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1. Introduction

The analysis of Stokes and Navier–Stokes equations is an established and active field
of research in applied mathematical analysis, see, e.g., [1–10] and many other publications.
These works were mainly devoted to the flows of isotropic fluids with constant viscosity
coefficients, and some of the employed methods were heavily based on these properties.

On the other hand, in many cases, the fluid viscosity can vary in time and spatial
coordinates, e.g., due to variable ambient temperature. Moreover, from the point of view
of rational mechanics of continuum, fluids can be anisotropic and this feature is indeed
observed in liquid crystals, electromagnetic fluids, etc., see, e.g., [11] and references therein.
In [12–17] the classical Navier–Stokes analysis has been extended to the transmission and
boundary-value problems for stationary Stokes and Navier–Stokes equations of anisotropic
fluids, particularly, with relaxed ellipticity condition on the viscosity tensor.

In this paper, we consider evolution (non-stationary) spatially-periodic solutions in Rn,
n ≥ 2, to the Navier–Stokes equations of an anisotropic fluid with the viscosity coeffi-
cient tensor variable in spatial coordinates and time and satisfying the relaxed ellipticity
condition. We implement the Galerkin algorithm but unlike the traditional approach, for
example, in [9,10], where the Galerkin basis consisted of the eigenfunctions of the corre-
sponding isotropic constant-coefficient Stokes operator, we employed the basis constituted
by the eigenfunctions of the periodic Bessel-potential operator having an advantage that it
is universal, i.e., independent of the analysed anisotropic variable-coefficient Navier–Stokes
operator. To analyse the solution in higher dimensions, the definition of the weak solution
is generalised to some extent. Then the periodic weak solution existence is considered in
the spaces of Banach-valued functions mapping a finite time interval to periodic Sobolev
(Bessel-potential) spaces on n-dimensional flat torus, L∞(0, T; Ḣ0

#σ) ∩ L2(0, T; Ḣ1
#σ). The

periodic setting is interesting on its own, modelling fluid flow in periodic composite struc-
tures, and is also a common element of homogenisation theories for inhomogeneous fluids
and in the Large Eddy Simulation.

This paper is to be followed by another one(s) on the existence, uniqueness and
regularity of solutions in the so-called critical spaces. It is well known that the regularity
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results available at the moment for evolution Navier–Stokes equations are rather different
for dimensions n = 2 and n = 3, even for isotropic constant-viscosity fluids. While the
solution global regularity under arbitrarily large smooth input data for n = 2 is proved
and can be found, e.g., in [1–10], for n = 3 it is still an open question and constitutes one
of the Clay Institute famous Millennium problems. Our motivation to consider arbitrary
n ≥ 2 is particularly to place the cases n = 2 and n = 3 in a more general set and to show
in the forthcoming paper(s) whether one of them is an exception/pathology.

The paper material is divided as follows. In the rest of the introduction, we provide
essentials on anisotropic Stokes and Navier–Stokes equations. Section 2 gives an intro-
duction to the periodic Sobolev (Bessel-potential) functions spaces in spatial coordinates
on n-dimensional flat torus and to the corresponding Banach-valued functions mapping
a finite time interval to these periodic Sobolev spaces. In Section 3 we introduce a gen-
eralised definition of the weak solution for the Navier–Stokes system that is especially
suitable for higher dimensions. We also show that Du, the Leray projection of the total
derivative in time of the weak solution velocity u, belongs to L2(0, T; Ḣ−1

#σ ) but u′(·, t) and
Pσ[(u · ∇)u](·, t) do not in general. In Section 4 we prove the main result of the paper, the
existence of a weak solution for the evolution spatially-periodic anisotropic Navier–Stokes
problem. In Section 5 we collected some technical results used in the main text of the paper,
several of which might be new. Particularly, we analysed the spectral properties of the
periodic Bessel-potential operator in the spaces of divergence-free functions, which then
allowed using their eigenfunctions as a basis of the Galerkin algorithm in Section 4.

Anisotropic Stokes and Navier–Stokes PDE Systems

Let n ≥ 2 be an integer, x ∈ Rn denote the spatial coordinate vector, and t ∈ R be time.
Let L denote the second-order differential operator represented in the component-wise
divergence form as

(Lu)k := ∂α

(
aαβ

kj Ejβ(u)
)
, k = 1, . . . , n, (1)

where u = (u1, . . . , un)⊤, Ejβ(u) := 1
2 (∂juβ + ∂βuj) are the entries of the symmetric part,

E(u), of the gradient, ∇u, in spatial coordinates, and aαβ
kj (x, t) are variable components of

the tensor viscosity coefficient, cf. [11], A(x, t) =
{

aαβ
kj (x, t)

}
1≤i,j,α,β≤n

, depending on the

spatial coordinate vector x and time t. We also denoted ∂j =
∂

∂xj
, ∂t =

∂

∂t
. Here and further

on, the Einstein convention on summation in repeated indices from 1 to n is used unless
stated otherwise.

The following symmetry conditions are assumed (see [18] (3.1), (3.3)),

aαβ
kj (x, t) = akβ

αj (x, t) = aαj
kβ(x, t). (2)

In addition, we require that tensor A satisfies the relaxed ellipticity condition in terms
of all symmetric matrices in Rn×n with zero matrix trace, see [13,14]. Thus, we assume that
there exists a constant CA > 0 such that,

CAaαβ
kj (x, t)ζkαζ jβ ≥ |ζ|2 , for a.e. x, t, (3)

∀ ζ = {ζkα}k,α=1,...,n ∈ Rn×n such that ζ = ζ⊤ and
n

∑
k=1

ζkk = 0,

where |ζ| = |ζ|F := (ζkαζkα)
1/2 is the Frobenius matrix norm and the superscript ⊤ denotes

the transpose of a matrix. Note that in the more common, strong ellipticity condition,
inequality (3) should be satisfied for all matrices (not only symmetric with zero trace),
which makes it much more restrictive than the relaxed ellipticity condition.
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We assume that aαβ
ij ∈ L∞(Rn × [0, T]), where [0, T] is some finite time interval, and

the tensor A is endowed with the norm

∥A∥ := ∥A∥L∞(Rn×[0,T]),F :=
∣∣∣∣{∥aαβ

ij ∥L∞(T×[0,T])

}n

α,β,i,j=1

∣∣∣∣
F
< ∞, (4)

where
∣∣∣∣{bαβ

ij

}n

α,β,i,j=1

∣∣∣∣
F

:=
(

bαβ
ij bαβ

ij

)1/2
is the Frobenius norm of a 4-th order tensor.

Symmetry conditions (2) lead to the following equivalent form of the operator L

(Lu)k = ∂α

(
aαβ

kj ∂βuj
)
, k = 1, . . . , n. (5)

Let u(x, t) be an unknown vector velocity field, p(x, t) be an unknown (scalar) pressure
field, and f(x, t) be a given vector field Rn, where t ∈ R is the time variable. Then the linear
PDE system

∂tu −Lu +∇p = f, div u = 0,

determines the anisotropic evolution incompressible Stokes system.
The nonlinear system

∂tu −Lu +∇p + (u · ∇)u = f , div u = 0

is the evolution anisotropic incompressible Navier–Stokes system, where we use the notation
(u · ∇) := uj∂j.

In the isotropic case, the tensor A reduces to

aαβ
kj (x, t) = λ(x, t)δkαδjβ + µ(x, t)

(
δαjδβk + δαβδkj

)
, 1 ≤ k, j, α, β ≤ n ,

where λ, µ ∈ L∞(Rn × [0, T]), and c−1
µ ≤ µ(x, t) ≤ cµ for a.e. x and t, with some constant

cµ > 0 (cf., e.g., Appendix III, Part I, Section 1 in [10]). Then it is immediate that condition (3)
is fulfilled with CA = cµ/2 and thus our results apply also to the Stokes and Navier–Stokes
systems in the isotropic case. Moreover, (1) becomes

Lu = (λ + µ)∇div u + µ∆u + (∇λ)div u + 2(∇µ) ·E(u).

Assuming λ = 0 and µ = 1 we arrive at the classical mathematical formulations of
isotropic, constant-coefficient Stokes and Navier–Stokes systems in the familiar form

∂tu − ∆u +∇p + (u · ∇)u = f , div u = 0.

2. Periodic Function Spaces

Let us introduce some function spaces on torus, i.e., periodic function spaces (see,
e.g., [19] (p. 26), [20,21], [22] (Chapter 3), [6] (Section 1.7.1) [9] (Chapter 2), for more details).

Let n ≥ 1 be an integer and T be the n-dimensional flat torus that can be parametrized
as the semi-open cube T = Tn = [0, 1)n ⊂ Rn, cf. [23] (p. 312). In what follows, D(T) =
C∞(T) denotes the (test) space of infinitely smooth real or complex functions on the torus.
As usual, N denotes the set of natural numbers, N0 the set of natural numbers augmented
by 0, and Z the set of integers.

Let ξ ∈ Zn denote the n-dimensional vector with integer components. We will further
need also the set

Żn := Zn \ {0}.

Extending the torus parametrisation to Rn, it is often useful to identify T with the
quotient space Rn \Zn. Then the space of functions C∞(T) on the torus can be identified
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with the space of T-periodic (1-periodic) functions C∞
# = C∞

# (Rn) that consists of functions
ϕ ∈ C∞(Rn) such that

ϕ(x + ξ) = ϕ(x) ∀ ξ ∈ Zn. (6)

Similarly, the Lebesgue space on the torus Lp(T), 1 ≤ p ≤ ∞, can be identified with
the periodic Lebesgue space Lp# = Lp#(Rn) that consists of functions ϕ ∈ Lp,loc(Rn), which
satisfy the periodicity condition (6) for a.e. x.

The space dual to D(T), i.e., the space of linear bounded functionals on D(T), called
the space of torus distributions, is denoted by D′(T) and can be identified with the space
of periodic distributions D′

# acting on C∞
# .

The toroidal/periodic Fourier transform mapping a function g ∈ C∞
# to a set of its

Fourier coefficients ĝ is defined as (see, e.g., [22] (Definition 3.1.8))

ĝ(ξ) = [FTg](ξ) :=
∫
T

e−2πix·ξ g(x)dx, ξ ∈ Zn,

and can be generalised to the Fourier transform acting on a distribution g ∈ D′
#.

For any ξ ∈ Zn, let |ξ| := (∑n
j=1 ξ2

j )
1/2 be the Euclidean norm in Zn and let us denote

ϱ(ξ) := 2π(1 + |ξ|2)1/2.

Evidently,

1
2

ϱ(ξ)2 ≤ |2πξ|2 ≤ ϱ(ξ)2 ∀ ξ ∈ Żn. (7)

Similar to [22] (Definition 3.2.2), for s ∈ R we define the periodic/toroidal Sobolev (Bessel-
potential) spaces Hs

# := Hs
#(Rn) := Hs(T) that consist of the torus distributions g ∈ D′(T),

for which the norm

∥g∥Hs
#

:= ∥ϱs ĝ∥ℓ2(Zn) :=

(
∑

ξ∈Zn
ϱ(ξ)2s|ĝ(ξ)|2

)1/2

(8)

is finite, i.e., the series in (8) converges. Here, ∥ · ∥ℓ2(Zn) is the standard norm in the space
of square summable sequences with indices in Zn. By [22] (Proposition 3.2.6), Hs

# is the
Hilbert space with the inner (scalar) product in Hs

# defined as

(g, f )Hs
#

:= ∑
ξ∈Zn

ϱ(ξ)2s ĝ(ξ) f̂ (ξ), ∀ g, f ∈ Hs
#, s ∈ R, (9)

where the bar denotes complex conjugate. Evidently, H0
# = L2#.

The dual product between g ∈ Hs
# and f ∈ H−s

# , s ∈ R is defined (cf. [22]
(Definition 3.2.8)) as

⟨g, f ⟩T := ∑
ξ∈Zn

ĝ(ξ) f̂ (−ξ). (10)

If s = 0, i.e., g, f ∈ L2#, then (9) and (10) reduce to

⟨g, f ⟩T =
∫
T

g(x) f (x)dx = (g, f̄ )L2# .

For real function g, f ∈ L2# we, of course, have ⟨g, f ⟩T = (g, f )L2# .
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For any s ∈ R, the space H−s
# is Banach adjoint (dual) to Hs

#, i.e., H−s
# = (Hs

#)
∗. Similar

to, e.g., [24] (p. 76) one can show that

∥g∥Hs
#
= sup

f∈H−s
# , f ̸=0

|⟨g, f ⟩T|
∥ f ∥H−s

#

.

For g ∈ Hs
#, s ∈ R, and m ∈ N0, let us consider the partial sums

gm(x) = ∑
ξ∈Zn ,|ξ|≤m

ĝ(ξ)e2πix·ξ .

Evidently, gm ∈ C∞
# , ĝm(ξ) = ĝ(ξ) if |ξ| ≤ m and ĝm(ξ) = 0 if |ξ| > m. This implies

that ∥g − gm∥Hs
#
→ 0 as m → ∞ and hence we can write

g(x) = ∑
ξ∈Zn

ĝ(ξ)e2πix·ξ , (11)

where the Fourier series converges in the sense of norm (8). Moreover, since g is an arbitrary
distribution from Hs

#, this also implies that the space C∞
# is dense in Hs

# for any s ∈ R (cf. [22]
(Exercise 3.2.9)).

There holds the compact embedding Ht
# ↪→ Hs

# if t > s, embeddings Hs
# ⊂ Cm

# if
m ∈ N0, s > m + n

2 , and moreover,
⋂

s∈R Hs
# = C∞

# (cf. [22] (Exercises 3.2.10, 3.2.10, and
Corollary 3.2.11)).

Note, that for each s, the periodic norm (8) is equivalent to the periodic norm that we
used in [16,17], which is obtained from (8) by replacing there ϱ(ξ) = 2π(1 + |ξ|2)1/2 with
ρ(ξ) = (1 + |ξ|2)1/2. We employ here the norm (8) to simplify some norm estimates further
in the paper. Note, also that the periodic norms on Hs

# are equivalent to the corresponding
standard (non-periodic) Bessel potential norms on T as a cubic domain, see, e.g., [20]
(Section 13.8.1).

Let us introduce the periodic Bessel-potential operator of the order r ∈ R,

(Λr
# g)(x) := ∑

ξ∈Zn
ϱ(ξ)r ĝ(ξ)e2πix·ξ ∀ g ∈ Hs

#. (12)

Note, that (12) particularly implies(
Λ2

# g
)
(x) = ∑

ξ∈Zn
(2π)2(1 + |ξ|2)ĝ(ξ)e2πix·ξ = (2π)2g(x)− ∆2g(x) ∀ g ∈ Hs

#, s ∈ R.

For any s ∈ R, the operator

Λr
# : Hs

# → Hs−r
# , (13)

is continuous, see, e.g., [20] (Section 13.8.1).
By (8), ∥g∥2

Hs
#
= |ĝ(0)|2 + |g|2Hs

#
, where

|g|Hs
#

:= ∥ϱs ĝ∥ℓ2(Żn) :=

 ∑
ξ∈Żn

ϱ(ξ)2s|ĝ(ξ)|2
1/2

is the seminorm in Hs
#.

For any s ∈ R, let us also introduce the space

Ḣs
# := {g ∈ Hs

# : ⟨g, 1⟩T = 0}.
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The definition implies that if g ∈ Ḣs
#, then ĝ(0) = 0 and

∥g∥Ḣs
#
= ∥g∥Hs

#
= |g|Hs

#
= ∥ϱs ĝ∥ℓ2(Żn) . (14)

The space Ḣs
# is the Hilbert space with the inner product inherited from (9), that is,

(g1, g2)Ḣs
#

:= ∑
ξ∈Żn

ϱ(ξ)2s ĝ1(ξ)ĝ2(ξ), ∀ g1, g2 ∈ Ḣs
#, s ∈ R. (15)

Due to the Riesz representation theorem (see, e.g., [24] (Theorem 2.30), [25] (Theorem 6.52)),
the dual product between g1 ∈ Ḣs

# and f2 ∈ (Ḣs
#)

∗, s ∈ R, can be represented as

⟨g1, f2⟩T := ∑
ξ∈Żn

ĝ1(ξ) f̂2(−ξ) = (g1, g2)Ḣs
#
= ∑

ξ∈Żn

ϱ(ξ)2s ĝ1(ξ)ĝ2(ξ).

where

f̂2(ξ) = ϱ(ξ)2s ĝ2(−ξ), ĝ2(ξ) = ϱ(ξ)−2s f̂2(−ξ), ξ ∈ Żn

for some g2 ∈ Ḣs
#. This implies that

f2(x) =
(

Λ2s
# g2

)
(x). (16)

If ĝ(0) = 0 then (12) implies that Λ̂r
# g(0) = 0, and thus the operator

Λr
# : Ḣs

# → Ḣs−r
# (17)

is continuous as well. Hence, by (16) we conclude that (Ḣs
#)

∗ = Ḣ−s
# .

Denoting Ċ∞
# := {g ∈ C∞

# : ⟨g, 1⟩T = 0}, then
⋂

s∈R Ḣs
# = Ċ∞

# .
The corresponding spaces of n-component vector functions/distributions are denoted

as Lq# := (Lq#)
n, Hs

# := (Hs
#)

n, etc.
Note, that the norm ∥∇(·)∥Hs−1

#
is an equivalent norm in Ḣs

#. Indeed, by (11)

∇g(x) = 2πi ∑
ξ∈Żn

ξe2πix·ξ ĝ(ξ), ∇̂g(ξ) = 2πiξ ĝ(ξ) ∀ g ∈ Ḣs
#,

and then (7) and (14) imply

1
2
|g|2Hs

#
≤ ∥∇g∥2

Hs−1
#

≤ |g|2Hs
#

∀ g ∈ Hs
#,

1
2
∥g∥2

Hs
#
=

1
2
∥g∥2

Ḣs
#
=

1
2
|g|2Hs

#
≤ ∥∇g∥2

Hs−1
#

≤ |g|2Hs
#
= ∥g∥2

Ḣs
#
= ∥g∥2

Hs
#

∀ g ∈ Ḣs
#. (18)

The vector counterpart of (18) takes the form

1
2
∥v∥2

Hs
#
=

1
2
∥v∥2

Ḣs
#
≤ ∥∇v∥2

(Hs−1
# )n×n ≤ ∥v∥2

Ḣs
#
= ∥v∥2

Hs
#

∀ v ∈ Ḣs
#. (19)

Note, that the second inequalities in (18) and (19) are also valid in the more general
cases, i.e., for g ∈ Hs

# and v ∈ Hs
#, respectively.

We will further need the first Korn inequality

∥∇v∥2
(L2#)n×n ≤ 2∥E(v)∥2

(L2#)n×n ∀ v ∈ H1
# (20)

that can be easily proved by adapting, e.g., the proof in [24] (Theorem 10.1) to the periodic
Sobolev space; cf. also [18] (Theorem 2.8).
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Let us also define the Sobolev spaces of divergence-free functions and distributions,

Ḣs
#σ :=

{
w ∈ Ḣs

# : div w = 0
}

, s ∈ R,

endowed with the same norm (8). Similarly, C∞
#σ and Lq#σ denote the subspaces of

divergence-free vector-functions from C∞
# and Lq#, respectively, etc.

The space Ḣs
#σ is the Hilbert space with inner product inherited from (9) and (15),

that is,

(g1, g2)Ḣs
#σ

:= ∑
ξ∈Żn

ϱ(ξ)2sĝ1(ξ)ĝ2(ξ), ∀ g1, g2 ∈ Ḣs
#σ, s ∈ R.

Due to the Riesz representation theorem, the dual product between g1 ∈ Ḣs
#σ and

f2 ∈ (Ḣs
#σ)

∗, s ∈ R, can be represented as

⟨g1, f2⟩T := ∑
ξ∈Żn

ĝ1(ξ)f̂2(−ξ) = (g1, g2)Ḣs
#σ

= ∑
ξ∈Żn

ϱ(ξ)2sĝ1(ξ)ĝ2(ξ).

where

f̂2(ξ) = ϱ(ξ)2sĝ2(−ξ), ξ ∈ Żn

for some g2 ∈ Ḣs
#σ. This implies that

f2(x) =
(

Λ2s
# g2

)
(x), (21)

where the operator

Λr
# : Ḣs

#σ → Ḣs−r
#σ (22)

defined as in (12) is continuous. Hence, we conclude that

(Ḣs
#σ)

∗ = Ḣ−s
#σ .

Let us also introduce the space

Ḣs
#g :=

{
w = ∇q, q ∈ Ḣs+1

#

}
, s ∈ R,

endowed with the norm (8).
Let s ∈ R, w ∈ Ḣs

#g and v ∈ Ḣs
#σ. By (9), for their inner product in Ḣs

# we obtain

(w, v)Hs
#

:= ∑
ξ∈Zn

ϱ(ξ)2sŵ(ξ) · v̂(ξ) = ∑
ξ∈Zn

ϱ(ξ)2s2πiξq̂(ξ) · v̂(ξ)

= − ∑
ξ∈Zn

ϱ(ξ)2s q̂(ξ)2πiξ · v̂(ξ) = − ∑
ξ∈Zn

ϱ(ξ)2s q̂(ξ)d̂iv v(ξ) = 0.

Hence, Ḣs
#g and Ḣs

#σ are orthogonal subspaces of Ḣs
# in the sense of the inner product.

On the other hand, if s ∈ R, w ∈ Ḣs
#g and v ∈ Ḣ−s

#σ , then for their dual product,
we obtain

⟨w, v⟩ = ⟨∇q, v⟩ = −⟨q, div v⟩ = 0.

Hence, the spaces Ḣs
#g and Ḣ−s

#σ are orthogonal in the sense of the dual product.
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For s ∈ R and F ∈ Ḣs
#, let us introduce the operators Pg and Pσ as follows,

(Pg F)(x) := ∑
ξ∈Żn

ξ
ξ · F̂(ξ)
|ξ|2 e2πix·ξ ,

(Pσ F)(x) := ∑
ξ∈Żn

(
F̂(ξ)− ξ

ξ · F̂(ξ)
|ξ|2

)
e2πix·ξ .

Note, that

F(x) = (Pσ F)(x) + (Pg F)(x) ∀ F ∈ Ḣs
#, s ∈ R. (23)

Evidently,

(Pg F)(x) = ∇q(x), where q(x) = ∑
ξ∈Żn

ξ · F̂(ξ)
2πi|ξ|2 e2πix·ξ ,

hence, q ∈ Ḣs+1
# .

One can check that Pg(Pg F) = Pg F and thus, Pg : Ḣs
# → Ḣs

#g is a bounded projector.
On the other hand, divPσ F = 0, Pσ(Pσ F) = Pσ F and hence, Pσ : Ḣs

# → Ḣs
#σ is also a

bounded projector. Since Ḣs
#g and Ḣs

#σ are orthogonal subspaces of Ḣs
#, the projectors Pg

and Pσ are orthogonal in Ḣs. The projector Pσ is called the Leray projector (see, e.g., [6]
(Section 2.1)).

Decomposition (23) implies the representation Ḣs
# = Ḣs

#g ⊕ Ḣs
#σ called the Helmholtz–

Weyl decomposition. Note that the orthogonality of Ḣs
#g and Ḣs

#σ implies that for any
F ∈ Ḣs

#, the representation F = Fg + Fσ, where Fg ∈ Ḣs
#g and Fσ ∈ Ḣs

#σ, is unique and
hence is given by (23).

Summarising the obtained results, we arrive at the following assertion (cf., e.g., [6]
(Theorem 2.6), where a similar statement is proved for s = 0 and n = 3).

Theorem 1. Let s ∈ R and n ≥ 2.
(a) The space Ḣs

# has the Helmholtz–Weyl decomposition, Ḣs
# = Ḣs

#g ⊕ Ḣs
#σ, that is, any

F ∈ Ḣs
# can be uniquely represented as F = Fg + Fσ, where Fg ∈ Ḣs

#g and Fσ ∈ Ḣs
#σ.

(b) The spaces Ḣs
#g and Ḣs

#σ are orthogonal subspaces of Ḣs
# in the sense of inner product, i.e.,

(w, v)Hs
#
= 0 for any w ∈ Ḣs

#g and v ∈ Ḣ−s
#σ .

(c) The spaces Ḣs
#g and Ḣ−s

#σ are orthogonal in the sense of dual product, i.e., ⟨w, v⟩ = 0 for
any w ∈ Ḣs

#g and v ∈ Ḣ−s
#σ .

(d) There exist the bounded orthogonal projector operators Pg : Ḣs
# → Ḣs

#g and Pσ : Ḣs
# →

Ḣs
#σ (the Leray projector), while F = PgF + PσF for any F ∈ Ḣs

#.

For the evolution problems, we will systematically use the spaces Lq(0, T; Hs
#), s ∈ R,

1 ≤ q ≤ ∞, 0 < T < ∞, which consists of functions that map t ∈ (0, T) to a function or
distributions from Hs

#. For 1 ≤ q < ∞, the space Lq(0, T; Hs
#) is endowed with the norm

∥h∥Lq(0,T;Hs
#)
=

(∫ T

0
∥h(·, t)∥q

Hs
#
dt
)1/q

=

∫ T

0

[
∑

ξ∈Zn
ϱ(ξ)2s|ĥ(ξ, t)|2

]q/2

dt

1/q

< ∞,

and for q = ∞ with the norm

∥h∥L∞(0,T;Hs
#)
= ess supt∈(0,T)∥h(·, t)∥Hs

#
= ess supt∈(0,T)

[
∑

ξ∈Zn
ϱ(ξ)2s|ĥ(ξ, t)|2

]1/2

< ∞.
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For a function (or distribution) h(x, t), we will use the notation h′(x, t) := ∂th(x, t) :=
∂

∂t
h(x, t) for the partial derivative in the time variable t. Let X and Y be some Hilbert

spaces. We will further need the space

W1(0, T; X, Y) := {u ∈ L2(0, T; X) : u′ ∈ L2(0, T; Y)}

endowed with the norm

∥u∥W1(0,T;X,Y) = (∥u∥2
L2(0,T;X) + ∥u′∥2

L2(0,T;Y))
1/2.

Spaces of such type are considered in [26] (Chapter 1, Section 2.2). We will particularly
need the spaces W1(0, T; Hs

#, Hs′
# ) and their vector counterparts.

Unless stated otherwise, we assume that in the rest of this paper all vector and scalar
variables are real-valued (however, with complex-valued Fourier coefficients).

3. Weak Formulation of the Evolution Spatially-Periodic Anisotropic
Navier–Stokes Problem

Let us consider the following Navier–Stokes problem for the real-valued unknowns
(u, p),

∂tu −Lu +∇p + (u · ∇)u = f in T× (0, T), (24)

div u = 0 in T× (0, T), (25)

u(·, 0) = u0 in T, (26)

with given data f ∈ L2(0, T; Ḣ−1
# ), u0 ∈ Ḣ0

#σ. Note, that the time-trace u(·, 0) for u solving
the weak form of (24) and (25) is well defined, see Definition 1 and Remark 1.

Let us introduce the bilinear form

aT(u, v) = aT(t; u, v) :=
〈

aαβ
ij (·, t)Ejβ(u), Eiα(v)

〉
T
∀ u, v ∈ Ḣ1

#. (27)

By the boundedness condition (4) and inequality (19) we have

|aT(t; u, v)| ≤ ∥A∥∥E(u)∥Ln×n
2#

∥E(v)∥Ln×n
2#

≤ ∥A∥∥∇u∥Ln×n
2#

∥∇v∥Ln×n
2#

≤ ∥A∥∥u∥Ḣ1
#
∥v∥Ḣ1

#
∀ u, v ∈ Ḣ1

#. (28)

If the relaxed ellipticity condition (3) holds, taking into account the relation
∑n

i=1 Eii(w) = divw = 0 for w ∈ Ḣ1
#σ, equivalence of the norm ∥∇(·)∥Ln×n

2#
to the norm

∥ · ∥Ḣ1
#σ

in Ḣ1
#σ, see (19), and the first Korn inequality (20), we obtain

aT(t; w, w) =
〈

aαβ
ij (·, t)Ejβ(w), Eiα(w)

〉
T
≥ C−1

A ∥E(w)∥2
Ln×n

2#

≥ 1
2

C−1
A ∥∇w∥2

Ln×n
2#

≥ 1
4

C−1
A ∥w∥2

Ḣ1
#σ

∀w ∈ Ḣ1
#σ. (29)

Then (28) and (29) give

1
4

C−1
A ∥w∥2

Ḣ1
#σ

≤ aT(t; w, w) ≤ ∥A∥∥w∥2
Ḣ1

#σ
∀w ∈ Ḣ1

#σ. (30)

This inequality implies that
√

aT(t; w, w) is an equivalent norm in Ḣ1
#σ for almost any

t and, moreover,

|||w|||L2(0,T;Ḣ1
#)

:=
(∫ T

0
aT(t; w(·, t), w(·, t))dt

)1/2

(31)
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is an equivalent norm in L2(0, T; Ḣ1
#σ).

We use the following definition of a weak solution, that for n ∈ {2, 3, 4} reduces to
the weak formulations employed, e.g., in [5] (Chapter 1, Problem 6.2), [1] (Definition 8.5),
[9] (Problem 2.1), [10] (Chapter 3, Problem 3.1). However, the definition that we use is
applicable also to higher dimensions (and allows for those dimensions the more general
test functions than in [5] (Chapter 1, Problem 6.2)).

Definition 1. Let, n ≥ 2, T > 0, f ∈ L2(0, T; Ḣ−1
# ) and u0 ∈ Ḣ0

#σ. A function
u ∈ L∞(0, T; Ḣ0

#σ) ∩ L2(0, T; Ḣ1
#σ) is called a weak solution of the evolution spatially-periodic

anisotropic Navier–Stokes initial value problem (24)–(26) if it solves the initial variational problem〈
u′(·, t) + Pσ[(u(·, t) · ∇)u(·, t)], w

〉
T + aT(u(·, t), w)

= ⟨f(·, t), w⟩T, for a.e. t ∈ (0, T), ∀w ∈ Ḣ1
#σ , (32)

⟨u(·, 0), w⟩T = ⟨u0, w⟩T , ∀w ∈ Ḣ0
#σ. (33)

The associated pressure p is a distribution on T × (0, T) satisfying (24) in the sense of
distributions, i.e.,〈

u′(·, t) + (u(·, t) · ∇)u(·, t), w
〉
T + aT(u(·, t), w) + ⟨∇p(·, t), w⟩T
= ⟨f(·, t), w⟩T , for a.e. t ∈ (0, T), ∀w ∈ C∞

# . (34)

To justify the weak formulation (32), let us act on (24) by the Leray projector Pσ; taking
into account that Pσ∂tu = ∂tu and Pσ∇p = 0, we obtain

∂tu + Pσ[(u · ∇)u]− PσLu = Pσf in T× (0, T). (35)

Assuming that u ∈ L2(0, T; Ḣ1
#σ), aαβ

ij ∈ L∞(0, T; L∞#), by (5) we obtain that

Lu ∈ L2(0, T; Ḣ−1
# ) and due to the symmetry conditions (2), we obtain for any w ∈ Ḣ1

#σ
and for a.e. t ∈ (0, T),

−⟨PσLu, w⟩T = −⟨Lu, w⟩T = ⟨aαβ
kj (·, t)Ejβ(u), ∂αwk⟩T

= ⟨aαβ
kj (·, t)Ejβ(u), Ek,α(w)⟩T = aT(u, w).

For f ∈ L2(0, T; Ḣ−1
# ), we also have ⟨Pσf(·, t), w⟩T = ⟨f(·, t), w⟩T. Hence, taking the

dual product of Equation (35) with w, we arrive at Equation (32). The boundedness of the
first dual product in (32) and the weak initial condition (33) are justified in Lemma 1 and
Remark 1 below. Equation (34) is deduced in a similar way.

Lemma 1. Let n ≥ 2, T > 0, aαβ
ij ∈ L∞(0, T; L∞#), f ∈ L2(0, T; Ḣ−1

# ) and u0 ∈ Ḣ0
#σ. Let

u ∈ L∞(0, T; Ḣ0
#σ) ∩ L2(0, T; Ḣ1

#σ) solve Equation (32).
(i) Then,

Du := u′ + Pσ[(u · ∇)u] ∈ L2(0, T; Ḣ−1
#σ ) and Du(·, t) ∈ Ḣ−1

#σ for a.e. t ∈ [0, T], (36)

while

(u · ∇)u ∈ L2(0, T; Ḣ−n/2
# ) and (u · ∇)u(·, t) ∈ Ḣ−n/2

# for a.e. t ∈ [0, T], (37)

u′ ∈ L2(0, T; Ḣ−n/2
#σ ) and u′(·, t) ∈ Ḣ−n/2

#σ for a.e. t ∈ [0, T], (38)

and hence, u ∈ W1(Ḣ1
#σ , Ḣ−n/2

#σ ).
In addition,

∂t∥u∥2
Ḣ−(n−2)/4

#σ

= 2⟨Λ−n/2
# u′, Λ#u⟩T = 2⟨u′, Λ1−n/2

# u⟩T = 2⟨Λ1−n/2
# u′, u⟩T (39)
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for a.e. t ∈ (0, T) and also in the distribution sense on (0, T).
(ii) Moreover, u is almost everywhere on [0, T] equal to a function ũ ∈ C0([0, T]; Ḣ−(n−2)/4

#σ ),
and ũ is also Ḣ0

#σ-weakly continuous in time on [0, T], that is,

lim
t→t0

⟨ũ(·, t), w⟩T = ⟨ũ(·, t0), w⟩T ∀w ∈ H0
# , ∀ t0 ∈ [0, T].

(iii) There exists the associated pressure p ∈ L2(0, T; Ḣ−n/2+1
# ) that for the given u is the

unique solution of Equation (24) in this space.

Proof. (i) By (32) we obtain

|⟨Du(·, t), w⟩T| ≤ |aT(t; u, w)|+ |⟨f(·, t), w⟩T|
≤ ∥A∥∥u(·, t)∥H1

#
∥w∥H1

#
+ ∥f(·, t)∥H−1

#
∥w∥H1

#
, for a.e. t ∈ (0, T), ∀w ∈ Ḣ1

#σ.

In addition, div Du := div u′ + divPσ[(u · ∇)u] = 0. Hence, ∥Du(·, t)∥Ḣ−1
#σ

≤
∥A∥∥u(·, t)∥H1

#
+ ∥f(·, t)∥H−1

#
for a.e. t ∈ (0, T) and thus,

∥Du∥L2(0,T;Ḣ−1
#σ ) ≤ ∥A∥∥u∥L2(0,T;H1

#)
+ ∥f∥L2(0,T;H−1

# )

which implies inclusions (36).
By the multiplication Theorem 3(b) and the Sobolev interpolation inequality (102),

we obtain

∥(u · ∇)u∥Ḣ−n/2
#

= ∥div(u ⊗ u)∥H−n/2
#

≤ ∥u ⊗ u∥
(H1−n/2

# )n×n

≤ C∗(1/2, 1/2, n)∥u∥2
H1/2

#
≤ C∗(1/2, 1/2, n)∥u∥H0

#
∥u∥H1

#
. (40)

Thus,
∥(u · ∇)u∥L2(0,T;Ḣ−n/2

# )
≤ C∗(1/2, 1/2, n)∥u∥L∞(0,T;H0

#)
∥u∥L2(0,T;H1

#)
,

which implies inclusions (37). Further,

∥Pσ[(u · ∇)u]∥L2(0,T;Ḣ−n/2
#σ )

≤ ∥(u · ∇)u∥L2(0,T;Ḣ−n/2
# )

≤ C∗(1/2, 1/2, n)∥u∥L∞(0,T;H0
#)
∥u∥L2(0,T;H1

#)
,

implying that Pσ[(u · ∇)u] ∈ L2(0, T; Ḣ−n/2
#σ ). Then, the first inclusion in (36) leads to the

inclusion u′ ∈ L2(0, T; Ḣ−n/2
#σ ) and hence to inclusions (38).

(ii) Since u ∈ L2(0, T; Ḣ1
#σ) and u′ ∈ L2(0, T; Ḣ−n/2

#σ ), relations (39) are implied by
Lemma 4(i). Moreover, Theorem 7 implies that u is almost everywhere on [0, T] equal to a
function ũ ∈ C0([0, T]; Ḣ−(n−2)/4

#σ ).

We have that ũ ∈ L∞(0, T; Ḣ0
#σ), ũ ∈ C0([0, T]; Ḣ−(n−2)/4

#σ ) and Ḣ0
#σ ⊂ Ḣ−(n−2)/4

#σ with
continuous injection. Then, Lemma 3 (taken from [10] (Chapter 3, Lemma 1.4)) implies that
ũ is Ḣ0

#σ-weakly continuous in time.
(iii) The associated pressure p satisfies (24), which after applying the projector Pg and

taking into account that Pgu′ = 0 and Pg∇p = ∇p, can be re-written as

∇p = PgF, (41)

where

F := f +Lu − (u · ∇)u. (42)
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Due to the first inclusion in (37), PgF ∈ L2(0, T; Ḣ−n/2
#g ). By Lemma 2 for gradient, with

s = 1 − n/2, Equation (41) has a unique solution p in L2(0, T; Ḣ−n/2+1
# ).

Note, that inclusions (36) for Du, the Leray projection of the velocity total derivative,
do not generally imply that u′ and Pσ[(u · ∇)u] belong to L2(0, T; Ḣ−1

#σ ), but only that their
sum does. This is why the first dual product in (32) is not written as the sum of the two
respective dual products.

Remark 1. The initial condition (33) should be understood for the function u re-defined as the
function ũ that was introduced in Lemma 1(ii) and is H0

#-weakly continuous in time.

4. Weak Solution Existence

In this section, we prove solution existence for the evolution of anisotropic incom-
pressible Navier–Stokes systems, accommodating to anisotropy, variable coefficients and
arbitrary n ≥ 2 the approaches presented, e.g., in [5] (Chapter 1, Section 6.5), [1] (Chapter 8),
[9] (Chapter 3), [10] (Chapter 3, Section 3), [6] (Section 4) for the constant-coefficient isotropic
Navier–Stokes equations.

Theorem 2. Let n ≥ 2 and T > 0. Let aαβ
ij ∈ L∞(0, T; L∞#) and the relaxed ellipticity condition

(3) hold. Let f ∈ L2(0, T; Ḣ−1
# ), u0 ∈ Ḣ0

#σ.
(i) Then, there exists a weak solution u ∈ L∞(0, T; Ḣ0

#σ) ∩ L2(0, T; Ḣ1
#σ) of the anisotropic

Navier–Stokes initial value problem (24)–(26) in the sense of Definition 1. Particularly,
limt→0⟨u(·, t), v⟩T = ⟨u0, v⟩T ∀ v ∈ Ḣ0

#σ. There is the unique pressure p ∈ L2(0, T;
Ḣ−n/2+1

# ) associated with the obtained u, that is the solution of Equation (24) in L2(0, T; Ḣ−n/2+1
# ).

(ii) Moreover, u satisfies the following (strong) energy inequality for any [t0, t] ⊂ [0, T],

1
2
∥u(·, t)∥2

L2#
+
∫ t

t0

aT(u(·, τ), u(·, τ))dτ ≤ 1
2
∥u(·, t0)∥2

L2#
+
∫ t

t0

⟨f(·, τ), u(·, τ)⟩Tdτ. (43)

It particularly implies the standard energy inequality for any t ∈ [0, T],

1
2
∥u(·, t)∥2

L2#
+
∫ t

0
aT(u(·, τ), u(·, τ))dτ ≤ 1

2
∥u0∥2

L2#
+
∫ t

0
⟨f(·, τ), u(·, τ)⟩T dτ. (44)

Proof. We prove the solution existence using the Galerkin algorithm, cf., e.g., [3] (Chapt. 6,
Sections 3, 6), [5] (Chapter 1, Section 6.4), [9] (Chapter 3, Section 3.3), [10] (Chapter 3,
Section 3), [6] (Section 4). The proof is conducted in several steps. In step (a) we imple-
ment the Galerkin algorithm to reduce the continuous weak problem to a correspond-
ing discrete formulation and prove that there is a subsequence of the discrete prob-
lem solutions that weakly (and, respectively, weakly-star) converges to a function u ∈
L∞(0, T; Ḣ0

#σ) ∩ L2(0, T; Ḣ1
#σ). In step (b) we prove that u′ ∈ L2(0, T; Ḣ−n/2

#σ ). Step (c)
includes the proof that the obtained function u is a weak solution of the Navier–Stokes
problem, while in step (d) we prove that it satisfies the energy inequality.

Step (a)

Let {wl} = w1, w2, . . . , wl , . . . be the sequence of real orthonormal eigenfunctions
of the Bessel potential operator Λ# in Ḣ0

#σ, see Section 5.3. This sequence constitutes an
orthonormal basis in Ḣ0

#σ and is similar to a periodic version of the special basis employed
in [5] (Chapter 1, Corollary 6.1). It belongs to Ċ∞

#σ and can be explicitly expressed in terms
of the Fourier harmonics, see Remark 2. Such choice of the linear independent functions
particularly facilitates the proof of existence for arbitrary dimension n ≥ 2. Another
possible choice is given by the eigenfunctions of the isotropic Stokes operator in Ḣ0

#σ, cf. [9]
(Section 2.2), [6] (Theorem 2.24).
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For each integer m ≥ 1, let us look for a solution

um(x, t) =
m

∑
l=1

ηl,m(t)wl , ηl,m(t) ∈ R, (45)

of the following discrete analogue of the initial-variational problem (32)–(33),

⟨u′
m, wk⟩T + aT(um, wk) + ⟨(um · ∇)um, wk⟩T

= ⟨f, wk⟩T , a.e. t ∈ (0, T), ∀ k ∈ {1, . . . , m}, (46)

⟨um, wk⟩T(·, 0) = ⟨u0, wk⟩T , ∀ k ∈ {1, . . . , m}. (47)

For a fixed m, Equations (46) and (47) constitute an initial value problem for the
nonlinear system of ordinary differential equations for unknowns ηl,m(t), ℓ ∈ {1, . . . , m},

m

∑
l=1

⟨wl , wk⟩T ∂tηl,m(t) +
m

∑
l=1

aT(t; wl , wk) ηl,m(t) +
m

∑
l,j=1

⟨(wl · ∇)wj, wk⟩Tηl,m(t)ηj,m(t)

= ⟨f , wk⟩T , a.e. t ∈ (0, T), ∀ k ∈ {1, . . . , m}, (48)
m

∑
l=1

⟨wl , wk⟩T ηl,m(0) = ⟨u0, wk⟩T , ∀ k ∈ {1, . . . , m}. (49)

We have ⟨f, wk⟩T ∈ L2(0, T) and due to the orthonormality of the functions wl ,
we have ⟨wl , wk⟩T = δℓk. Then by the Carathéodory existence theorem, see, e.g., [27]
(Theorem 5.1), the ODE initial value problem (48) and (49) has an absolutely continuous
solution ηl,m(t), l = 1, . . . , m, on an interval [0, Tm], 0 < Tm ≤ T.

Multiplying Equations (48) by ηk,m and summing them up over k ∈ {1, . . . , m}, and
also conducting the same with Equations (49), we obtain

⟨∂tum, um⟩T + aT(um, um) + ⟨(um · ∇)um, um⟩T = ⟨f , um⟩T , a.e. t ∈ (0, Tm), (50)

⟨um(·, 0), um(·, 0)⟩T = ⟨u0, um(·, 0)⟩T. (51)

By equality (80) for the trilinear term, Equation (50) is reduced to

1
2

∂t∥um∥2
L2#

+ aT(um, um) = ⟨f , um⟩T , a.e. t ∈ (0, Tm), (52)

Inequality (30) for the quadratic form aT and Yong’s inequality (cf., e.g., [6] (p. 24))
for the right hand side of (52) imply

∂t∥um∥2
L2#

+
1
2

C−1
A ∥um∥2

Ḣ1
#
≤ ∂t∥um∥2

L2#
+ 2aT(um, um) = 2⟨f , um⟩T

≤ 2∥f∥Ḣ−1
#
∥um∥Ḣ1

#
≤ 1

4
C−1
A ∥um∥2

Ḣ1
#
+ 4CA∥f∥2

Ḣ−1
#

, a.e. t ∈ (0, Tm). (53)

Equation (51) implies

∥um(·, 0)∥2
L2#

= ⟨u0, um(·, 0)⟩T ≤ ∥u0∥L2#∥um(·, 0)∥L2# . (54)

Hence, (53) and (54) lead to

∂t∥um∥2
L2#

+
1
4

C−1
A ∥um∥2

Ḣ1
#
≤ 4CA∥f∥2

Ḣ−1
#

, a.e. t ∈ (0, Tm), (55)

∥um(·, 0)∥L2# ≤ ∥u0∥L2# . (56)
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Integrating (55), we obtain

∥um(·, t)∥2
L2#

+
1
4

C−1
A

∫ t

0
∥um(·, τ)∥2

Ḣ1
#
dτ ≤ ∥um(·, 0)∥2

L2#
+ 4CA

∫ t

0
∥f(·, τ)∥2

Ḣ−1
#

dτ

≤ ∥u0∥2
L2#

+ 4CA∥f∥2
L2(0,T;Ḣ−1

# )
, t ∈ [0, Tm]. (57)

Estimate (57) particularly implies that the ODE initial value problem (48) and (49) has
an absolutely continuous solution ηl,m(t), l = 1, . . . , m, on the whole interval [0, T], where
the right-hand side f is prescribed, i.e., we can take Tm = T.

Hence, from (57) we conclude that

∥um∥2
L∞(0,T;L2#)

= sup
t∈[0,T]

∥um(·, t)∥2
L2#

≤ ∥u0∥2
L2#

+ 4CA∥f∥2
L2(0,T;Ḣ−1

# )
, (58)

∥um∥2
L2(0,T;Ḣ1

#)
≤ 4CA

(
∥u0∥2

L2#
+ 4CA∥f∥2

L2(0,T;Ḣ−1
# )

)
. (59)

Recall that ∥u∥L2# = ∥u∥H0
#
, while ∥u∥Hs

#
= ∥u∥Ḣs

#σ
for u ∈ Ḣs

#σ. Estimates (58)

and (59) mean that the sequence {um} is bounded in L∞(0, T; Ḣ0
#σ)) and in L2(0, T; Ḣ1

#σ),
implying that the sequence has a subsequence still denoted as {um} that converges
weakly in L2(0, T; Ḣ1

#σ) and weakly-star in L∞(0, T; Ḣ0
#σ) to a function u ∈ L∞(0, T; Ḣ0

#σ) ∩
L2(0, T; Ḣ1

#σ). Note, that inequality (58) implies also that

∥u(·, t)∥2
Ḣ0

#σ
≤ ∥u0∥2

Ḣ0
#σ
+ 4CA∥f∥2

L2(0,T;Ḣ−1
# )

, a.e. t ∈ (0, T).

Step (b)

Let us also prove that the sequence {u′
m} is bounded in L2(0, T; Ḣ−n/2

#σ ), cf. [5] (Chapter
1, Section 6.4). To this end, we multiply Equations (46) by wk and sum them up over
k ∈ {1, . . . , m}, to obtain

u′
m − PmLum + Pm[(um · ∇)um] = Pmf , a.e. t ∈ (0, T), (60)

where Pm is the projector operator from H−n/2
#σ to Span{w1, . . . , wm} defined in (86) and

we took into account that

Pmu′
m =

m

∑
k=1

⟨u′
m, wk⟩Twk =

m

∑
k=1

m

∑
l=1

η′
l,m(t)⟨wl , wk⟩Twk =

m

∑
l=1

η′
l,m(t)wl = u′

m.

Further, due to Theorem 4(iii), for any h ∈ Hr
#, r ∈ R, we have

∥Pmh∥2
Ḣr

#σ
≤ ∥h∥2

Hr
#
. (61)

By (61), (1) and (4) we have

∥PmLum∥2
Ḣ−n/2

#σ

≤ ∥Lum∥2
Ḣ−n/2

#σ

≤ ∥Lum∥2
H−1

#
≤ ∥A∥2∥um∥2

H1
#

and then by (59),

∥PmLum∥2
L2(0,T;Ḣ−n/2

#σ )
≤ ∥Lum∥2

L2(0,T;Ḣ−1
#σ )

≤ ∥A∥2∥um∥2
L2(0,T;H1

#)

≤ 4∥A∥2CA

(
∥u0∥2

L2#
+ 4CA∥f∥2

L2(0,T;Ḣ−1
# )

)
. (62)
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Next, by (61) we obtain

∥Pmf∥2
L2(0,T;Ḣ−n/2

#σ )
≤ ∥f∥2

L2(0,T;Ḣ−n/2
#σ )

≤ ∥f∥2
L2(0,T;H−1

# )
. (63)

For any v1 ∈ H1
#σ, v2 ∈ H1

#, by Theorem 3(b) and the Sobolev interpolation inequality
(102), we obtain

∥(v1 · ∇)v2∥2
Ḣ−n/2

#
= ∥div(v1 ⊗ v2)∥2

H−n/2
#

≤ ∥v1 ⊗ v2∥2
(H1−n/2

# )n×n

≤ C2
∗(1/2, 1/2, n)∥v1∥2

H1/2
#

∥v2∥2
H1/2

#
≤ C2

∗(1/2, 1/2, n)∥v1∥H0
#
∥v1∥H1

#
∥v2∥H0

#
∥v2∥H1

#
.

Thus,

∥Pm[(um · ∇)um]∥2
Ḣ−n/2

#σ

≤ ∥(um · ∇)um∥2
H−n/2

#
≤ C2

∗(1/2, 1/2, n)∥u∥2
H0

#
∥u∥2

H1
#

and then by (58) and (59),

∥Pm[(um · ∇)um]∥2
L2(0,T;Ḣ−n/2

#σ )
≤ C2

∗(1/2, 1/2, n)∥um∥2
L∞(0,T;H0

#)
∥um∥2

L2(0,T;H1
#)

≤ 4C2
∗(1/2, 1/2, n)CA

(
∥u0∥2

L2#
+ 4CA∥f∥2

L2(0,T;Ḣ−1
# )

)2
. (64)

Equation (60) and inequalities (62), (63) and (64) imply that the sequence {u′
m} is

bounded in L2(0, T; Ḣ−n/2
#σ ) and hence it has a subsequence converging to a function

u† ∈ L2(0, T; Ḣ−n/2
#σ ) weakly in this space.

Let us prove that u′ = u†. Indeed, for any ϕ ∈ C∞
c (0, T) and w ∈ Ḣn/2

#σ , evidently,

v := wϕ ∈ L2(0, T; Ḣn/2
#σ ) =

(
L2(0, T; Ḣ−n/2

#σ )
)∗

and we have

∫ T

0
⟨u†(·, t), w⟩Tϕ(t)dt =

∫ T

0
⟨u†(·, t), v(·, t)⟩Tdt

=
∫ T

0
⟨u†(·, t)− u′

m(·, t), v(·, t)⟩Tdt +
∫ T

0
⟨u′

m(·, t), w⟩Tϕ(t)dt. (65)

The first integral in the right-hand side of (65) tends to zero as m → ∞ due to the weak
convergence of u′

m to u† in L2(0, T; Ḣn/2
#σ ). For the second integral in the right-hand side of

(65) we obtain,

∫ T

0
⟨u′

m(·, t), w⟩Tϕ(t)dt = −
∫ T

0
⟨um(·, t), w⟩Tϕ′(t)dt

=
∫ T

0
⟨u(·, t)− um(·, t), w⟩Tϕ′(t)dt −

∫ T

0
⟨u(·, t), w⟩Tϕ′(t)dt (66)

The first integral in the right-hand side of (66) tends to zero as m → ∞ due to the weak
convergence of um to u in L2(0, T; Ḣ1

#σ). Hence, taking the limits of (65) and (66) as m → ∞,
we obtain,∫ T

0
⟨u†(·, t), w⟩Tϕ(t)dt = −

∫ T

0
⟨u(·, t), w⟩Tϕ′(t)dt =

∫ T

0
∂t⟨u(·, t), w⟩Tϕ(t)dt,

which implies that ⟨u†(·, t), w⟩T is the distributional derivative in time of ⟨u(·, t), w⟩T and
thus, as in the proof of Lemma 4(ii) the time derivative commutates with the dual product
over T, leading to

⟨u′(·, t), w⟩T = ∂t⟨u(·, t), w⟩T = ⟨u†(·, t), w⟩T
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in the sense of distributions on (0, T), for any w ∈ Ḣn/2
#σ . Since w is an arbitrary test

function in Ḣn/2
#σ , this implies that u′ = u† and hence u′ ∈ L2(0, T; Ḣ−n/2

#σ ).
Applying now Theorem 6 (the Aubin–Lions lemma) with G = Ḣ1

#σ, H = Ḣ0
#σ, K =

Ḣ−n/2
#σ and p = q = 2, we conclude that the subsequence {um} can be chosen in such a

way that it converges to u ∈ L∞(0, T; Ḣ0
#σ) ∩ L2(0, T; Ḣ1

#σ) also strongly in L2(0, T; Ḣ0
#σ).

Since u ∈ L2(0, T; Ḣ1
#σ) and u′ ∈ L2(0, T; Ḣ−n/2

#σ ), Theorem 7 implies that u is almost

everywhere on [0, T] equal to a function belonging to C0([0, T]; Ḣ−(n−2)/4
#σ ). Further on,

under u we will understand the redefined (on a zero-measure set in [0, T]) function belong-
ing to C0([0, T]; Ḣ−(n−2)/4

#σ ), which also means that ∥u(·, t)− u(·, 0)∥
Ḣ−(n−2)/4

#σ

→ 0 as t → 0.

Since u ∈ L∞(0, T; Ḣ0
#σ) as well, Lemma 3 implies that u is Ḣ0

#σ-weakly continuous in time
on [0, T] and hence limt→0⟨u(·, t), v⟩T = ⟨u(·, 0), v⟩T ∀ v ∈ Ḣ0

#σ.

Step (c)

Let us prove that the limit function u solves the initial-variational problem (32)–(33).
First of all, equality (60) and inequality (62) imply that

∥u′
m + Pm[(um · ∇)um]∥2

L2(0,T;H−1
#σ )

≤ 2∥Pmf∥2
L2(0,T;H−1

# )
+ 2∥PmLum∥2

L2(0,T;H−1
# )

≤ 2∥f∥2
L2(0,T;H−1

# )
+ 8∥A∥2CA

(
∥u0∥2

L2#
+ 4CA∥f∥2

L2(0,T;Ḣ−1
# )

)
.

Thus the sequence PmDum := u′
m + Pm[(um · ∇)um] is bounded in L2(0, T; Ḣ−1

#σ )
and hence there exists a subsequence of the sequence um such that the corresponding
subsequence of the sequence PmDum weakly converges in this space to a distribution
u• ∈ L2(0, T; Ḣ−1

#σ ). Let us prove that u• = Du := u′ + Pσ[(u · ∇)u]. Indeed, for any
ϕ ∈ L2(0, T) and w ∈ Ḣn/2

#σ , evidently,

v := wϕ ∈ L2(0, T; Ḣn/2
#σ ) =

(
L2(0, T; Ḣ−n/2

#σ )
)∗

⊂ L2(0, T; Ḣ1
#σ) =

(
L2(0, T; Ḣ−1

#σ )
)∗

,

and we have

∫ T

0
⟨Du − u•, v⟩Tdt =

∫ T

0
⟨Du − PmDum, v⟩Tdt +

∫ T

0
⟨PmDum − u•, v⟩Tdt

=
∫ T

0
⟨u′ − u′

m, v⟩Tdt +
∫ T

0
⟨Pσ[(u · ∇)u]− Pm[(um · ∇)um], v⟩Tdt

+
∫ T

0
⟨PmDum − u•, v⟩Tdt. (67)

The first and the last integrals in the right-hand side of (67) tend to zero as m → ∞ due
to the weak convergence of u′

m to u′ in L2(0, T; Ḣ−n/2
#σ ) and of PmDum to u• in L2(0, T; Ḣ−1

#σ ).
For the middle integral in the right hand side of (67) we obtain, as in [5] (Section 6.4.4), for
any function wk ∈ Ċ∞

#σ from our basis in Ḣn/2
#σ , for m ≥ k,

∫ T

0
⟨Pm[(um · ∇)um], wk⟩Tϕ(t)dt =

∫ T

0
⟨(um · ∇)um, wk⟩Tϕ(t)dt

= −
∫ T

0
⟨um · ∇wk, um⟩Tϕ(t)dt = −

∫ T

0
⟨Pσ[um · ∇wk], um⟩Tϕ(t)dt

→ −
∫ T

0
⟨Pσ[u · ∇wk], u⟩Tϕ(t)dt =

∫ T

0
⟨Pσ[(u · ∇)u], wk⟩Tϕ(t)dt, m → ∞ (68)
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by the strong convergence of {um} to u in in L2(0, T; Ḣ0
#σ). Since Pσ[(u · ∇)u] belongs to

L2(0, T; Ḣ−n/2
#σ ), Pm[(um · ∇)um] is uniformly bounded in this space and {wk} is a basis in

Ḣn/2
#σ , we conclude that the convergence in (68) implies that

∫ T

0
⟨Pm[(um · ∇)um], w⟩Tϕ(t)dt →

∫ T

0
⟨Pσ[(u · ∇)u], w⟩Tϕ(t)dt, m → ∞

and thus, ∫ T

0
⟨Du − u•, w⟩Tϕ(t)dt = 0 ∀ ϕ ∈ L2(0, T), ∀w ∈ Ḣn/2

#σ ,

implying that ∥⟨Du − u•, w⟩T∥L2(0,T) = 0 for any w ∈ Ḣn/2
#σ and thus ⟨Du(·, t)− u•(·, t),

w⟩T = 0 for a.e. t ∈ (0, T). Choosing w = Λn
# (Du − u•), we conclude that ∥Du(·, t)−

u•(·, t)∥Ḣ−n/2
#σ

= 0 for a.e. t ∈ (0, T) and hence ∥Du − u•∥L2(0,T;Ḣ−n/2
#σ )

= 0, i.e., Du = u• ∈
L2(0, T; Ḣ−1

#σ ).
Now, we continue reasoning as, e.g., in [5] (Chapter 1, Section 6.4.4) to conclude that

the limit function u solves the initial-variational problem (32) and (33). Indeed, let us
multiply Equation (46) by an arbitrary ϕ ∈ L2(0, T), and integrate it in t to obtain.

∫ T

0

[〈
u′

m + Pσ[(um · ∇)um], wk
〉
T + aT(um, wk)− ⟨f , wk⟩T

]
ϕ(t)dt = 0,

∀ k ∈ {1, 2, . . .}. (69)

To take the limit of (69) as m → ∞, we remark that the terms linearly depending on
um tend to the corresponding terms for u due to the weak convergences discussed before.
For the nonlinear term, by (80) we have∫ T

0
⟨Pσ[(um · ∇)um], wk⟩Tϕ(t)dt =

∫ T

0
⟨(um · ∇)um, wk⟩Tϕ(t)dt

= −
∫ T

0
⟨(um · ∇)wk, um⟩Tϕ(t)dt → −

∫ T

0
⟨(u · ∇)wk, u⟩Tϕ(t)dt

=
∫ T

0
⟨(u · ∇)u, wk⟩Tϕ(t)dt =

∫ T

0
⟨Pσ[(u · ∇)u], wk⟩Tϕ(t)dt,

where the limit is due to the strong convergence of um to u in L2(0, T; Ḣ0
#σ) and the smooth-

ness of wk. Thus, we obtain∫ T

0

[〈
u′ + Pσ[(u · ∇)u] , wk

〉
T + aT(u , wk)− ⟨f , wk⟩T

]
ϕ(t)dt = 0, ∀ k ∈ {1, 2, . . .}. (70)

Since Du = u′ + Pσ[(u · ∇)u] ∈ L2(0, T; Ḣ−1
#σ ) and {wk} is a basis in Ḣ1

#σ, Equation (70)
implies that for any ϕ ∈ L2(0, T) and w ∈ Ḣ1

#σ ,

∫ T

0

[〈
u′ + Pσ[(u · ∇)u] , w

〉
T + aT(u , w)− ⟨f , w⟩T

]
ϕ(t)dt = 0. (71)

Equation (71) means that∥∥〈u′ + Pσ[(u · ∇)u] , w
〉
T + aT(u , w)− ⟨f , w⟩T

∥∥
L2(0,T) = 0 ∀w ∈ Ḣ1

#σ,

which implies (32).
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To prove (33), let us employ in (69) an arbitrary ϕ ∈ C∞[0, T] such that ϕ(T) = 0,
integrate the first term by parts with account of (47) and take the limit as m → ∞ to obtain

∫ T

0

{
⟨−u(·, t), wk⟩Tϕ′(t) + ⟨Pσ[(u(·, t) · ∇)u(·, t)]ϕ(t), wk⟩T + aT(u(·, t), wk)ϕ(t)

− ⟨f(·, t), wk⟩Tϕ(t)
}

dt = ⟨u0, wk⟩Tϕ(0), ∀ k ∈ {1, 2, . . .}. (72)

Replacing in (72) u by its redefined version that is Ḣ0
#σ-weakly continuous in time (cf.

the last paragraph of the step (b)) and integrating by parts the first term in (72), we obtain

∫ T

0

{〈
u′(·, t) + Pσ[(u(·, t) · ∇)u(·, t)], wk

〉
T + aT(u(·, t), wk)

− ⟨f(·, t), wk⟩T
}

ϕ(t)dt = ⟨u0, wk⟩Tϕ(0)− ⟨u(·, 0), wk⟩Tϕ(0), ∀ k ∈ {1, 2, . . .}.

Comparing with (71) and taking into account that ϕ(0) is arbitrary, we obtain that
⟨u0 − ⟨u(·, 0), wk⟩T, and because wk is a basis in Ḣ0

#σ, we conclude that u0 = u(·, 0) thus
proving the initial condition (33).

The existence and uniqueness of the associated pressure p ∈ L2(0, T; Ḣ−n/2+1
# ) follows

from Lemma 1(iii).

Step (d)

Let us prove the (strong) energy inequality (cf., [10] (Chapter 3, Remark 4(ii)), [6]
(Theorem 4.6) and references therein, for the isotropic constant-coefficient case). Here
we will generalise the proof of [6] (Theorem 4.6). To this end, let us consider again the
subsequence {um} from the previous step, which still satisfies Equation (52). Let 0 ≤ t0 <
t ≤ T. Integrating (52) in time, we get

1
2
∥um(·, t)∥2

L2#
+
∫ t

t0

aT(τ; um(·, τ), um(·, τ))dτ

=
1
2
∥um(·, t0)∥2

L2#
+
∫ t

t0

⟨f(·, τ), um(·, τ)⟩Tdτ. (73)

We would like to take the limits of each term in (73) as m → ∞. First of all, since um
converges to u strongly in L2(0, T; Ḣ0

#σ), we obtain that

∥um(·, τ)∥2
L2#

→ ∥u(·, τ)∥2
L2#

, for a.e. τ ∈ [0, T]. (74)

Further, since um converges to u weakly in L2(0, T; Ḣ1
#σ) and f ∈ L2(0, T; Ḣ−1

# ) ⊂ (L2(0, T; Ḣ1
#σ))

∗,
we have ∫ t

t0

⟨f(·, τ), um(·, τ)⟩Tdτ →
∫ t

t0

⟨f(·, τ), u(·, τ)⟩Tdτ, ∀ [t0, t] ⊂ [0, T] (75)

Finally, um converges to u weakly in L2(0, T; Ḣ1
#σ) and

|||w|||L2(t0,t;Ḣ1
#)

:=
(∫ t

t0

aT(τ; w(·, τ), w(·, τ))dτ

)1/2

is an equivalent norm in L2(t0, t; Ḣ1
#σ), see (31). Since u is a weak limit of um in L2(t0, t; Ḣ1

#),
we have (see, e.g., the Remark in Section 4.43 of [28])

|||u|||2L2(t0,t;Ḣ1
#)
≤ lim inf

m→∞
|||um|||2L2(t0,t;Ḣ1

#)
.
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Hence,∫ t

t0

aT(τ; u(·, τ), u(·, τ))dτ ≤ lim inf
m→∞

∫ t

t0

aT(τ; um(·, τ), um(·, τ))dτ, ∀ [t0, t] ⊂ [0, T]. (76)

Taking lim inf
m→∞

from both sides of (73), due to (74)–(76), we obtain (43) for a.e. [t0, t] ⊂ [0, T].
Similar to the reasoning in the proof of Theorem 4.6 in [6], let us now prove that the

(strong) energy inequality (43) holds also for any [t0, t] ⊂ [0, T]. Let us take some t0 for
which (43) holds for a.e. t′ > t0. Let us now choose any t ∈ (t0, T]. Then there exists a
sequence t′i → t such that

1
2
∥u(·, t′i)∥2

L2#
+
∫ t′i

t0

aT(τ; u(·, τ), u(·, τ))dτ ≤ 1
2
∥u(·, t0)∥2

L2#
+
∫ t′i

t0

⟨f(·, τ), u(·, τ)⟩Tdτ.

Since u ∈ L2(0, T; Ḣ1
#σ), we have

∫ t′i

t0

aT(τ; u(·, τ), u(·, τ))dτ →
∫ t

t0

aT(τ; u(·, τ), u(·, τ))dτ,∫ t′i

t0

⟨f(·, τ), u(·, τ)⟩Tdτ →
∫ t

t0

⟨f(·, τ), u(·, τ)⟩Tdτ.

On the other hand, the L2#-weak continuity of u implies that

∥u(·, t)∥2
L2#

≤ lim inf
t′i→t

∥u(·, t′i)∥2
L2#

.

Thus,

1
2
∥u(·, t)∥2

L2#
+
∫ t

t0

aT(τ; u(·, τ), u(·, τ))dτ

≤ lim inf
t′i→t

(
1
2
∥u(·, t′i)∥2

L2#
+
∫ t′i

t0

aT(τ; u(·, τ), u(·, τ))dτ

)
≤ lim inf

t′i→t

(
1
2
∥u(·, t0)∥2

L2#
+
∫ t′i

t0

⟨f(·, τ), u(·, τ)⟩Tdτ

)
=

1
2
∥u(·, t0)∥2

L2#
+
∫ t

t0

⟨f(·, τ), u(·, τ)⟩Tdτ.

By a similar argument, we can take any t0.

5. Auxiliary Results
5.1. Advection Term Properties

The Gauss divergence theorem and periodicity imply the following identity for any
v1, v2, v3 ∈ C∞

# .

⟨(v1 · ∇)v2, v3⟩T =
∫
T
∇ · (v1(v2 · v3))dx − ⟨(∇ · v1)v3 + (v1 · ∇)v3, v2⟩T

= −⟨(v1 · ∇)v3, v2⟩T − ⟨(∇ · v1)v3, v2⟩T (77)

Hence, for any v1, v2 ∈ C∞
# ,

⟨(v1 · ∇)v2, v2⟩T = −1
2
⟨(∇ · v1)v2, v2⟩T = −1

2

〈
div v1, |v2|2

〉
T

. (78)

In view of (77) we obtain the identity

⟨(v1 · ∇)v2 , v3⟩T=−⟨(v1 · ∇)v3 , v2⟩T ∀ v1 ∈ C∞
#σ , v2, v3 ∈ C∞

# , (79)



Mathematics 2024, 12, 1817 20 of 27

and hence the following well-known formula for any v1 ∈ C∞
#σ , v2 ∈ C∞

# ,

⟨(v1 · ∇)v2, v2⟩T = 0. (80)

Equation (80) evidently holds also for v1 and v2 from the more general spaces, for which
the left-hand side in (80) is bounded and to which C∞

#σ and C∞
# , respectively, are densely

embedded.

5.2. Some Point-Wise Multiplication Results

Let us accommodate the periodic function spaces in Rn, n ≥ 1, a particular case
of a much more general Theorem 1 in Section 4.6.1 of [29] about point-wise products of
functions/distributions.

Theorem 3. Assume n ≥ 1, s1 ≤ s2 and s1 + s2 > 0. Then there exists a constant C∗(s1, s2, n) >
0 such that for any f1 ∈ Hs1

# and f2 ∈ Hs1
# ,

(a) f1 · f2 ∈ Hs1
# and ∥ f1 · f2∥H

s1
#
≤ C∗(s1, s2, n)∥ f1∥H

s1
#
∥ f2∥Hs2

#
if s2 > n/2;

(b) f1 · f2 ∈ Hs1+s2−n/2
# and ∥ f1 · f2∥H

s1+s2−n/2
#

≤ C∗(s1, s2, n)∥ f1∥H
s1
#
∥ f2∥Hs2

#
if s2 < n/2.

Proof. Items (a) and (b) follow, respectively, from items (i) and (iii) of Theorem 1 in Section
4.6.1 of [29], when we take into account the norm equivalence in the standard and periodic
Sobolev spaces.

5.3. Spectrum of the Periodic Bessel Potential Operator

In this section, we assume that vector functions/distributions u are generally complex-
valued and the Sobolev spaces Ḣs

#σ are complex. Let us recall the definition

(Λr
# u)(x) := ∑

ξ∈Żn

ϱ(ξ)rû(ξ)e2πix·ξ ∀ u ∈ Ḣs
#σ , s, r ∈ R. (81)

of the continuous periodic Bessel potential operator Λr
# : Ḣs

#σ → Ḣs−r
#σ , r ∈ R, see (12),

(17), (22).

Theorem 4. Let r ∈ R, r ̸= 0.
(i) Then, the operator Λr

# in Ḣ0
#σ possesses a (non-strictly) monotone sequence of real eigenval-

ues λ
(r)
j and a real orthonormal sequence of associated eigenfunctions wj such that

Λr
#wj = λ

(r)
j wj, j ≥ 1, λ

(r)
j > 0, (82)

λ
(r)
j → +∞, j → +∞ if r > 0; λ

(r)
j → 0, j → +∞ if r < 0; (83)

wj ∈ Ċ∞
#σ , (wj, wk)Ḣ0

#σ
= δjk ∀ j, k > 0. (84)

(ii) Moreover, the sequence {wj} is an orthonormal basis in Ḣ0
#σ, that is

u =
∞

∑
i=1

⟨u, wj⟩Twj (85)

where the series converges in Ḣ0
#σ for any u ∈ Ḣ0

#σ.
(iii) In addition, the sequence {wj} is also an orthogonal basis in Ḣr

#σ with

(wj, wk)Ḣr
#σ

= λ
(r)
j λ

(r)
k δjk ∀ j, k > 0.
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and for any u ∈ Ḣr
#σ series (85) converges in Ḣr

#σ, that is, the sequence of partial sums

Pmu :=
m

∑
j=1

⟨u, wj⟩Twj (86)

converges to u in Ḣr
#σ as m → ∞. The operator Pm defined by (86) is for any r ∈ R the orthogonal

projector operator from Hr
# to Span{w1, . . . , wm}.

Proof. Let first r > 0 and let us consider the continuous periodic Bessel potential operator
Λ−r

# : Ḣ0
#σ → Ḣr

#σ. Hence by the Rellich–Kondrachov compactness theorem (see, e.g., [24]
(Theorem 3.27)) applied to the Sobolev spaces on the torus T, the operator Λ−r

# : Ḣ0
#σ → Ḣ0

#σ
is compact. It is also self-adjoined since for any u, v ∈ Ḣ0

#σ we have,

(Λ−r
# u, v)Ḣ0

#σ
= ⟨Λ−r

# u, v̄⟩T = ⟨u, Λ−r
# v̄⟩T = (u, Λ−r

# v)Ḣ0
#σ

.

Then the Hilbert–Schmidt theorem (see, e.g., [25] (Theorem 8.94)) implies that there is

a sequence of nonzero real eigenvalues
{

λ
(−r)
j

}∞

j=1
of the operator Λ−r

# : Ḣ0
#σ → Ḣ0

#σ, such

that the sequence
∣∣∣λ(−r)

j

∣∣∣ is monotone non-increasing and limi→∞ λ
(−r)
j = 0. Furthermore,

if each eigenvalue of Λ−r
# is repeated in the sequence according to its multiplicity, then

there exists an orthonormal (in Ḣ0
#σ) set

{
wj
}∞

i=1 of the corresponding eigenfunctions, i.e.,

Λ−r
# wj = λ

(−r)
j wj. (87)

Moreover, the sequence
{

wj
}∞

i=1 is an orthonormal basis in Ḣ0
#σ for Ḣr

#σ as a subset
of Ḣ0

#σ.
In addition, since the eigenvalues are real, (87) implies that the eigenfunctions are

either real or appear for the same eigenvalue in complex-conjugate pairs and hence their
real and imaginary parts are also eigenfunctions. This means that we can choose the
orthonormal basis consisting of real eigenfunctions only.

Since Ḣr
#σ is dense in Ḣ0

#σ, the sequence
{

wj
}∞

i=1 is an orthonormal basis for the entire
space Ḣ0

#σ. The operator Λ−r
# can be represented as

Λ−r
# v =

∞

∑
i=1

λ
(−r)
j ⟨v, wj⟩Twj ∀ v ∈ Ḣ0

#σ , (88)

where the series converges in Ḣ0
#σ.

Let us remark that for any v ∈ Ḣ0
#σ

(Λ−r
# v, v)Ḣ0

#σ
= ⟨Λ−r

# v, v̄⟩T = ⟨Λ−r/2
# v, Λ−r/2

# v⟩T = ∥Λ−r/2
# v∥2

Ḣ0
#σ

= ∥v∥2
Ḣr/2

#σ

≥ ∥v∥2
Ḣ0

#σ
,

that is, Λ−r
# is a positive-definite operator. To conclude that all λj are positive, we observe

that for the unit real eigenfunctions wj, (87) implies

λ
(−r)
j = λ

(−r)
j ⟨wj, wj⟩T = ⟨Λ−r

# wj, wj⟩T = ⟨Λ−r/2
# wj, Λ−r/2

# wj⟩T > 0.

Applying Λr to (87), we obtain

Λr
#wj = λ

(r)
j wj, where λ

(r)
j = 1/λ

(−r)
j (89)

implying (82) with λ
(r)
j = 1/λ

(−r)
j and the coinciding eigenfunctions for the operators Λr

#

and Λ−r
# .
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Since wj ∈ Ḣ0
#σ and λj ̸= 0, the Equation (87) implies wj ∈ Ḣr

#σ. Moreover, applying
to (87) operator Λ−r(k−1), with any integer k, and employing consecutively (89) or (87),
we obtain

Λ−rk
# wj = (λ

(−r)
j )kwj ∀ k ∈ Z. (90)

and taking into account the continuity of the operator Λ−rk
# : Ḣ0

#σ → Ḣkr
#σ for any integer k,

we conclude that wj ∈ Ċ∞
#σ.

Finally, let us prove that the sequence {wj} is an orthogonal basis also in Ḣr
#σ. To

this end, let u ∈ Ḣr
#σ. We know that the series (85) converges in Ḣ0

#σ. Let us prove that
it converges also in Ḣr

#σ, that is, the sequence of its partial sums converges in this space.
Indeed, for any integer m ≥ 1,

m

∑
j=1

⟨u, wj⟩Twj =
m

∑
j=1

⟨u, λ
(r)
j wj⟩Tλ

(−r)
j wj

=
m

∑
j=1

⟨u, Λr
#wj⟩TΛ−r

# wj = Λ−r
# ∑

j=1
⟨Λr

#u, wj⟩Twj. (91)

Since u ∈ Ḣr
#σ we have that Λr

#u ∈ Ḣ0
#σ implying that the sequence ∑m

j=1⟨Λr
#u, wj⟩Twj

converges in Ḣ0
#σ to Λr

#u as m → ∞. The continuity of the operator Λ−r
# : Ḣ0

#σ → Ḣr
#σ then

implies that the right-hand side of (91) converges in Ḣr
#σ to u together with the sequence of

the partial sums in the left-hand side. This means that series (85) converges in Ḣr
#σ to u as

well. Thus the set {wj} is complete in Ḣr
#σ.

The orthogonality of the set {wj} in Ḣr
#σ is implied by the relations

(wj, wk)Ḣr
#σ

= (Λr
#wj, Λr

#wk)Ḣ0
#σ

= (λ
(r)
j wj, λ

(r)
k wk)Ḣ0

#σ
= λ

(r)
j λ

(r)
k ⟨wj, wk⟩T = λ

(r)
j λ

(r)
k δjk.

Hence, the set {wj} is an orthogonal basis in Ḣr
#σ.

Although we started from r > 0, in the proof we covered the cases of both positive
and negative r.

Similar to the reasoning at the end of Section 2.2 in [9], for the eigenvalues and
eigenfunctions of the isotropic Stokes operator in a periodic setting, let us provide an explicit
representation of the eigenvalues and eigenfunctions of the operator Λr

# : Ḣ0
#σ → Ḣ0

#σ,
r ∈ R, r ̸= 0.

Employing representations (11) and (81) in (82), we obtain for a fixed j,

∑
ξ∈Żn

ϱ(ξ)rŵj(ξ)e2πix·ξ = λ
(r)
j ∑

ξ∈Żn

ŵj(ξ)e2πix·ξ , (92)

that is, (
ϱ(ξ)r − λ

(r)
j

)
ŵj(ξ) = 0 ∀ ξ ∈ Żn. (93)

This implies that the eigenvalues and the corresponding eigenfunctions of the operator
Λr can be explicitly represented as {λ

(r)
j } = {λ

(r)
η,β}, {wj} = {wη,β}, where η ∈ Żn,

β = {1, . . . , n − 1},

λ
(r)
η,β = ϱ(η)r = (1 + |η|2)r/2, wη,β(x) = ẘη,βe2πix·η. (94)
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For a fixed η, the n − 1 orthonormal constant real vectors ẘη,β, β = {1, . . . , n − 1} are
obtained by the orthogonalisation in Rn of the real vector set

w̃η,α = eα −
ηαη

|η|2 , α = {1, . . . , n},

where eα are canonical (coordinate) vectors in Rn. Note, that (w̃η,α · η) = 0.

Remark 2. Relations (94) particularly imply that λ
(r)
η,β = λr

η,β, where λη,β := λ
(1)
η,β = ϱ(η) =

(1 + |η|2)1/2, i.e., λ
(r)
j = λr

j and the corresponding eigenfunctions coincide for any r ∈ R, r ̸= 0.

Since the sequence of eigenfunctions {wj} corresponding to λ
(r)
j is the same for any r ∈ R, r ̸= 0,

Theorem 4 implies that the sequence constitutes a real orthogonal basis in any space Ḣr
#σ, r ∈ R.

5.4. Isomorphism of Divergence and Gradient Operators in Periodic Spaces

In the following assertion, we provide for arbitrary s ∈ R and dimension n ≥ 2 the
periodic version of Bogovskii/deRham-type results well known for non-periodic domains
and particular values of s, see, e.g., [30,31] and references therein.

Lemma 2. Let s ∈ R and n ≥ 2. The operators

div : Ḣs+1
#g → Ḣs

# , (95)

grad : Ḣs
# → Ḣs−1

#g (96)

are isomorphisms.

Proof. (i) Since Ḣs+1
#g ⊂ Ḣs+1

# , operator (95) is continuous. Let f ∈ Ḣs
# and let us consider

the equation

div F = f (97)

for F ∈ Ḣs+1
#g . Calculating the Fourier coefficients of both sides of the equation, we obtain

2πiξ · F̂(ξ) = f̂ (ξ), ξ ∈ Żn.

By inspection, one can see that this equation has a solution in the form

F̂(ξ) =
ξ f̂ (ξ)

2πi|ξ|2 , ξ ∈ Żn, (98)

that is,

F̂(ξ) = 2πiξq̂ = ∇̂q , where q̂ = − f̂ (ξ)
(2π)2|ξ|2 , ξ ∈ Żn.

By (98), (7) and (8), we obtain

∥F∥2
Ḣs+1

#
= ∑

ξ∈Żn

ϱ(ξ)2(s+1)|F̂(ξ)|2 = ∑
ξ∈Żn

ϱ(ξ)2s ϱ(ξ)2

(2π)2|ξ|2 | f̂ (ξ)|2

≤ 2 ∑
ξ∈Żn

ϱ(ξ)2s| f̂ (ξ)|2 = 2∥ f ∥2
Ḣs

#
.

Hence, the solution F given by (98) belongs to Ḣs+1
#g and satisfies the estimate ∥F∥Ḣs+1

#
≤

√
2∥ f ∥Ḣs

#
. There are no other solutions in Ḣs+1

#g since otherwise the difference, F̃, of two
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solutions of equation (97) would satisfy equation div F̃ = 0, and hence, belong to Ḣs+1
#g ∩

Ḣs+1
#σ = {0}. Thus, operator (95) is an isomorphism.

(ii) By the definition of the space Ḣs−1
#g , operator (96) is continuous. Let F ∈ Ḣs−1

#g and
let us consider the equation

∇ f = F (99)

for f ∈ Ḣs
#. Equation (99) has at most one solution since otherwise the difference of any

two solutions, f̃ , would satisfy the equation ∇ f̃ = 0 implying that f̃ = const = 0 because
f ∈ Ḣs

#. Taking into account that F = ∇q for some q ∈ Ḣs
#, we conclude that there is a

solution for Equation (99), namely f = q.
Let us calculate the norm estimate for this solution. Calculating the Fourier coefficients

of both sides of Equation (99), we obtain

2πiξ f̂ (ξ) = F̂(ξ), ξ ∈ Żn. (100)

Then,

f̂ (ξ) =
ξ · F̂(ξ)
2πi|ξ|2 , ξ ∈ Żn. (101)

By (101), (7) and (8), we obtain

∥ f ∥2
Ḣs

#
= ∑

ξ∈Żn

ϱ(ξ)2s| f̂ (ξ)|2 = ∑
ξ∈Żn

ϱ(ξ)2s

(2π)2|ξ|4 |ξ · F̂(ξ)|2

≤ 2 ∑
ξ∈Żn

ϱ(ξ)2(s−1)|F̂(ξ)|2 = 2∥F∥2
Ḣs−1

#
.

Hence, the solution f given by (101) belongs to Ḣs
# and satisfies the estimate ∥ f ∥Ḣs

#
≤

√
2∥F∥Ḣs−1

#
. Thus operator (96) is an isomorphism.

5.5. Some Functional Analysis Results

Let us give a version of the Sobolev interpolation inequality without a multiplicative
constant, generalised also to any real (including negative) smoothness indices, on periodic
Bessel-potential spaces. A similar proof in slightly different periodic Sobolev spaces with
non-negative smoothness indices is available in [6] (Lemma 1.15 and Exercise 1.6).

Theorem 5. Let s, s1, s2, θ1, θ2 be real numbers such that 0 ≤ θ1, θ2 ≤ 1; θ1 + θ2 = 1 and
s = θ1s1 + θ2s2. Then for any g ∈ Hs1

# ∩ Hs2
# ,

∥g∥Hs
#
≤ ∥g∥θ1

H
s1
#
∥g∥θ2

Hs2
#

. (102)

Proof. Let us recall the following Hölder inequality for two sequences fi = { fi(ξ)}ξ∈Zn ∈
ℓpi , i = 1, 2, under the condition 1

p1
+ 1

p2
= 1, p1, p2 ∈ (1, ∞):

∑
ξ∈Zn

| f1(ξ) f2(ξ)| = ∥ f1 f2∥ℓ1
≤ ∥ f1∥ℓp1

∥ f2∥ℓp2

=

(
∑

ξ∈Zn
| f1(ξ)|p1

)1/p1
(

∑
ξ∈Zn

| f2(ξ)|p2

)1/p2

. (103)
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If θ1 = 0 or θ2 = 0 then (102) is trivial. Let 0 < θ1, θ2 < 1. Then treating θi as 1/pi,
we obtain

∥g∥2
Hs

#
= ∑

ξ∈Zn
ϱ(ξ)2s|ĝ(ξ)|2 = ∑

ξ∈Zn
ϱ(ξ)2θ1s1 |ĝ(ξ)|2θ1 ϱ(ξ)2θ2s2 |ĝ(ξ)|2θ2

≤
[

∑
ξ∈Zn

(
ϱ(ξ)2θ1s1 |ĝ(ξ)|2θ1

)1/θ1

]θ1
[

∑
ξ∈Zn

(
ϱ(ξ)2θ2s2 |ĝ(ξ)|2θ2

)1/θ2

]θ2

=

[
∑

ξ∈Zn
ϱ(ξ)2s1 |ĝ(ξ)|2

]θ1
[

∑
ξ∈Zn

ϱ(ξ)2s2 |ĝ(ξ)|2
]θ2

= ∥g∥2θ1

H
s1
#
∥g∥2θ2

Hs2
#

. (104)

The Aubin–Lions Lemma, see [5] (Chapter 1, Theorem 5.1), has been generalised
in [32]. We provide it in the form of Theorem 4.12 in [6].

Theorem 6 (Aubin–Lions Lemma). Suppose that G ⊂ H ⊂ K where G, H and K are reflexive
Banach spaces and the embedding G ⊂ H is compact. Let 1 ≤ p ≤ ∞ and 1 ≤ q < ∞. If the
sequence un is bounded in Lq(0, T; G) and ∂tun is bounded in Lp(0, T; K), then there exists a
subsequence of un that is strongly convergent in Lq(0, T; H).

The following assertion is available in [10] (Chapter 3, Lemma 1.4).

Lemma 3. Let X and Y be two Banach spaces, such that X ⊂ Y with a continuous injection. If
a function v belongs to L∞(0, T; X) and is weakly continuous with values in Y, then v is weakly
continuous with values in X.

Theorem 3.1 and Remark 3.2 in Chapter 1 of [26] imply the following assertion.

Theorem 7. Let X and Y be separable Hilbert spaces and X ⊂ Y with continuous injection. Let
u ∈ W1(0, T; X, Y). Then u almost everywhere on [0, T] equals to a function ũ ∈ C0([0, T]; Z),
where Z = [X, Y]1/2 is the intermediate space. Moreover, the trace u(0) ∈ Z is well defined as the
corresponding value of ũ ∈ C0([0, T]; Z) at t = 0.

Let us prove the following assertion inspired by Lemmas 1.2 and 1.3 in Chapter 3
of [10].

Lemma 4. Let s, s′ ∈ R, s′ ≤ s and u ∈ W1(0, T; Hs
#, Hs′

# ) be real-valued.
(i) Then,

∂t∥u∥2
H(s+s′)/2

#

= 2⟨Λs′
# u′, Λs

#u⟩T = 2⟨Λs′+s
# u′, u⟩T (105)

for a.e. t ∈ (0, T) and also in the distribution sense on t ∈ (0, T).
(ii) Moreover, for any real v ∈ W1(0, T; H−s′

# , H−s
# ) and t ∈ (0, T],

∫ t

0

[
⟨u′(τ), v(τ)⟩T + ⟨u(τ), v′(τ)⟩T

]
dτ = ⟨u(t), v(t)⟩T − ⟨u(0), v(0)⟩T. (106)

Proof. (i) Since u ∈ W1(0, T; Hs
#, Hs′

# ), there exists a sequence of infinitely differentiable
functions {um} from [0, T] onto Hs

#, such that

um → u in W1(0, T; Hs
#, Hs′

# ) as m → ∞. (107)
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For each um, we have

∂t∥um(t)∥2
H(s+s′)/2

#

= ∂t∥Λ(s+s′)/2
# um(t)∥2

H0
#
= ∂t

〈
Λ(s+s′)/2

# um(t), Λ(s+s′)/2
# um(t)

〉
T

= 2Re
〈

Λ(s+s′)/2
# u′

m(t), Λ(s+s′)/2
# um(t)

〉
T
= 2Re

〈
Λs′

# u′
m(t), Λs

#um(t)
〉
T

. (108)

By (107),

∥um∥2
Hs

#
= ∥Λs

#um∥2
L2#

→ ∥Λs
#u∥2

L2#
= ∥u∥2

Hs
#

in L1#(0, T),

∥u′
m∥2

Hs′
#
= ∥Λs′

# u′
m∥2

L2#
→ ∥Λs′

# u′∥2
L2#

= ∥u′∥2
Hs′

#
in L1#(0, T).

Hence, 〈
Λs′

# u′
m , Λs

#um

〉
T
→
〈

Λs′
# u′ , Λs

#u
〉
T

in L1#(0, T).

These convergences also hold for a.e. t ∈ (0, T) and in the distribution sense; therefore,
we are allowed to pass to the limit in (108) in the distribution sense, arriving at (105) in
the limit.

(ii) Since u ∈ W1(0, T; Hs
#, Hs′

# ) and v ∈ W1(0, T; H−s′
# , H−s

# ), the dual products under
the integral in (106) are bounded in L1(0, T) and hence the integral is well defined. On
the other hand, Theorem 7 implies that u and v almost everywhere on [0, T] equal to,

respectively, functions ũ ∈ C0([0, T]; H(s+s′)/2
# ) and ṽ ∈ C0([0, T]; H−(s+s′)/2

# ). Then, the
traces u(t), v(t), u(0), v(0) are well defined as the corresponding values of ũ and ṽ, implying
that the dual products in the last two terms in (106) are well defined. Further, in the proof
we redefine u and v on a set of measure zero in [0, T] as the functions ũ and ṽ, respectively.

There exists a sequence of infinitely differentiable functions {vk} from [0, T] onto H−s′
# ,

such that vk → v in W1(0, T; H−s′
# , H−s

# ), k → ∞. For each um and vk, we have〈
u′

m(t), vk(t)
〉
T +

〈
um(t), v′k(t)

〉
T = ∂t⟨um(t), vk(t)⟩T,

which after the integration in t leads to∫ t

0

[
⟨u′

m(τ), vk(τ)⟩T + ⟨um(τ), v′k(τ)⟩T
]
dτ = ⟨um(t), vk(t)⟩T − ⟨um(0), vk(0)⟩T.

Taking the limits as m → ∞ and k → ∞, we obtain (106).
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