
Journal of Optimization Theory and Applications (2024) 202:771–794
https://doi.org/10.1007/s10957-024-02447-w

Optimality and Duality for Robust Optimization Problems
Involving Intersection of Closed Sets

Nguyen Canh Hung1,2,3 · Thai Doan Chuong4 · Nguyen Le Hoang Anh1,2

Received: 5 June 2023 / Accepted: 26 April 2024 / Published online: 28 May 2024
© The Author(s) 2024

Abstract
In this paper, we study a robust optimization problem whose constraints include non-
smooth and nonconvex functions and the intersection of closed sets. Using advanced
variational analysis tools, we first provide necessary conditions for the optimality of
the robust optimization problem. We then establish sufficient conditions for the opti-
mality of the considered problem under the assumption of generalized convexity. In
addition, we present a dual problem to the primal robust optimization problem and
examine duality relations.

Keywords Robust nonsmooth optimization · Optimality condition ·
Mordukhovich/limiting subdifferential · Duality · Constraint · Closed set

1 Introduction

Because of prediction error, fluctuation and disorder, or lack of information, many
practical and realistic problems have uncertain data. So robust optimization has
emerged and become a remarkable and efficient framework for studying mathematical
programming problems under data uncertainties; see, e.g., [3, 4].
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Nowadays, robust optimization has been intensively studied in all aspects of theory,
method and application [7, 9, 10, 13, 15, 17, 21, 22, 31].

The goal of this paper is to study an uncertain optimization problem of the form:

inf
x∈Rn

{ f (x, τ ) | x ∈
m⋂

j=1

C j , gi (x, ui ) ≤ 0, i = 1, ..., p}, (UP)

where x is a decision variable, τ and ui , i = 1, ..., p, are uncertain parameters, which
reside in the uncertainty sets T and Vi , respectively, T ⊂ R

k and Vi ⊂ R
ni , i =

1, ..., p, are nonempty compact sets, C j ⊂ R
n, j = 1, ..., m, are nonempty closed

subsets, and f : Rn × T → R and gi : Rn × Vi → R, i = 1, ..., p, are functions.
A robust optimization problem associated with (UP) is defined by

inf
x∈Rn

{
max
τ∈T

f (x, τ ) | x ∈
m⋂

j=1

C j , gi (x, ui ) ≤ 0, ∀ui ∈ Vi , i = 1, ..., p
}
. (RP)

The problem of type (RP) admits a general formulation and so it provides a uni-
fied framework for investigating various robust optimization problems. For instance,
when m := 1, the nonempty subset C1 is a closed convex set in Rn, f is a continuous
convex function, and g1, ..., gp, are continuously differentiable functions, Chieu et
al. in [6] examined links among various constraint qualifications including Karush–
Kuhn–Tucker conditions for an optimization problem without uncertainties. In the
case of m := 1 and the constraints related to a convex cone, Ghafari and Mohebi in
[12] provided a new characterization of the Robinson constraint qualification, which
collapses to the validation of a generalized Slater constraint qualification and a sharp-
ened nondegeneracy condition for a (no uncertainty) nonconvex optimization problem
involving nearly convex feasible sets.

Another approach based on a characterization of the normal cone together with the
oriented distance function to establish necessary and sufficient optimality conditions
for a smooth optimization problem of type (RP) without uncertainties was given by
Jalilian and Pirbazari in [14]. When there are no uncertainty and constraint functions
gi , we refer the reader to [1] for a recent result on optimality, which was obtained by
using a canonical representation of a closed set via an associated oriented distance
function. For a special case of this problem (RP) with m := 1, where there is no
uncertainty in the objective, C1 is a closed convex cone of Rn, f and gi (·, ui ), ui ∈
Vi , i = 1, ..., p, are convex functions, Lee and Lee in [18] established an optimality
theorem for approximate solutions under a new robust characteristic cone constraint
qualification. This result was developed by Sun et al. in [30] to a more general class
of robust optimization problems in locally convex vector spaces.

In passing, dealing with a robust optimization problem involving many simple
geometric constraints C j ’s in (RP) is often more preferable than involving a single
abstract set due to the technical calculations of related concepts in variational analysis
and nonsmooth/nonconvex generalized differentiations. Moreover, general program-
ming problems with finitely many geometric constraints arise frequently in practical
applications (see e.g., customer satisfaction modelling within the automotive industry
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[14]) and many other popular classes of optimization problems with specific types
of constraints [2, 23] can be reformulated and cast into resulting models involving
geometric constraints.

To the best of our knowledge, there are not any results related to optimality condi-
tions and duality for the nonsmooth and nonconvex robust optimization problem (RP).
This is because there are challenges associated with not only the nonsmooth and
nonconvex structures of the related functions and sets but also uncertainty data. In
this work, we employ advanced variational analysis tools (see e.g., [24]) and recent
advances on nonsmooth robust optimization (see e.g., [7, 8]) to establish necessary
conditions for the optimality of the robust optimization problem (RP).We also provide
sufficient conditions for the optimality of the considered problem under the assump-
tion of generalized convexity. Moreover, we address a dual problem to the robust
optimization problem (RP) and explore duality relations between them.

The organization of the paper is as follows. Section 2 provides some basic concepts
and calculus rules from variational analysis needed for proving our main results. In
Sect. 3, we establish necessary conditions and sufficient conditions for the optimality
of problem (RP). Section 4 is devoted to examining robust duality relations between
the problem (RP) and its dual problem. The last section summarizes the obtained
results.

2 Preliminaries

Throughout the paper, the inner product and a norm in R
n are denoted respectively

by 〈·, ·〉 and ‖ · ‖, where n ∈ N := {1, 2, ...}. We use the notation R
n+ and R

n−
for the nonnegative orthant and nonpositive orthant of Rn , respectively. Let � be
a nonempty subset of Rn, the interior, the convex hull and the boundary of � are

denoted respectively by int �, co� and bd�. The notation x
�−→ x means that x → x

and x ∈ �. The polar cone of � ⊂ R
n is defined by

�◦ := {ϑ ∈ R
n | 〈ϑ, x〉 ≤ 0, ∀x ∈ �}.

Let F : X ⊂ R
n ⇒ R

m be a multivalued function/set-valued map. F is closed at
x ∈ X if for any sequence {xl} ⊂ X , xl → x and any sequence {yl} ⊂ R

m, yl ∈
F(xl), yl → y as l → ∞, we have y ∈ F(x).

Let us recall some concepts and calculus rules from Variational Analysis (see e.g.,
[24, 27]). Let F : R

n ⇒ R
n be a multivalued function, the sequential Painlevé-

Kuratowski upper/outer limit of F at x ∈ domF is given by

Lim sup

x
�−→x

F(x) :=
{
ϑ ∈ R

n | ∃ sequences xl
�−→ x and ϑl → ϑ with ϑl ∈ F(xl ) for all l ∈ N

}
,
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where domF := {x ∈ R
n | F(x) = ∅}. The Fréchet normal cone (known also as the

regular normal cone) N̂ (x;�) to � at x ∈ � is defined by

N̂ (x;�) :=
⎧
⎨

⎩ϑ ∈ R
n | lim sup

x
�→x

〈ϑ, x − x〉
‖x − x‖ ≤ 0

⎫
⎬

⎭ .

We put N̂ (x;�) := ∅ for any x ∈ R
n\�. The Mordukhovich normal cone (known

also as the limiting normal cone) N (x;�) to � at x ∈ � is defined by

N (x;�) := Lim sup
x

�→x

N̂ (x;�).

If x ∈ R
n\�, then N (x;�) := ∅.Given a functionψ : Rn → R, whereR := R∪{∞},

we denote epiψ := {(x, α) ∈ R
n × R | ψ(x) ≤ α}. The Fréchet subdifferential and

limiting/Mordukhovich subdifferential of ψ : Rn → R at x ∈ R
n with |ψ(x)| < ∞

are respectively given by

∂̂ψ(x) := {
ϑ ∈ R

n | (ϑ,−1) ∈ N̂ ((x, ψ(x)); epiψ)
}
,

∂ψ(x) := {
ϑ ∈ R

n | (ϑ,−1) ∈ N ((x, ψ(x)); epiψ)
}
.

If |ψ(x)| = ∞, then the above subdifferentials are empty. Given a set � ⊂ R
n, we

consider an indicator function δ(·;�) defined by

δ(x;�) :=
{
0 if x ∈ �,

∞ if x /∈ �.
(2.1)

By [27, Proposition 1.19], we obtain that

N (x;�) = ∂δ(x;�) for x ∈ �. (2.2)

Remark that the above-defined normal cones and subdifferentials reduce to the
corresponding concepts of normal cone and subdifferential in convex analysis when
� is a convex set and ψ is a convex function.

When ψ is locally Lipschitz at x ∈ R
n , i.e., there exist a neighborhood U of x and

a real number L > 0 such that

|ψ(x1) − ψ(x2)| ≤ L‖x1 − x2‖ ∀x1, x2 ∈ U ,

we assert by [24, Corollary 1.81] that ‖ϑ‖ ≤ L for any ϑ ∈ ∂ψ(x). Moreover, if x is
a local minimizer for ψ , then we get by the nonsmooth version of Fermat’s rule (see
[24, Proposition 1.114]) that

0 ∈ ∂ψ(x). (2.3)
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Lemma 2.1 ([24, Theorem 3.36]) Let the functions ψi : Rn → R, i = 1, ..., p, p ≥
2, be lower semicontinuous around x ∈ R

n, and let all but one of these be locally
Lipschitz at x . Then one has

∂(ψ1 + · · · + ψp)(x) ⊂ ∂ψ1(x) + · · · + ∂ψp(x). (2.4)

In the rest of this section, we recall a calculus rule for calculating the limiting
subdifferential of maximum of finitely many functions.

Lemma 2.2 ([24, Theorem 3.36 and Theorem 3.46]) Let the functions ψi : Rn →
R, i = 1, ..., p, p ≥ 2, be locally Lipschitz at x ∈ R

n and denote the maximum
function by ψ(x) := max

i=1,...,p
ψi (x) for x ∈ R

n . Then

∂ψ(x) ⊂
⋃ { p∑

i=1

μi∂ψi (x) |
p∑

i=1

μi = 1, μi ≥ 0,

μi (ψi (x) − ψ(x)) = 0, i = 1, . . . , p
}
. (2.5)

3 Robust Optimality Conditions

In this section, we first present necessary conditions for the optimality of the robust
problem (RP). We then establish sufficient conditions by employing the generalized
convexity for a set of finitely many real-valued functions.

Inwhat follows,we assume that the objective function f togetherwith the constraint
functions g1, ..., gp of the problem (RP) satisfy the following assumptions:

(A1) Given a fixed x ∈ R
n, there exist neighborhoods Ui , i = 0, ..., p, of x

such that the functions τ ∈ T �→ f (x, τ ), x ∈ U0, and ui ∈ Vi �→ gi (x, ui ),
x ∈ Ui , i = 1, . . . , p are upper semicontinuous and the functions f and gi are
partially uniformly Lipschitz of ranks L0 > 0 and Li > 0 on U0 and Ui , respectively,
i.e.,

| f (x1, τ ) − f (x2, τ )| ≤ L0 ‖x1 − x2‖ ∀ x1, x2 ∈ U0, ∀τ ∈ T ,

|gi (x1, ui ) − gi (x2, ui )| ≤ Li ‖x1 − x2‖ ∀ x1, x2 ∈ Ui , ∀ui ∈ Vi , i = 1, ..., p.

(A2) For the above x ∈ R
n, the multivalued function (x, τ ) ∈ U0 × T ⇒

∂x f (x, τ ) ⊂ R
n is closed at (x, τ ) for each τ ∈ T (x), and the multivalued func-

tions (x, ui ) ∈ Ui × Vi ⇒ ∂x gi (x, ui ) ⊂ R
n, i = 1, ..., p are closed at (x, ui ) for

each ui ∈ Vi (x),where the symbol ∂x stands for the limiting subdifferential operation
with respect to the first variable x and

T (x) := {τ ∈ T | f (x, τ ) = F(x)}, Vi (x) := {ui ∈ Vi | gi (x, ui ) = Gi (x)}
(3.1)
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with

F(x) := max
τ∈T

f (x, τ ), Gi (x) := max
ui ∈Vi

gi (x, ui ), i = 1, ..., p. (3.2)

It is worth mentioning that the above assumptions are commonly found in the study
of robust optimization problems or in the nonsmooth analysis such as calculating
the nonsmooth subdifferentials/subgradients of max or supremum functions over an
infinite set. More precisely, the hypothesis (A1) ensures that the functions F and
Gi , i = 1, ..., p, are well-defined, and furthermore, it entails that the functions F and
Gi are locally Lipschitz of ranksL0 andLi , i = 1, ..., p, respectively. The hypothesis
(A2) can be viewed as a relaxation of subdifferentials for the class of convex functions,
and this assumption is automatically satisfied in smooth settings as their gradients are
continuous (see Corollary 3.1 below). In fact, (A2) holds for a broader class of regular
nonsmooth functions including subsmooth, and continuously prox-regularity functions
whenever (A1) holds.We refer the interested readers to [7, 8] and the references therein
for a detailed review.

Let us introduce the following constraint qualification (CQ),whichwill be necessary
to derive the Karush–Kuhn–Tucker (KKT) condition for the robust problem (RP).

Definition 3.1 For the problem (RP), let x ∈ S := {x ∈ R
n | x ∈

m⋂
j=1

C j , gi (x, ui ) ≤
0, ∀ui ∈ Vi , i = 1, ..., p} and denote

	(x) := {(λ1, ..., λp) ∈ R
p
+ |

p∑

i=1

λi = 1, λi max
ui ∈Vi

gi (x, ui ) = 0, i = 1, ..., p}.

We say that the constraint qualification (CQ) is satisfied at x if there does not exist
(μ1, ..., μp) ∈ 	(x) such that

0 ∈
p∑

i=1

μico{∂x gi (x, ui ) | ui ∈ Vi (x)} +
m∑

j=1

N (x; C j ),

where Vi (x) is defined by (3.1).

Observe that the concept of (CQ) in Definition 3.1 reduces to the (extended)
Mangasarian-Fromovitz constraint qualification in the case of smooth setting with
C j = R

n, j = 1, ..., m (see, e.g., [5, 24, 27] for more details).
We are now ready to present necessary optimality conditions for the robust prob-

lem (RP) in terms of the limiting/Mordukhovich subdifferentials and normal cones.

Theorem 3.1 Let the assumptions (A1) and (A2) hold for an optimal solution x of prob-
lem (RP). Assume that the equation ν1 + · · · + νm = 0, where ν j ∈ N (x; C j ), j =
1, ..., m, has only the trivial solution ν j = 0, j = 1, ..., m. Then, there exists
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(μ0, μ1, ..., μp) ∈ R
p+1
+ with

p∑
i=0

μi = 1 such that

0 ∈ μ0 co{∂x f (x, τ ) | τ ∈ T (x)} +
p∑

i=1

μico{∂x gi (x, ui ) | ui ∈ Vi (x)}

+
m∑

j=1

N (x; C j ), (3.3)

μi max
ui ∈Vi

gi (x, ui ) = 0, i = 1, ..., p. (3.4)

If assume additionally that (CQ) holds at x, then μ0 in the relation of (3.3) is a positive
number.

Proof Assume that x is an optimal solution of problem (RP), we define the
corresponding function ψ : Rn → R as follows:

ψ(x) := max{F(x) − F(x), Gi (x), i = 1, ..., p}, x ∈ R
n,

where F and Gi , i = 1, ..., p, are defined by (3.2).
We claim that

ψ(x) ≥ 0 = ψ(x) for all x ∈
m⋂

j=1

C j . (3.5)

Indeed, by Gi (x) ≤ 0, i = 1, ..., p, it holds thatψ(x) = 0.Now, take any x ∈
m⋂

j=1
C j .

It is easy to see that F(x) ≥ F(x) if x is a feasible point of problem (RP), which
entails that ψ(x) ≥ 0. Otherwise, it is true that max

i=1,...,p
Gi (x) > 0 and so ψ(x) > 0.

By (3.5), we see that x is a minimizer of the following optimization problem

min
x∈Rn

⎧
⎨

⎩ψ(x) + δ(x;
m⋂

j=1

C j )

⎫
⎬

⎭ , (3.6)

where δ is the indicator function defined as in (2.1). Applying the nonsmooth version
of Fermat’s rule in (2.3) to the problem (3.6) gives us

0 ∈ ∂
(
ψ + δ(·;

m⋂

j=1

C j )
)
(x).

Note that, under (A1), the function ψ is locally Lipschitz around x and that, due to
the closedness of the sets C1, ..., Cm , the indicator function δ is lower semicontinuous
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around this point. Therefore, invoking the sum rule for the limiting subdifferential in
Lemma 2.1 and the formula (2.2), we arrive at

0 ∈ ∂ψ(x) + N (x;
m⋂

j=1

C j ). (3.7)

Moreover, since the system ν1 + · · · + νm = 0, where ν j ∈ N (x; C j ), j = 1, ..., m,

has only one solution, ν j = 0, j = 1, ..., m, we apply the formula of normal cones
to finite set intersections (cf. [27, Corollary 2.17]) to arrive at

N (x;
m⋂

j=1

C j ) ⊂ N (x; C1) + · · · + N (x; Cm).

This, together with the calculus rule in Lemma 2.2 and the inclusion (3.7), yields

0 ∈
⋃ {

α∂F(x) +
p∑

i=1

αi∂Gi (x) | α ≥ 0, αi ≥ 0,

α +
p∑

i=1

αi = 1, αiGi (x) = 0, i = 1, ..., p
}

+
m∑

j=1

N (x; C j ). (3.8)

Under the assumptions of (A1) and (A2), we argue similarly as in the proof of [7,
Theorem 3.3] to arrive at

∂F(x) ⊂ co{∂x f (x, τ ) | τ ∈ T (x)},
∂Gi (x) ⊂ co{∂x gi (x, ui ) | ui ∈ Vi (x)}, i = 1, ..., p, (3.9)

where T (x) and Vi (x) are given as in (3.1).
Next, combining (3.8) and (3.9) shows that there exists (μ0, ..., μp) ∈ R

p+1
+ such

that
p∑

i=0
μi = 1 and

0 ∈ μ0co{∂x f (x, τ ) | τ ∈ T (x)}

+
p∑

i=1

μico{∂x gi (x, ui ) | ui ∈ Vi (x)} +
m∑

j=1

N (x; C j ),

μi max
ui ∈Vi

gi (x, ui ) = 0, i = 1, ..., p.

So, (3.3) and (3.4) have been justified.
Now, let the (CQ) be satisfied at x . We obtain from (3.3) and (3.4) that μ0 > 0,

which completes the proof. �
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The following corollary gives necessary optimality conditions for the robust prob-
lem (RP) under the smoothness of related functions and the convexity of uncertainty
sets. In this case, both the hypotheses (A1) and (A2) are automatically satisfied. In
what follows, we use ∇x h(x, τ ) to denote the derivative of a differentiable function h
with respect to the first variable at a given point (x, τ ).

Corollary 3.1 Let x be an optimal solution of problem (RP), where T and Vi , i =
1, ..., p, are convex sets. Let Ui , i = 0, ..., p, be neighborhoods of x such that for
each x ∈ U0 and x ∈ Ui , i=1,...,p f (x, ·), gi (x, ·) are concave functions on T and
Vi , respectively. Assume that f and gi , i = 1, ..., p, are strictly differentiable with
respect to the first variable on U0 × T and Ui × Vi , respectively. Assume further that
maps (x, τ ) �→ ∇x f (x, τ ) and (x, ui ) �→ ∇x gi (x, ui ) are continuous on U0 × T and
Ui × Vi , respectively. If the system ν1 + · · · + νm = 0, where ν j ∈ N (x; C j ), j =
1, ..., m, has only one solution ν j = 0, j = 1, ..., m, then there exist τ ∈ T (x), ui ∈
Vi (x), i = 1, ..., p and (μ0, μ1, ..., μp) ∈ R

p+1
+ with

p∑
i=0

μi = 1 such that

0 ∈ μ0∇x f (x, τ ) +
p∑

i=1

μi∇x gi (x, ui ) +
m∑

j=1

N (x; C j ), (3.10)

μi gi (x, ui ) = 0, i = 1, ..., p. (3.11)

Moreover, we have μ0 > 0 if the condition (CQ) is satisfied at x .

Proof Observe first that the hypothesis (A2) is automatically satistied at x for our
setting as the maps (x, τ ) �→ ∇x f (x, τ ) and (x, ui ) �→ ∇x gi (x, ui ), i = 1, ..., p are
continuous on U0 × T and Ui × Vi , respectively. To verify the hypothesis (A1), we
only justify for the function f as the similarities go for the functions gi , i = 1, ..., p.

To see this, we first claim that for each ε > 0, there exists neighborhood Uε of x
satisfying

‖∇x f (x, τ ) − ∇x f (y, τ )‖ ≤ ε, ∀ x, y ∈ Uε, ∀τ ∈ T , (3.12)

where Uε can be chosen such that Uε ⊂ U0 and it is a convex set. To prove (3.12),
suppose on the contrary that there exist ε > 0 and a sequence {(xk, yk, τk)} in U0 ×
U0 × T such that (xk, yk) → (x, x) as k → ∞ and

‖∇x f (xk, τk) − ∇x f (yk, τk)‖ > ε ∀k ∈ N. (3.13)

Because of the compactness of T and passing to a subsequence if necessary, we may
assume that {τk} converges to some τ ∈ T . Besides, due to the continuity of the map
(x, τ ) �→ ∇x f (x, τ ) on U0 × T , it follows that

∇x f (xk, τk) → ∇x f (x, τ ) and ∇x f (yk, τk) → ∇x f (x, τ ) as k → ∞,

which contradicts (3.13).
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Let (3.12) hold for a given ε > 0. For any x, y ∈ Uε with x = y and for any τ ∈ T ,

by the mean value theorem (cf. [11, Theorem 2.4, p. 75]), we find z ∈ (x, y) ⊂ Uε

satisfying the condition

f (x, τ ) − f (y, τ ) = 〈∇x f (z, τ ), x − y〉,

where (x, y) := co{x, y} \ {x, y}. This, together with (3.12), gives us

|〈∇x f (y, τ ), x − y〉 − f (x, τ ) + f (y, τ )| = |〈∇x f (y, τ ) − ∇x f (z, τ ), x − y〉|
≤ ‖∇x f (y, τ ) − ∇x f (z, τ )‖ · ‖x − y‖
≤ ε‖x − y‖. (3.14)

Therefore, it follows that

| f (x, τ ) − f (y, τ )| ≤ (‖∇x f (y, τ )‖ + ε
)‖x − y‖.

Moreover, by (3.12), ‖∇x f (y, τ )‖ ≤ ‖∇x f (x, τ )‖ + ε, we arrive at

| f (x, τ ) − f (y, τ )| ≤ (‖∇x f (x, τ ) + 2ε‖)‖x − y‖. (3.15)

We conclude that (3.15) holds for every x, y ∈ Uε and τ ∈ T as the case of x = y
also holds trivially.

By the continuity of function τ �→ ‖∇x f (x, τ )‖ on the compact set T , it admits
the maximum value over T , and so we can take L0 ≥ max

τ∈T

{‖∇x f (x, τ )‖ + 2ε
}
.

Consequently, the hypothesis (A1) is satisfied.
In this setting, we can verify that (see e.g., similar arguments as in [7, Corollary

3.4]), the sets {∇x f (x, τ ) | τ ∈ T (x)} and {∇x gi (x, ui ) | ui ∈ Vi (x)}, i = 1, ..., p,

are convex. Applying Theorem 3.1, we find (μ0, μ1, ..., μp) ∈ R
p+1
+ with

p∑
i=0

μi = 1

such that

0 ∈ μ0 {∇x f (x, τ ) | τ ∈ T (x)} +
p∑

i=1

μi {∇x gi (x, ui ) | ui ∈ Vi (x)} +
m∑

j=1

N (x; C j ),

μi max
ui ∈Vi

gi (x, ui ) = 0, i = 1, ..., p,

which imply the assertions in (3.10) and (3.11), and thus completes the proof. �

Remark 3.1 By considering m := 1, Corollary 3.1 can be regarded as a generalization
version of [19, Theorem 2.3], which was obtained by another approach.

Let us now illustrate the necessary optimality conditions given in Theorem 3.1.
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Example 3.1 Let f : R2 × T → R and gi : R2 × Vi → R, i = 1, 2, 3 be given
respectively by

f (x, τ ) := |x1 + 4

5
| − |x2 + 1| − τ 2,

g1(x, u1) := −|x1 + 4

5
| + |x2 − 3

5
| + 2u2

1 − u1 − 3,

g2(x, u2) := 2|x1 + 1| + |x2 + 1| − u2,

g3(x, u3) := x1sinu3 + x2cosu3 − 1,

where x := (x1, x2) ∈ R
2, τ ∈ T := [−2,−1] ∪ [1, 2], u1 ∈ V1 := [0, 1], u2 ∈

V2 := [2, 5] and u3 ∈ V3 := [−π

2
, π ]. We consider the robust optimization problem

(RP) with geometric constraints C j , j = 1, 2, given by C1 := {(x1, x2) ∈ R
2 |

x21 + x22 ≤ 2} and C2 := [−2, 0] × [−1,
3

5
], which is the following problem

inf
x∈R2

{
max
τ∈T

f (x, τ ) | x ∈ C1 ∩ C2, gi (x, ui ) ≤ 0, ∀ui ∈ Vi , i = 1, 2, 3
}
. (EP1)

In this setting, for each x := (x1, x2) ∈ R
2, we see that

F(x) := max
τ∈T

f (x, τ ) = |x1 + 4

5
| − |x2 + 1| − 1,

G1(x) := max
u1∈V1

g1(x, u1) = −|x1 + 4

5
| + |x2 − 3

5
| − 2,

G2(x) := max
u2∈V2

g2(x, u2) = 2|x1 + 1| + |x2 + 1| − 2,

and (cf. [7, Example 3.6]) that

G3(x) := max
u3∈V3

g3(x, u3) =
{
max{−x1,−x2} − 1 if x ∈ (−∞, 0) × (−∞, 0),

‖x‖ − 1 otherwise.

Denote S := {x := (x1, x2) ∈ R
2 | x ∈ C1 ∩ C2, Gi (x) ≤ 0, i = 1, 2, 3}. Then, S is

the feasible set of problem (EP1) and is depicted in the gray shade of Fig. 1.

Letting x := ( − 4

5
,
3

5

) ∈ S, we can verify that the assumptions (A1) and (A2) are

satisfied at x . Moreover, we can also check that x is an optimal solution of problem
(EP1). By direct calculation, we obtain that

N (x; C1) = {(0, 0)}, N (x; C2) = {(0, b) ∈ R
2 | b ≥ 0},

T (x) = {−1, 1}, V1(x) = {1}, V2(x) = {2},
V3(x) = {u3 ∈ [−π

2
, π ] | −4

5
sinu3 + 3

5
cosu3 = 1}.

G1(x) = −2, G2(x) = 0, G3(x) = 0.
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Fig. 1 The feasible set S of
problem (EP1) is shaded in gray

Then, for each τ ∈ T (x), u1 ∈ V1(x), u2 ∈ V2(x) and u3 ∈ V3(x), we have

∂x f (x, τ ) = [−1, 1] × {−1} ⇒ co ∂x f (x, τ ) = [−1, 1] × {−1},
∂x g1(x, u1) = {−1, 1} × [−1, 1] ⇒ co {∂x g1(x, u1)} = [−1, 1] × [−1, 1],
∂x g2(x, u2) = {(2, 1)} ⇒ co {∂x g2(x, u2)} = {(2, 1)},
∂x g3(x, u3) = {(sinu3, cosu3)} ⇒ co {∂x g3(x, u3)} = {(sinu3, cosu3)}.

Taking μ0 = 3

4
, μ2 = 1

4
and μ1 = μ3 = 0, we see that

0 ∈ μ0 co{∂x f (x, τ ) | τ ∈ T (x)}

+
3∑

i=1

μico{∂x gi (x, ui ) | ui ∈ Vi (x)} +
2∑

j=1

N (x; C j ),

μi max
ui ∈Vi

gi (x, ui ) = 0, i = 1, 2, 3,

which show that the necessary optimality conditions in Theorem 3.1 hold for the
problem (EP1).

Let us state a robust Karush–Kuhn–Tucker (KKT) condition for the problem (RP).

Definition 3.2 Let x be a feasible point of problem (RP). We say that the robust (KKT)
condition is satisfied at x if there exists (μ1, ..., μp) ∈ R

p
+ such that

0 ∈ co{∂x f (x, τ ) | τ ∈ T (x)} +
p∑

i=1

μico{∂x gi (x, ui ) | ui ∈ Vi (x)} +
m∑

j=1

N (x; C j ),
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μi max
ui ∈Vi

gi (x, ui ) = 0, i = 1, ..., p.

Remark 3.2 With the assumptions as in Theorem 3.1, it can be seen that if the condi-
tion (CQ) satisfies at an optimal solution x of problem (RP), then the robust (KKT)
condition holds at x . However, if the robust (KKT) condition is satisfied at a feasible
point x of problem (RP), we may not conclude that x is an optimal solution of the
problem as the following example shows.

Example 3.2 Let f : R2 × T → R and g : R2 × V1 → R be defined by

f (x, τ ) := x31 + τ x22 − 3x1x2, g(x, u) := u(x21 + x22 ),

where x := (x1, x2) ∈ R
2, τ ∈ T := [2

3
, 1] and u ∈ V1 := [−3, 0]. Consider the

following problem

inf
x∈R2

{
max
τ∈T

f (x, τ ) | x ∈ C1, g(x, u) ≤ 0, ∀ u ∈ V1
}

(EP2)

with the geometric constraint C1 := {x ∈ R
2 | x21 + x22 ≤ 1}.

Let x = (0, 0) be a feasible point of problem (EP2). By direct computation, we
obtain

F(x) := max
τ∈T

f (x, τ ) = x31 + x22 − 3x1x2, G(x) := max
u∈V1

g(x, u) = 0, x ∈ R
2,

∂x f (x, τ ) = {(0, 0)}, ∂x g(x, u) = {(0, 0)} and N (x; C1) = {(0, 0)}.

Observe that the robust (KKT) condition satisfies at x . However, x is not an optimal
solution of (EP2) as F(x) = 0 > −1 = F (̂x), where x̂ = (−1, 0).

Inspired by [7], we define the following generalized convexity. For the conve-
nience in the sequel, we employ the notations F(x) := max

τ∈T
f (x, τ ), and Gi (x) :=

max
ui ∈Vi

gi (x, ui ), i = 1, ..., p, for x ∈ R
n .

Definition 3.3 The combination (F ,G1, ...,Gp) is called generalized convex at x ∈
m⋂

j=1
C j , if for any x ∈

m⋂
j=1

C j , there exists w ∈ ( m∑
j=1

N (x; C j )
)◦ such that

f (x, τ ) − f (x, τ ) ≥ 〈x∗, w〉 ∀x∗ ∈ ∂x f (x, τ ), ∀τ ∈ T (x),

gi (x, ui ) − gi (x, ui ) ≥ 〈x∗
i , w〉 ∀x∗

i ∈ ∂x gi (x, ui ), ∀ui ∈ Vi (x), i = 1, ..., p,

where T (x) and Vi (x), i = 1, ..., p, are defined as in (3.1).

We can verify that if the functions f (·, τ ), τ ∈ T and gi (·, ui ), ui ∈ Vi , i = 1, ..., p,

are convex, then the inequalities in Definition 3.3 are automatically satisfied at any

x ∈
m⋂

j=1
C j by letting w := x − x for each x ∈

m⋂
j=1

C j . However, the reverse is not

true in general as the following example shows.
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Example 3.3 Let f : R × T → R and g : R × V1 → R be given by

f (x, τ ) := x2 + τ, x ∈ R, τ ∈ T ,

g(x, u) :=

⎧
⎪⎪⎨

⎪⎪⎩

ux4 if u ∈ V1 \ {0} and x ∈ R,
x

2
if u = 0 and x ≥ 0,

2x if u = 0 and x < 0,

where T := [0, 1] and V1 := [0, 2].
Denote F(x) := max

τ∈T
f (x, τ ) and G(x) := max

u∈V1
g(x, u) for x ∈ R. We consider

C1 := [−2, 0] and x = 0 ∈ C1. It holds that

T (x) = {1}, V1(x) := [0, 2], ∂x f (x, 1) = {0},
∂x g(x, u) = {0} for u ∈ V1 \ {0}, ∂x g(x, 0) = {1

2
, 2} and N (x; C1)

◦ = (−∞, 0].

In this setting, we can verify that the generalized convexity of (F ,G) is satisfied at x ,
while g1(·, 0) is not a convex function.

The next theorem supplies sufficient conditions for the optimality of problem (RP).

Theorem 3.2 Suppose that the robust (KKT) condition holds at a feasible point x
of problem (RP). If (F ,G1, ...,Gp) is generalized convex at x, then x is an optimal
solution of problem (RP).

Proof As x satisfies the robust (KKT) condition, we can find (μ1, ..., μp) ∈ R
p
+ and

x∗ ∈ co{∂x f (x, τ ) | τ ∈ T (x)}, x∗
i ∈ co{∂x gi (x, ui ) | ui ∈ Vi (x)}, i = 1, ..., p

(3.16)

such that

−
(

x∗ +
p∑

i=1

μi x∗
i

)
∈

m∑

j=1

N (x; C j ), (3.17)

μi max
ui ∈Vi

gi (x, ui ) = 0, i = 1, ..., p. (3.18)

By (3.16), there exist λl ≥ 0, x∗
l ∈ ∂x f (x, τl), τl ∈ T (x), l = 1, ..., lτ , lτ ∈ N,

μik ≥ 0, x∗
ik ∈ ∂x gi (x, uik), uik ∈ Vi (x), k = 1, ..., ki , ki ∈ N such that

ki∑
k=1

μik =

1,
lτ∑

l=1
λl = 1 and

x∗ =
lτ∑

l=1

λl x
∗
l , x∗

i =
ki∑

k=1

μik x∗
ik, i = 1, ..., p.
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Therefore, we get from (3.17) that

−
⎛

⎝
lτ∑

l=1

λl x
∗
l +

p∑

i=1

μi

ki∑

k=1

μik x∗
ik

⎞

⎠ ∈
m∑

j=1

N (x; C j ). (3.19)

Assume on the contrary that x is not an optimal solution. Then, there exists a feasible
point x̂ of problem (RP) satisfying

F (̂x) < F(x). (3.20)

where F(x) := max
τ∈T

f (x, τ ) for each x ∈ R
n .

By the generalized convexity of (F ,G1, ...,Gp) at x , for the above x̂ , one can find

w ∈ ( m∑
j=1

N (x; C j )
)◦ such that

0 ≤
lτ∑

l=1

λl〈x∗
l , w〉 +

p∑

i=1

μi

( ki∑

k=1

μik〈x∗
ik, w〉

)

≤
lτ∑

l=1

λl( f (̂x, τl) − f (x, τl)) +
p∑

i=1

μi

( ki∑

k=1

μik(gi (̂x, uik) − gi (x, uik))
)
,

where the first inequality holds due to (3.19) and the definition of polar cone. This
gives us

lτ∑

l=1

λl f (x, τl) +
p∑

i=1

μi

⎛

⎝
ki∑

k=1

μik gi (x, uik)

⎞

⎠

≤
lτ∑

l=1

λl f (̂x, τl) +
p∑

i=1

μi

⎛

⎝
ki∑

k=1

μik gi (̂x, uik)

⎞

⎠ . (3.21)

It is worth noting that from the definition of max functions F(x) and Gi (x), i =
1, ..., p, we arrive at f (̂x, τl) ≤ F (̂x), gi (̂x, uik) ≤ Gi (̂x), f (x, τl) =
F(x), gi (x, uik) = Gi (x) for l = 1, ..., lτ , lτ ∈ N, τl ∈ T (x), k = 1, ..., ki , ki ∈
N, uik ∈ Vi (x). So, it follows by (3.21) that

F(x) +
p∑

i=1

ki∑

k=1

μikμiGi (x) ≤ F (̂x) +
p∑

i=1

ki∑

k=1

μikμiGi (̂x). (3.22)
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Note that Gi (̂x) ≤ 0 for i = 1, ..., p and by (3.18) that μiGi (x) = 0. Therefore, the
inequality (3.22) shows that

F(x) ≤ F (̂x),

which entails a contradiction to (3.20), and so the proof is complete. �

Remark 3.3 Theorem 3.2 develops [19, Theorem 2.4] with m = 1. In the case, where
there are no geometric constraints, we refer the interested reader to [17, Proposition
2.1] for a necessary and sufficient condition for robust optimal solutions of a robust
convex optimization problem.

The next example shows howone can utilize Theorem3.2 to verify an optimal solution.

Example 3.4 Let f : R2 × T → R and g : R2 × V1 → R be defined by

f (x, τ ) := |x1| + x22 + τ1τ2 and g(x, u) :=
{ x1

2
+ x2

2
+ u if x1 + x2 > 0,

x1 + x2 + u if x1 + x2 ≤ 0,

where x := (x1, x2) ∈ R
2, τ := (τ1, τ2) ∈ T := {(τ1, τ2) ∈ R

2 | τ1 ≥ 0, τ2 ≥
0, τ 21 + τ 22 ≤ 1} and u ∈ V1 := [−2, 0]. Consider a robust optimization problem:

inf
x∈R2

{
max
τ∈T

f (x, τ ) | x ∈ C1 ∩ C2, g(x, u) ≤ 0
}
, (EP3)

where the geometric constraints C1 and C2 are described by

C1 := R
2− and C2 := {x ∈ R

2 | x1x2 ≤ 1}.

It is clear that x := (0, 0) is a feasible point of problem (EP3). Denote F(x) :=
max
τ∈T

f (x, τ ) and G(x) := max
u∈V1

g(x, u) for x ∈ R
2. By direct calculation, one has

T (x) = {( 1√
2
,

1√
2

)}
, V1(x) = {0},

∂x f (x, τ ) = [−1, 1] × {0} for τ ∈ T (x)

and ∂x g(x, u) = {
(
1

2
,
1

2
), (1, 1)

}
for u ∈ V1(x).

Then, we can verify that the robust (KKT) condition of problem (EP3) is satisfied at
x .

To verify the generalized convexity of (F ,G) at x, take arbitrarily x := (x1, x2) ∈
C1 ∩ C2. Then, by taking w := (0, 2x1 + 2x2) ∈ (N (x; C1) + N (x; C2))

◦ = R
2−, we

have

f (x, τ ) − f (x, τ ) ≥ 〈u∗, w〉 ∀u∗ ∈ ∂x f (x, τ ), ∀τ ∈ T (x),
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g(x, u) − g(x, u) ≥ 〈v∗, w〉 ∀v∗ ∈ ∂x g(x, u), ∀u ∈ V1(x),

which show that (F ,G) is generalized convex at x . Now, applying Theorem 3.2, we
claim that x is an optimal solution of the considered problem.

4 Duality in Robust Optimization

In this section, we propose a dual problem to the uncertain optimization problem (UP)
and examine some robust duality relations for the pair of primal and dual problems.
For the sake of convenience, we recall here the notations

F(y) := max
τ∈T

f (y, τ ), Gi (y) := max
ui ∈Vi

gi (y, ui ), i = 1, ..., p,

T (y) := {τ ∈ T | f (y, τ ) = F(y)} and

Vi (y) := {ui ∈ Vi | gi (y, ui ) = Gi (y)}, i = 1, ..., p,

where y ∈ R
n .

For the uncertain optimization problem (UP), we address an uncertain dual
optimization problem as follows:

max { f (y, τ ) | (y, μ) ∈ SD}, (DU)

where τ ∈ T and the feasible set SD is defined by

SD :=
{
(y, μ) ∈ (

m⋂

j=1

C j ) × R
p
+ | 0 ∈ co{∂x f (y, τ ) | τ ∈ T (y)}

+
p∑

i=1

μico{∂x gi (y, ui ) | ui ∈ Vi (y)}

+
m∑

j=1

N (y; C j ),

p∑

i=1

μiGi (y) ≥ 0
}
.

We investigate the problem (DU) by analyzing its robust (worst-case) counterpart:

max {max
τ∈T

f (y, τ ) | (y, μ) ∈ SD}. (DR)

Note that a point (y, μ) ∈ SD is a solution of (DR) if F(y) ≤ F(y) for every
(y, μ) ∈ SD .

The first theorem in this section provides a weak duality relation between (RP) and
(DR).

Theorem 4.1 (Weakduality)Let x be a feasible point of the problem (RP)and let (y, μ)

be a feasible point of the problem (DR). If (F ,G1, ...,Gp) is generalized convex at y,
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then we have

F(x) ≥ F(y).

Proof Let (y, μ) ∈ SD . This means that μ := (μ1, ..., μp) ∈ R
p
+ and there exist

x∗ ∈ co{∂x f (y, τ ) | τ ∈ T (y)}, x∗
i ∈ co{∂x gi (y, ui ) | ui ∈ Vi (y)}, i = 1, ..., p

(4.1)

such that

−
(

x∗ +
p∑

i=1

μi x∗
i

)
∈

m∑

j=1

N (y; C j ), (4.2)

p∑

i=1

μiGi (y) ≥ 0. (4.3)

Assume that the family (F ,G1, ...,Gp) is generalized convex at y. Then, for x ∈
m⋂

j=1
C j

above, we find w ∈ ( m∑
j=1

N (y; C j )
)◦ such that

f (x, τ ) − f (y, τ ) ≥ 〈u∗, w〉 ∀u∗ ∈ ∂x f (y, τ ), ∀τ ∈ T (y),

gi (x, ui ) − gi (y, ui ) ≥ 〈v∗, w〉 ∀v∗ ∈ ∂x gi (y, ui ), ∀ui ∈ Vi (y), ∀i = 1, ..., p.

(4.4)

We assert by (4.1) that there exist λl ≥ 0, y∗
l ∈ ∂x f (y, τl), τl ∈ T (y), l =

1, ..., lτ , lτ ∈ N, such that
lτ∑

l=1
λl = 1 and

x∗ =
lτ∑

l=1

λl y∗
l .

Therefore, from (4.4), we have

〈x∗, w〉 =
lτ∑

l=1

λl〈y∗
l , w〉 ≤

lτ∑

l=1

λl( f (x, τl) − f (y, τl)).

Since f (x, τl) ≤ F(x) and f (y, τl) = F(y) for all τl ∈ T (y), l = 1, ..., lτ ,we arrive
at

〈x∗, w〉 ≤
lτ∑

l=1

λl(F(x) − F(y)) = F(x) − F(y). (4.5)
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Similarly, we can verify that for each i = 1, ..., p, there exist μik ≥ 0, k =
1, ..., ki , ki ∈ N, such that

ki∑
k=1

μik = 1, and then

〈x∗
i , w〉 ≤

ki∑

k=1

μik(Gi (x) − Gi (y)) = Gi (x) − Gi (y). (4.6)

Combining now (4.2) with (4.5) and (4.6) gives us

0 ≤ 〈x∗, w〉 +
p∑

i=1

μi 〈x∗
i , w〉 ≤ F(x) − F(y) +

p∑

i=1

μi (Gi (x) − Gi (y)).

This shows that

F(y) +
p∑

i=1

μiGi (y) ≤ F(x) +
p∑

i=1

μiGi (x). (4.7)

Furthermore,
p∑

i=1
μiGi (y) ≥ 0 due to (4.3) and Gi (x) ≤ 0 for all i = 1, ..., p, because

x is a feasible point of problem (RP). So, we get by (4.7) that

F(y) ≤ F(x),

which completes the proof of the theorem. �

The following example emphasizes the importance of the generalized convexity
imposed in Theorem 4.1.

Example 4.1 Let f : R2 × T → R and g : R2 × V1 → R be defined respectively by

f (x, τ ) := x31 + x32 − 3x1x2 + τ and g(x, u1) := u1(x21 + x22 ),

where x := (x1, x2) ∈ R
2, τ ∈ T := [−2, 0] and u1 ∈ V1 := [−1, 0]. Consider a

robust optimization problem:

inf
x∈R2

{
max
τ∈T

f (x, τ ) | x ∈ C1, g(x, u1) ≤ 0
}
, (EP4)

where the geometric constraint C1 is given by C1 := {(x1, x2) ∈ R
2 | x21 + x22 ≤ 1}.

Then, the dual problem in terms of (DR) for (EP4) is defined by

max {max
τ∈T

f (y, τ ) | (y, μ) ∈ SD}. (ED4)
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Let x = (1
2
,
1

2

)
, μ = 1 and y = (0, 0) and denote F(x) := max

τ∈T
f (x, τ ) and

G(x) := max
u1∈V1

g(x, u1) for x ∈ R
2. A direct calculation shows that

N (y; C1)
◦ = R

2, T (y) = {0},
V1(y) = [−1, 0], ∂x f (y, τ ) = {(0, 0)}, ∂x g(y, τ ) = {(0, 0)},

and so we can check that x is feasible for (EP4) and (x, μ) is feasible for (ED4).
However, it holds that

F(x) = −1

2
< 0 = F(y),

which shows that Theorem 4.1 is not true for this setting. The reason is that the
generalized convexity of (F ,G) at y is violated.

In the following theorem, we establish strong duality and converse duality relations
between (RP) and (DR).

Theorem 4.2 (Strong and converse duality) Consider the robust optimization prob-
lem (RP) and its dual problem (DR).

(i) Let assumptions (A1) and (A2) hold at an optimal solution x of problem
(RP). Asssume that the condition (CQ) is satisfied at x and that the equation
ν1 + · · · + νm = 0, where ν j ∈ N (x; C j ), j = 1, ..., m, has only the trivial
solution ν1 = · · · = νm = 0. If (F ,G1, ...,Gp) is generalized convex at any

y ∈
m⋂

j=1
C j , then there exists μ ∈ R

p
+ such that (x, μ) is a solution of problem

(DR).

(ii) Let (x, μ) be a feasible point of problem (DR). If x is a feasible point of problem
(RP) and (F ,G1, ...,Gp) is generalized convex at x, then x is an optimal solution
of (RP).

Proof (i) As x is an optimal solution of problem (RP), it follows that x ∈
m⋂

j=1
C j .

According to Theorem 3.1, we can find (μ0, μ1, ..., μp) ∈ R
p+1
+ with μ0 > 0 and

p∑
i=0

μi = 1 such that

0 ∈ μ0co{∂x f (x, τ ) | τ ∈ T (x)} +
p∑

i=1

μico{∂x gi (x, ui ) | ui ∈ Vi (x)}

+
m∑

j=1

N (x; C j ),
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μi max
ui ∈Vi

gi (x, ui ) = 0, i = 1, ..., p.

By dividing the above relationships by μ0, and then setting μi := μi

μ0
, i = 1, ..., p,

we obtain that μ := (μ1, ..., μp) ∈ R
p
+ and (x, μ) ∈ SD.

Now, let (F ,G1, ...,Gp) be generalized convex at any y ∈
m⋂

j=1
C j . For any (y, μ) ∈

SD, we invoke Theorem 4.1 to conclude that

F(x) ≥ F(y).

This means that (x, μ) is a solution of problem (DR).
(ii) As (x, μ) ∈ SD, we have μ := (μ1, ..., μp) ∈ R

p
+ and

0 ∈ co{∂x f (x, τ ) | τ ∈ T (x)} +
p∑

i=1

μico{∂x gi (x, ui ) | ui ∈ Vi (x)} +
m∑

j=1

N (x; C j ),

(4.8)
p∑

j=1

μi max
ui ∈Vi

gi (x, ui ) ≥ 0, i = 1, ..., p. (4.9)

Let x be a feasible point of problem (RP). Then, it entails that μi max
ui ∈Vi

gi (x, ui ) ≤ 0

for all i = 1, ..., p. This, together with (4.9), ensures that

μi max
ui ∈Vi

gi (x, ui ) = 0, i = 1, ..., p.

Namely, the robust (KKT) condition of problem (RP) holds at x . To complete the
proof, it suffices to invoke Theorem 3.2. �

We finish this section by giving an example that shows how one can calculate an
optimal solution of a robust optimization problem through its dual counterpart.

Example 4.2 Let f : R2 × T → R and gi : R2 × Vi → R, i = 1, 2 be defined by

f (x, τ ) := |x1| + |x2| + 1 − τ,

g1(x, u1) := −x21 + 2|x2| + u1, g2(x, u2) := u2|x1| − 2u2,

where x := (x1, x2) ∈ R
2, τ ∈ T := [1, 2], u1 ∈ V1 := [−5,−3] and u2 ∈ V2 :=

[0, 2].
Consider a robust optimization problem:

inf
x∈R2

{
max
τ∈T

f (x, τ ) | x ∈ C1 ∩ C2, gi (x, ui ) ≤ 0, i = 1, 2
}
, (EP5)
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where the geometric constraints C1 and C2 are given respectively by

C1 := {(x1, x2) ∈ R
2 | x1 = 0} and C2 := {(x1, x2) ∈ R

2 | x2 ≥ 0, x21 + x22 ≤ 1}.

Then, the dual problem in terms of (DR) for (EP5) is defined by

max {max
τ∈T

f (y, τ ) | (y, μ) ∈ SD}, (ED5)

where the feasible set SD is given by

SD :=
{
(y, μ) ∈ (C1 ∩ C2) × R

2+ | 0 ∈ co{∂x f (y, τ ) | τ ∈ T (y)}

+
2∑

i=1

μico{∂x gi (y, ui ) | ui ∈ Vi (y)}

+
2∑

j=1

N (y; C j ),

2∑

i=1

μiGi (y) ≥ 0
}

with Gi (x) := max
ui ∈Vi

gi (x, ui ), i = 1, 2 for x ∈ R
2.

Denoting x := (0, 0), we see that x is a feasible point of problem (EP5). By direct
calculation, we have

T (x) = {1}, V1(x) = {−3}, V2(x) = {0},
∂x f (x, 1) = [−1, 1] × [−1, 1], ∂x g1(x,−3) = {0} × [−2, 2], ∂x g2(x, 0) = {(0, 0)},

N (x; C1) = {(x1, 0) ∈ R
2 | x1 ∈ R} and N (x; C2) = {(0, x2) ∈ R

2 | x2 ≤ 0}.

Takingμ := (1, 1),we see that (x, μ) ∈ SD .Moreover, we can verify that (F ,G1,G2)
is generalized convex at x, where F(x) := max

τ∈T
f (x, τ ) for x ∈ R

2. Employing now

Theorem 4.2(ii), we assert that x̄ is an optimal solution of problem (EP5).

5 Conclusions

This paper studied a robust optimizationproblem,where the relateddata are nonsmooth
and nonconvex functions, and moreover the constraint set involves an intersection of
finitely many closed sets. More concretely, we presented necessary conditions for the
optimality of the underlying problem. Under the additional assumption of generalized
convexity and the robust (KKT) condition satisfying at a given feasible point, we
provided sufficient conditions that allow the referenced feasible point to be optimal.
We also established a dual problem to the robust optimization problem and proposed
their duality relationships.

It would be interesting to see how we can develop numerical schemes based on
the obtained optimality conditions to find optimal solutions or optimal value for the
considered robust optimization problem. When the intersection of finitely geometric
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constraints involves data uncertainties, the investigation of the corresponding robust
optimization problem might become intractable and the current approach would not
be applicable as we encounter an uncertainty setting, where the robust optimization
counterpart inherits an infinite number of geometric constraint sets. Some possible
approaches such as tangential extremal principles for a countable set system in [25,
26] could be developed to study this type of uncertain/robust optimization problems.
Moreover, some appropriate applications to examine other general classes of robust
optimization problems are well worth a further study.
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