalman filter and optimal protection of PMUs. The DSE
techniques in the detection phase are surveyed to improve the adaptability of CPPS in
various attack detection scenerios and optimise the detection accuracy. The DSE tech-
niques in the mitigation phase are surveyed to enhance the flexibility of CPPS resource
utilisation with compensation‐based, isolation‐based, and scheduling‐based strategies.
Finally, the benefits and limitations of each DSE technique are summarised with potential
suggestions on research directions for enhancing the cyber resilience of CPPS.
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1 | INTRODUCTION

Climate change is driving the energy transition from fossil fuel‐
based energy sources to renewable and low‐carbon alternatives
[1]. Wind and solar energy, renowned for their zero carbon
emissions, are the most popular renewable energy sources.
However, the integration of renewable energy sources into the
power grid presents significant technical challenges due to their
intermittent nature and inherent uncertainties [2, 3]. Power
grids are seeking to maximise renewable energy integration to
significantly reduce their carbon footprint. In this context,
there are growing power grid requirements to enhance the
power quality, meet the increasing energy demand, and adhere
to environmental regulations. However, conventional ap-
proaches of power system operation cannot manage the
significantly increased complexity in renewable energy inte-
grated power systems.

Cyber‐physical power system (CPPS) integrates advanced
monitoring systems, area networks, bi‐directional communi-
cation, and intelligent control technologies to facilitate
renewable energy integration. CPPS provides a comprehensive
framework that enables consumers to engage in bi‐directional
interaction, promoting active involvement in ancillary power
system services. This framework contributes to the advance-
ment of CPPSs, benefiting all stakeholders involved [4].
Broadly, CPPS introduces a new cyber dimension to the
traditional power system that intelligently integrates the digi-
talisation technologies of the entire energy supply chain. Unlike
traditional power systems which rely on a one‐way centralised
supply model [5], CPPS utilises a bi‐directional flow model,
including both physical and cyber dimensions. The physical
dimension includes infrastructure such as power plants
and networks, meanwhile the cyber dimension manages in-
formation exchange, processing and security across the entire
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cyber‐physical system. For example, within the CPPS, the new
power and information flows from renewable energy to end‐
users are not only monitored but also controlled more effec-
tively, thereby maximising the reliability, efficiency, and uti-
lisation of renewable energy in the power systems.

However, the integration of information and communica-
tions technologies (ICTs) in CPPS also introduces new
cybersecurity challenges [6]. The lack of cybersecurity consid-
erations in traditional power systems lead to new cybersecurity
vulnerabilities, especially when the CPPS is integrated with
cyber infrastructure. The traditionally designed security
framework based on physical power systems cannot provide
sufficient protection against cyberattacks in the cyber dimen-
sion [7].

The energy sector experienced numerous cybersecurity
incidents which have been observed in recent years. In the
recent year of 2023, there were several reports highlighting
those incidents with significant impacts. In April 2023, the
Lazarus group exploited a vulnerability known as “Xtrader” to
successfully attack two key infrastructures [8]. In May 2023, an
organisation named Clop exploited a zero‐day vulnerability in
the Progress Software's MOVEit platform. Notably, energy
organisations such as Schneider Electric and Siemens Energy
were both affected by the cyber vulnerability in MOVEit [9]. In
May 2023, Mandiant discovered a new malware designed to
specifically target industrial control systems. The malware was
specifically designed to cause power system outages by tar-
geting certain devices, such as remote terminal units (RTUs).
In June 2023, Suncor, a leading Canadian oil corporation,
encountered a nationwide cyberattack on their gas stations
[10]. As a result, customers had to use cash as the only payment
method with significant economic implications. In August
2023, the website of BAZAN Group, largest refinery operator
in Israel, experienced widespread inaccessibility across their
global regions [11]. The cyber incident was launched by a
denial‐of‐service (DoS) attack targeting the company's network
infrastructure, rendering the service inaccessible to users.

Cyber resilience to cope with these cyberattack incidents
against CPPS has become a popular research direction. Given
the growing threat of cyberattacks [12, 13], cyber resilience has
recently been defined as the ability of a system to limit the
impact, duration, and degradation caused by cyberattack events
[14]. Based on the response to attack events, this review paper
proposes a cyber resilience framework into three phases as
shown in Figure 1. The three cyber resilience phases are
classified as prevention, detection, and mitigation. These three
phases are classified in chronological order, and the design of
each phase has its significant features. If an overall system is
considered, each phase is also designed to contribute to the
next phase with the relationships shown in Figure 1. The
prevention phase refers to techniques taken to prevent in-
cidents from occurring and to minimise the attack impact.
Specifically, for the dynamic state estimation (DSE) techniques
in the prevention phase, this paper surveys the observability
improvements by DSE techniques, which can ensure physical
system observability, metres protection and placement, and
enhance the robustness of state estimation to deal with specific

types of cyberattack. The detection phase refers to the iden-
tification techniques of any anomaly attack. To realise this goal,
a designed Intrusion Detection System (IDS) continuously
monitors the CPPS for any anomalous activity. Detection
techniques are mainly classified into two types: model‐based
and data‐driven. Data‐driven techniques are mainly based on
machine learning, which are independent of the CPPS physical
model and utilise the historical data of the observed CPPS for
state prediction and classification [15]. Specifically, for the DSE
techniques in the detection phase, this paper surveys adapt-
ability improvements by DSE techniques, which can enhance
the adaptive dynamics and various types of cyberattacks, pro-
vide fast response, and balance between false alarm rate and
cost. The mitigation phase reduces the impact of security in-
cidents. Specifically, for the DSE techniques in the mitigation
phase, this paper surveys the flexibility improvements on the
mitigation strategies including compensation‐based, isolation‐
based, and scheduling‐based methods. For example, certain
measurements of an attacked system may be isolated or
modified to prevent the attack from impacting DSE accuracy.
In the cyber dimension, the impact of a DoS attack was
compensated by reallocating bandwidth [16] or changing
communication channels [17]. In the physical dimension,
strategies such as load redistribution may be taken to maintain
system stability, and system control inputs may be modified to
counter the impact of attack signals [18].

Power system state estimation (PSSE) is an algorithm
employed for data processing in order to transform redundant
metre readings and other accessible information into an esti-
mation of the power system state variables [19]. The primary
aim of PSSE is to provide a precise and continuous repre-
sentation of the system state using real‐time data from various
measurement devices, including current transformers, voltage
transformers, and power metering devices [20]. Data collection
may be inaccurate due to errors in measurement devices,
communication errors, or other cyber contingencies. PSSE can
provide a consistent description of the system state based on
all available measurement data. PSSE can detect inconsistent
measurement data, and in some cases, not all components in a

F I GURE 1 The classification of cyber resilience phases.
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system have accurate measurement devices. PSSE can provide
estimates for components that do not have direct measurement
devices. However, the accuracy of PSSE is highly dependent on
data redundancy [21]. With continuous and accurate knowl-
edge of system state, operators can better assess system per-
formance and ensure safe and reliable operation of the CPPS.
Through continuous research and development, PSSE tech-
niques have been significantly improved with enhanced
robustness and effectiveness in addressing measurement
redundancy and bad data, ensuring reliability and accuracy for
decision making and system control.

Traditionally, the static state estimation (SSE) is used to
analyse and determine the state of a system at a specific
operating condition. This includes the evaluation of variables
such as voltage magnitude and phase angle at each node, as
well as the assessment of power flow [22, 23]. The assumption
is made that the topology of the system remains unchangeable
between two continuous observations. This method is mainly
used to deal with power systems under steady‐state operating
conditions. Commonly used SSE algorithms include least
squares and weighted least squares (WLS). SSE provides
important information for power system optimisation, safety
monitoring and fault diagnosis.

In contrast to SSE, DSE emphasises the temporal evo-
lution and dynamic behaviours of the system state. In CPPS,
this includes dynamic changes in voltage, frequency, and
phase angle, as well as dynamic processes such as generator
rotor speed and load fluctuation. The DSE
techniques commonly employ dynamic filtering algorithms,
such as the Kalman filter (KF). These algorithms are capable
of effectively estimating power systems that experience rapid
state changes and transient conditions. DSE is crucial in
power system dynamic analysis, stability control, and fault
protection in the renewable energy integrated CPPS. For
example, the integration of distributed energy resources
(DERs) in the power generation, the complexity of demand,
and the adoption of novel demand response technologies
such as electric vehicles and Internet of Things (IoT) devices
have increased the unpredictability of fluctuations in both
demand and generation. The methods employed by the
traditional SSE are inadequate in capturing the inherent
uncertainty associated with dynamic characteristics in the
CPPS operation. This is limited by the slow scanning speed
of supervisory control and data acquisition (SCADA) sys-
tems and the lack of time‐stamped data, raising concerns
about the validity of the steady‐state assumption [24]. The
utilisation of measurements and communication in-
frastructures in the CPPS enables DSE techniques as a viable
alternative to SSE, effectively capturing the system dynamic
behaviours.

Much of the DSE techniques and their applications have
been elaborated in the previous literature. Experiments on the
single‐machine infinite bus power system demonstrated that
the observer approach outperformed cubature Kalman filter
(CKF) in the estimation of attack vectors and attacked state
vectors, with low computational complexity and guaranteed
convergence [24]. In [21], the authors described the

requirements of DSE in distribution systems. In particular, the
potential applications of DSE in the data and feeder models,
and different types of DSE methods were described. In [25],
the authors focused on the comparison of various
performance indicators of DSE and SSE methods such as
computational burden and numerical stability. In [26], the au-
thors provided a detailed categorisation of DSE and SSE
methods for distribution system applications, and pointed out
that DSE required high precision measurements and imposed a
large computational burden. In [27], the authors compared
different extended Kalman filter (EKF) and unscented Kalman
filter (UKF) methods, and focused on the modelling of flexible
alternating current (AC) transmission system devices and their
impacts on DSE. In [28], the authors described the advantages
of the DSE methods in solving the power system control and
protection challenges, and pointed out potential directions of
DSE applications. In [29], a feedback linearisation method was
used to linearise the wide‐area control system communication,
and an error correction equation for DSE was derived. In
general, the main focus of DSE technologies was on the
development of error correction methods for protecting the
cyber dimension and improving the security with certain
computational complexity.

Based on the previous literature, the methods and mathe-
matical principles related to various DSE technologies and
their potential applications to the CPPS are surveyed. The
main contributions of this review work are as follows:

1. This review investigates the cybersecurity challenges and
compares the DSE and SSE technologies in dealing with
cyber‐attack scenarios. DSE is demonstrated to perform
better in handling complex attack events.

2. The existing DSE techniques with special emphasis on KF‐
based and observer‐based methods are investigated. DSE
techniques are summarised with methods, characteristics,
effectiveness, evaluation metrics and application scenarios.

3. Cyber resilience phases are classified into prevention,
detection, and mitigation, providing a comprehensive
analysis of the strengths and challenges for each DSE
technique in three phases.

4. This review suggests potential directions for further
research on DSE techniques with data‐based and model‐
based methods. Proactive prevention and detection tech-
niques are recommended to enable the dynamic change of
the system without affecting its stability.

2 | GENERAL SCHEME OF DSE

The KF and the observer are two prominent algorithms uti-
lised for the purpose of DSE. The KF is based on the principle
of minimum variance estimation, where it integrates pre-
dictions from physical models with sensor measurements.
Observers are constructed by utilising sensor measurements
obtained from a physical system, typically in accordance with
the Luenberger criterion. Both methodologies can be
employed for the purpose of estimating the condition of a

ZHOU ET AL. - 3

 25152947, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/stg2.12168 by B

runel U
niversity, W

iley O
nline L

ibrary on [14/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



dynamic system and yielding feedback signals for the purpose
of control.

2.1 | Kalman filter

The state estimation technique known as WLS is widely used in
SSE and has been extensively employed in the field of cyber‐
attack detection. In references [30, 31], the relationship was
presented between the measurement vector z ∈ Rm from the
SCADA system and the state vector x ∈ Rn, which includes the
magnitudes and phase angles of nodal voltages in an N‐bus
power system using an AC power flow model, yielding
n = 2N − 1<m

z¼ hðxÞ þ e ð1Þ

where h(⋅):Rn→Rm is a vector‐valued nonlinear mapping
function; e ∈ Rm is denoted as the measurement error vector
which is modelled as a normally distributed random variable
with a mean of zero and a covariance matrix R ∈ Rm � m. The
quasi‐static model applies when system operational points
evolve gradually and smoothly with instantaneous control ac-
tions, thereby making the transient response negligible [32].
The state estimation process is conducted by optimising the
WLS criterion, yielding the equation:

x̂ ¼ argmin
x
½z − hðxÞ�TR−1½z − hðxÞ� ð2Þ

The state vector can be solved by the Gauss‐Newton
iterative algorithm:

xkþ1 ¼ xk þ Δxk; k¼ 1; 2;… ð3Þ

Δxk ¼ h xk
� �T

R−1h xk
� �� �−1

h xk
� �T

R−1 z − h xk
� �� �

ð4Þ

where h is the Jacobian matrix. The algorithm is deemed to
have converged when the norm of Δxk falls below a pre-
determined threshold. Subsequent to the estimation phase, the
presence of anomalous data is determined using a Euclidean
norm detector, which assesses the validity of the ensuing
inequality as follows:

∥r ∥¼∥z − h x^
� �

∥ ≥ τ; ð5Þ

where τ is a detection threshold of the Euclidean norm
detector.

The premise is based on a quasi‐steady model used for linear
SSE. However, actual power systems are dynamically changing
due to the stochastic nature of demand and supply variations.
Consequently, SSE techniques fall short in reflecting such
dynamism. To address this, the static approach necessitates re‐
assessment and enhancement through the integration of

dynamicmonitoring instruments [33]. Reference [33] proposed a
comprehensive state space model tailored for state estimation,
which was the following:

xk ¼ f xk−1; ukð Þ þ wk; zk ¼ h xk; ukð Þ þ vk; ð6Þ

where xk ∈ Rn is denoted as the vector of system states, which
includes internal states such as dynamics of generators and
loads; uk represents the system input vector; zk is the vector of
measurements, which includes a series of data points from
pseudo‐measurements and measures algebraic variables to real
and reactive power injections, flows, and current phasors. The
incorporation of pseudo‐measurements is essential for the
state estimation of networks that are not fully observable [34].
h is the nonlinear measurement function; vk is the measure-
ment error. The wk and vk are usually assumed to be normally
distributed with zero mean and covariance matrices of Qk and
Rk, respectively. However, it should be noted that wk and
vk aggregate various noise and error sources including sensor
measurement inaccuracy, communication channel distortion
and model limitation, and might not conform to a Gaussian
distribution in real‐world scenarios [35].

The core of the UKF utilises a deterministic sampling
method which is referred to as the unscented transform, where
sigma points are carefully selected as a finite collection of
representative points. These sigma points are specifically cho-
sen to match the mean and covariance of the prior state dis-
tribution such as Gaussian statistics. These sigma points are
then propagated through the nonlinear functions f and h.
Leveraging the structure of the KF, this process derives the
estimation for the posterior state statistics, specifically focusing
on the mean and covariance of the state estimates. Specifically,
given the state estimate at time step k − 1 with mean
x̂k−1∣k−1∈R and covariance matrix Pxx

k−1∣k−1, 2n weighted sigma
points are generated [36, 37] as follows:

χj
k−1∣k−1 ¼ x̂ k−1∣k−1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nPxx

k−1∣k−1

q� �

j; χ
jþn
k−1∣k−1

¼ x̂k−1∣k−1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nPxx

k−1∣k−1

q� �

j;

ð7Þ

where j = 1,…,n.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nPxx

k−1∣k−1

q� �

j represents the jth column vector of the

associated matrix. These sigma points are propagated through f
to generate the transformed sigma points:

χj
k∣k−1 ¼ f χj

k−1∣k−1

� �
: ð8Þ

Then, the predicted state vector x̂k∣k−1 and its covariance
matrix are approximated by the weighted sample mean and
sample covariance matrix of the transformed sigma points,
respectively as follows:

x̂k∣k−1 ¼
X2n

j¼1
wjχ

j
k∣k−1; ð9Þ
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Pxx
k∣k−1 ¼

X2n

j¼1
wj χj

k∣k−1 − x̂ k∣k−1

� �
χj
k∣k−1 − x̂ k∣k−1

� �T
þQk

ð10Þ

where the weight is 1/2n. Subsequently, the sigma points are
updated to capture the information of the system process
noise:

χj
k∣k−1 ¼ x̂k∣k−1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nPxx

k∣k−1

q� �

j; ð11Þ

χj
k∣k−1 ¼ x̂k∣k−1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nPxx

k∣k−1

q� �

j; ð12Þ

The predicted measurement vector is given by the
following:

ẑk∣k−1 ¼
X2n

j¼1
wjh χj

k∣k¼1

� �
; ð13Þ

with its associated error covariance matrix as follows:

Pzz
k∣k−1 ¼

X2n

j¼1
wj zjk∣k−1 − ẑ k∣k−1

� �
zjk∣k−1 − ẑk∣k−1

� �T
þ Rk

ð14Þ

2.2 | Observer

An Observer is a system‐theoretic construct for the state
estimation of a system that is not directly measurable from its
outputs. The main purpose is to reconstruct the internal state
of a system from known system models and input and output
data. The observer uses a mathematical model of the system to
process the input and output signals and generate an estimate
of the system's internal state. This process attempts to mini-
mise estimation errors introduced by model errors and mea-
surement noise [38‐40].

For a general state space equation as the following:

_xðtÞ ¼ AxðtÞ þ BuðtÞ þDdðtÞ yðtÞ ¼ CxðtÞ ð15Þ

where A is the state matrix, B in the input matrix, C is the
output matrix, and D is the disturbance or unknown input (UI)
matrix, x is the state vector, u is the input vector, and d is
disturbance or UI vector, an observer can be built as follows:

_zðtÞ ¼NzðtÞ þGuðtÞ þQyðtÞ x̂ðtÞ ¼ zðtÞ − HyðtÞ; ð16Þ

where z is the state vector of designed unknown input observer
(UIO) and x̂ is the estimated state of the original system. The
matrix F, T, G,N need to be designed for the UIO to track the
state of the system and eliminate the state estimation error. In

this way, the state estimation error tends to be 0 in the pres-
ence of UI as follows:

xðtÞ − x̂ðtÞ ¼ exðtÞ→ 0 ð17Þ

The derivation of the state estimation error is

_exðtÞ ¼ A − HCA − Q1Cð ÞexðtÞ þ ðG − ðI − HCÞBÞuðtÞ
þ Q2 − A − HCA − Q1Cð Þð ÞyðtÞ
þ N − A − HCA − Q1Cð Þð ÞzðtÞ þ ðHC − IÞDdðtÞ

ð18Þ

For the realisation and accuracy of the proposed UIO, that
is, if exðtÞ must converge to zero,

_exðtÞ ¼ A − HCA − Q1Cð ÞexðtÞ ð19Þ

The following conditions must be satisfied

H ¼ ðCDÞ−1D G¼ B − HCB N
¼ A − HCA − Q1C Q2 ¼NH

ð20Þ

Q¼Q1 þQ2:

If a system is not observable, it's impossible to construct
an asymptotic observer. So, the sufficient condition for the
existence of a UIO are given as

� rank(CD) = rank(D),
� (C,C*) is detectable, where C∗ ¼ A − D ðCDÞT

�

CDÞ−1
ðCDÞTCA.

Most observers make no assumptions about the statistical
distribution of the process and measurement model, and as-
sume with the certain presence of UIs and sensor noise. This is
due to the fact that deterministic observers perform well for all
types of noise distributions. However, most observers are
based on a time‐invariant system setup and are sensitive to
model errors when the model parameters are uncertain.

3 | DSE TECHNIQUES IN
PREVENTION

3.1 | Generalised maximum likelihood
iterative extended Kalman filter

In ref. [41], a fusion of the generalised maximum likelihood
(GM) approach with an iterative extended Kalman filter
(IEKF) was demonstrated. The IEKF further improved upon
EKF by iteratively linearising the non‐linear dynamics around
the current estimate, which could provide better estimation
accuracy. The goal of the GM approach is to find the
parameter values that maximise the likelihood of the observed
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data, according to the given model. The method exhibits
greater robustness to system process noise compared to UKF
when dealing with state estimation of nonlinear systems.
Generalised maximum likelihood iterative extended Kalman
filter (GM‐IEKF) can be used for centralised DSE as well as
decentralised DSE, but decentralised DSE imposes an un-
known communication bandwidth burden and adds a greater
computational burden compared to UKF and EKF. The main
drawback is that the GM‐IEKF produces unreliable system
state estimates with strong nonlinearity and is susceptible to
system parameter errors and structural noise, therefore, GM‐
IEKF requires significant measurement redundancy. The
computational burden resulted in nearly doubling the
computation time when comparing with the experiment in
[41]. For instance, EKF took 3.94 ms, while GM‐IEKF took
5.96 ms.

3.2 | Constrained robust unscented Kalman
filter

The existing centralised DSE techniques did not normally
consider the important inequality constraints related to reactive
power, voltage regulators, and governors, while implicit con-
straints existed but were not enforced in decentralised DSE. In
ref. [37], a framework of constrained robust UKF considered
equality and inequality constraints was proposed. Algebraic
equality constraints were treated as pseudo‐measurements,
while inequality constraints were managed through a projection
operator. This approach mapped unconstrained estimates to
the boundaries of an admissible region, defined by the estab-
lished lower and upper limits of the state variables and inputs.
The method improved the state estimation accuracy and
robustness to measurement errors. Since this constrained
robust UKF approach did not consider multiscale system dy-
namics, it could only guarantee the validity of short‐term
transient states and was not suitable for long‐term stability
analysis. Moreover, this approach could not distinguish be-
tween measurement errors resulting from malicious attacks and
those arising from incorrect constraints. When considering the
computational burden, UKF took 0.28 ms and the constrained
robust UKF took 0.81 ms for the same scenario.

3.3 | S‐robust extended Kalman filter

The S‐based EKF exhibited better resilience in terms of
breakdown points when comparing with both the Huber M‐
estimator and GM‐estimator [42]. The breakdown point rep-
resented the threshold proportion of outlier data that an esti-
mator could handle before yielding unreliable results. The
advantage of the S‐estimator was its consistent high break-
down point, regardless of an increase in system size, making it
particularly beneficial for large scale power systems with a
growing number of phasor measurement units (PMUs). In
contrast, the GM‐estimator demonstrated a reduction in

breakdown points, as the number of state dimensions and the
estimated parameters were increased. When handling errors,
the S‐estimator employed a strategy of downweighting values
with substantial errors and then utilised the remaining clean
values for WLS. The method was robust to randomly occur-
ring topological errors and Gaussian noise.

3.4 | Robust cubature Kalman filter

Reference [43] introduced a robust cubature Kalman filter
(RCKF) method for the DSE of generators under cyberattacks.
Given the memoryless nature of DoS attacks, which were
captured by the Bernoulli process, the corresponding distri-
bution was employed to model the packet loss resulting from
these attacks. The RCKF adjusted erroneous data by inte-
grating robust M‐estimation theory with the conventional CKF
framework, and adopted a refined measurement error covari-
ance matrix during the measurement update, which diverged
from the standard practice of utilising the constant variance
matrix. This approach enabled the RCKF to dynamically adapt
the measurement noise statistics online, and the RCKF could
maintain accurate state estimation results even in the presence
of measurement error. Numerical experiments showed that the
impact of the error on the false data injection (FDI) was
relatively modest compared to the CKF, but the error on the
DoS was significantly reduced and the computational time only
increased slightly, which was suitable for real‐time state esti-
mation within the acceptable practical limits.

3.5 | Graph‐theory based sensor recovery

The single time scale distributed estimation method addressed
system dynamics and distributed estimation simultaneously
within the same time framework [44]. This technique inte-
grated the processes of achieving consensus and exchanging
measurements into a single event, eliminating the numerous
iterations of consensus at each stage of dynamic evaluation, as
opposed to the dual‐time‐scale strategy. By streamlining these
processes, the single time‐scale model enhanced the speed of
tracking system changes and reduced the load on communi-
cation networks. Overall, numerical‐based approaches could
become very complex and time‐consuming when sensors in
large‐scale systems fail and lose observability. This observ-
ability could be restored by adding new sensors to the network
and utilising a graph‐theoretic approach, which could quickly
and efficiently provide solutions for large‐scale systems.

3.6 | Phasor measurement unit placement
for outage prevention

In ref. [45], the focus of defensive strategies shifted from
exclusively countering attacks to enhancing system resilience,
specifically through minimising disruptions and optimising the
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placement of PMUs, thereby safeguarding existing sensor
networks. The PMU placement for outage prevention (PPOP)
issue was formulated as a tri‐level nonlinear optimisation
challenge within the framework of the direct current (DC) flow
model. This was subsequently transformed into a bi‐level
mixed integer linear programming problem. To address this,
an innovative alternating optimisation approach was employed,
which incorporated constraints, and two novel algorithms were
developed to facilitate constraint generation. The optimisation
structure was divided into three hierarchical levels, wherein the
intermediate level was strategically designed to prevent the
attacker from causing line overloads through load redistribu-
tion, while ensuring such activities remain undetected. Such
overloads, if successful, led to line voltage drop. The lower
level dealt with security‐constrained economic dispatch to
ensure efficient and secured energy delivery. The upper level
was concerned with the challenge of PMU placement. A PMU
placement solution designed to prevent overload‐induced trips
in the most critical scenarios could also prevent such trips
under normal operational conditions, provided that the load
remained within the anticipated boundaries.

3.7 | Semi‐definite programming
convexification

The aim of FDI is to strategically design a vector that ma-
nipulates sensor measurement, leading to the inaccuracies in
state estimation. The complexity of these attacks results from
the integration of continuous and discrete non‐linear compo-
nents, which can be attributed to the non‐linear measurement
model of AC and the fundamental constraints. The nonline-
arity of equality power‐flow constraints also makes the co‐
existence of multiple states and spurious solutions possible.
The presence of nonlinearity allows multiple coexisting states
and solutions, facilitating sparse FDI in AC settings. In order
to tackle AC‐constrained FDI challenges, a novel con-
vexification approach utilising semi‐definite programming
(SDP) was proposed, aiming to achieve the approximation of
global optimal state [46]. With the SDP approach it was
possible to assign an attackable region to arbitrary measure-
ments and topologies, which made this method extendable to
different grid and convex optimisation problems. The study
represented the preliminary investigation of AC power grids
vulnerability to FDI. It emphasised the complex and compu-
tationally intensive nature of these nonconvex problems, while
also recognised the challenge of executing such attacks without
significantly modifying measurement data. The study made an
example for SDP convexification, modified the penalty func-
tion to reduce the error introduced by convexification, and
obtained an approximated global optimal solution. The results
revealed the state estimation mechanism of AC grids and
informed the design of new bad data detection (BDD) systems
for FDI. In addition, a defence method was proposed to
prevent the FDI attack by placing secure measurement in the
attackable region.

3.8 | Summary of prevention techniques

The prevention techniques primarily focus on the observability
of DSE performance in processing the measurement data. As
summarised in Table 1, extensive research has been conducted
for the robust design of KFs, and there are many statistical
methods to optimise the filtering performance in the presence
of potential cyber‐attack data. Since the accuracy of the DSE is
mainly affected by measurements and system models, the
prevention approach focuses on how to improve observability
and provide reliable data under cyber‐attacks. The observability
of the CPPS provides the necessary conditions for the sub-
sequent cyber resilience phases of detection and mitigation.
The FDI attack can modify the measurements to compromise
the DSE. However, most research work assumed that the
cyber‐attackers had access to the complete system topology
information, that is, the Jacobi matrix [36]. In this way, FDI
attacks can be designed to hide from BDD with normal
detection residuals. In reality, the attackers do not possess the
real‐time knowledge of the various system components.
Moreover, the injected false data may appear to be suspicious
to the system operator if the attack vector reaches certain
threshold values. Therefore, the attacker's capabilities (i.e., the
attack intensity) are often bounded when considering the
performance and robustness of the existing DSE techniques.

The DSE techniques in the prevention phase are divided
into two parts. The first part is to improve the observability of
the CPPS with strategic PMU placement and protection of
measurement metres. Metre protection and placement can
improve the observability of the system with significant costs
saving. Therefore, convex optimisation methods are used to
solve the trade‐off between system observability and mea-
surement costs. In Table 1, the pros and cons of DSE tech-
niques are surveyed with application scenarios for each
reference. 3.5 provided a graph‐theory method to add new
sensors to ensure the observability of large‐scale systems. This
method reduced the computational burden when comparing
traditional methods in tracking dynamics. 3.6 presented an
optimisation framework for the PMU placement problem for
large‐scale nonlinear systems, taking into account power dis-
tribution constraints. 3.7 investigated the design of attack
vectors from the attacker's point of view and derived the
attackable region for arbitrary measurements and topology
systems, which inspired the design of BDDs and improved the
observability. In the second part of DSE techniques in pro-
cessing the attacked measurements, there are certain statistical
methods applied to the KF to improve the performance. The
GM‐IEKF, provided in 3.1, was used for processing mea-
surements in nonlinear system and applicable to centralised
DSE. 3.2 similarly improved the state estimation in the pres-
ence of measurement errors by adding physical constraints, but
this method was not applicable to large‐scale systems or having
limitation in distinguishing between attacks and measurement
errors. 3.3 and 3.4, on the other hand, were applicable to large‐
scale systems of DSE and focused on the robustness to to-
pology errors and errors introduced by DoS, respectively.
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From Table 1, the KF‐based DSE technique still has certain
shortcomings: 1. It has limited performance in systems with
strong nonlinearities; 2. It does not rely on linearisation
methods, which imposes an excessive computational burden
and complexity; 3. It is accurate in assumed Gaussian noises,
and further research is needed to deal with the uncertainties of
real noises; and 4. It lacks of robustness to the errors caused by
the changes in the system parameters, whereas the actual po-
wer systems also encounter topology changes.

For the DSE techniques in the prevention phase of cyber
resilience, the following research directions are suggested:
firstly, the DSE techniques are needed for more accurate state
tracking using less measurement redundancy in CPPS models,
which is the development of more sophisticated modelling
methods to estimate the real system dynamics. Secondly, the
process of measurement noise should also be improved, and

new statistical methods and filter designs should be explored
to improve the reliability of the data. In addition, in response
to the evolving feature of cyber‐attack, it is also crucial to
investigate more robust defence mechanisms, which should
not only enhance the system's ability to prevent known attack
patterns, but also enhance its ability to resist unknown or
mutated cyber‐attacks. Meanwhile, the design and application
of distributed and centralised DSE techniques are also one of
the focuses of future research. The trade‐off between
complexity and accuracy will be a major challenge, and future
research work needs to find the balance in real‐time opera-
tion with accuracy. Finally, the robustness of the DSE tech-
niques requires to be improved, which may require the
development of new adaptive algorithms that allow the state
estimator to maintain stable operation in a system changing
environment.

TABLE 1 Summary of DSE prevention techniques.

Technique Ref. Pros Cons Application scenario

GM‐IEKF [41] 1. Resilience against observation noise and
Gaussian and non‐Gaussian system
process noise

1. Limited state estimation performance
under strong nonlinearity

Centralised and
decentralised DSE

2. Performable after minor topological
changes

2. Diffuse with increasing error between
actual measurement and predicted state.

3. Dependent on redundancy measurements.

Constrained robust UKF [37] 1. Estimate without linearising 1. The selection of sigma points is
deterministic, which may lead to unstable
values.

1. Adaptive relay protection

2. High performance under strong nonlinear
systems

2. Motor prediction control

3. High accuracy under observation noise 2. Short‐term validity 3. Decentralised DSE in small
scale CPPS

4. Detect bad data and erroneous constraints

S‐robust EKF [42] 1. High breakdown point in the high
dimension system

1. High computational burden and
inaccuracy.

Track generators' phase angle
and rotor speed in large‐
scale CPPS

2. Robust to system topology errors 2. Need large numbers of PMUs to provide
data in real time.

3. High accuracy of estimation when noise is
Gaussian distributed

3. Effective only for Gaussian noise

Robust Cubature Kalman
Filter

[43] 1. Advanced performance compared to CKF The estimation performance severely
degraded under certain attacks that
RCKF cannot handle.

DSE of generators in large‐scale
CPPS

2. Adjust measurement noise online to
eliminate data errors caused by DoS
and FDI

Sensor Recovery [44] Quickly track system dynamics while
reducing the communication burden

Increase the cost and complexity of the
system

Single time scale distributed
estimation in large‐scale
CPPS

PMU placement [45] 1. Prevent outage by allowing the presence
of undetectable attacks

1. Lack of robustness to faults in the PMU
and measurement errors caused by FDIs

Extended DC power flow
model in large‐scale CPPS

2. Robustness to load redistribution attacks
in AC models

2. Long convergence time in a large‐scale
CPPS

SDP convexification [46] 1. Results used to redesign the BDD
programme

1. Simplified conditions to real CPPS Arbitrary measurement and
topology

2. Derive performance bounds of stealthy
and sparse FDI

2. Not cover all types of nonconvexity

Abbreviations: CKF, cubature Kalman filter; DSE, dynamic state estimation; RCKF, robust cubature Kalman filter.
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4 | DSE TECHNIQUES IN DETECTION

4.1 | Prioritised‐experience‐replay based
deep reinforcement learning detection

The research challenges in SSE mainly focused on how to
predict the system state and used current state data to figure
out the probability that a cyberattack would happen. Therefore,
the effectiveness of SSE was limited in the analysis of system
dynamics under attacks [47]. Compared to SSE, DSE can
utilise advanced deep reinforcement learning (DRL) methods
to deal with continuous and variable attack patterns. Further-
more, it should be noted that the impact of an attack was
limited to a small portion of the overall operational state of the
grid. The probability of encountering compromised states was
relatively low. This factor posed a challenge to the effectiveness
of previous detection methods based on reinforcement
learning [48]. The utilisation of prioritised experience replay
improved the probability of learning in the context of attack
scenarios. In order to enhance the accuracy of detection, a
DSE methodology was developed to identify FDI attacks by
adopting a viewpoint of attackers. This approach involved
employing a model that was based on a partially observable
Markov decision process (POMDP). The detection method
presented in reference [49] introduced the utilisation of DRL
to detect system compromises. This DSE approach involved
the use of a long short‐term memory (LSTM) network to
analyse state from previous time steps in order to identify
current compromises in the system. The detection scheme
defended against FDI attacks without obtaining the adversary's
strategy in advance, which had a false alarm rate of 0% under
either continuous or non‐continuous attacks. However, the
difficulty of detecting discontinuous attacks was higher for
DRL, and the delay error rate was close to 5%.

4.2 | Information filter

The paper [50] investigated the online detection of FDI attacks
and DoS attacks in CPPS. The system was modelled as a
discrete‐time linear dynamic system and a KF was used for
DSE. Generalised accumulation algorithms were used to ach-
ieve the fast detection of cyberattacks. Detectors in both
centralised and distributed setups were proposed. The advan-
tage of the cumulative sum algorithm (CUSUM) was demon-
strated in its robustness to time varying states, multiple types of
attacks, and dynamic system parameters. The CUSUM's ability
in the online estimation of unknown attack variables was
crucial for fast system detection. The CUSUM detected the
known‐topology‐FDI more efficiently than traditional least
squares and BDD methods based on measurement residuals,
providing a faster and more accurate response. It also provided
maximum likelihood estimation (MLE) for unknown attack
variables, which could be used for system state tracking by
replacing the attack value with the estimated optimal value. In a
distributed setup, the local centre could only transmit quantised

messages to the global centre due to bandwidth constraints, so
a novel event‐based sampling scheme called transgressive
sampling with delay was proposed, which had significant ad-
vantages over the traditional isochronous sampling scheme. In
addition, a distributed DSE method based on information
filters was proposed. MLE provided online estimation capa-
bility for unknown attack variables, which was crucial for fast
detection in the CPPS with adaptability in bandwidth‐
constrained situations.

4.3 | Finite‐time secure state estimator

In ref. [51], a type of DSE in finite time was presented to
localise and reconstruct the FDI vector. The proposed DSE
method was based on a set of local finite‐time state estimators
running on a subset of sensors that were designed to estimate
the dynamic state of CPPS affected by UIs. When a cyber‐
attack launched on certain sensors, the local finite‐time esti-
mators using measurements from the attacked sensors might
be corrupted. Therefore, a DSE detection algorithm was
proposed for identifying effective local estimators. The data
obtained from the effective local estimator was subsequently
utilised to facilitate the secure estimation of the system state
and localisation of an injected attack vector. The efficiency of
the proposed approach was validated through the execution of
online software‐in‐the‐loop (SiL) testing on a model of a DC
motor. The simulation and real‐time test results showed that
the algorithm was able to accurately estimate the motor state in
a finite amount of time. The DSE detection algorithm not only
successfully converged to the real state variables within 0.25 s,
but also maintained the estimation error within 0.01 under
20 dB of measurement noise.

4.4 | State forecast

The authors in ref. [52] pointed out that the current offline
defence methods, such as increasing the redundancy of mea-
surements and enhancing the cybersecurity of sensors and
communication channels, were inadequate for dynamically
changing cyber threats and system configuration. Therefore, an
online anomaly detection algorithm was proposed, that iden-
tified FDI in measurements by utilising load forecasts, gener-
ation schedules, and synchronised phase data. An empirical
method was proposed for determining the minimum magni-
tude of an attack as well as a detection threshold that satisfied a
specific false‐positive and true‐positive rate. Through testing
of an IEEE 14‐node power system model, the study observed
that the accuracy of load forecasting had the greatest impact on
the false positive rate (FPR), and the average minimum
magnitude of attacks and detection thresholds were calculated
for each state variable. The constraints of an FPR of 0.01 and a
true positive rate of 0.95 could be satisfied when the minimum
attack magnitude of the state variable affected the line flow
variations from 0.095 to 0.098 p.u.
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4.5 | UIO‐based intrusion detection system

The frequency control system in the standalone microgrid, in
ref. [53], was meant to keep an efficient operation of diesel
plant, solar power plant, and battery bank. From the attacker's
point of view, the study focused on the effects of two FDI
attacks: inserting and multiplying frequency control error
signals. The study proposed a new DSE method that used the
UIO approach from a defensive point of view. In addition, a
strategy was developed for identifying attacks. Within the UIO
system, the attack detection scheme was put into action by
creating an output residual function. Along with this, the
attack was reconfigured by putting together the UIs using the
UIO system's input‐output inversion process. The method
utilised DSE to improve the performance of frequency con-
trol, and the identification of unknown frequency attacks was
enhanced.

4.6 | Kalman filter with delayed
measurements

Under the limitation of PMUs' high installation costs, full
replacement of all existing RTUs with PMUs is impractical.
The mixed measurement of PMU and RTU data to conduct
the state estimation of CPPS is a feasible method to enhance
the performance of DSE. However, the delay due to the data
transmission burden over the communication channel is a
problem that cannot be ignored. In the presence of mea-
surement delay, the traditional chi‐square estimator is less
effective in detecting the stealthy FDI attack, and the existing
techniques cannot distinguish whether the error is caused by
the delay or the attack. The study in ref. [54] designed a DSE
method for a mixture of PMU and RTU data that was robust
to delay. This KF‐based method could detect FDI attacks in
the presence of delayed measurements. The equations for
discrete time systems described the linear dynamic relation-
ship between voltage and active and reactive power mea-
surements. The stochastic delay of the measurements was
described as a Bernoulli process, and the measurements for
delay occurrence were computed using the values from the
last sampling time. The KF gain was derived by minimising
the covariance of the state variable errors. Finally, a new
cardinality detector was designed that utilised the residuals of
the measurements under delay as a detection quantity, which
allowed the identification of the FDI attack with delayed
measurements. The advantage of DSE was demonstrated to
effectively detect FDI attacks by minimising the covariance of
the state variable errors with robustness to delay using mixed
PMU and RTU data.

4.7 | Summary of detection techniques

DSE Detection techniques have evolved to identify more
effectively and counter complex attacks that can occur in the

CPPS as summarised in Table 2. Prioritised‐experience‐replay
method in 4.1 was designed for continuous and various at-
tacks, while CUSUM enhanced the detection for stealthy
FDI. Certain DSE techniques focused specifically on
improving robustness to delay, such as mixing PMU and
RTU data in 4.6, and the design of information filter in 4.2,
which were capable of effectively detecting FDI attacks even
in the presence of delayed measurements. Techniques in 4.2
and 4.3 demonstrated the efficiency of decentralised DSE by
saving communication burden with less data processing re-
quirements. Also, decentralised DSE had more adaptability to
topology change and large‐scale systems, which provided a
higher level of adaptability and responsiveness. Other cen-
tralised DSE techniques, due to the simplicity of the model
and the high consistency of the data, were more feasible for
cyber‐attacks detection. With the assumption that the attacker
had access to all or part of the system parameters, detection
methods have shifted from a single static analysis to a
diversified strategy that included state prediction, as the
cyber‐attacks were designed to be stealthier and more so-
phisticated. The evolution of these detection approaches also
reflected the response to ongoing cybersecurity threats, from
traditional offline defence (e.g., increased redundancy) to
more proactive and intelligent online detection mechanisms
(e.g., machine learning and online anomaly detection
algorithms).

For the future development of DSE detection techniques,
the advanced functionality of detection techniques is required
to include reconstruction for FDI attack vectors. By dis-
tinguishing between attack vectors and UIs, it is possible to
obtain the knowledge of the system and provide guidance for
mitigating the impact of the cyber‐attacks. A comprehensive
detection strategy needs to be proposed, which should be able
to effectively deal with unknown, asynchronous, synchronous
and collaborative cyber‐attacks. The goal of the detection
strategy is to rapidly track, localise, and reconstruct the attack
vectors to achieve an optimal balance between accuracy and
speed of DSE detection techniques, taking into account cost‐
effectiveness. In addition, the detection strategy should sup-
port adaptability in centralised and decentralised architectural
designs, possess a high degree of robustness to measurement
noise and topology parameter variations, and distinguish sys-
tem noise and UIs from actual cyber‐attacks. Meanwhile, a
comprehensive evaluation system needs to be constructed in
order to fully assess the effectiveness of the DSE detection
methods. Finally, passive detection methods need to combine
with proactive detection measures such as moving target
defence (MTD) [55, 56] to enhance the overall CPPS security.

5 | DSE TECHNIQUES IN MITIGATION

5.1 | Optimal filter and Bayesian learning

To mitigate FDI attacks that altered sensor measurements,
the ref. [57] proposed a distributed DSE algorithm based on
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optimal filtering and graph theory. Specifically, the local gain of
the distributed scheme was obtained using optimal filtering
theory, while the neighbourhood gain was determined through
a convex optimisation process and graph theory. Optimal fil-
ters enabled the gains to be obtained from both local and
neighbourhood information, which in turn improved the
accuracy and robustness of the overall grid state estimation.
This approach was particularly suitable for distributed
CPPS because it could efficiently process information from
various parts of the CPPS without relying on a centralised
control centre. The key role of the Bayesian approach was to
obtain the attack parameters when calculating the local gains.
Through the Bayesian learning process, parameters and
probability estimated about the cyber‐attacks were obtained so
that any potential errors could be considered and corrected
during the estimation process. This allowed the PSSE process
to continuously provide accurate state for the operator under
cyber‐attacks. By using the mean square error (MSE) principle,
a distributed DSE algorithm was designed. In addition, the
convergence condition of the method was derived with
convergence time which was almost half of the time than the
method proposed in [58].

5.2 | Joint state and unknown‐input
estimation

The aim of ref. [59] was to design a distributed DSE tech-
nique for simultaneously estimating the state and UIs of
nonlinear systems affected by DoS attacks and random dis-
turbances. A new dynamic event‐triggered (ET) mechanism
aimed at improving resource utilisation was proposed. This
ET mechanism was applied in the proposed DSE to ensure
measurement protection. Compared with existing studies, the
new ET mechanism effectively reduced unnecessary data
transmissions during DoS attacks. This was verified in
simulation experiments, which achieved a 75% reduction in
data transmission compared to traditional methods.

5.3 | Long short‐term memory and
convolutional neural network

The paper [60] discussed the problem of how to
accurately distinguish real data and false data in power systems
integrated with wind power plants. Wind power plants

TABLE 2 Summary of DSE detection techniques.

Technique Ref. Scenario Methods Evaluation metrics

DRL [47] Centralised DSE Prioritised‐
experience‐replay

Detection index: Normalised innovation vector

[48] Attack: Continuous and discontinuous FDI

[49] Effectiveness: Delay error rate 2%–5% and false
alarm rate 0%

Information filter [50] Centralised and decentralised DSE CUSUM Detection index: Measurement residual

Attack: Known and unknown FDI

Random DoS

Effectiveness: Trade‐off between detection delay and
false alarm rate

Finite‐time secure state
estimator

[51] Decentralised DC‐motor model Luenberger observer Detection index: Residual signal

Attack: FDI on state vector

Effectiveness: Detection time 0.25s; attack
reconfiguration

Load forecast [52] IEEE 14 bus power system with
SCADA networks

Online phasor
detection

Detection index: State estimation deviation

Attack: FDI

Effectiveness: FPR 1%

UIO‐based attack vector
reconfiguration

[53] LFC of standalone Microgrid Centralise UIO Detection index: Frequency deviation, state estimation
error

Attack: FDI on frequency measurement

Effectiveness: FPR 0.02%

Attack reconfiguration

KF with delayed measurement [54] Modified chi‐square detection Centralised KF Detection index: MSE, voltage

Attack: Designed FDI

Effectiveness: MSE under threshold

Abbreviations: DRL, deep reinforcement learning; DSE, dynamic state estimation.
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generated real data fluctuations, but false data could also be
injected stealthily as fluctuating data. Therefore, an improved
DSE method based on three‐level false data identification was
proposed. The specific implementation was as follows: the first
level determined whether there was a mutation in the real and
false data by innovation vector; the second level set a threshold to
determine the temporal correlation between real‐time data and
historical data by LSTM; the third level extracted the spatial
correlation features of the data by training the convolutional
neural network (CNN) model, which was constructed from the
historical data to identify the authenticity. This technique could
accurately identify fluctuation data and false data, recognise and
correct false data, overcome the problem of over‐estimation of
the robust state estimation algorithm on the measured data, and
adapt to the fluctuation characteristics of the renewable energy
integrated power system.

5.4 | UIO attack reconfiguration and
optimal economic dispatch

To distinguish the error caused by cyber‐attacks and system
noise, an effective hybrid DSE method was proposed. Initially,
a UIO was deployed to estimate the system state, followed by
the acquisition of attack vector dynamics from this preliminary
estimation. Subsequently, the KF algorithm co‐estimated both
the system state and attack vector. The results in ref. [38]
validated the defence strategy's effectiveness by demonstrating
the variation in generator output before and after an attack.
The approach integrated a robust intermediate observer for
security DSE and attack reconstruction, with the attack vector
serving as the observer's estimation parameter. The mitigation
approach introduced an optimal‐economic‐dispatch based
defence strategy, optimised generator outputs through convex
optimisation to recalibrate current distribution, and stabilised
the CPPS to prevent overloading of critical lines.

5.5 | UIO‐based estimator and attack
compensation controller

There is no systematic framework in the previous literature
that can directly estimate FDI attack signals and automatically
compensate for FDI attacks in real‐time, as well as proactively
mitigate the impact of FDI attacks by reconfiguring the closed‐
loop feedback controller based on the attack compensation. In
ref. [40], an observer‐based output feedback control model was
introduced and mitigated the adverse effects of both FDI and
DOS automatically. A new model was introduced to simulate
intermittent DoS attacks using only uniform upper and lower
bounds on the cyber‐attack's active times. The output feedback
control could automatically estimate and compensate for un-
known FDI attacks while mitigating the effects of coordinated
FDI and DoS attacks. A switching pulse observer
was proposed for estimating the unknown FDI attack signal
and the system state, respectively. Specifically, the state
observer was constructed through the following model: when

the system was in normal operation, the state observer pre-
dicted the next state based on the system model, and at the
same time corrected the prediction error using the system
output feedback; when a FDI attack signal was detected, the
state observer switched to the corresponding attack model,
which was used to correct the DSE error caused by the attack.
The estimation of the FDI attack signal, on the other hand,
was based on an external dynamic system, and the attack signal
was reconstructed by observing the difference between the
system output and the expected output. This approach enabled
real‐time estimation and compensation of FDI and DoS at-
tacks without the need to know the frequency and duration of
the attacks, which effectively improved the flexibility of the
system in response to unknown and non‐periodic attacks. In
addition, an exponential stability criterion for output‐feedback
multi‐area LFC systems under DoS and FDI attacks was
derived by using a time‐varying Lyapunov function approach
with attack parameter dependence. Then, a robust attack‐
compensated feedback controller was developed to realise
the frequency control in multi‐area LFC systems.

5.6 | Sliding mode observer for risk
mitigation

Despite extensive research on power system dynamics model-
ling, a discrepancy remains between mathematical comprehen-
sion and the real system dynamic process. Relying solely on these
models might lead to suboptimal control or estimation.
Modelling of UI and cyber‐attacks is important in order to
reduce discrepancies between estimated and real system dy-
namics. When modelling the UIs, the model in ref. [61]
considered unknown plant disturbances, unknown control in-
puts and potential actuator failures. The gain of UIs were
formulated as a random matrix to enhance the robustness of
observer. A sliding mode observer was designed, which differed
from the KF‐based estimator with no assumptions on the dis-
tribution of measurement noise and process noise. After the UIs
and cyber‐attack signals were reconstructed, a filter for residual
detection of impaired measurements was designed. In the risk
mitigation module, the weighted deterministic threat level was
used to decide whether the PMU data needed to be isolated. The
proposed sliding mode observer still satisfied the observability
after isolating the erroneous data for cyber‐attack riskmitigation.

5.7 | Summary of mitigation techniques

DSE mitigation techniques are classified into isolation‐based,
compensation‐based, and scheduling‐based according to their
mechanisms. Compensation‐based methods can be used for
both FDI and DoS attacks, and require the integration of DSE
or neural network methods to estimate and compensate for the
compromised cyber‐attack data. Isolation‐based intrusion
mitigation system (IMS) can be seen as a feasible strategy, but
IMS is only applicable to FDI attacks and is limited by the
number of attacks. Scheduling‐based IMS can mitigate the
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effects of FDI and DoS attacks by utilising additional flexible
resources such as extra generators to re‐achieve power balance
and optimal power flow. Mitigation methods often have limi-
tations in capabilities, depending on the flexibility of risk
mitigation resources and system reconfiguration in response to
the strength of cyber‐attacks. As summarised in Table 3, both
DSE mitigation techniques in 5.1 and 5.2 used decentralised
structures to maximise the use of neighbourhood and local
information networks, which improved the cyber resource
utilisation and increased the accuracy of DSE. For the UIs and
fluctuating data existing in CPPS, both LSTM in 5.3 and sliding
mode observer in 5.4 performed effectively to detect the
stealthy cyber‐attacks and improved the flexibility to complex
and multiple attack situations. 5.5 investigated DSE under the
coordinate FDI and DoS, which significantly improved the
robustness of multi‐region LFC and overcome the detection
limitations of existing models. By integrating the optimal
economic dispatch methods and feedback controllers, the
defence against cyber‐attacks was enhanced while the grid

operation was optimised. Isolation‐based IMS in 5.6 optimised
the flexibility which was provided by measurement redundancy
to ensure system observability.

Current research on DSE mitigation methods requires
improvement in enhancing CPPS security. In particular, data‐
based IMS mostly rely on specific datasets for validation,
lack general applicability, and may not achieve the same ex-
pected results in different data environments. Meanwhile,
advanced mitigation methods such as deep learning have high
computational requirements, which may limit their applications
and real‐time response in resource‐constrained systems.
Another challenge is that existing mitigation strategies may not
be sufficient to cope with attack patterns changing, which
require the development of DSE mitigation techniques to have
flexibility in adapting to complex and multiple attacks. For
future development of DSE mitigation techniques, cost‐
effective methods should be developed to reconstruct system
states and attacks, consider the co‐occurrence of multiple at-
tacks in complex environments, and enhance the mitigation

TABLE 3 Summary of DSE mitigation techniques.

Technique Ref. Methods Scenario Attack Effectiveness

Distributed state estimation [57] 1. Optimal filter Power distribution system with
multiple synchronous generators

1. FDI The convergence time was reduced by half
than existing method in ref. [58].

2. Bayesian learning
approach

[58] 2. Replay attack

3. Compensation‐
based

Joint state and unknown‐
input estimation

[59] 1. Dynamic event
triggered
communication

Wireless sensor network DoS 75% reduction in unnecessary data
transmission compared to traditional
methods.

2. Isolation‐based

Multi‐level FDI
identification

[60] 1. LSTM‐CNN Wind power generation systems with
high data volatility

FDI The CNN model identified the flase data
form fluctuation and overcome the
over‐estimation problem.2. Compensation‐

based

UIO attack reconfiguration
and optimal economic
dispatch

[38] 1. UIO Optimal economic scheduling under
attack in nonlinear continuous‐
time systems

FDI on
generators'
state

The mitigation mehod avoided overloading
of critical lines by optimising the active
power of unattacked generators in
optimal‐economic‐dispatch‐based
criterions.

2. Convex
optimisation

3. Scheduling‐based

UIO‐based estimator and
attack compensation
controller

[40] 1. UIO Multi‐area load frequency control
system

1. FDI: Load
disturbance

The proposed scheme had no limitations on
the bound of FDI attacks and on the
frequency of DoS attack. The proposed
scheme could mitigate the adverse effect
of DoS and FDI.

2. Time‐varying
Lyapunov
function

2. DoS

3. Compensation‐
based

3. Coordinated
DoS
and FDI

Risk mitigation for DSE [61] 1. Sliding mode
observer

SCADA 1. FDI The risk mitigation scheme isolated the most
impactable PMU and ensured CPPS's
observability through avaliable, safe
measurement.2. Dynamic risk

mitigation
optimisation

2. DoS

3. Isolation‐based 3. Replay attack

Abbreviation: DSE, dynamic state estimation.
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impacts on the physical and cyber dimensions. In addition,
future research will be critical to build flexible and self‐learning
IMS, which are able to enhance the flexibility and learning
capacity, so that the DSE mitigation techniques can adapt to
the emerging cyber‐attack patterns and guarantee the contin-
uous safe operation of CPPS.

6 | CONCLUSION

This paper comprehensively reviews the recent research ad-
vances of DSE techniques and their applications in the
cybersecurity of CPPS. Two main methods of KF and UIO are
analysed by investigating their modelling algorithms and eval-
uating their benefits and limitations. Subsequently, the existing
DSE techniques for the CPPS resilience framework are cat-
egorised into three phases: prevention, detection, and mitiga-
tion. Within each phase, a comprehensive review is provided
with application scenarios. DSE prevention techniques balance
the observability and economic costs as an optimisation
problem by efficiently placing PMUs. Multiple KF‐based and
UIO‐based techniques are introduced to deal with the noise.
DSE detection techniques for real‐time have been able to
identify complex noise and attack vectors. DSE mitigation
techniques have proven solutions for both latency due to DoS
and system state deviation due to the FDI, and take full
advantage of the flexible resources provided by CPPS.

The research gaps are identified in DSE techniques with
future research directions. Future research needs to consider the
trade‐offs between model complexity and processing time for
handling highly nonlinear systems. Future DSE techniques can
combine certain active defence techniques such as MTD, and
design a changing system mechanism to improve the detection
rate of stealth cyber‐attacks. Data‐based and model‐based DSE
methods can be combined to create a fusion detection system.
Research on mitigation techniques can combine the advantages
of various mitigation methods and establish more flexible miti-
gation strategies to deal with complex cyber‐attacks.
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