
Innovative Methods for
Edge Computing Deployment

in Healthcare

Ahmed Mahmood Jasim

College of Engineering, Design and Physical Sciences

Brunel University London

A thesis submitted for the degree of

Doctor of Philosophy

2024

Acknowledgments

I am profoundly grateful to those who have supported me throughout this challenging

yet immensely rewarding journey of pursuing my doctoral degree. The completion of

this thesis would not have been possible without the encouragement, guidance, and

assistance of numerous individuals and institutions.

I extend my heartfelt gratitude to my esteemed supervisor, Professor Hamed Al-

Raweshidy, whose unwavering support, valuable insights, and scholarly guidance have

been instrumental in shaping the direction of this research. Your dedication to aca-

demic excellence and commitment to my growth as a researcher have been a constant

source of inspiration.

My gratitude extends to the Department of Electronic and Electrical Engineer-

ing/Brunel University London for providing the conducive research environment and

resources that have been essential in carrying out this study. The collaborative at-

mosphere and diverse academic community have fostered an environment of growth

and learning that I am truly thankful for.

I am indebted to my family (my parents, my wife, and my children) and friends for

their unwavering encouragement, love, and patience. Your constant support, belief in

my abilities, and understanding of the demands of this endeavor have been my pillar

of strength.

Lastly, I would like to acknowledge all those whose contributions, whether big or

small, have played a role in shaping this research. Your insights, discussions, and

assistance have collectively contributed to the culmination of this work.

While it is not feasible to name everyone individually, please accept my sincere

appreciation for your contributions to this academic journey.

Ahmed Jasim

2024

i

Abstract

This interdisciplinary research explores the integration of edge computing tech-

nology in the healthcare sector, presenting innovative methodologies across three key

contributions.

In Chapter 3, the first contribution introduces the Healthcare Metropolitan Area

Network (HMAN), a novel cooperative hierarchical Edge/Fog computing-based ar-

chitecture for urban healthcare systems. HMAN offers offloading scenarios and the

HOSSC algorithm, tailored for versatile data processing. Simulation results demon-

strate its potential as a scalable and robust healthcare system, with efficient com-

puting capacity and service availability. HMAN also ensures patient privacy through

local data storage and processing, making it a practical solution for serving a large

number of patients.

The second part of this research, expounded upon in Chapter 4, comprises dual

facets: an AI-based priority mechanism to identify urgent cases, aimed at improv-

ing Quality of Service (QoS) and Quality of Experience (QoE) is proposed. Then,

an optimal edge-servers placement (OESP) algorithm to obtain a cost-efficient archi-

tecture with lower delay and complete coverage is presented. Results show reduced

patient latency based on urgency, prioritising critical cases. The OESP algorithm

selects optimal deployment sites, achieving over 80% cost-efficiency improvement. In

summary, the study enhances healthcare system performance, cost-effectiveness, and

reduces latency.

The third part of this research, encapsulated in Chapter 5, introduces an adaptive

load balancing method that combines the strengths of static and Software-Defined

Networking (SDN)-based load balancing algorithms for Edge/Fog-based healthcare

systems. A new algorithm called Load Balancing of Optimal Edge-server Placement

(LB-OESP) is proposed to balance the workload statically in the systems, followed by

the presentation of an SDN-based greedy heuristic (SDN-GH) algorithm to manage

the data flow dynamically within the network. LB-OESP efficiently balances work-

loads while minimising edge server requirements, improving system performance, and

reducing costs. The SDN-GH algorithm leverages the benefits of SDN to dynamically

balance the load and provide a more efficient system. Simulation results demonstrate

that this approach provides adaptive load balancing, considering changing network

conditions, resulting in improved system performance and reliability. Furthermore,

it achieves a 12% reduction in system latency and up to 28% lower deployment costs

compared to previous methods, offering a promising, efficient, and cost-effective so-

lution for Edge/Fog-based healthcare systems.

ii

List of Figures

2.1 Single-Node Edge Architecture . 16

2.2 Distributed Edge Architecture . 17

2.3 Heirarchical Edge Architecture . 18

2.4 Edge Ecosystem . 21

2.5 Cloud Computing Architecture. 24

2.6 Fog Computing Architecture. 25

2.7 MEC Architecture. 26

2.8 Cloudlet Architecture. 27

3.1 HMAN Architecture . 55

3.2 Flowchart of the HOSSC algorithm 65

3.3 The potential scenarios in the proposed system 66

3.4 The HMAN Components . 66

3.5 HMAN system model. 68

3.6 SRT of 100 patients . 77

3.7 SRT of 200 patients . 78

3.8 SRT of 300 patients . 79

4.1 Model of the proposed priority mechanism. 87

4.2 10 disconnected points (MCs) on a map. 103

4.3 A virtual network of 10 connected MCs 104

4.4 A network of 10 points after choosing the best three MCs 106

4.5 The final network of 10 points . 107

4.6 A network of 20 points before/after choosing the best MCs 108

4.7 A network of 30 points before/after choosing the best MCs 108

4.8 A comparison of latency before/after implementing OESP algorithm . 110

5.1 The proposed architecture based on SDN technology 116

5.2 The potential scenarios based on SDN-GH 130

5.3 10 disconnected MCs on a map. 133

iii

5.4 The final OESP network of 12 MCs 134

5.5 12 disconnected MCs on a map . 135

5.6 The established connections between the best sites 136

5.7 The final LB-OESP network of 10 MCs 137

5.8 The final OESP and LB-OESP network of 16 MCs 138

5.9 The final OESP and LB-OESP network of 25 MCs 139

5.10 A comparison of latency before/after implementing SDN-GH algorithm 141

iv

List of Tables

2.1 A comparison between edge and cloud computing 24

2.2 Feature comparison table of HMAN (proposed) with the previous ex-

isting architectures . 41

3.1 System parameters . 72

3.2 Number of patients served in the HMAN units 80

4.1 SRT System parameters . 100

4.2 SRT after applying the proposed priority mechanism 101

4.3 OESP simulation parameters. 102

4.4 Sorted 10 MCs based on the OESP criteria 105

4.5 A comparison between HMAN and OESP cost 110

5.1 SRT System parameters . 132

5.2 LB-OESP simulation parameters. 133

5.3 A comparison between HMAN, OESP and LB-OESP cost 140

v

Contents

Acknowlegements i

Abstract ii

List of Figures iii

List of Tables v

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Problem Statement . 3

1.3 Aim and Objectives . 5

1.4 Hardware and Software . 6

1.4.1 Software: . 6

1.4.2 Hardware: . 7

1.5 Summary of Contributions . 7

1.5.1 HMAN Architecture . 7

1.5.2 Optimal Placement Algorithm 8

1.5.3 Load Balancing Techniques 8

1.6 Publications . 9

1.7 Structure of the Thesis . 10

2 Literature Review 12

2.1 Introduction . 12

2.2 Edge Computing Paradigm . 14

2.2.1 Edge Computing Architecture 15

2.2.1.1 Single-Node Edge Architecture 16

2.2.1.2 Distributed Edge Architecture 16

2.2.1.3 Hierarchical Edge Architecture 17

vi

2.2.2 Access Technologies and Communication Patterns 17

2.2.2.1 Access Technologies 18

2.2.2.2 Communication Patterns 19

2.2.3 Device Ecosystem . 20

2.2.4 Edge Computing Implementation 22

2.2.4.1 Hierarchical Model 22

2.2.4.2 Software-Defined Model 22

2.3 Edge computing and similar concepts 23

2.3.1 Cloud Computing . 23

2.3.2 Fog Computing . 23

2.3.3 Mobile Edge Computing (MEC) 25

2.3.4 Cloudlet . 26

2.3.5 Decentralised Computing . 27

2.4 Enabling Technologies and techniques 28

2.4.1 Offloading Techniques . 28

2.4.2 Artificial Intelligence (AI) Integration 28

2.4.3 Optimal Servers Placement 29

2.4.4 Software-Defined Networking (SDN) 29

2.4.5 Load Balancing . 29

2.5 Advantages of Edge Computing . 30

2.5.1 Reduced Latency and Improved Responsiveness 30

2.5.2 Bandwidth Optimisation and Network Efficiency 30

2.5.3 Enhanced Data Privacy and Security 30

2.5.4 Resilience and Reliability . 31

2.5.5 Scalability and Flexibility . 31

2.5.6 Offline Operation and Edge Intelligence 31

2.5.7 Real-time Data Analytics and Insights 32

2.5.8 Lower Operating Costs . 32

2.6 Challenges of Edge Computing . 32

2.6.1 Latency Variability . 32

2.6.2 Limited Computing Resources 33

2.6.3 Data Management and Security 33

2.6.4 Interoperability . 33

2.6.5 Edge-to-Cloud Orchestration 34

2.6.6 Edge Device Management and Maintenance 34

2.6.7 Data Aggregation and Consistency 34

vii

2.6.8 Edge-to-Cloud Security Handoff 34

2.7 Edge Computing Applications . 35

2.7.1 Industrial Internet of Things (IIoT) 35

2.7.2 Autonomous Vehicles . 35

2.7.3 Smart Cities . 36

2.7.4 Agriculture and Precision Farming 36

2.7.5 Augmented Reality (AR) and Virtual Reality (VR) 36

2.7.6 Healthcare Application . 36

2.8 Related Work . 37

2.8.1 Healthcare Architecture and Offloading Techniques 37

2.8.2 Optimal intelligent Edge-Servers Placement Study 41

2.8.2.1 Priority Mechanism Approach 41

2.8.2.2 Edge-Servers Placement Approach 42

2.8.3 Load Balancing Techniques 45

2.9 Summary . 48

3 Towards a cooperative hierarchical healthcare architecture using the

HOSSC algorithm 50

3.1 Introduction . 50

3.2 Proposed HMAN architecture . 53

3.2.1 IoT Layer . 55

3.2.2 Edge/Fog Layer . 56

3.2.3 Cloud Layer . 57

3.2.4 Application Layer . 57

3.3 HOSSC - Data flow and offloading algorithm 58

3.4 HMAN system model . 64

3.5 Offloading system model . 67

3.5.1 Response Time at GPs . 69

3.5.2 Response Time at GHs . 70

3.5.3 Response Time at the cloud 70

3.6 Results . 71

3.7 Limitations and further improvements 81

3.8 Summary . 81

viii

4 Optimal Intelligent Edge-Servers Placement in the Healthcare Field 83

4.1 Introduction . 83

4.2 Priority mechanism based on AI . 86

4.3 Optimal edge-servers problem formulation 88

4.4 Optimal edge-servers placement (OESP) 92

4.5 Results . 99

4.5.1 Priority Mechanism based on AI 99

4.5.2 Optimal edge-servers placement (OESP) algorithm 102

4.6 Summary . 111

5 An Adaptive SDN-Based Load Balancing Method for Edge/Fog-

Based Real-Time Healthcare Systems 113

5.1 Introduction . 113

5.2 Preliminaries . 116

5.2.1 Proposed System Model . 116

5.2.2 Problem Formulation . 117

5.3 Proposed Load Balancing algorithms 122

5.4 Performance Evaluation . 131

5.4.1 LB-OESP algorithm . 131

5.4.2 SDN-GH algorithm . 140

5.5 Summary . 142

6 Conclusion and Future Work 144

6.1 Conclusion . 144

6.2 Future Directions and Enhancements 146

Bibliography 149

ix

Chapter 1

Introduction

1.1 Background and Motivation

In an ever-evolving world, healthcare holds a pivotal position as a cornerstone of hu-

man well-being and a paramount determinant of life quality. In the field of healthcare,

resources can be categorised as consumable (like medical tools) and non-consumable

(such as medical professionals). Making optimal use of non-consumable resources,

which include valuable medical staff, is a crucial step towards enhancing healthcare

systems [1]. As a result, the importance of healthcare systems has grown significantly

in recent years, driven by the urgent need to improve service delivery, particularly in

environments with limited resources.

In parallel, the continuous rise in the number of patients, evident in the day-

to-day influx, has posed unprecedented challenges for public sectors responsible for

providing effective healthcare services. This rise in demand has placed considerable

pressure on traditional healthcare frameworks, hindering their capacity to keep up

with society’s growing needs. These challenges dramatically increased the need for

fresh, innovative approaches to healthcare management that can enhance efficiency

while also managing costs effectively. Therefore, there is an urgent need to find

1

Chapter 1: Introduction

creative solutions that offer the required flexibility, scalability, and cost-effectiveness

to cater to the constantly expanding patient population.

The field of providing electronic health (e-health) stems from the necessity to

enhance healthcare sector management, optimise the utilisation of resource, and cur-

tail costs while upholding quality. These systems are presented as a positioned as

a pioneering technological paradigm shift with the potential to entirely reshape the

medical field. With a focus on remote patient monitoring and supervision, these

systems display substantial potential in tackling existing and forthcoming healthcare

challenges. By delivering high-quality medical care at a limited expense, e-health

systems offer a beacon of hope, alleviating the financial burdens weighing heavily on

healthcare institutions and heralding improved patient outcomes.

The journey towards e-health has been made possible by groundbreaking advance-

ments in computational intelligence, mobile communication technologies, and the

Internet of Things (IoT). In this context, the integration of edge computing holds

immense promise for the development of more efficient and effective healthcare sys-

tems. Edge computing refers to the practice of processing data closer to its source,

minimising latency and enhancing real-time analysis. This approach has given rise

to sophisticated systems capable of real-time monitoring and effective management

of patient health. One of the primary advantages of leveraging edge computing in

healthcare is its potential to significantly reduce latency in data processing and analy-

sis. In critical situations, such as remote patient monitoring or real-time diagnostics,

every millisecond counts. By processing data at the edge, closer to the patient or

medical device, healthcare professionals can access timely insights, leading to quicker

and more accurate decision-making.

Moreover, the vast amounts of data generated by wearable devices, medical sen-

sors, and other health monitoring tools can overwhelm traditional data centres and

networks. Edge computing offers a distributed and decentralised solution, distribut-

2

Chapter 1: Introduction

ing the data processing load and ensuring seamless communication between devices

and central systems. This scalability not only enhances the overall performance of

healthcare systems but also lays the foundation for the integration of other technolo-

gies like artificial intelligence, which rely heavily on rapid data analysis.

Furthermore, edge computing can enhance patient privacy and security. By pro-

cessing sensitive health data locally, at the edge, the need for transmitting data to

centralised servers is reduced, minimising the risk of data breaches and unauthorised

access. This aspect is particularly crucial in healthcare, where maintaining patient

confidentiality is paramount.

The integration of edge computing technology presents an exciting opportunity to

usher in a new era of healthcare, characterised by real-time insights, enhanced patient

care, and increased efficiency. By embracing this innovative approach, healthcare

systems can navigate the complexities of the modern world while continuing to provide

optimal care to individuals and communities alike.

1.2 Problem Statement

The escalating global population, projected to reach 9.7 billion individuals by 2050

[2], poses significant challenges, particularly in overcrowded urban areas, adversely

impacting residents’ quality of life. Inadequate healthcare management contributes

to an alarming 2.6 million annual fatalities, a number on the rise, as reported by

the World Health Organization (WHO) [3, 4]. The impending future necessitates

immediate implementation of effective solutions to address the myriad challenges

that cities will face. One critical predicament is the potential strain on urban health

systems, and the healthcare industry struggles to deliver high-quality care to patients

efficiently.

A notable challenge faced by the healthcare industry is the inefficiency of pa-

3

Chapter 1: Introduction

tient transfers between distinct levels of healthcare providers, causing delays in care,

escalated expenses, and diminished patient outcomes. Moreover, the current lack

of collaboration between different levels of healthcare providers leads to fragmented

care, with each provider operating in isolation and focusing solely on their expertise.

To tackle these pressing issues, the emerging field of electronic healthcare (e-

healthcare) provides a promising solution, leveraging the power of technology and

human-device interaction facilitated by IoT, Edge, Fog, and Cloud technologies. How-

ever, integrating these technologies presents several technical challenges:

1. Scalability: Ensuring the healthcare system can handle increasing amounts of

data and a growing number of connected devices without compromising perfor-

mance.

2. Availability: Maintaining consistent and reliable access to healthcare services,

particularly in the face of high demand and potential system failures.

3. Capacity: Providing sufficient processing power and storage to manage vast

amounts of healthcare data generated by IoMT devices.

4. Latency: Minimising response times to ensure timely processing and delivery

of critical healthcare data, especially in time-sensitive situations.

5. Privacy: Protecting sensitive patient information by ensuring data is stored

and processed locally whenever possible, thereby reducing exposure to external

threats.

To address these challenges, Edge/Fog computing paradigms have been introduced

as complementary technologies to cloud computing. The primary goal of Edge/Fog

computing is to shorten the distance between users and data processing centers,

thereby improving response times, bandwidth, and privacy.

4

Chapter 1: Introduction

This research proposes the design of a transformative healthcare system that pro-

motes cooperation among different levels of healthcare providers. The proposed archi-

tecture aims to reduce costs, and elevate the overall quality of care, positioning it as a

viable alternative to traditional healthcare approaches. Through leveraging the rapid

advancements in communication and information technologies, this research seeks to

establish a more collaborative and technologically driven healthcare system capable

of meeting the challenges posed by urban overcrowding and improving healthcare

management.

1.3 Aim and Objectives

The aim of this research is to develop an advanced and innovative pervasive intelligent

healthcare system/network that caters to local observation for patients in need. The

primary aim is to address key challenges in healthcare, encompassing scalability,

data privacy, service availability, low latency, intelligence, and cost-effectiveness. To

achieve this aim, the research will pursue the following interconnected objectives:

Objective 1: Designing a Scalable System (Chapter 3)

• Investigate existing architectures and approaches in the context of healthcare

systems.

• Develop a scalable framework capable of efficiently accommodating diverse

workloads and adapting to varying demands.

Objective 2: Ensuring High Data Privacy Levels (Chapter 3)

• Design robust privacy-preserving mechanisms to ensure the secure handling and

storage of sensitive healthcare data.

Objective 3: Ensuring High Service Availability (Chapter 3)

5

Chapter 1: Introduction

• Develop mechanisms for data replication, load balancing, and failover to prevent

service disruptions and single points of failure.

Objective 4: Achieving Low Latency (Response Time) (Chapter 3,4, and 5)

• Develop novel approaches for data transmission and processing techniques to

achieve minimal response time.

Objective 5: Designing an Intelligent System (Chapter 4)

• Develop an intelligent priority mechanism for enhancing the quality of service

(QoS) and quality of experience (QoE) in healthcare systems based on real-time

patient data and contextual information.

Objective 6: Creating a Cost-Effective System (Chapter 4 and 5)

• Explore cost-effective methods that optimise resource utilisation while ensuring

the system’s requirements are fulfilled.

Upon thorough validation and evaluation of the system performance through rig-

orous testing, benchmarking, and comparative analysis with existing solutions as

verifiable evidence of achieving these objectives, the research aspires to make a sub-

stantial contribution to the advancement of a cutting-edge pervasive intelligent sys-

tem/network, catering to local observation for patients. This innovative system seeks

to effectively tackle critical challenges encompassing scalability, intelligence, data pri-

vacy, service availability, low latency, and cost-effectiveness.

1.4 Hardware and Software

1.4.1 Software:

The software component of the proposed pervasive smart system/network, which aims

to achieve scalability, intelligence, data privacy, service availability, low latency, and

6

Chapter 1: Introduction

cost-effectiveness, will be carefully selected and implemented to support the research

objectives.

To simulate and model various scenarios, MATLAB software, a widely-used tool

in research and industry, will be employed. The powerful capabilities of MATLAB

enable efficient data analysis, algorithm development, and system simulation. Uti-

lizing MATLAB, different scenarios can be simulated and tested, allowing for the

evaluation of the system’s performance under various conditions.

1.4.2 Hardware:

The hardware infrastructure supporting the pervasive smart system/network will be

carefully selected and configured to effectively meet the research objectives. The pri-

mary development and simulation platform will be a Lenovo laptop running Windows

10 Home 64-bit, equipped with an Intel Core i7 processor and 16GB of RAM.

The chosen laptop provides a powerful computational environment suitable for

running complex simulations, executing resource-intensive algorithms, and analyzing

data. Its robust processing capabilities ensure efficient data analysis and real-time

decision-making, facilitating low-latency response times within the system.

1.5 Summary of Contributions

1.5.1 HMAN Architecture

Proposing a cooperative hierarchical Edge/Fog computing-based architecture called

Healthcare Metropolitan Area Network (HMAN) for urban healthcare systems. The

architecture aims to enhance the reliability and robustness of electronic health ser-

vices by addressing scalability, availability, capacity, latency, and privacy concerns.

HMAN utilises existing infrastructure in cities, such as medical centres and hospitals,

to connect patients to the healthcare system. The architecture introduces HMAN

7

Chapter 1: Introduction

offloading scenarios and a specially designed algorithm called HMAN offloading sce-

narios and SRT calculation (HOSSC) to enable efficient offloading and processing

within the network. Simulation results demonstrate that the designed architecture

achieves a ubiquitous and scalable healthcare system with competitive performance in

terms of computing capacity and service availability. The HMAN system exhibits low

latency, responding to 1 to 300 patients simultaneously sending with a short response

time ranging from 6.043 to 31.45 ms. Additionally, the proposed architecture ensures

patient privacy by locally storing and processing data in anticipated scenarios. The

HMAN architecture offers a viable solution for providing healthcare services to a large

number of patients.

1.5.2 Optimal Placement Algorithm

Focusing on improving the efficiency of healthcare systems. This contribution pro-

poses an enhancement to the HMAN architecture in two parts: an AI-based prior-

ity mechanism to identify urgent cases and improve QoS and QoE, and an optimal

edge-server placement (OESP) algorithm to achieve a cost-efficient architecture with

reduced latency and comprehensive coverage. The results demonstrate that the pro-

posed priority mechanism algorithms reduce latency for patients with greater needs,

while the OESP algorithm selects optimal sites for deploying edge servers, resulting

in a cost-efficient system with over 80% improvement. The study introduces an im-

proved healthcare system with enhanced performance, cost-effectiveness, and reduced

latency.

1.5.3 Load Balancing Techniques

This contribution aims to further enhance the HMAN architecture by introducing

additional improvements that address the existing challenges. Specifically, the goal

is to improve the load balancing aspect of Edge/Fog-based healthcare systems by

8

Chapter 1: Introduction

proposing an adaptive load balancing method that combines static and Software-

Defined Networking (SDN)-based algorithms. The LB-OESP algorithm is introduced

for static workload balancing, while the SDN-GH algorithm manages dynamic data

flow within the network. The simulations demonstrate the effectiveness of the pro-

posed adaptive load balancing method for Edge/Fog-based healthcare systems. The

method takes into account changing network conditions, resulting in improved sys-

tem performance and reliability. Notably, it achieves a significant 12% reduction in

system latency and up to 28% lower deployment costs compared to previous stud-

ies. The proposed method offers a promising and cost-effective approach to workload

management, real-time monitoring, and effective administration of health systems in

the context of Edge/Fog-based healthcare environments.

1.6 Publications

The research findings of this thesis have been disseminated through the publication

of three scholarly journal articles.

1. Ahmed M. Jasim and H. Al-Raweshidy, ”Towards a cooperative hierarchi-

cal healthcare architecture using the HMAN offloading scenarios and SRT cal-

culation algorithm,” IET Networks, vol. 12, no. 1, pp. 9-26, 2023, doi:

10.1049/ntw2.12064.

2. Ahmed M. Jasim and H. Al-Raweshidy, ”Optimal Intelligent Edge-Server

Placement in the Healthcare Field,” IET Networks, 2023, doi: 10.1049/ntw2.12097.

3. Ahmed M. Jasim and H. Al-Raweshidy, ”An Adaptive SDN-Based Load

Balancing Method for Edge/Fog-Based Real-Time Healthcare Systems”, IEEE

Systems Journal, 2024, doi: 10.1109/JSYST.2024.3402156.

9

Chapter 1: Introduction

1.7 Structure of the Thesis

The organisation of this thesis can be described as follows:

Chapter 2: Literature Review

In this chapter, an extensive review of relevant literature is presented. It explores

the existing theories, concepts, and research studies related to the research topic.

Gaps and limitations in the literature are identified, highlighting the need for the

current research.

Chapter 3: Towards a Cooperative Hierarchical Healthcare Architecture using

the HOSSC Algorithm

This chapter introduces the initial contribution of this research, presenting a novel

healthcare architecture based on Edge/Fog computing within urban areas. The pro-

posed architecture, referred to as HMAN, is supported by a specialised algorithm

known as HOSSC, designed to manage the data flow processes within it. The chapter

ends with a presentation and discussion of results aimed at evaluating the architec-

ture’s operational efficiency.

Chapter 4: Optimal Intelligent Edge-Servers Placement in the Healthcare Field

In this chapter, the second contribution is presented. With the intent of enhancing

the HMAN architecture, two improvements are proposed through the implementation

of two algorithms. This is followed by the presentation of outcomes aimed at assessing

algorithms’ validation.

Chapter 5: An Adaptive SDN-Based Load Balancing Method for Edge/Fog-

Based Real-Time Healthcare Systems In this chapter, the third contribution is pre-

sented. This contribution introduces an innovative method for load balancing. Sub-

sequently, the chapter presents results aimed to evaluate and discuss the performance

of the two algorithms.

Chapter 6: Conclusion and Future work

In this final chapter, the study is summarised, and the research questions are an-

10

Chapter 1: Introduction

swered based on the findings and analysis. The conclusions drawn from the research

are highlighted, emphasizing their implications and contributions to the field. Ad-

ditionally, future research directions and recommendations for further investigations

are provided, identifying areas that require further exploration or refinement.

Bibliography

This section provides a comprehensive list of all the sources cited in the thesis,

following a specific citation style.

11

Chapter 2

Literature Review

2.1 Introduction

The Internet of Things (IoT) stands as a groundbreaking concept that establishes

seamless connections between unique physical and virtual devices, employing diverse

communication protocols. According to statistical data, the number of IoT devices

linked through wireless technology is predicted to soar to 50 billion by the year 2025

[5]. These devices encompass a wide range of possibilities, including smartphones,

bio-nano devices, body sensors, smart tags, wearable gadgets, embedded objects, and

traditional electronic devices. Many of these devices are equipped with an array of

sensors responsible for gathering vital environmental data, forming the bedrock of

data-driven intelligence. As a result of this extensive proliferation of IoT devices,

there is a tremendous surge in data generation. In many cases, this data exhibits

the following characteristics: (i) it is only locally relevant; (ii) it requires additional

analysis and processing; (iii) the result of processing and subsequent actuation is sub-

ject to strict latency requirements; and (iv) the raw data is ephemeral, meaning it

is no longer relevant after processing and can thus be discarded or moved to persis-

tent storage. Examples of such areas include real-time video analytics, cognitive aid

12

Chapter 2: Literature Review

applications, mobile gaming, and autonomous driving. To provide valuable insights

to users, the collected data requires comprehensive processing and analysis. How-

ever, due to inherent limitations, lightweight IoT devices face challenges in handling

complex computations.

One promising solution is cloud computing, where IoT data is transmitted to a

cloud server for processing, and the subsequent results are sent back to the devices.

The success and rapid adoption of cloud computing have opened up numerous business

opportunities. Industry projections suggest that the global cloud computing market

is set to achieve a momentous milestone, reaching a value of £1 trillion by the year

2024 [6]. However, relying solely on cloud computing to transmit collected data and

await processing responses entails certain disadvantages.

One notable concern is the cost of data transmission, which places additional

strain on network bandwidth and resources. As data volume increases, performance

may deteriorate, rendering this approach less suitable for time-sensitive applications.

Domains such as smart transportation, electricity grid management, smart cities,

and healthcare applications, which require ultra-short response times, may find cloud

computing unsuitable. The geographic distance between users and most data cen-

tres contributes to undesirable delays. Moreover, the limited availability of resources

and bandwidth exacerbates the issue, leading to significant network latency, an unde-

sirable characteristic for time-sensitive applications. Consequently, relying solely on

cloud computing presents a critical challenge [7].

Given these concerns, it becomes crucial to explore complementary approaches

to mitigate the limitations of cloud computing. Investigating strategies that aim to

enhance data transmission efficiency, reduce network latency, and improve respon-

siveness for time-sensitive applications is of utmost importance. The adoption of

alternative paradigms, such as edge computing or fog computing, presents viable so-

lutions to address the challenges associated with exclusive reliance on cloud-based

13

Chapter 2: Literature Review

architectures in time-sensitive contexts. Edge computing embodies an innovative

computing paradigm that redirects computational data, applications, and services

away from central cloud servers towards the network edge. Embracing edge comput-

ing allows content providers and application developers to deliver services to users in

closer geographical proximity, leading to accelerated response speeds. In short, edge

computing circumvents the expensive transfer of data that requires low latency and

high bandwidth to the cloud by storing and processing the data on diverse, nearby

resources [8, 9].

2.2 Edge Computing Paradigm

Edge computing is a distributed computing paradigm that brings computation and

data processing capabilities closer to the source of data, enabling real-time processing

and low-latency responses. Unlike traditional cloud computing, where data is sent to

remote data centres for analysis, edge computing occurs at or near the edge of the

network, right where the data is generated by devices or sensors [10].

By moving computation closer to the edge devices, edge computing addresses the

challenges posed by the increasing volume of data generated by Internet of Things

(IoT) devices and the need for rapid, real-time decision-making. This proximity to

data sources reduces the dependency on constant high-speed internet connectivity

and minimises latency, which is crucial for applications that require instantaneous

responses and smooth user experiences. Edge computing is particularly relevant in

various industries, such as industrial automation, autonomous vehicles, healthcare,

and retail. In these scenarios, critical decisions must be made locally and promptly

to ensure safety, efficiency, and overall system reliability [11].

In an edge computing architecture, each edge device can perform data process-

ing and analytics independently or collaborate with nearby edge nodes to share re-

14

Chapter 2: Literature Review

sources and insights. Additionally, with advancements in edge hardware and software

technologies, devices can perform complex tasks that were traditionally reserved for

centralised cloud servers [12].

While edge computing provides numerous advantages it also poses challenges re-

lated to security, scalability, and managing a decentralised infrastructure. Neverthe-

less, as the Internet of Things continues to grow and demand for real-time processing

increases, edge computing’s role as a fundamental component of the modern comput-

ing landscape becomes more prominent [13].

It is noteworthy that edge computing is not an alternative solution to cloud com-

puting; rather, it complements and extends the capabilities of cloud computing. Both

edge computing and cloud computing serve different purposes and cater to distinct

use cases. While cloud computing excels in providing centralised data storage, vast

computing resources, and extensive data analysis, edge computing focuses on bringing

computation closer to the edge devices, enabling real-time processing, and reducing

latency. Together, they form a powerful and versatile computing ecosystem, address-

ing a wide range of applications and ensuring efficient, responsive, and secure data

processing across various scenarios [14]. Later, we will further explore these tech-

nologies through a comprehensive comparison, including cloud computing and other

prominent solutions.

2.2.1 Edge Computing Architecture

Edge architectures refer to the various design and deployment models used to imple-

ment edge computing solutions. Edge architectures provide flexible solutions for a

variety of applications, from simple single-node setups to distributed and hierarchical

models that can handle large-scale and diverse edge computing requirements. Each

architecture offers specific advantages based on the use case, network size, and desired

performance characteristics. Edge architectures can vary in complexity and scalabil-

15

Chapter 2: Literature Review

Figure 2.1: Single-Node Edge Architecture

ity, depending on the specific use case and the size of the network. An in-depth

explanation of some common edge architectures will be provided in the following

[15, 16, 17, 18, 19, 20].

2.2.1.1 Single-Node Edge Architecture

This is the simplest form of edge architecture, where a single edge device or server

performs all the data processing and computation at the edge. It is suitable for

smaller-scale deployments or isolated edge computing applications. The single-node

architecture is cost-effective and straightforward to implement, making it ideal for

scenarios where limited resources and low-latency processing are sufficient. Figure

2.1 depicts a diagram illustrating a Single-Node Edge architecture.

2.2.1.2 Distributed Edge Architecture

In this architecture, multiple edge devices or servers are deployed across the network,

distributed geographically to serve various edge computing requirements. These nodes

collaborate to process data and share computational resources. Distributed edge ar-

16

Chapter 2: Literature Review

Figure 2.2: Distributed Edge Architecture

chitectures offer greater scalability, fault tolerance, and load balancing. Data can be

processed locally at the nearest edge node, alleviating the load on the central infras-

tructure. Figure 2.2 illustrates a diagram depicting a Distributed Edge architecture.

2.2.1.3 Hierarchical Edge Architecture

Hierarchical edge architectures combine elements of both centralized cloud computing

and distributed edge computing. It involves intermediate layers of edge nodes placed

between the edge devices and the cloud. In this model, the intermediate edge nodes

aggregate and preprocess data from multiple edge devices before sending relevant

information to the central cloud. This reduces the amount of data transmitted to

the cloud, minimising latency and bandwidth requirements. Figure 2.3 illustrates a

diagram depicting a Hierarchical Edge architecture.

2.2.2 Access Technologies and Communication Patterns

Edge computing, as a distributed computing paradigm, relies on various access tech-

nologies and communication patterns to establish seamless connectivity between edge

17

Chapter 2: Literature Review

Figure 2.3: Heirarchical Edge Architecture

devices, edge nodes, and the central cloud. These technologies play a pivotal role in

enabling real-time data processing, reducing latency, and ensuring efficient commu-

nication across the network.

2.2.2.1 Access Technologies

1. Wireless Technologies: Wireless access technologies, such as 5G, Wi-Fi 6, and

Bluetooth Low Energy (BLE), are fundamental to edge computing deployments.

5G, with its low-latency and high-bandwidth capabilities, is particularly well-

suited for time-sensitive applications, while Wi-Fi 6 offers enhanced data trans-

fer rates and improved efficiency in crowded environments. BLE is commonly

used for low-power, short-range communication in IoT devices, making it ideal

for edge computing scenarios.

18

Chapter 2: Literature Review

2. Wired Technologies: In certain edge computing environments, wired access tech-

nologies like Ethernet and Fiber Optics are employed to ensure reliable and

high-speed data transmission. These technologies offer stable connections and

higher bandwidth, making them suitable for applications that require constant

data streaming and minimal latency [21, 22].

2.2.2.2 Communication Patterns

1. Device-to-Edge Communication: Edge computing involves direct communica-

tion between edge devices and the edge nodes. This pattern enables local data

processing and decision-making, minimising the need for data transmission to

the central cloud. Device-to-edge communication is essential for applications

requiring real-time responses and low-latency processing, such as industrial au-

tomation and autonomous vehicles.

2. Edge-to-Edge Communication: In certain edge architectures, edge nodes collab-

orate and communicate with each other, sharing resources and data insights.

Edge-to-edge communication allows for load balancing, fault tolerance, and lo-

calized data aggregation, resulting in a more efficient and resilient edge com-

puting infrastructure.

3. Edge-to-Cloud Communication: Edge computing is designed to complement

cloud computing, and therefore, edge nodes communicate with the central cloud

for more extensive data analysis, long-term storage, and resource-intensive com-

putations. Edge-to-cloud communication ensures that valuable data can be

leveraged by the cloud to provide deeper insights and support applications that

require comprehensive analytics [23, 24].

19

Chapter 2: Literature Review

2.2.3 Device Ecosystem

The device ecosystem within the realm of edge computing plays a pivotal role in

enabling the seamless integration of a diverse array of interconnected devices. With

mobile broadband subscribers surpassing 6 billion in 2019 and expected to exceed

8 billion by 2024, the proliferation of edge devices has surged, driven by the trans-

formative potential of the Internet of Things (IoT) in creating interconnected smart

surroundings.

The IoT’s objective is to interconnect various devices, enabling them to com-

municate and collaboratively analyse data to generate smart insights. Among the

numerous edge devices, smartwatches, smart eyewear, personal on-body sensors, and

a host of other end devices contribute to a deluge of data that demands further pro-

cessing, storage, and sharing to deliver new services. The device ecosystem is marked

by remarkable heterogeneity, not only in terms of functions and form factors but also

in capabilities and computational capacity. End devices alone exhibit diversity, pro-

ducing substantial volumes of data that necessitate advanced processing. The range

of devices capable of performing edge computations extends from consumer-grade

hardware to powerful data center-grade hardware. Notably, small-scale single-board

computers, such as Raspberry Pis, have found applications in edge computing, along-

side home routers and compact setups equipped with more robust hardware.

This device heterogeneity poses one of the most significant challenges in edge

computing. The collaborative use of diverse devices in proximity to the mobile client

allows for distributed edge computing. Every device capable of spare computational

resources becomes a candidate for edge computing, emphasising the versatility and

adaptability of the device ecosystem in facilitating real-time data processing. To pro-

vide an overview of the diverse edge computing device landscape, Figure 2.4 depicts an

insightful visual representation. The intricacy of the device ecosystem, encompassing

a myriad of interconnected edge devices, end devices, and computation-performing

20

Chapter 2: Literature Review

devices, underscores the robustness of edge computing’s architecture in addressing

a wide range of applications and computing requirements. The device ecosystem in

edge computing represents a dynamic and diverse landscape, fuelled by the expo-

nential growth of mobile broadband subscribers and the proliferation of IoT-enabled

devices. The collaborative synergy between different devices allows for edge com-

puting’s seamless integration, empowering the creation of smart surroundings and

delivering cutting-edge services. Embracing device heterogeneity as an opportunity,

edge computing stands poised to revolutionize computing paradigms and drive inno-

vations across numerous industries [25].

Figure 2.4: Edge Ecosystem

21

Chapter 2: Literature Review

2.2.4 Edge Computing Implementation

To implement the architecture of edge computing outlined in the preceding sections,

various research efforts have focused on the design of edge computing models. Among

these models, two dominant approaches have emerged: the Hierarchical Model and

the Software-Defined Model.

2.2.4.1 Hierarchical Model

The Hierarchical Model organises the edge architecture into a hierarchy, considering

the deployment of edge/cloudlet servers at different distances from the end users. This

hierarchical structure defines functions based on proximity and available resources.

By dividing the edge computing network into tiers, the hierarchical model effectively

describes the network structure of edge computing [26, 27]. The advantage of this

approach lies in its ability to manage resources efficiently, optimise data processing

based on proximity, and ensure seamless communication between edge nodes and end

devices.

2.2.4.2 Software-Defined Model

Given the scale of edge computing, with numerous applications and millions of end

users and devices, managing edge computing for the Internet of Things (IoT) can be

exceptionally complex. To address this challenge, the Software-Defined Model comes

into play. Software-Defined Networking (SDN) offers a viable solution to cope with

the intricacies of edge computing management [28, 29]. By abstracting the underlying

network infrastructure, SDN enables centralised control and programmable manage-

ment of edge devices and edge nodes. This approach streamlines the management

process, enhances scalability, and facilitates dynamic resource allocation, making it

suitable for the large-scale and dynamic nature of edge computing environments.

22

Chapter 2: Literature Review

2.3 Edge computing and similar concepts

Edge computing has gained significant prominence in recent years as a transformative

paradigm in the field of computing. It has emerged as a compelling solution to

address the challenges posed by centralized cloud computing and the proliferation of

Internet of Things (IoT) devices. Several related concepts and computing paradigms

have surfaced, each offering unique approaches to decentralized data processing, low-

latency applications, and improved user experiences. In this section, we explore edge

computing and its relationships with other similar concepts [30, 31, 32, 33, 34, 35, 36,

37].

2.3.1 Cloud Computing

Cloud computing serves as a foundation for edge computing, and the two concepts

are closely interconnected. While cloud computing offers vast storage, computing

resources, and extensive data analysis capabilities, it inherently faces challenges con-

cerning data latency and bandwidth constraints. Edge computing complements cloud

computing by bringing computation closer to the edge devices, alleviating the strain

on the central cloud and enabling real-time data processing. The combination of edge

computing and cloud computing forms a powerful and versatile computing ecosystem,

catering to diverse use cases across industries. Figure 2.5 illustrates the prevalent ar-

chitecture of cloud computing.

To gain further insight, Table 2.1 provides a comparative analysis between edge

computing and cloud computing.

2.3.2 Fog Computing

Fog computing is another related concept that shares similarities with edge com-

puting. The term ”fog computing” was introduced to describe an intermediate layer

23

Chapter 2: Literature Review

Figure 2.5: Cloud Computing Architecture.

Table 2.1: A comparison between edge and cloud computing

Criteria Cloud computing Edge Computing

Proximity to users Low High

Latency High Low

Infrastructure centralised Distributed

Hardware Heterogeneity Low High

Number of Locations Few Many

Resources at individual locations Many Few

Availability and reliability High Low

Connection to resources Long-thin Short-fat

Applications Data-driven User-driven

between edge devices and the central cloud. Fog nodes are deployed at the edge of the

network and provide computing, storage, and networking capabilities to support edge

devices. The key distinction lies in the level of abstraction; edge computing empha-

sises localised data processing at the device level, while fog computing focuses on an

24

Chapter 2: Literature Review

intermediate layer that offers additional services closer to the end-users. Despite this

difference, both paradigms seek to minimise latency, enhance user experiences, and

improve the overall efficiency of data processing. Figure 2.6 illustrates the prevalent

architecture of fog computing.

Figure 2.6: Fog Computing Architecture.

2.3.3 Mobile Edge Computing (MEC)

Mobile Edge Computing (MEC) is a subset of edge computing that concentrates

on providing computing capabilities and services at the edge of the mobile network.

MEC servers are deployed at base stations, enabling mobile users to access low-

latency, edge-based services. MEC enhances the performance of mobile applications,

such as augmented reality and real-time video streaming, by reducing latency and

alleviating the burden on the central cloud. While edge computing has a broader

scope, encompassing various types of edge devices, MEC specifically caters to mobile

25

Chapter 2: Literature Review

users and applications, ensuring efficient data processing for time-sensitive mobile

services. Figure 2.7 illustrates the prevalent architecture of MEC computing.

Figure 2.7: MEC Architecture.

2.3.4 Cloudlet

Cloudlet is another concept closely related to edge computing, offering a specific

approach to address latency and data processing challenges. Cloudlet, as a mobile

micro data center situated at the edge of the network, enriches the edge computing

landscape by providing localised computing resources and reducing latency for time-

sensitive applications. Its collaboration with edge devices and compatibility with edge

computing make it a valuable component in the distributed computing ecosystem. By

optimising data processing and enhancing application performance, cloudlet plays a

crucial role in shaping the future of edge computing, driving innovations and creating

more efficient and responsive services. When integrated with other similar concepts,

such as fog computing, mobile edge computing, and decentralized computing, cloudlet

contributes to the advancement of decentralised computing paradigms, paving the way

for a connected and intelligent future. Figure 8 illustrates the prevalent architecture

26

Chapter 2: Literature Review

of cloudlet computing.

Figure 2.8: Cloudlet Architecture.

2.3.5 Decentralised Computing

Decentralised computing is a broader term that encompasses various paradigms, in-

cluding edge computing, fog computing, and other distributed computing models.

It emphasises the distribution of computing tasks and data processing across mul-

tiple nodes, moving away from traditional centralised architectures. Edge comput-

ing aligns with the decentralised computing philosophy by pushing computation to

the network’s periphery, closer to the data source. This distribution of computing

resources contributes to improved scalability, reduced single points of failure, and

enhanced responsiveness.

27

Chapter 2: Literature Review

2.4 Enabling Technologies and techniques

Edge computing has emerged as a revolutionary computing paradigm, driven by a

diverse set of enabling technologies and techniques that enhance its capabilities. In

this section, we explore some of the key enabling technologies and techniques in the

context of our study, focusing on their relevance and importance in optimising edge

computing deployments.

2.4.1 Offloading Techniques

Offloading is a fundamental technique in edge computing, which involves the transfer

of computation tasks from resource-constrained edge devices to more powerful edge

servers or cloud resources. By offloading computation, edge devices can conserve

energy and extend their battery life, while also benefiting from the higher processing

capabilities of edge servers. This technique is particularly crucial for latency-sensitive

applications, enabling real-time data processing and enhancing the overall efficiency

of the edge ecosystem [38, 39, 40, 41].

2.4.2 Artificial Intelligence (AI) Integration

AI plays a pivotal role in edge computing by enabling intelligent decision-making at

the edge of the network. By integrating AI algorithms into edge devices and edge

servers, edge computing environments can perform local data analysis, inference,

and predictions. AI-driven edge computing enables autonomous systems, real-time

analytics, and personalised services. It also reduces the dependency on centralised

cloud resources, making edge devices more self-sufficient and efficient [42, 43, 44].

28

Chapter 2: Literature Review

2.4.3 Optimal Servers Placement

Optimal servers placement involves strategically locating edge servers within the net-

work to achieve optimal performance and resource utilisation. By carefully selecting

server locations, data can be processed closer to end-users, reducing latency and im-

proving response times. Optimal placement considers factors such as the density of

edge devices, data traffic patterns, and geographical distribution to ensure efficient

data processing and minimise network congestion [45, 46, 47].

2.4.4 Software-Defined Networking (SDN)

SDN is a networking technology that centralises the control of network resources

through software-based controllers. In the context of edge computing, SDN allows for

dynamic network reconfiguration and resource allocation to accommodate changing

edge computing demands. SDN enhances network flexibility, scalability, and adapt-

ability, enabling efficient communication between edge devices, servers, and cloud

resources [48, 49, 50].

2.4.5 Load Balancing

Load balancing is a critical technique in edge computing to evenly distribute com-

puting tasks and data processing across multiple edge servers. By balancing the

workload, load balancing ensures that no single server is overwhelmed with requests,

preventing performance bottlenecks and ensuring optimal resource utilisation. Load

balancing techniques can be adaptive and responsive to real-time changes in data

processing demands, optimising the edge computing environment [51, 52, 53].

29

Chapter 2: Literature Review

2.5 Advantages of Edge Computing

Edge computing offers a multitude of advantages that have positioned it as a trans-

formative computing paradigm in various industries. As data generation continues

to soar, and the demand for real-time and low-latency applications grows, edge com-

puting has become a crucial enabler for the efficient processing and delivery of data.

In this section, we explore the key advantages of edge computing in more detail,

highlighting its impact on the technological landscape and its wide-ranging benefits

[54, 55, 56, 57].

2.5.1 Reduced Latency and Improved Responsiveness

Edge computing significantly reduces latency by processing data closer to the source,

at the edge of the network. This proximity ensures faster data processing and delivery,

leading to improved application responsiveness. Latency-sensitive applications, such

as online gaming, live video streaming, healthcare, and autonomous vehicles, greatly

benefit from edge computing’s ability to deliver real-time results.

2.5.2 Bandwidth Optimisation and Network Efficiency

Edge computing optimises bandwidth usage by performing data processing and filter-

ing locally. Only relevant data is transmitted to centralised cloud servers, reducing

the amount of data traversing the network. This efficient data handling minimises

network congestion, conserves bandwidth, and enhances overall network efficiency.

2.5.3 Enhanced Data Privacy and Security

Edge computing enhances data privacy and security by keeping sensitive data closer to

the source. Since data is processed locally or within the organisation’s premises, there

is reduced exposure to potential cyber threats during data transmission to external

30

Chapter 2: Literature Review

cloud servers. This proximity also allows for better control over data access, ensuring

compliance with data privacy regulations.

2.5.4 Resilience and Reliability

Edge computing improves system resilience and reliability by enabling applications

to function even during network disruptions or connectivity issues with the central

cloud. Local edge servers can store and process critical data, ensuring the availability

of essential services in edge computing environments. This resilience is particularly

beneficial for applications in remote or harsh environments.

2.5.5 Scalability and Flexibility

Edge computing offers scalability and flexibility, allowing organisations to easily ex-

pand their computing resources by adding edge servers as the demand grows. This

dynamic scalability ensures that edge computing environments can adapt to changing

workloads and application requirements. Edge computing’s flexibility also allows for

the deployment of specialised edge devices to meet specific application needs.

2.5.6 Offline Operation and Edge Intelligence

Edge computing enables certain applications to operate offline, even when discon-

nected from the central cloud. By processing data locally, edge devices can continue

functioning and providing essential services in scenarios with limited or no internet

connectivity. Edge intelligence allows edge devices to analyse and respond to data

locally, reducing dependency on cloud connectivity.

31

Chapter 2: Literature Review

2.5.7 Real-time Data Analytics and Insights

Edge computing enables real-time data analytics and insights, allowing organisations

to extract valuable information from data as it is generated. By analysing data at

the edge, businesses can make faster and data-driven decisions, leading to improved

operational efficiency and competitive advantages.

2.5.8 Lower Operating Costs

Edge computing can lead to cost savings by reducing data transmission costs to

centralised cloud servers. Offloading computation from edge devices to edge servers

also extends the battery life of edge devices, reducing maintenance and replacement

costs.

2.6 Challenges of Edge Computing

While edge computing offers numerous advantages, it also faces several challenges that

need to be addressed for its widespread adoption and successful implementation. As

the technology continues to evolve, it is essential to acknowledge and mitigate these

challenges to fully realise the potential of edge computing. In this section, we explore

the key challenges faced by edge computing in more detail, highlighting their impact

on the technology landscape and the strategies to overcome them [58, 59, 60, 61].

2.6.1 Latency Variability

Edge computing relies on proximity to end-users to reduce latency. However, the

variability of network conditions and edge server loads can lead to unpredictable

latency. Maintaining consistent low-latency performance across different edge nodes

requires effective load balancing and resource management. Advanced algorithms and

32

Chapter 2: Literature Review

predictive analytics can be employed to dynamically allocate computation tasks and

ensure optimal response times.

2.6.2 Limited Computing Resources

Edge devices, such as IoT devices and sensors, often have limited computing capa-

bilities and storage capacities. This limitation can hinder the execution of resource-

intensive applications at the edge. Efficient task offloading, lightweight computation,

and AI-based optimisations are essential to make the most of these constrained re-

sources. Additionally, the adoption of edge servers with higher processing power and

memory can help overcome resource limitations.

2.6.3 Data Management and Security

Processing data at the edge raises concerns about data management and security.

Ensuring data integrity, confidentiality, and compliance with privacy regulations be-

comes crucial. Robust encryption, secure communication protocols, and access con-

trols are necessary to protect sensitive data at the edge. Implementing secure data

lifecycle management practices and data anonymisation techniques can further en-

hance data security.

2.6.4 Interoperability

As edge computing environments grow, ensuring interoperability between various edge

nodes and cloud resources becomes challenging. Standardisation of protocols and

frameworks, along with seamless integration of heterogeneous devices, can facilitate

smooth scaling and efficient communication. Open standards like MQTT and CoAP

can foster interoperability in IoT-based edge computing systems.

33

Chapter 2: Literature Review

2.6.5 Edge-to-Cloud Orchestration

Coordinating computation and data flow between edge devices and central cloud

servers requires efficient orchestration. Balancing the processing load between edge

and cloud resources while considering network conditions is essential to achieve op-

timal performance. The adoption of edge computing management platforms and

edge-to-cloud orchestration tools can streamline this coordination process.

2.6.6 Edge Device Management and Maintenance

Managing a large number of edge devices spread across different locations poses oper-

ational challenges. Remote device management, software updates, and diagnosing de-

vice failures demand efficient device monitoring and maintenance mechanisms. Edge

device management platforms that enable remote monitoring, automated updates,

and predictive maintenance can ease these challenges.

2.6.7 Data Aggregation and Consistency

Aggregating data from various edge nodes while maintaining data consistency can

be complex, especially in dynamic edge environments. Ensuring synchronised data

across edge servers and the central cloud is crucial for accurate data analysis and

decision-making. Consistency protocols like CRDTs (Conflict-free Replicated Data

Types) can be employed to maintain data integrity across distributed edge nodes.

2.6.8 Edge-to-Cloud Security Handoff

Secure data transmission between edge devices and the central cloud is vital. How-

ever, the handoff of data between the edge and cloud introduces potential security

vulnerabilities. Secure handoff mechanisms, such as secure tunnels and authentication

protocols, are needed to mitigate risks. Additionally, secure communication channels

34

Chapter 2: Literature Review

and encryption keys can enhance data security during transmission.

2.7 Edge Computing Applications

Edge computing has unlocked a diverse range of applications across various industries,

reshaping data processing, service delivery, and user experiences. The proximity of

computation and data processing to the network’s edge facilitates real-time insights,

minimises latency, and enhances the handling of extensive data volumes. In this

section, we delve into some of the key edge computing applications that have revolu-

tionised industries and empowered innovative solutions [62, 63, 64, 65, 66, 67, 68].

2.7.1 Industrial Internet of Things (IIoT)

Edge computing is at the forefront of the Industrial Internet of Things (IIoT) revolu-

tion. By deploying edge devices within manufacturing plants and industrial settings,

real-time data from sensors and machines can be processed locally, enabling predictive

maintenance, fault detection, and process optimisation. IIoT applications powered by

edge computing enhance production efficiency, reduce downtime, and ensure seamless

operations in critical industrial processes.

2.7.2 Autonomous Vehicles

Edge computing plays a pivotal role in the development of autonomous vehicles. Pro-

cessing sensor data and making critical decisions in real-time is crucial for the safety

and functionality of self-driving cars. Edge computing enables onboard computation,

reducing the reliance on cloud connectivity for immediate responses to changing road

conditions and potential hazards.

35

Chapter 2: Literature Review

2.7.3 Smart Cities

Edge computing is a cornerstone of smart city initiatives. By deploying edge servers

and devices throughout the city infrastructure, real-time data from sensors, cam-

eras, and IoT devices can be processed locally. This enables intelligent traffic man-

agement, waste management optimisation, environmental monitoring, and improved

public safety.

2.7.4 Agriculture and Precision Farming

Edge computing is empowering precision farming by enabling real-time monitoring

of crop conditions, soil moisture, and weather data. Edge devices in smart farming

applications optimise irrigation schedules, automate pest control, and enable precision

agriculture practices, leading to increased crop yields and resource efficiency.

2.7.5 Augmented Reality (AR) and Virtual Reality (VR)

Edge computing is instrumental in delivering seamless AR and VR experiences. By

processing intensive AR/VR applications at the edge, latency is minimised, resulting

in smooth and immersive user experiences. This capability is critical for AR/VR

applications in gaming, training, and remote collaboration.

2.7.6 Healthcare Application

In the healthcare sector, edge computing has revolutionised telemedicine and patient

monitoring by enabling real-time operations due to its inherent advantage of ultra-

low latency. Medical devices deployed at the edge can efficiently collect and process

vital signs and patient data locally, empowering healthcare professionals to monitor

patients remotely in real-time. This instantaneous feedback facilitates timely medical

interventions and significantly reduces the burden on centralised healthcare systems.

36

Chapter 2: Literature Review

Edge computing rapidly analyses real-time bio-signals from sensor nodes at edge

data centers, providing healthcare professionals with valuable insights for proactive

decision-making. Its capabilities ensure efficient patient monitoring and timely inter-

ventions, improving healthcare services and outcomes. As technology evolves, further

integration is expected to advance medical practices, making healthcare more efficient

and patient-centric.

Beyond real-time monitoring, edge computing brings forth advanced techniques

and services to the healthcare industry. Embedded data mining, distributed storage,

and alerting services are among the key capabilities made possible through edge com-

puting integration. These services enhance data processing efficiency and promote

seamless communication of critical information for timely decision-making. The next

section presents a compilation of related work that pertains directly to our study’s fo-

cal areas in the upcoming chapters. This compilation encompasses investigations into

healthcare architecture, offloading methodologies, optimal server placement strate-

gies, and load balancing techniques. These insights from existing research will serve

as a foundation for the subsequent exploration and analysis of our study.

2.8 Related Work

2.8.1 Healthcare Architecture and Offloading Techniques

In order to review the publications from the most reliable sources, a systematic lit-

erature review (SLR) technique is used in this research. Finding, interpreting, and

evaluating research findings that address the research questions is the major goal of

the SLR. Both automated and manual searches were performed to gather the research

findings from primary studies. The primary studies underwent a quality assessment

in order to analyse the data and find the most appropriate results. The first step

37

Chapter 2: Literature Review

in the SLR is to define and document the search strategy. Inclusion and exclusion

criteria of the research papers are the next steps. Then, quality criterion assessment

is defined, while quantitative meta-analysis is the last step in the process.

Based on the existing literature, the idea of using wearable sensors to monitor

patients has been investigated for many years. It started with the use of PC-based

stations, right up to the use of modern technological solutions such as the IoT tech-

nologies that have proven their ability to effectively develop healthcare at various

levels. A large number of research works examine developments in the key enabling

technologies for the IoMT, which include edge/fog computing, wearable medical de-

vices, communication networks, and cloud computing. For example, Asif-Ur-Rahman

et al. [69] proposed a heterogeneous IoHT framework consisting of five layers. Al-

though mobile healthcare data can be offloaded to the cloud for processing, analysis

and storage, offloading data to remote clouds still results in excessive latency. Fur-

thermore, privacy is not addressed when offloading, placing sensitive health data at

risk of external attacks. The number of possible scenarios for data transmission and

processing paths is limited, which raises concerns about system scalability and service

availability.

In the same way, M. Ahmad et al. [70] proposed a framework of Health Fog where

the cloud and patients are separated by a layer of fog computing to reduce the E2E

extra communication cost. The framework was provided by a cloud access security

broker (CASB) to enhance data privacy and security. In [71], the researchers pre-

sented a privacy preserving healthcare system for data management in cloud. The

blockchain technology was used to store all medical data to increase privacy. T.

Muhammed et al. [72] proposed a four-layer ubiquitous healthcare framework based

on edge computing technology to optimise data rate, data caching and data deci-

sions. A cloud-fog-based IoT healthcare framework was structured in reference [73]

to optimise the latency issues when cloud computing was used only to process the of-

38

Chapter 2: Literature Review

floaded healthcare data. However, sending medical personal data outside the network

increases privacy concerns and latency issues with the increase in the data size.

Another system for patient monitoring is suggested by A. M. Rahmani et al. [74],

which introduced a fog-computing-based healthcare system architecture integrated

with smart e-Health gateways. The strategic position of these gateways at the edge

of the network was exploited to present a Smart e-Health Gateway through offering

some important services, such as local storage, real-time local data processing and

data mining.

A different solution by C. Kai et al. [75] that investigated the collaborative com-

putation offloading, computation and communication resource allocation schemes and

developed a collaborative computing framework to improve the cloud-edge-end task

processing efficiency whilst maintaining limited computation and communication ca-

pabilities. A pipeline-based offloading strategy was proposed to partially process

the collected data at the terminals, edge nodes and cloud. Reference [76] presented

BEdgeHealth, a decentralised architecture that combined MEC with blockchain for

data offloading and sharing amongst distributed nodes. Rajasekaran et al. [77]

suggested an autonomous monitoring system model to provide healthcare services.

This model uses the analytical hierarchy process for equitable distribution of energy

amongst the nodes. The results demonstrated that the proposed model could support

a large number of nodes with less energy.

There are also other applications in patients monitoring: I. Azimi et al. [78]

introduced a portable detection and prediction monitoring system of the patients’

health deteriorations that can be used at Hs or at homes. G. Muhammad et al. [79]

presented a pathology monitoring system by using a cloud-based IoT and a machine

learning classifier. Scalability, secure transmission and availability are amongst the

concerns that still need to be addressed. S. He et al. [80] proposed an IoT-enabled

medical services framework called FogCapCare to detect patented heart health con-

39

Chapter 2: Literature Review

ditions by integrating a cloud layer with a sensor layer. Reference [81] presented a

Fog-enabled Technique for Clinical Healthcare framework based on edge computing,

deep learning and automated monitoring to deliver highly useful real-life healthcare

systems, such as cardiology.

In summary, the research studies reviewed here provided system architectures to

improve data collection, management, and processing. These systems have reflected

good performance in providing health services. However, concerns regarding the lack

of data flow and offloading scenarios to increase the possibility of local data processing

continue to persist. This situation mainly leads to other concerns, such as latency,

data privacy, service availability and scalability issues. Therefore, the main objective

of this research is to design a ubiquitous and scalable healthcare architecture with

a high level of data management flexibility and system availability, while increasing

privacy and capacity, and reducing latency. An effective solution is to develop the

system to be able to handle different workloads with various data processing scenarios

by adopting a cooperative hierarchical structure. The architecture presented in this

research is unparalleled in combining the concept of hierarchical Edge/Fog comput-

ing with unique cooperative offloading techniques (HOSSC algorithm) between the

architecture units exploiting many data flow scenarios to reflect additional options

of data processing paths within the network. This combination can create a scalable

and ubiquitous health system applicable at cities by utilising (for the first time) the

already existing infrastructure (e.g., MCs and Hs). The proposed architecture takes

advantage of the MCs’ and Hs’ geographical locations to provide electronic health ser-

vices whilst increasing the computational capacity and the quality of healthcare with

greater privacy and reduced latency. Table 1 presents a comparison of the proposed

architecture with the previous existing ones.

40

Chapter 2: Literature Review

Table 2.2: Feature comparison table of HMAN (proposed) with the previous existing
architectures

References
Structure Features

Hierarchical Cooperative Scalability Availability Capacity Privacy Latency

Ref. [69] No No N/A N/A Yes No Yes

Ref. [70] No No N/A N/A N/A Yes Yes

Ref. [71] No No Yes N/A N/A Yes No

Ref. [72] No No N/A N/A Yes Yes Yes

Ref. [73] No Yes N/A N/A Yes No Yes

Ref. [74] No No N/A Yes No No No

Ref. [75] No No No No No Yes No

Ref. [76] No Yes No N/A No Yes Yes

Ref. [77] Yes No N/A N/A Yes No Yes

Ref. [78] No No No No Yes No Yes

Ref. [79] Yes No No No No No No

Ref. [80] No No N/A N/A No No Yes

Ref. [81] No Yes N/A N/A No Yes Yes

Proposed HMAN Yes Yes Yes Yes Yes Yes Yes

2.8.2 Optimal intelligent Edge-Servers Placement Study

As this study can be divided into two parts, we have divided the related work section

into two subsections: priority mechanism and edge-servers placement approaches.

2.8.2.1 Priority Mechanism Approach

In recent years, significant advancements in IoT and body sensor devices, along with

the integration of emerging technologies such as edge or fog computing with the

cloud, have spurred numerous research projects dedicated to developing IoT-based

smart health monitoring frameworks. However, existing healthcare systems, exem-

plified by studies [82, 83, 84, 85, 86, 87, 88, 89, 90] and the baseline study [HMAN]

which published in [91], often adopt a uniform approach to processing and predicting

data, following a first-in-first-out concept, without considering the urgency of cases.

As a result, patients with severe illnesses may encounter delays in receiving timely

treatment. To tackle this challenge, this study proposes enhancements to the HMAN

41

Chapter 2: Literature Review

healthcare system by incorporating an AI-based data classification method. The main

objective is to establish a priority mechanism based on the urgency of patients, with

the aim of improving both the Quality of Service (QoS) and the Quality of Expe-

rience (QoE) in healthcare delivery. By introducing a prioritisation framework that

considers the urgency of cases, this approach seeks to ensure that critical patients

receive prompt attention and care.

2.8.2.2 Edge-Servers Placement Approach

The placement of edge-servers, commonly referred to as cloudlets, is a crucial factor

that significantly impacts the efficiency of a system. However, this topic has received

limited attention in the existing literature, with only a few studies addressing it. The

key question revolves around determining the optimal placement of edge-servers in a

system to maximize benefits while considering different goals, such as reducing costs

or minimising latency.

Several papers have explored server placement in large-scale environments, specif-

ically the wireless metropolitan area network (WMAN), and are particularly relevant

to our study. Jia et al. [92] investigated how to place a number of cloudlets and al-

locate users among them in a way that minimises the average system response time.

To address this issue, they also suggested the density-based clustering (DBC) ap-

proach. To reduce the average cloudlet access delay, Zhao et al. [93] suggested using

a ranking-based heuristic for K cloudlets deployment. In order to reduce the latency

between the users and cloudlets, Xu et al. [94] proposed an exact solution to the

problem by placing K cloudlets in strategic locations within a large-scale WMAN.

Similarly, a cost-aware cloudlet deployment technique was suggested by Fan et

al. [95] to improve the trade-off between deployment cost and latency. To minimise

communication latency, Meng et al. [96] proposed some algorithms for deploying

cloudlets in a group of access points and routing mobile task requests. Firstly, they

42

Chapter 2: Literature Review

derived an approximation algorithm to choose candidate locations based on histor-

ical data. Then, they presented an iterative algorithm to select the best locations

to deploy cloudlets in. Finally, an online job routing algorithm was proposed to

route the request to the cloudlet with minimum latency. Yao et al. [97] proposed a

low-complexity heuristic algorithm to cost-effectively deploy cloudlets without com-

promising a pre-determined QoS. They essentially assumed that the cloudlet servers

are heterogeneous, meaning that they have different cost and resource capacities.

A novel framework named EdgeON was presented by Santoyo-Gonzalez et al. [98],

which was aimed at reducing the total cost when placing and operating the edge-

servers network. To reduce the average response time, Li et al. [99] suggested two

methods for edge-servers placement: flat and hierarchical. They found that the hi-

erarchical approach has a better performance in reducing system response time. A

different solution by Li et al. [100] presented the problem of an energy-aware edge-

servers problem as a multi-objective optimisation one. Then, they suggested a particle

swarm-based energy-aware algorithm for reducing energy consumption in computing

resource utilisation.

There are also other studies in edge-servers placement. The edge-server placement

problem was formulated, firstly, by Lahderanta et al. [101] as a constrained optimi-

sation mode to reduce the sum of weighted distances between the edge-servers and

access points. Then, they designed the PACK algorithm to minimise the distances

while balancing the load among servers. Lovén et al. [102] proposed a new algorithm

to choose the optimal number of edge-servers to be placed and optimally re-allocate

access points, accordingly, in order to improve QoS.

In addition to the aforementioned studies, recent papers have made significant

contributions to the field of edge-server placement. For instance, [103] proposed novel

approaches for addressing the challenges in deploying edge servers. Their work focused

on optimizing the placement of edge servers in order to minimize latency and enhance

43

Chapter 2: Literature Review

network performance. Through innovative algorithms and techniques, they achieved

improved efficiency and effectiveness in edge-server deployment, paving the way for

further advancements in this area. In [104], cloudlet deployment in IoT networks

was investigated with the aim of optimizing deployment cost and network latency.

The authors proposed a fault-tolerant cloudlet deployment scheme based on software-

defined network technology. Their binary-based differential evolution cuckoo search

algorithm showed promising performance in terms of cost and latency optimization.

Lastly [105] focused on deploying edge servers effectively and economically in wireless

metropolitan area networks. They addressed the problem of minimizing the number

of edge servers while ensuring specific QoS requirements by extending the definition of

dominating set and formulating it as a graph theory problem. Their proposed greedy-

based algorithms showed feasibility and effectiveness in achieving efficient edge-server

deployment. These papers contribute to the advancement of edge-server placement

and offer valuable insights for future research in this area.

To summarise, the reviewed research studies present innovative methods for plac-

ing edge-servers, showcasing notable achievements in terms of cost and/or time. The

literature has explored four main perspectives regarding edge-server placement:

1. Minimising response time (latency) by employing various distance measures.

2. Minimising the cost of server deployment while maintaining a maximum accept-

able delay.

3. Optimising the trade-off between delay and costs.

4. Maximising coverage, i.e., the number of users served.

In comparison, this study introduces a novel (unprecedented) approach that in-

volves placing a flexible number of servers to minimise costs while ensuring acceptable

latencies based on patient conditions through a priority mechanism. It presents a

44

Chapter 2: Literature Review

fresh perspective on selecting and locating edge-servers within a specific area, consid-

ering different variables such as the number of connections between competing sites,

distances, and historical workloads. Furthermore, this study stands out in the liter-

ature as the first to address the problem of edge-server placement specifically in the

healthcare domain.

2.8.3 Load Balancing Techniques

Edge computing has garnered significant attention for enhancing cloud computing

systems by enabling data processing at the network edge, closer to the data source.

The advantages offered by edge computing, such as reduced latency and improved

user experience, have sparked substantial research interest, resulting in a significant

body of literature in this field. In this section, we review recent advancements in edge

computing and load balancing, with a particular focus on the crucial issue of load

balancing in edge/fog-based applications due to the growing demand for real-time

data processing and low-latency communication.

Various load balancing approaches have been proposed to address this challenge.

For instance, Chen et al. [106] proposed a task allocation model to address load

balancing at the server level in fog computing. By treating tasks offloaded by other

servers as a single large aggregation task, they calculated the completion time of

large aggregation tasks on each server. These studies demonstrate the diverse strate-

gies proposed for load balancing in edge/fog-based environments. Wang et al. [107]

developed a distributed city-wide traffic management system and proposed an of-

floading algorithm for real-time traffic management in fog-based Internet of Vehicle

(IoV) systems. Their focus on minimising the average response time of the Traf-

fic Management Server (TMS) highlights the importance of efficient offloading and

real-time management in IoV environments. Ning et al. [108] investigated a joint

computation offloading, power allocation, and channel assignment scheme for 5G-

45

Chapter 2: Literature Review

enabled traffic management systems. Their integrated approach aimed to enhance

system performance and efficiency, showcasing the growing research interest in load

balancing techniques for emerging network paradigms.

A dynamic load balancing approach with multiple objectives was proposed by

Cabrera et al. [109]. Their Dynamic Load Balancing (DLB) approach, utilising the

Ull Multiobjective Framework (UllMF), aims to optimise application performance

and resource efficiency. By separating metric gathering, objective functions, and load

balancing algorithms, they provide a flexible and cost-effective solution. Similarly, Li

et al. [110] addressed the load balancing problem by proposing a strategy for task

allocation based on intermediary nodes. Their multi-step process, involving classifi-

cation, evaluation, and task assignment, contributes to improved load balancing and

resource utilisation.

Considering the resource optimisation aspect, Nayyer et al. [111] developed the

LBRO (Load Balancing for Resource Optimisation) approach. It tackles both resource

scarcity and under-provisioning issues in cloudlets, maximising resource utilisation at

the cloudlet level. Their approach ensures stable resource utilisation without compro-

mising application performance, demonstrating the potential for enhancing resource

efficiency in edge computing systems. Similarly, He et al. [112] introduced an en-

hanced constrained particle swarm optimisation algorithm within the context of a

software-defined cloud-fog network. Their algorithm improves performance by lever-

aging the opposite property of mutated particles and reducing the inertia weight

linearly. Dong et al. [113] proposed HEELS, a task deployment strategy for load

balancing in edge computing combined with cloud computing. By leveraging clus-

tering analysis and an improved GSO algorithm with SCA, they achieved efficient

task deployment and long-term load balancing. This study aligns with the goal of

optimising resource allocation and performance in edge computing environments.

Furthermore, Shahrbabaki et al. [114] proposed an SDN-enabled scheme for load

46

Chapter 2: Literature Review

balancing in edge nodes used for real-time IoT video data analytics. By utilising

incoming and outgoing traffic load measurements, the scheme estimates the load at

each server and assigns a load score to determine workload distribution. Through

periodic re-routing of IoT video streaming flows based on load scores, the proposed

solution achieves a balanced workload distribution. The effectiveness of this scheme

is demonstrated through simulation results, showcasing its potential in reducing the

average video frame data analytics at edge nodes through workload balancing. Chen

et al. [115] proposed a novel method called TDBEC for load balancing in multi-edge

collaboration in WMANs. TDBEC employs a two-stage decision-making approach

using DNN-based and DQN-based models to optimise task scheduling and adjust op-

erations. The method achieves load balancing through centralised and decentralised

decision-making based on global and local information, respectively. By incorpo-

rating these decision-making models, TDBEC provides an efficient load balancing

mechanism for multi-edge collaboration in WMANs.

In summary, the existing methods in the literature can be mainly categorised into

static, dynamic, and occasionally centralised or decentralised load balancing tech-

niques. Previous research in this field has predominantly focused on addressing the

load balancing problem through separate utilisation of these methods. However, this

approach has demonstrated limitations in terms of adaptability, real-time responsive-

ness, and resource efficiency.

In contrast to prior studies, the proposed algorithm integrates these diverse ap-

proaches, combining the simplicity of static methods with the adaptability and re-

sponsiveness of dynamic methods. Furthermore, it incorporates localised decision-

making, centralisation, and network collaboration or decentralisation across different

areas. The proposed approach incorporates a load balancing algorithm for initial

load distribution decisions and an SDN-based algorithm to offload data within the

network, either locally within the areas or between them. This integrated approach

47

Chapter 2: Literature Review

offers a practical and scalable solution to the load balancing challenge in edge/fog-

based healthcare systems. To the best of our knowledge, this study is the first to

propose such a combined static and SDN-based load balancing method specifically

for edge/fog-based healthcare applications.

2.9 Summary

This chapter offers a thorough examination of Edge Computing, encompassing its

architectural principles, enabling technologies, advantages, challenges, applications,

and a special focus on its integration within the healthcare domain.

The Edge Computing Paradigm section explores into crucial concepts related

to edge computing technology, including its architecture, access technologies, ecosys-

tem, and implementation.

In the Edge Computing and Similar Concepts section, we distinguish Edge

Computing from cloud computing, highlighting their complementary roles and dis-

tinct use cases. Additionally, we provide a comparative evaluation of edge comput-

ing with related paradigms like fog computing, mobile edge computing (MEC), and

cloudlet computing, emphasizing their unique attributes for specific applications.

Enabling Technologies and Techniques are discussed in another section, high-

lighting on pivotal technologies for Edge Computing, such as offloading techniques,

artificial intelligence (AI) integration, optimal server placement, Software-Defined

Networking (SDN), and load balancing. These technologies empower Edge Com-

puting applications, making them highly suitable for various industries, including

healthcare.

The section on Advantages and Challenges of Edge Computing showcases

its real-time insights, reduced latency, improved privacy, and enhanced system effi-

ciency. We also address challenges, such as latency variability, resource limitations,

48

Chapter 2: Literature Review

and data management and security.

Edge Computing Applications section demonstrates its transformative impact

across diverse sectors, ranging from smart cities to industrial automation. Notably,

we explore its role in healthcare applications, where integrating Edge/Fog computing

yields a multitude of advantages, ultimately improving patient outcomes.

In the Related Work section, we explore into relevant literature, shedding light

on subjects like healthcare architecture, offloading methods, optimal server placement,

and load balancing techniques. These insights serve as a foundation for our study’s

subsequent exploration and analysis.

49

Chapter 3

Towards a cooperative hierarchical

healthcare architecture using the

HOSSC algorithm

3.1 Introduction

The Internet of Things (IoT) phrase was coined in 1999 by Kevin Ashton, a British

technology pioneer [116]. Nowadays, the phrase ‘Internet of Things’ refers to any

network of devices or things that can be characterized as a system connecting objects,

involving humans, animals, and inanimate objects, over the Internet. The number of

IoT applications have been exponentially growing [117, 118]. According to Gartner’s

research, the worldwide number of connected devices could increase from 15.1 billion

in 2020 to 29 billion in 2030 [119]. The McKinsey Global Institute estimated that IoT

applications will have an annual global economic impact ranging from $3.9 trillion

to $11.1 trillion [120]. According to Facts and Factors, the IoT market was expected

to reach $1842 billion by 2028, rising at a Compound Annual Growth Rate of 24.5

percent from 2021 to 2028 [121].

The Internet of medical things (IoMT) is one of the most attractive areas in the

recent IoT developments, with a promising business growth forecast of $158.07 billion

50

Chapter 3: HMAN Architecture

by 2028 [122]. In certain ways, the IoMT might be considered one of the future’s

economic foundations. Furthermore, a wide range of services can be provided through

a variety of IoMT applications. Hence, massive data collected from endless IoMT

sensors or devices must be processed at powerful data centres to provide additional

insight to users and service providers [123].

In the case of near-real-time applications, the widespread adoption of cloud-based

infrastructure may exacerbate the real-time constraints and burden the network in-

frastructure from the on-premises gateway to the cloud. Meanwhile, simple network-

ing approaches are rarely feasible when attempting to provide healthcare services to a

wide large of patients due to the complex nature of healthcare. For instance, patient

privacy prevents data from being stored in a public cloud. Another issue to address

is the patient’s safety as data must be instantly available with a predetermined delay

and intolerant cloud failures.

The emergence of cloud computing technology is creating new business opportu-

nities, with the global market for this technology expected to exceed $1 trillion by

2024 [124]. However, relying on cloud computing to transfer data and wait for a

response after the data are processed has several drawbacks. With regard to the data

transmission cost, this process places additional burden on the network in terms of

the required bandwidth and resources, resulting in degraded performance as the data

volume increases.

This situation is considerably worse for time-sensitive applications, such as smart

transportation, electricity grid, smart city and some healthcare applications, wherein

a short response time is not negotiable. Cloud computing cannot meet these standards

because most data centres are located far away from users, causing delays. In addition

to limiting available resources and bandwidth, cloud computing implementation might

result in significant unacceptable network latency for time-sensitive applications [125].

To address these challenges, Edge/Fog computing paradigms have been intro-

51

Chapter 3: HMAN Architecture

duced as complementary technologies for cloud computing. The primary goal of

Edge/Fog computing is to shorten the distance between users and data processing

centres (servers). Accordingly, various advantages are realized, such as faster response

time. In addition, placing the servers at the same user network can improve the band-

width and privacy level because the data can be stored and processed locally. This

feature highlights how useful this technology would be for most applications, espe-

cially time-sensitive ones, such as healthcare [126].

According to projections, the world’s population will reach 9.7 billion people in

2050 [2]. Overcrowding in cities poses serious threats to the quality of life to those

who live there. According to WHO, poor healthcare management contributes to 2.6

million fatalities per year, and the rate is rising [3, 4]. Consequently, cities will face

several challenges in the near future if appropriate solutions are not implemented.

One of the major problems is the potential stress on the health system in cities.

To address such issues, the emerging technology that allows humans and devices to

work and communicate using IoT, Edge, Fog and Cloud technologies is the electronic

healthcare (e-healthcare) system. This system can be a reasonable alternative to the

traditional healthcare techniques based on the rapid advancements in communication

and information technologies.

This work introduces a unique cooperative hierarchical architecture for the health-

care system in cities based on Edge/Fog computing technology supported by the

HOSSC algorithm that provides adaptable offloading techniques. The presented ar-

chitecture, named as Healthcare Metropolitan Area Network (HMAN), connects the

patients in a city to the healthcare system by utilising infrastructures that already

exist in that city, such as medical centres (MCs) and hospitals (Hs). Consequently,

this will provide an easy way to decide where to place servers since these facilities are

spread all over the cities. This work mainly contributes to a ubiquitous and scalable

e-healthcare system capable of delivering health services to patients without restric-

52

Chapter 3: HMAN Architecture

tions of space and time. The HMAN system manages the data within the network

as much as possible through the HOSSC algorithm and various offloading scenarios,

resulting in less delay and high privacy levels. The system networks patients, physi-

cians and family members to cooperatively monitor the patients and remotely obtain

regular updates on their health conditions. In addition, relying on the hierarchical

architecture is promising to gain an accumulative computational capacity because the

data are cooperatively processed at multiple system units before reaching the cloud.

Furthermore, the HMAN system also contributes to increased availability because

the designed scenarios ensure multiple methods to process the data, hence avoiding

singular unit failures.

Chapter Organisation : The remainder of this chapter is organised as follows: Sec-

tion 3.2 introduces the proposed HMAN architecture; Section 3.3 presents the data

flow algorithm and the offloading scenarios in the suggested architecture; Sections 3.4

and 3.5 describe the proposed HMAN system and the offloading model, respectively;

Section 3.6 presents and discusses the simulation results; Section 3.7 identifies system

limitations and possible improvements in the future; Finally, Section 3.8 provides a

summary of the chapter.

3.2 Proposed HMAN architecture

One of the biggest challenges the healthcare providers can face is to meet the needs

of people as their multiple health conditions worsen. These people require extensive

support from healthcare providers because they may have a lower quality of life

than others and a higher risk of premature death than usual [127]. However, a lack

of patient status information hampers the ability of healthcare providers to meet

these needs [127]. Moreover, any latency in providing the necessary medical response

53

Chapter 3: HMAN Architecture

makes the physicians unable to deliver all the preventive services recommended by the

US Preventive Services Task Force. According to [128], preventive services require

roughly 37 min/year per child and 40 min/year per adult. Accordingly, providing

high-quality healthcare services to these targeted patients at MCs or Hs requires

more time than what these caregivers can afford [129]. On this basis, designing

an advanced ubiquitous e-healthcare system has become crucial to fulfilling these

aspirations through local monitoring and data processing. Based on the primary

analysis of the locally collected data, the outcome of such an advanced system can

help healthcare providers in managing their resources in providing services for the

people in need.

This section describes the HMAN, a cooperative hierarchical architecture for the

healthcare system based on Edge/Fog computing technology supported by a collab-

orative offloading algorithm (HOSSC). The HMAN system aims to provide a mobile

24 h monitoring service for patients in need. Furthermore, the suggested framework

is promising to meet the healthcare important requirements, such as availability, scal-

ability, communication delay, computational capacity, and privacy. The main idea of

the HMAN architecture design is based on the procedure of the existing standard

healthcare systems. The integration of the existing infrastructure in the city (e.g.,

MCs and Hs) with the recent technology (i.e., Edge/Fog computing) can play a key

role in achieving a robust system and providing its services to all patients in any city.

For example, most health systems, certainly in the USA and the UK, have two

main levels of health services delivery, namely, primary and advanced. The primary

level is provided by MCs distributed around cities to provide primary care for patients.

Individuals that need to be examined or treated with a higher degree of expertise

are filtered by these primary care facilities. Meanwhile, most Hs tend to provide

advanced, more specialised, and skilled care to patients referred to them by the MCs.

Accordingly, the proposed architecture can be built on these two layers and additional

54

Chapter 3: HMAN Architecture

layers, as demonstrated in Figure 3.1. Based on the figure illustration, the HMAN

architecture consists of four layers, an IoT layer, an Edge/Fog layer, a cloud layer and

an application layer. A further detailed explanation of these four layers is provided

in the following parts of this section.

Figure 3.1: The HMAN Architecture. The arrow directions indicate the flow of data.
MC = Medical centres, H = Hospitals. The MCs and Hs are hierarchically connected

3.2.1 IoT Layer

The IoT layer is the first layer of the HMAN architecture. The incorporation of

WBANs and innovative technologies in the various layers of IoT ecosystems has many

benefits, such as enhancing storage and data availability while lowering data trans-

mission latency [7]. Therefore, this layer consists of vital signs monitoring sensors,

including on body or/and in body (implants) sensors, and a smartphone (or any

55

Chapter 3: HMAN Architecture

wearable devices). The sensors and Wireless Body Area Network are connected to

the patient’s body to sense vital signs and send the sensed data to the smartphone

through a wireless link (e.g., Bluetooth or Zigbee). The smartphone is responsible

for receiving the data from the sensors and performing a basic preprocessing and

initial data analysis (i.e., aggregation, fusion, filtering, and classification). Conse-

quently, the received data are classified into normal and abnormal according to a

predefined threshold assigned based on the patient’s conditions. A physician may

assign a threshold value for a diabetic patient, for instance, based on the patient’s

history record to take further actions. Meanwhile, the normally classified data are

temporarily locally stored with no actions required, whilst the abnormal data can be

offloaded to the next layer for further actions. Moreover, the offloaded data generate

an alert to the patient and a family member to notify the condition.

3.2.2 Edge/Fog Layer

The Edge/Fog layer is the next layer in the architecture, where the local MCs and the

Hs are hierarchically connected to cooperatively accommodate the patients’ needs by

the allocation of the nearest resources. This layer of the hierarchy’s servers, which

are often geo-distributed desktops or workstations, receives workloads directly from

patients’ smartphones through wireless connections. The HMAN suggests that each

MC is connected to the nearest two MCs, and each group of MCs is linked to a local

H through optical fibre links. Meanwhile, each H is connected to two neighbouring

Hs through optical fibre links, whilst each H is linked to the cloud via the Internet

backbone. This cooperative hierarchy architecture summarises the main contribution

of this study on how the data offloading can be collaboratively managed between the

neighbouring MCs and Hs and how it can help the system gain more computational

capacity. If the workloads received by an MC exceed its computational capacity, then

the overload amount of data is further offloaded either to a neighbouring MC or to

56

Chapter 3: HMAN Architecture

the local H. The same method is applied to the local H when dealing with incoming

data. Consequently, the forwarded data inherit more computational capacity gained

at the servers of these facilities based on the hierarchy architecture. More detailed

scenarios of the data flow are provided in Section 3.3 to emphasise the cooperative

hierarchy of data processing along with the accumulatively gained computational

capacity. Assigning only two neighbouring facilities to back up the local MCs and Hs

achieves the aimed inherited computational capacity while sharing the data within as

fewer local parties as possible and maintain a simplistic, applicable and cost-effective

system. Concurrently, this neighbouring units’ collaboration reduces the distance and

latency.

3.2.3 Cloud Layer

The cloud layer is the third layer in the architecture, which represents the furthest

layer the data can reach according to the data flow scenarios detailed in Section 3.3.

Specifically, it is the worst case of the proposed offloading techniques happening only

when the workload overloads all the previous layers’ capacity. Hence, the overload

data must be sent to the cloud.

3.2.4 Application Layer

The application layer is the topmost layer of the HMAN architecture. The user

interface between the relevant members and the system itself is provided by this

layer. Moreover, the system administrator can access the system resources through

this layer.

57

Chapter 3: HMAN Architecture

3.3 HOSSC - Data flow and offloading algorithm

Computational offloading is a distributed paradigm for transferring all or a portion of

the data from local servers to remote ones to speed up data processing and conserve

energy. However, this process has several conditions. First, local execution cannot

be done due to the limited resources of the local servers. Second, the offloading time,

including the communication time and the remote execution time, is less than the

local execution time, as expressed in equation (3.1) [130].

Toffloading < Tlocal (3.1)

Algorithm 1 presents an explanation of the proposed HOSSC algorithm at different

layers of the suggested system. The algorithm determines whether or not the data

offloading is necessary between the HMAN units after considering the time latency in

equation 3.1 based on the size of the workload received by an MC or an H compared

with the maximum data processing capacity of these facilities. To better understand

the HOSSC algorithm, as illustrated in Figure 3.2, the following step-by-step data flow

and offloading algorithm from the data collection to the final outcome is described in

the next part of this section.

The monitored patient’s data are collected with a smartphone and classified into

normal and abnormal based on a pre-set threshold assigned by healthcare specialists.

The normal data are temporarily stored for further future analysis of the patient’s

records. Meanwhile, the abnormal data are immediately sent to the local MC, and an

alert to a family member is initiated. Once the abnormal data reaches the nearest MC

in the patients’ area, that MC processes the data directly if the available resources are

capable to do so. However, if the received workload requires greater computational

resources than the MC’s capacity, then the MC processes the data within its capacity

and offloads the overload data to the connected neighbouring MCs. The only possi-

58

Chapter 3: HMAN Architecture

bility that data must be forwarded to the local H is when both neighbouring MCs

are busy.

The same cooperative processing in between MCs is applied to the Hs to manage

the received data by the local H. The received data is processed within the H server’s

capacity unless it requires more computational capacity. If so, the overload data can

be then forwarded to the neighbouring cooperative Hs. Therefore, the data are mostly

managed within the MCs and the Hs without reaching the cloud. The data arrives

the cloud only if all local and neighbouring MCs and Hs cannot accommodate the

overload data. On this basis, the possible abnormal data flow and offloading scenarios

are follows:

• Scenario 1: The abnormal data collected by IoT devices require less processing

capabilities than what the local MC can afford. Hence, the local MC manages

to process the data.

• Scenario 2: The data require more processing capabilities than that available

at the MC. Accordingly, the data are partly processed at the MC, whilst the rest

are offloaded to the nearest idle neighbouring MC. This scenario assumes that

the offloaded overload data can be accommodated by the processing capacity

of at least one neighbouring MC. Otherwise, scenario 3 is applied.

• Scenario 3: The data require more processing capabilities than that available

at the MC and at the neighbouring centres. Accordingly, the data are partly

processed at the local MC, whilst the rest are offloaded to the local H. This

scenario assumes that the offloaded overload data can be accommodated by the

processing capacity of the local MC and the local H. Otherwise, scenario 4 is

applied.

• Scenario 4: The data require more processing capabilities than that available

at the local MC and the local H. Accordingly, the data are partly processed

59

Chapter 3: HMAN Architecture

at the local MC and H, whilst the rest are offloaded to the nearest idle neigh-

bouring Hs. This scenario assumes that the offloaded overload data can be

accommodated by the processing capacity of at least one H of the neighbouring

ones. Otherwise, scenario 5 is applied.

• Scenario 5: The data require more processing capabilities than that available

at the cooperative MCs and Hs. According, the data are partly processed at

the local MC and H, whilst the rest are offloaded to the cloud. This scenario

expresses the only possibility that the data can reach the cloud. Figure 3.3

visualises the five scenarios.

Having addressed the possible data flow and offloading scenarios, the HMAN

framework can contribute to enhancing the provided services by:

• Offering a high level of patients’ privacy by processing the data locally without

reaching the cloud as much as possible. This step is met through cooperative

data processing and offloading in between facilities.

• Increasing the computational capacity through the hierarchical connection of

the facilities in the Edge/Fog layer.

• Decreasing the system response time (i.e. the latency) as a result of the greater

possibilities of local data processing shortening the distance between the pa-

tients and the healthcare providers.

• Maintaining high availability of service because the presented system does not

rely on one scenario to forward and process the data. Meanwhile, the HMAN

sustains a reliable service by providing multiple scenarios that can cooperatively

process the data within the system’s units to ensure that the service is constantly

maintained for patients.

60

Chapter 3: HMAN Architecture

Algorithm 1: HMAN offloading scenarios and SRT calculation

algorithm

Input: Ps, rFib, λi, TWi, TAP , B, µMC , µH , µCloud, λMC , λH

Output: Present five offloading scenarios and facilitate the SRT calculation.

Assumptions: Each MC is connected to two neighbouring MCs,

and each H is connected to two neighbouring Hs.

1- Data (workload) at the local MC.

a- Calculate: λSum ←
∑Ps

i λi The local MC’s workload

b- Calculate: the data fraction scalar K1

if λSum <= λMC then:

K1 ← 1 (means all λSum will be processed at the local MC and nothing

will be offloaded.)(Scenarios 1).

else then:

K1← λMC

λSum
(means a part of data (K1 ∗ λSum) will be offloaded to the

higher units.)

end if statement.

In both cases, calculate: the MC’s queuing time

fQ((K1 ∗ λSum) & the processing time.

Then, calculate the response time:

tMC ← fQ+ processingtime

2- When λSum > λMC

a- Calculate: λj ← (1−K1) ∗ λSum

λj = The local MC workload which should be offloaded to:

1- one or both Idle neighbours,

or 2- the local H

b- Calculate the optic fiber latency:

V and S ← (λj ∗ 8)/rFib + 4.9 microseconds ∗Distance(kilometer)

Now, there are two cases:

1- λj <= λMC (means it is possible to send data to one of the neighbouring

61

Chapter 3: HMAN Architecture

MCs (Scenario 2). Therefore, the local MC will first check

for an Idle neighbouring MC.

2- λj > λMC means the data must be offloaded to the local H.

Case 1: λj <= λMC

Calculate the response time in MC tMc or Hs tH based on the state of

neighbouring MCs:

1- [0, 0]→ Both neighbours are busy, then the MC offloads the data to the H

(Scenario 3).

2- [1, 0]→ neighbour 1 is idle, then the MC offloads the data to the MC

(neighbour 1) (Scenario 2).

3- [0, 1]→ neighbour 2 is idle, then the MC offloads the data to the MC

(neighbour 2) (Scenario 2).

4- [1, 1]→ Both neighbours are idle, then the MC offloads the data to the

nearest one (Scenario 2).

Case 2: λj > λMC

That means the local MC must offload the λj data to the local H.

Now, again there are two cases:

Case A: λj <= λH (All λj data is processed at the local H.) (Scenario 3).

K2← 1

Case B: λj > λH (A part of the λj data should be offloaded to the higher

units.)

K2← λH

λj

In both cases, calculate: the queuing time (fQ((K2 ∗ λj)) &

processing time in the local H.

Then, calculate the response time

tH ← fQ+ processingtime.

62

Chapter 3: HMAN Architecture

3- When λj > λH

a- Calculate: λz ← (1−K2) ∗ λj

λz = The local H’s workload which should be offloaded out of the local H to:

1- one or both Idle neighbours, or 2- the cloud.

b- Calculate the fiber optic latency

L← (λz ∗ 8)/rFib + 4.9microseconds ∗Distance(kilometer)

Now, λz must be offloaded according to two cases:

Case 1: λz <= λH (means it is possible to send data to one of the neighbouring

H.) (scenario 4). So, the local H will check for an Idle

neighbour.

Calculate the response time in H (tH) or cloud (tcloud) based on the state of the

neighbour:

1- [0,0] → Both neighbours are busy, then the H offloads the data to the Cloud

(Scenario 5).

2- [1,0] → neighbour 1 is idle, then the H offloads the data to the H (neighbour 1)

(Scenario 4).

3- [0,1] → neighbour 2 is idle, then the H offloads the data to the H (neighbour 2)

(Scenario 4).

4- [1,1] → Both neighbours are idle, then the local H offloads the data to the

nearest H (neighbour) (Scenario 4).

Case 2: λz > λH (means the data must be offloaded to the Cloud.)

(scenario 5).

Calculate: λCloud ← λz

λCloud is H’s workload which needs to be offloaded to the cloud.

Calculate: the response time in the Cloud:

tcloud ← λCloud

µCloud

63

Chapter 3: HMAN Architecture

4- Calculate the delay for each patient tpi according to Equation 3.9

5- Finally, calculate the system SRT:

SRT ←
∑Ps

1 tpi
Ps

3.4 HMAN system model

The HMAN architecture is cased studied on the healthcare system in the UK for a

more convenient derivation of the proposed model. The healthcare system in the UK

consists of two main levels, namely, the general practices (GPs) level and the general

Hs (GHs) level. The GPs are the primary MCs distributed throughout the city and

are responsible for providing medical services for local patients. Meanwhile, the GHs

are the general Hs, and each one is responsible for hospitalising patients referred by

a group of GPs.

In terms of applying the HMAN architecture on the healthcare infrastructure in

the UK, it can be represented as an undirected graph G = {P ∪ GP ∪ GH, E}, where

P is a set of monitored patients, P = {p1, p2, p3, . . . , pi}, GP is a set of MCs in a

local area of the city, GP = {gp1, gp2, gp3, . . . , gpj}, GH is a set of the general Hs in

the city, GH = {gh1, gh2, gh3, . . . , ghz}, and E represents the connection links that

can be a wire (optical fibre) or wireless (Wi-Fi connection). Figure 3.4 illustrates the

components of the HMAN system.

In the HMAN system, the patient can access any local GP service either through

a direct link if he/she is in that GP coverage area or through the access point (AP)

he/she is connected to. Each GP is connected to two GPs (the two nearest neighbours)

and is responsible for providing services to patients within its area of responsibility.

Meanwhile, every GH is connected to two GHs (the two nearest neighbours) and

is responsible for all local GPs located within its area of responsibility. The fibre

64

Chapter 3: HMAN Architecture

Figure 3.2: HOSSC data flow and offloading algorithm of the HMAN architecture.

65

Chapter 3: HMAN Architecture

Figure 3.3: All potential scenarios in the proposed system.

Figure 3.4: All Components of the HMAN system. The arrow directions indicate the
flow of data. P = patients, GP = medical centres (general practice), GH = general
hospitals. The GPs and GHs are hierarchically connected.

66

Chapter 3: HMAN Architecture

optics are utilised to link the aforementioned healthcare facilities to provide high-

speed connections. In addition, the remote cloud is accessible to all GHs through

high-speed Internet connections.

In the first layer of the architecture, the patient’s smartphone classifies the col-

lected data into normal or abnormal according to a threshold value of each health

issue. The normal data are invisible to the further layers in the system, and the only

offloaded data to the local GP for processing are the abnormal data. Accordingly,

each patient, pi, has a task that randomly arrives in the system with an arrival rate

λi, according to the Poisson process.

Figure 3.5 depicts the system model where the data can be offloaded from a

patient to a local GP either through a direct connection with a wireless delay (Dwi)

or through an AP with a total delay of (Dwi + DAP). In addition, V, S and B denote

the delay in between GPs, GPs to GHs or in between GHs and the internet delay,

respectively.

3.5 Offloading system model

The HMAN system is designed as a queuing model. The offloaded data can be pro-

cessed at the GPs, GHs, or remote cloud according to the servers’ status in each site.

This study assumes that all GPs’ servers are identical, and the same assumption ap-

plies on GHs’ servers. However, the GHs host more servers with higher specifications

and capabilities than the ones hosted at the GPs. Let us denote the number of servers

at each GP site as n and the number of servers at every GH as m. In addition, GP

and GH sites are modelled using M/M/n and M/M/m queue models, respectively, to

accurately reflect their service operations. In these models, each GP or GH comprises

n or m homogeneous servers with fixed service rates of µGP and µGH. The M/M/n

and M/M/m models are chosen because they effectively capture the nature of GP and

67

Chapter 3: HMAN Architecture

Figure 3.5: HMAN system model.

GH services, where multiple servers handle patient data and requests simultaneously.

These models assume exponential inter-arrival and service times, which align well

with the stochastic nature of healthcare service requests and processing times [131].

The following part presents the offloading system model after applying the data flow

scenarios described in Section 3.3 on the case studied healthcare system in the UK.

The collected data from each monitored patient create a task that can be executed

at the patient’s smartphone when the data are determined to be normal; at the local

GP or its neighbouring GPs when the data are determined to be abnormal; at the

local GH or its neighbouring GHs when the abnormal data require more processing

capacity than the cooperative GPs’ capacity; or at the cloud when the previous units

cannot afford enough processing capacity to execute the abnormal data.

The average queuing time, fQ, can be found using the equation below [132]:

68

Chapter 3: HMAN Architecture

fQ(λ) =
C(n, λ/µ)

nµ− λ
(3.2)

Where λ is the arrival rate, and C(n,A) is Erlang’s formula [132] obtained by:

C(n,A) =
((nA)n

n!
)(1

1−A
)∑n−1

k=0(
(nA)k

k!
) + ((nA)n

n!
)(1

1−A
)

(3.3)

3.5.1 Response Time at GPs

Assuming that P = {p1, p2, p3, . . . , pi} is a set of patients assigned to the local GP,

the patients’ smartphones offload the collected abnormal data to the local GP for

processing. If the local GP is overloaded, then the GP processes the data within its

available capacity, whilst the remaining data are offloaded either to the nearest idle

GP or to the local GH based on the criterion, λGPmax < (λGPsum =
∑

λi), where

λGPmax represents the maximum GP workload, and λGPsum is the arrival workloads

from the patients.

To determine the amount of data to be processed at the local GPs and those to

be offloaded to the cooperative units, the calculation of the data fraction scalar K1

is required as follows:

K1 =


1, if λGPmax ≥ λGPsum

λGPmax

λGPsum
, otherwise.

(3.4)

Then, the response time at the GPs, tGP , for the received data can be found as

follows:

tGP = fQ(K1.λGPsum) +
K1.λGPsum

µGP

(3.5)

Where fQ(K1.λGPsum) represents the queuing time needed for the fraction of the

arrived data to be processed at the GP, and K1.λGPsum

µGP
represents the service time at

69

Chapter 3: HMAN Architecture

the GP for the processed workload.

3.5.2 Response Time at GHs

Assuming that GP = {gp1, gp2, gp3, . . . , gpi} is a set of GPs assigned to the local

GH, the GP offloads its data to the local GH. In case the local GH is overloaded,

the data will be offloaded either to the nearest idle GH or to the cloud according to:

λGHmax < (λGHsum = λGPsum−λGPmax), where λGHmax represents the maximum GH

workload, and (λGHsum is the arrival workloads from the GHs.

To determine the amount of data to be processed at the local GH and those to

be offloaded to the neighbouring GHs or further to the cloud, the calculation of the

data fraction scalar K2 is required as follows:

K2 =


1, if λGHmax ≥ λGHsum

λGHmax

λGHsum
, otherwise.

(3.6)

Accordingly, the response time at the GHs, tGH , for the arrived data can be found

as follows:

tGH = fQ(K2.λGHsum) +
K2.λGHsum

µGH

(3.7)

Where fQ(K2.λGHsum) represents the queuing time needed for the fraction of ar-

rived data to be processed at the GH, and K2.λGHsum

µGH
denotes the service time at the

GH for the processed workload.

3.5.3 Response Time at the cloud

The cloud can be modelled as M/M/∞ queue referring to its unlimited resources.

Thus, the queuing time at the cloud can be considered as zero, and the response time

at the cloud can be estimated as follows:

70

Chapter 3: HMAN Architecture

tCloud =
λcloud

µGH

(3.8)

According to Equations 3.5, 3.7 and 3.8, the average response time of the offloaded

tasks by a patient in the HMAN system is calculated as follows:

tpi = Twi + EAP ∗ TAP + (c1 + 1) ∗ tGP + c1 ∗ V + c2 ∗ S

+ c2 ∗ tGH + c3 ∗ L+ c3 ∗ tGH + c4 ∗B + c4 ∗ tCloud (3.9)

Where c1, c2, c3 and c4 represent the counters to count the number of times to

reach a certain unit in the system; c1 = GP neighbours’ counter; c2 = the local GH

counter; c3 = GH neighbours’ counter; and c4 = the cloud counter. EAP represents

the link between the patient and the local GP; and EAP = 0 (direct connection) or

1 (through an AP). Finally, the system response time (SRT), which represents the

average system latency required to deliver patient data to one of the health facilities

within the architecture, can be determined by:

SRT =

∑n
i=1 tpi
n

(3.10)

3.6 Results

This section presents the simulation results of all the conducted potential scenarios

according to the HMAN system model. A few parameters are defined and listed in

Table 3.1 for a more convenient evaluation of the system’s feasibility and advantages.

The SRT when simultaneously processing varying numbers of patients sending data is

considered a metric to measure the performance of the system. Meanwhile, the other

important system aspect to look for is the system scalability and how far the HMAN

71

Chapter 3: HMAN Architecture

system can sustain a reliable service responding to the simultaneous data flow.

Table 3.1: System parameters

Symbol Parameter Value

Ps Number of patients 100, 200, 300

n Number of servers in each MC (GP) 5, 6, 7

m Number of servers in each GH 10, 12, 14

rWi Link rate between IoT device and AP 54 Mbps

rAP link rate between AP and the local GP 100 Mbps

rFib link rate between the GPs and GHs Up to 10 Gbps

λi Packet size 30 KB

Twi Wireless Delay 4 ms

TAP Delay between AP and the local GP 2 ms

V Delay between two neighboring GPs (1−K1).λGPsum

10Gbps

S Delay between the GPs and GHs K2.λGHsum

10Gbps

L Delay between two neighboring GHs (1−K2).λGHsum

10Gbps

B Internet Delay 20 ms

µGP , µGH Each GP, GH server service rate 100,200 KB per ms

µCloud Cloud service rate 1000 KB per ms

λGPmax Maximum GP workload 200×n KB

λGHmax Maximum GH workload 200×n KB

The cooperative units (i.e., the local and neighbouring GPs and GHs) are gradu-

ally deployed to respond to different workloads to examine how efficient and scalable

the hierarchy HMAN architecture is. The system units are gradually engaged in five

stages starting from only the local GP and ending at the whole system, including all

the cooperative units.

Initially, the SRT to the data from a certain workload that can only be processed

at the local GP and Cloud is evaluated for greater clarity in visualising this progres-

72

Chapter 3: HMAN Architecture

sive deployment. Then, more units are gradually deployed in between the local GP

and the cloud for the same workload. The neighbouring GPs, the local GH, the neigh-

bouring GHs, and the whole cooperative system are engaged to respond to the same

workload under these stages of more involved units. This situation can emphasise

how the hierarchy architecture can collaboratively manage the workload. In terms

of workloads, the system is tested for 100, 200 and 300 patients, and the results of

the SRT are presented in Figures 6, 7 and 8 respectively. Each figure includes five

graphs representing the SRT of the HMAN system under each of the aforementioned

five stages for the same workload. For a fair evaluation of the suggested architecture

in responding to different workloads, each of the five graphs in Figure 6 is discussed

with the corresponding graphs from Figures 7 and 8. Figure 6 shows that the SRT

is reduced when the data are offloaded from the local units (GPs or GHs) to their

neighbouring units rather than being transmitted to the upper layers.

Figure 3.6a shows that when two layers and 100 patients are sending data at

the same time, a portion of the data must be offloaded to the cloud due to the

limited resources at the GP layer. Accordingly, the response time is longer, which

is undesirable in many pathological situations where a faster response is required.

Additionally, these offloaded data are sufficient to raise privacy concerns because a

portion of the data are sent outside the network in such a scenario. Furthermore,

this situation can be even more challenging when serving more patients (i.e., a large

number of data are likely to be processed outside the network), as shown in Figures

3.7a and 3.8a for 200 and 300 patients, respectively.

In the second stage, the system supports the local GP by two GP neighbours. The

local GP first checks if the data can be offloaded to the nearest available neighbour

(i.e. when the overload data are less than λGPmax) rather than being sent to the

cloud. Such neighbouring GP involvement creates an additional scenario to locally

process the data and achieve more privacy, greater inherited computational capacity

73

Chapter 3: HMAN Architecture

and less latency. As a result, a reduced SRT is obtained, and the system is expanded

to ensure that more patients can be served within the local network, as illustrated in

Figures 3.6b, 3.7b, and 3.8b.

The following stage is to engage the local GH to serve as a reference point for all

the GPs in the same area. Accordingly, an additional scenario to process the data is

provided compared with the previous stage. When the data exceed the capacity of

the local GP neighbours, this new scenario becomes valid, and the overload data are

offloaded to the local GH. Although the SRT increased in responding to a 100 patients’

workload (Figure 3.6c), the SRT decreased when handling heavier loads of 200 and

300 patients (Figures 3.7c and 3.8c). The higher SRT in a 100-patient workload is

attributed to the longer distance the offloaded data can go through as it travels from

the local GP to the local GH, which is often located further than the neighbouring

GPs. Nevertheless, the computational capacity of the GHs is higher than the GPs;

hence, a larger number of patients can be accommodated. Furthermore, a higher

level of the patients’ privacy is achieved because this system expansion still assures

the local processing of the data.

When the local GH is connected to the two GH neighbours in the fourth stage,

the system’s performance is improved. In the previous stage, when the data overload

the local GP and GH, the overload data must be offloaded to the cloud, exposing

the data to less privacy and higher latency. Meanwhile, this stage introduces an

additional scenario to locally process the data at the neighbouring GHs. The local

GH checks the status and the capacity of the neighbouring GHs and decides whether

to send the overload data to the neighbouring GHs or to the cloud.

Consequently, the system would have more probability of local data handling and

less possibility of reaching the cloud. Thus, more privacy is met, more patients are

served, and less latency can be achieved. The results depicted in Figures 3.6d and

3.7d cannot show this SRT improvement because the local GH along with the previous

74

Chapter 3: HMAN Architecture

units are capable of processing the data; hence, no overload data reaches the local

GH neighbours. However, the aimed SRT improvement can be clearly seen in Figure

3.8d because the system affords further resources to avoid the data offloading to the

cloud.

In the final stage, when the entire system is connected, more computational capac-

ity is gained, resulting in a more powerful processing platform capable of responding

to a higher number of monitored patients. All the five scenarios conducted in this

study are involved in this stage. The results presented in Figures 3.6e, 3.7e and 3.8e

show that the performance is significantly improved compared with those in the pre-

vious stages. Moreover, the more healthcare units are involved in the cooperative

HMAN architecture, the more computational capacity can be inherited, thereby re-

flecting less SRT. Furthermore, the patients’ privacy is also increased because such a

collaborative network achieves a higher probability that data are locally processed.

The simulation considered the highest expected values of the time delay to calcu-

late. In addition, all patients are assumed to be indirectly connected to the health

centres; hence, the TAP of 2 ms was added to all the considered scenarios. Accord-

ingly, the obtained results are for the worst case when it comes to the consideration of

the time delay assumptions. Nevertheless, the presented HMAN framework efficiently

serves a workload of 300 patients simultaneously requesting service with a latency of

31.45 ms when compared the latency of 75 ms achieved in [69]. This remarkable

reduction in the service delay is attributed to the presented architecture that utilises

the nearest units for cooperative data processing. This utilisation of the MCs’ and Hs’

geographical locations shortened the distance between patients and health facilities

and eventually reflected reduced latency.

Furthermore, the system performance is improved in all resulting graphs when

increasing the servers at the GPs (n) from 5 and 6 to 7 and the GHs (m) from 10 and

12 to 14. This result makes sense due to the increase in resources.

75

Chapter 3: HMAN Architecture

Consequently, more data are locally processed rather than being offloaded to the

upper layers. Table 3.2 illustrates the system achievements to indicate the perfor-

mance in responding to different workloads as we gradually engage more units in the

five testing stages. The aforementioned table emphasises how data become less ex-

posed to the cloud despite the increased number of patients from 100 to 300 as more

units are gradually involved from stage 1 utilising only the local GP and the cloud

to the final stage, including all the cooperative units. For example, in responding to

a 300-patient workload with n = 6 and m = 12, moving from stage 1 to stage 5, the

numbers of patients who reached the cloud are 240, 180, 60, 0 and 0. Specifically, a

ubiquitous and scalable health system with high service availability, more computing

capacity, less latency, and better privacy is obtained.

It is worth noting that in the context of healthcare, the significance of rapid re-

sponse times, even within the range of milliseconds, cannot be overstated. While

millisecond differences may be critical only in applications such as virtual reality or

gaming, healthcare scenarios equally benefit from such responsiveness. For instance,

in emergencies such as remote patient monitoring for heart attack or stroke symptoms,

every millisecond of latency can be crucial in initiating timely interventions. Rapid

response times ensure that alerts are processed and communicated almost instanta-

neously, thereby expediting the delivery of emergency medical services and potentially

saving lives. Furthermore, in telemedicine applications where real-time data exchange

between patients and healthcare providers is essential, lower latency enhances the

quality of interaction and decision-making processes. Additionally, certain medical

devices, such as insulin pumps and other automated drug delivery systems, depend

on precise and timely data processing to maintain patient safety and treatment effi-

cacy. Therefore, achieving response times in the millisecond range is paramount for

enhancing the overall effectiveness and reliability of modern healthcare systems.

76

Chapter 3: HMAN Architecture

(a) (b)

(c) (d)

(e)

Figure 3.6: SRT of 100 patients in the expected different scenarios. (a) Patient →
Local general practice (GP) → Cloud. (b) Patient → Local GP → GP neighbour →
Cloud. (c) Patient → Local GP → Local general H (GH) → Cloud. (d) Patient →
Local GP → Local GH → GH neighbour → Cloud. (e) Whole system

77

Chapter 3: HMAN Architecture

(a) (b)

(c) (d)

(e)

Figure 3.7: SRT of 200 patients in the expected different scenarios. (a) Patient →
Local general practice (GP) → Cloud. (b) Patient → Local GP → GP neighbour →
Cloud. (c) Patient → Local GP → Local general H (GH) → Cloud. (d) Patient →
Local GP → Local GH → GH neighbour → Cloud. (e) Whole system

78

Chapter 3: HMAN Architecture

(a) (b)

(c) (d)

(e)

Figure 3.8: SRT of 300 patients in the expected different scenarios. (a) Patient →
Local general practice (GP) → Cloud. (b) Patient → Local GP → GP neighbour →
Cloud. (c) Patient → Local GP → Local general H (GH) → Cloud. (d) Patient →
Local GP → Local GH → GH neighbour → Cloud. (e) Whole system

79

C
hapter

3:
H
M
A
N

A
rchitectu

re

Table 3.2: Number of patients served in each architecture unit at every deployment stage (purple indicates unused units at a
certain stage)

80

Chapter 3: HMAN Architecture

3.7 Limitations and further improvements

Finally, this study has some limitations that the developed system anticipates data

equally without taking urgency into account, which causes delays in the treatment of

critically ill patients. By classifying the patient’s data into multiple classes according

to the patient’s condition at edge servers, it would be easier to identify the most

severe patients. Thus, giving them priority in receiving services, whether sending an

ambulance, preparing necessary medical staff, etc. Therefore, the main objective of

our next study is to improve this work to build an intelligent healthcare monitor-

ing system that can dynamically regulate patient data flow based on each patient’s

individual health status.

3.8 Summary

This wok proposed a cooperative hierarchical healthcare architecture, named HMAN,

with Edge/Fog computing. The suggested architecture is supported by the HOSSC

algorithm that provides five offloading and processing scenarios and facilitates SRT

calculating. The architecture consists of four layers, namely, IoT, Edge/Fog, cloud

and application layers. Model analysis and thorough experimentation revealed the

benefits of this architecture. The research confirmed the soundness of the suggested

architecture and provided a method for measuring the system performance under

various network workloads. This study investigated various scenarios to ensure that

the data are locally processed to meet the objectives of more privacy and less latency.

Five different stages have been established to aid in the evaluation of the presented

architecture. The HMAN architecture achieved a robust and scalable healthcare

system exploiting the existing infrastructure in the city with low latency, ranging

from 6.043 to 31.45 ms, considering the various workloads. According to the results,

the hierarchical architecture achieved inherited computational capacity, higher system

81

Chapter 3: HMAN Architecture

scalability and greater availability. Moreover, the HMAN architecture assured higher

probability of local data processing in addition to the achieved less latency and higher

privacy. The findings clearly showed that the suggested HMAN architecture is efficient

enough for use in the healthcare domain. Nevertheless, some challenges in realising

such architecture can be anticipated to include the prioritisation of the critical cases

of some patients to provide an exceptional allocation of the healthcare resources for

them. Finally, this study can be extended by utilising modern machine learning

approaches (e.g., deep learning) in recognizing diverse traffic and determining the

optimal placement for GP servers in a certain area to improve the performance and

reduce the deployment cost.

82

Chapter 4

Optimal Intelligent Edge-Servers

Placement in the Healthcare Field

4.1 Introduction

The importance of healthcare has increased worldwide due to its direct relationship

with the quality of human life. An effective and robust healthcare system leads to a

strong and confident society. However, governments and the public sectors face many

challenges due to the rising number of patients year after year, as well as growing

epidemiological concerns. These challenges become more serious with the elderly pop-

ulation requiring constant monitoring. As a result, it is becoming increasingly difficult

for traditional healthcare systems, which require one-to-one contact between the care-

giver and patient, to expand to accommodate the growing patient population [133].

Moreover, the financial burden brought on by administrative and operational ex-

penses has a propensity to lead to system burnout. Thus, smart healthcare (s-health)

systems are becoming increasingly necessary to meet these requirements. Further-

more, finding smart, cost-efficient systems that have the ability to remotely monitor

and supervise patients is a significant advancement in medical science, offering rea-

83

Chapter 4: Edge-Servers Placement

sonable solutions to both current and future problems. These systems should provide

high-quality medical care at a limited cost to guarantee their long-term viability [134].

S-health is anticipated to make a substantial contribution towards reducing hos-

pitalisation rates and delivering telehealth services to remote patients at a reasonable

cost. This is along with other advantages, such as accuracy, scalability, energy effi-

ciency, configurability, and maintainability. However, the question is how to switch

from conventional healthcare systems to s-health systems [135].

The transition of conventional healthcare practices to s-health has been expedited

by advancements in computational intelligence, mobile communication technologies,

and Internet of Things (IoT) technologies [136]. The development of artificial intelli-

gence (AI) will have a great impact by enhancing the intelligence, autonomy, dynamic

nature, and adaptability of healthcare systems. These services are predicted to revo-

lutionise healthcare by expediting diagnosis and treatment procedures, lowering the

cost of doctor visits, and improving the standard of patient care.

Moreover, combining edge computing with smart health is so versatile that it can

provide short delay, save network bandwidth, lower power consumption, as well as de-

liver security and data privacy benefits [136]. The strategic placement of edge-servers

plays a crucial role in achieving these advantages, including reduced deployment cost,

minimal latency, load balance, etc. That is, the question of where edge-servers should

be placed within a network must be considered. Moreover, the edge-servers placement

problem becomes much more important when taking into account the utilisation of

edge-servers in a wireless local area network (WLAN).

This chapter aims to explore the potential of using AI in conjunction with edge

computing to enhance healthcare systems and make them more sophisticated. Firstly,

an intelligent priority mechanism is proposed to identify critical patients who require

urgent medical assistance. The researcher builds upon the prior work, the HMAN

environment published in [91], as a baseline to achieve better Quality of Service (QoS)

84

Chapter 4: Edge-Servers Placement

and Quality of Experience (QoE) when utilising AI with edge/fog computing in the

healthcare sector. The HMAN system treated all data equally, without considering

urgency, which could cause delays in treating critically ill patients. By categorising

users’ data into different classes, based on patients’ conditions, it becomes easier to

identify and prioritise the most severe cases, enabling them to receive prompt and

appropriate services such as sending an ambulance or preparing necessary medical

staff. The ultimate objective of this study is to develop intelligent monitoring and

healthcare systems for medical facilities that can dynamically regulate patient flow

based on each individual health status.

Secondly, strategic placement of edge-servers in the HMAN environment can sig-

nificantly reduce deployment costs and minimise the overall delay between patients

and edge-servers, thus enhancing the performance of healthcare applications. In re-

gions where multiple MCs exist, it is not necessary to deploy edge-servers at each

MC due to financial limitations. However, it is essential to ensure that the delay

requirements for each task are met. Since all MCs are identical, any MC can be a

potential location for placing edge-servers. Nonetheless, a subset of the MCs can be

selected to reduce the deployment budget while maintaining an acceptable level of

delay. The question that arises now is how to select the best MCs subset to achieve

the research objectives.

As human life takes precedence in research pertaining to the design and proposal

of healthcare systems, the top research priority is to ensure that health services arrive

as quickly as possible with minimal cost. The key objective is to design an intelli-

gent healthcare system while reducing the cost of server deployment and maintaining

acceptable latency. The following is a summary of the contributions of this study:

1. A priority processing/offloading mechanism based on AI is introduced, aimed

at identifying critical patients who require urgent medical assistance, thereby

enhancing QoS and QoE.

85

Chapter 4: Edge-Servers Placement

2. The edge-server placement problem is investigated and an optimal edge-servers

placement (OESP) algorithm is proposed. This algorithm aims to achieve cost-

efficient architecture with lower delay and comprehensive coverage. The main

objective is to deploy edge-servers to subsets of MCs within a given area, pro-

viding edge health services to monitored patients.

3. Simulations are conducted to evaluate the performance of the proposed al-

gorithms. The results demonstrate favourable outcomes, showcasing a cost-

effective system with lower latency when compared to existing algorithms in

the literature.

Chapter Organisation : The remainder of this chapter is organised as follows:

Section 4.2 presents the proposed priority mechanism; Section 4.3 introduces the

optimal edge-servers problem formulation; Sections 4.4 describes the proposed optimal

edge-servers placement (OESP); Section 4.5 presents and discusses the simulation

results; and finally, Section 4.6 presents a summary of the study.

4.2 Priority mechanism based on AI

This work involved the creation of an intelligent healthcare system for data classifi-

cation of patients, which would increase data collection effectiveness and streamline

processing. By prioritising data based on the urgency of patients, better Quality

of Service (QoS) and Quality of Experience (QoE) can be achieved. The proposed

model, illustrated in Figure 4.1, comprises two main levels: the patient level (IoT

layer) and the local MC level (Edge/Fog Layer).

The patient level (a smartphone or watch) has two functions: data collection and

filtering (preprocessing). At the local MC level, the arriving data is processed through

three steps: classification, prioritisation, and decision-making.

At the patient level, a wearable device (smartphone or watch) collects data and

86

Chapter 4: Edge-Servers Placement

Figure 4.1: Model of the proposed priority mechanism.

performs initial data preprocessing and analysis (i.e., aggregation, fusion, filtering,

and classification). As a result, based on a predetermined threshold assigned accord-

ing to the patient’s condition, the collected data are classified as normal or abnormal.

While the abnormal data is offloaded to the next layer for additional actions, the

normal classified data are temporarily stored locally without requiring any further

action.

At the local MC level, the received data undergoes three steps to determine the

appropriate course of action. Firstly, an AI method, such as machine learning (ML) or

deep learning (DL), is employed to classify the data into multiple categories enabling

the determination of the level of risk associated with each patient. Subsequently,

a priority processor assigns a priority level to each patient based on their historical

record, which is stored in a database. Finally, a decision is made regarding whether

the data should be processed locally or offloaded to other units based on their priority

levels. For example, if the local MC receives a simultaneous influx of 100 patients,

but can only provide medical services for 50, it prioritises the first 50 patients on

87

Chapter 4: Edge-Servers Placement

the list, while the remaining patients are offloaded to other units within the architec-

ture using the HOSSC algorithm outlined in chapter 3. Algorithm 1 represents the

proposed priority processing/offloading scenario, which dynamically updates patient

lists based on their priority levels. This ensures that the most urgent cases receive

medical attention at the local MC, while other cases are handled by other units in

the architecture.

Algorithm 1: Priority processing/offloading algorithm

Input:λsum, λmax

Output: Priority mapping patient offloading

For a given situation at a particular time instant t the following will be done.

If λsum ≤ λmax

All patients can be served by the local MC

else // The priority mechanism will be turned on

λsum is classified into classes by the AI classifier

Class A → Priority = 0 // Normal cases, Discarded

Class B → Priority = 1 // Mild case

Class C → Priority = 2 // Moderate case

Class D → Priority = 3 // Severe case

. . . . // (if needed depending on the type of disease)

end if statement

SortedPatientsMatrix = [a high priority patient . . . a less priority patient]

Then:

The Local MC will serve patients based on their order in SortedPatientsMatrix

4.3 Optimal edge-servers problem formulation

Our goal is to effectively deploy edge-servers to specific MCs within a region to

meet the needs of all patients under monitoring. The area is represented as a two-

88

Chapter 4: Edge-Servers Placement

dimensional space (grid) in which patients (IoT devices) and MCs may coexist. The

patients can be everywhere in the area.

For a simple representation of the system, a few assumptions were made. First,

all MCs within the grid are considered candidates for edge-server placement. Second,

all MCs are virtually connected to each other if and only if d(MCi,MCj) = K, in

which, d(a, b) is a distance function for calculating the distance between two points

(a and b), and K is the largest possible distance to connect the neighbours (MCs).

The last assumption is that all MCs have different volume and distribution of user

requests (historical loads) over a long period.

The set of MCs (candidate points) is, hence, defined asMCs = {mc1,mc2, ...;mcn},

where each refers to a preselected, feasible placement location in the grid (in coordi-

nate axes) and noMCs = number of MCs in that area. A set of edge servers is denoted

by ES(es1, es2, ...; esk) and Nes = number of edge-servers needed to be placed for

full coverage. It is assumed that all edge servers are identical (homogeneous). A

set of patients requiring edge computing services is denoted by P = {p1, p2, ...; pm},

where m = number of patients. A cost function Cost(esj,mck) is defined to refer to

the incurred cost of placing an edge server es ∈ ES at an MC mck ∈MCs.

Two latency functions, Lij and D, are defined to represent the latency when pa-

tient pi is served by edge servers placed at mcj of the grid and the latency between

two edge servers, respectively. It is assumed the bandwidth across the grid is homoge-

neous; hence, latency is predominantly affected by distance. The main objectives are

to reduce the cost of deploying edge-servers in the region and reduce the latency in

accessing edge services with full coverage to all patients. The edge-servers placement

problem (ESPP) is now formulated as a multi-objective optimisation model. The

following decision variables are defined:

- X represents the placement of edge-servers at MCs

X = {xj | 1 ≤ j ≤ n}

89

Chapter 4: Edge-Servers Placement

Where:

xj =


1, if esi placed at mcj

0, otherwise.

- Y represents the assignment of patents to MCs

Y = {yij | 1 ≤ i ≤ m, 1 ≤ j ≤ n}

Where:

yij =


1, if pi placed at mcj

0, otherwise.

- E represents the links between MCs

E = {eab | 1 ≤ a, b ≤ n, a ̸= b}

where:

eab =


1, if mca and mcb are directly connected

0, otherwise.

Let λsum be the set of task arrival rate of patients,

90

Chapter 4: Edge-Servers Placement

λsum =
m∑
i=1

λi (4.1)

The SRT is calculated based on the previous study:

SRT =

∑n
i=1 tpi
n

(4.2)

Where:

tpi = Twi + EAP ∗ TAP + (c1 + 1) ∗ tMC + c1 ∗ V + c2 ∗ S

+ c2 ∗ tH + c3 ∗ L+ c3 ∗ tH + c4 ∗B + c4 ∗ tCloud (4.3)

The edge-servers placement problem (ESPP) is defined as follows. Given a system

model parameter (G, noMCs [points], K,Nes,m,L,D, λMAX), the problem is to find

X (the placement of edge-servers) among the MCs, such that the system response

time SRT is minimised, i.e.,

Min
∑

Cost(esj,mck).Xj (4.4)

Min SRT (4.5)

Min
∑

E (4.6)

Subject to:

1. Nes ≥ 3 : to ensure that at least three edge-servers are placed at three MCs to

preserve previous achievements in chapter 3.

91

Chapter 4: Edge-Servers Placement

2. d(mca,mcb) = k : to ensure a shorter distance between a patient and an MC

and to avoid the colocated problem.

3.
∑

Eij = 1 or 2 : to ensure that a patient either connects directly with an

edge-servers site or through only one MC to minimise the latency.

4.
∑

yij = 1 (1 ≤ j ≤ n) : to guarantee that all patients must be served, and

each is served from exactly one candidate point.

4.4 Optimal edge-servers placement (OESP)

The main idea is how to determine the best MC locations for deploying edge servers in

order to provide services to all patients in a given area. The number of selected MCs

depends on the total number of MCs in a certain area, that ensure that services are

provided to all patients, and how they are distributed and connected to each other.

This algorithm is built based on several stages, as follows.

Step 1: Locate all coordinates on the map.

- This step involves identifying and recording the coordinates of all relevant points

on the map.

- Ensure that the map is valid and that there are no repeated points.

In this step, the algorithm focuses on locating and recording the coordinates of all

relevant points on the map. It is important to ensure that the map is valid, meaning

it accurately represents the desired area or region, and that there are no repeated

points. The uniqueness of points is crucial to prevent any duplication or confusion

during subsequent stages of the algorithm.

Step 2: Generate important matrices:

92

Chapter 4: Edge-Servers Placement

1. Distance Matrix (DistancesBtAll): Generate a matrix that represents the dis-

tances between all pairs of points. This matrix helps quantify the proximity

between points.

2. Connectivity Matrix (ConnectivityMatrix): Generate a matrix that indicates

the connectivity between points, where 1 represents a connection and 0 repre-

sents no connection.

After that, establish virtual connections between neighbouring points based on a spec-

ified maximum distance threshold (Max DistanceToConnect).

Step 3: Finding and selecting the first, second and third best points.

In this step, the algorithm evaluates points based on multiple criteria, including

the number of links per point (SumLinks), the sum of distances to other points

(SumDistances), and historical loads Load History. The objective is to select the

best points that ensure connectivity to the highest possible number of points.

The algorithm generates a matrix of points sorted based on these three criteria.

The primary criterion is the number of links per point (SumLinks), which priori-

tises points that can establish connections with the greatest number of other points.

In cases where two or more points have the same number of connections, the al-

gorithm applies the second criterion, which is the sum of distances to other points

(SumDistances). This criterion focuses on selecting points that are closest to other

points in terms of distance. If a tie persists even after considering the second criterion,

the algorithm resorts to the third criterion, which is historical loads Load History.

By sorting the points in the matrix according to these criteria, the algorithm aims

to identify and select the first, second, and third best points. To ensure optimal

connectivity, it is important to consider the following conditions for the second and

third best points:

93

Chapter 4: Edge-Servers Placement

1. Direct Connection to the First Best Point: The second and third best points

must be directly connected to the first best point, establishing a direct link

between them.

2. No Connection between Second and Third Best Points: The second and third

best points should not be connected to each other. This arrangement ensures

that the second and third best points are chosen on both sides of the first best

point, maximising the number of points connected on both sides.

By adhering to these conditions, the algorithm guarantees that the selected points

promote effective connectivity and facilitate the connection of as many points as pos-

sible to the three best points in the network.

Step 4: Test Connectivity 1

In this step, the algorithm performs a connectivity test to evaluate the network’s

current state and identify connected and disconnected points. The goal is to deter-

mine if all points are successfully connected or if there are any points that remain

unconnected. The algorithm carries out the following actions:

1. Determine the Connected Points.

2. Determine the NotConnected Points.

By analysing the connectivity status of the points based on the previous selections,

the algorithm can assess the network’s current state. If all points are connected,

indicating that every point is successfully linked to the network, the algorithm termi-

nates as it has achieved its goal. However, if there are still unconnected points, the

algorithm proceeds to the next stages to address and resolve the connectivity issues.

Step 5: Identify Points Unreachable for Connection (Distant Points) and Update

the Unconnected Ones.

94

Chapter 4: Edge-Servers Placement

In this step, the algorithm focuses on identifying points that are too far away

to establish connections with other points in the network. These distant points are

unlikely to be reachable and cannot be effectively integrated into the current network

configuration. The algorithm subsequently updates the list of unconnected points

based on this assessment.

This step is significant as it helps determine which points are geographically dis-

tant and cannot be connected. By isolating these distant points, it becomes possible

to consider alternative strategies, such as integrating them with other working regions

or adjusting the network configuration to accommodate their unique circumstances.

Step 6: Determine the Other Best points from the Connected points.

In this step, the algorithm identifies additional best points from the pool of con-

nected points, one by one, to further enhance the network’s connectivity. After each

selection, the algorithm updates the list of unconnected points based on the newly

established connections. The number of these additional best points is not fixed, but

rather, a sufficient number should be chosen to achieve full network connectivity while

ensuring that the previously mentioned conditions and constraints are met.

Step 7: Test Connectivity 2

In this step, the algorithm performs a second connectivity test to evaluate the net-

work’s current state and ensure that all points, except those previously determined

as unreachable, are connected. The goal is to verify that the number of discon-

nected points is zero, indicating successful network connectivity. If there are still

disconnected points remaining, the algorithm repeats Step 6 to further enhance the

connectivity. Algorithm 2, the OESP algorithm, represents the proposed algorithm

for optimising the placement of intelligent edge-servers in the healthcare field.

95

Chapter 4: Edge-Servers Placement

Algorithm 2: Optimal Edge-Servers placement (OESP) algorithm

Input: noMCs, X = {xi, 1 ≤ i ≤ noMCs} , Y = {yi, 1 ≤ i ≤ noMCs},

Max DistanceToConnect, Load History

Output: Find the best points (Best Points)

Constraints: Best Points ≥ 3, no.hopstotheBests = 1

Step 1: Determine the coordinates

Step 2: Generate important matrices:

index← 1

for k ← 1 to noMCs

for m← 1 to noMCs

DistancesBtAll(index)← pointk–pointm

if DistancesBtAll(index2) ≤ DistanceToConnect then:

ConnectivityMatrix(k,m)← 1

else

ConnectivityMatrix(k,m)← 0

end if statement

index++

end for statement

end for statement

Step 3: Find Best three points

1- Create: Point Features← [SumLinks SumDistances Load History]

2- Sort: Point Features← [SumLinks(desc) SumDistances(asc)

Load History(desc)]

Then Find:

a- First Best← First member of Point Features(sorted).

b- Second Best

for i ← 2 to noMCs then

if Point Features (i,1) is connected to First Best Point

Second Best← Point Features (i,1)

96

Chapter 4: Edge-Servers Placement

break for loop

end if statement

end for statement

c- Third Best

if PointF eatures(i, 1) in connected to First Best Point ...

AND not connected to Second Best Point

Third Best← Point Features(i, 1)

break for loop

else

Third Best← Point Features(i, 1)

end if statement

Step 4: Test Connectivity 1

i← 1 , k ← 1

for j = 1 to noMCs

if j ̸= First Best AND j ̸= Second Best AND j ̸= Third Best

if ConnectivityMatrix(j, F irst Best) ̸= 1 AND

ConnectivityMatrix(j, Second Best) ̸= 1

AND ConnectivityMatrix(j, Third Best) ̸= 1

NotConnected(i)← j

i++

else

Connected(k)← i

K ++

end if statement

end if statement

end for statement

Step 5: Find Never connected Points (Distant points) (NeverConnected)

k ← 1

for i← 1 to no Notconnected

97

Chapter 4: Edge-Servers Placement

for j ← 1 to no connected

if ConnectivityMatrix(i, j) == 0

NeverConnected(k)← i

NotConnected(i)← []

K ++

end for statement

end for statement

end for statement

Step 6: Find other Best point (if needed)

while 1

if no NotConnected ≥ 1

k = 1

for s← 1 to no Connected

if s is connected to NotConnected

Current Best(k)← s (To find the candidate points to be among the best.)

k ++

end if statement

end for statement

k = 1

for i← 1 to no NotConnected

for j ← 1 to no CurrentBest

if ConnectivityMatrix(i, j) == 1

Choose a one with a shorter distance.

Other Best(k)← j (with a shorter distance)

k ++

end if statement

end for statement

end for statement

else

98

Chapter 4: Edge-Servers Placement

break while loop

end if statement

end while statement

Stage 7: Test Connectivity 2

4.5 Results

In this section, data is randomly generated to evaluate the performance of the pro-

posed algorithms. Table 4.1 summarises the simulation parameters used to calculate

the System Response Time (SRT), which represents the average system latency re-

quired to deliver patient data to one of the health facilities within the HMAN archi-

tecture. Additional parameters will be introduced subsequently.

4.5.1 Priority Mechanism based on AI

The initial step in processing the collected data involves wearable devices worn by

patients to filter the data and transmit any abnormal data to the local MC for further

processing. Upon reaching the local MC, priority is given to patients with the most

severe conditions. In our simulation, three scenarios were conducted to evaluate the

performance of the proposed priority mechanism. To assess the effectiveness of the

algorithm, a comparison was made between the SRT for accessing the service with

and without the application of the algorithm.

The first scenario assumed that 100 patients (data or workload) arrived at the

local MC at the same time. The first step is to check whether the local MC is capable

of handling the received data or not. If it can, the data is processed at the local MC

and the services are delivered to the patients without needing to send out the data

to other units. However, if it is determined that the MC cannot handle the data of

all 100 patients, then it must offload a part of it to other units based on the HOSSC

99

Chapter 4: Edge-Servers Placement

Table 4.1: SRT System parameters

Symbol Parameter Value

Ps Number of patients 100, 200, 300

n Number of servers in each MC (GP) 5, 6, 7

m Number of servers in each GH 10, 12, 14

rWi Link rate between IoT device and AP 54 Mbps

rAP link rate between AP and the local GP 100 Mbps

rFib link rate between the GPs and GHs Up to 10 Gbps

λi Packet size 30 KB

Twi Wireless Delay 4 ms

TAP Delay between AP and the local GP 2 ms

V Delay between two neighboring GPs (1−K1).λGPsum

10Gbps

S Delay between the GPs and GHs K2.λGHsum

10Gbps

L Delay between two neighboring GHs (1−K2).λGHsum

10Gbps

B Internet Delay 20 ms

µGP , µGH Each GP, GH server service rate 100,200 KB per ms

µCloud Cloud service rate 1000 KB per ms

λGPmax Maximum GP workload 200×n KB

λGHmax Maximum GH workload 200×n KB

algorithms. The main task of the proposed priority mechanism is to determine which

patients are served by the local MC and which ones should be offloaded. In this sce-

nario, the algorithm classified the received data into four classes and then, served the

patients accordingly. Patients with the highest priority and greatest need are served

in a shorter time compared to those with less severe conditions. The same approach

is applied in the 200 and 300 patient scenarios, where the algorithm categorises the

data and prioritises the patients accordingly.

It is worth noting that the absence of a priority mechanism, the timing of ser-

100

Chapter 4: Edge-Servers Placement

vice provision to patients would be uncertain since the HMAN architecture does not

distinguish between patients. Table 4.2 shows the results obtained from applying

the above scenarios and demonstrates the effectiveness of the proposed algorithm in

providing services with less delay to the patients with the highest level of urgency. In

the case of HMAN, it is not possible to determine which patient should be treated

first, because the system handles data equally without taking urgency into account.

This could potentially have negative consequences on the treatment of patients with

severe conditions.

Table 4.2: SRT with each class with/without applying the proposed priority mecha-
nism.

No. patients
Classes SRT (n = 5, m = 10)

Type No.
patients

No Priority
Mechanism
(HMAN)

With
Priority

Mechanism

100

A 3

N/A

Discarded

B 61 18-19 ms

C 28 8-9 ms ms

D 8 5-6 ms ms

200

A 5

N/A

Discarded

B 103 25 ms

C 63 16-17 ms ms

D 29 7-8 ms ms

300

A 4

N/A

Discarded

B 181 32 ms

C 73 19-20 ms ms

D 42 9-10 ms ms

101

Chapter 4: Edge-Servers Placement

4.5.2 Optimal edge-servers placement (OESP) algorithm

In this section, several simulations are conducted to evaluate the performance of the

proposed algorithms. The algorithm was tested on randomly generated points, with

each point representing an MC site. Table 4.3 lists the parameters defined for the

OESP algorithm. To demonstrate the algorithm’s effectiveness, the process began

with 10 randomly generated points, detailing each step to identify the optimal points

for placing edge servers. Subsequently, the final results obtained from applying the

algorithm to 20 and 30 randomly generated points are presented.

Table 4.3: OESP simulation parameters.

Symbol Definition value

A The region dimensions 100 km × 100 km

noMCs Number of Points (MCs) 10, 20, 30

x, y Coordinates Randomly created

Dmax Max. distance between two neighbours 40 km

- Scenario 1 (10 nodes)

Firstly, a MATLAB code generated 10 points in a geographic area of 100 km ×

100 km. Every point was considered as an MC site, as mentioned before. Then, these

points were assigned to their respective locations on a virtual map, as depicted in

Figure 4.2.

The subsequent task involved establishing virtual connections between these points

based on the first constraint, which specified a maximum distance of 40 km to connect

two points. As depicted in Figure 4.3, there were multiple redundant links between

certain points. The objective of the proposed algorithm was to minimise the number

of these connections while ensuring that the entire network remained connected.

The next step involved determining the best three points based on the number of

links per point, proximity to other points, and the historical loads per point, which

102

Chapter 4: Edge-Servers Placement

Figure 4.2: 10 disconnected points (MCs) on a map.

were assumed randomly in this simulation. Referring to Table 4.4, which ranks the

point according to these three parameters, it is clear that the point 4 is the first-best

one, because it has more links than the others. The second-best point is 10, as it is

directly connected to point 4 and has more links compared to the remaining points.

In order to enhance network coverage, the algorithm disregarded point 2 (or point 9)

as the third-best point, despite its higher rank compared to the others. This decision

was based on the fact that point 2 (or point 9) shares a direct link with point 10,

causing them to fall on the same side of the best point. Instead, point 5 was chosen as

the third-best point, fulfilling the specified conditions and situated on a distinct side

from the best point. After choosing these three best points, the algorithm establishes

connections between all the other points and its closest best point while removing all

other links. Figure 4 depicts the network after applying the previous steps. Note that

the point 8 remains unconnected as it is located more than 40 km away from all the

best points. Therefore, the next algorithm task will be to identify other best points

to ensure complete connectivity.

103

Chapter 4: Edge-Servers Placement

Figure 4.3: A virtual network of 10 connected points (MCs) based on distances be-
tween neighbours (Dmax = 40 km).

Before moving on to the next step, it is crucial to highlight that the algorithm

generated four matrices that depict the current state of the points within the network.

These matrices are as follows:

• Best = [4 10 5]

• Connected = [2 9 6 7 3 1]

• NotConnected = [8]

The subsequent step involves determining which points should be selected to be

the best ones. The algorithm does not impose any limitation on the number of these

points. The primary objective is to achieve full network connectivity while minimising

costs and adhering to all constraints. The remaining unconnected points need to be

checked for the possibility of connecting them or not. If the distance between an

unconnected point and any connected points is less or equal to the maximum distance

(constrain 1), then this point can be connected. Subsequently, the algorithm selects

the closest Connected point to it and includes this Connected point among the Other-

104

Chapter 4: Edge-Servers Placement

Table 4.4: Sorted 10 points (MCs) based on the number of links per point, how close
the point is to all others, and the historical loads per point.

Points Number of links Distance to all Historical loads

4 7 307.3874 711

10 5 303.4536 211

2 5 329.8995 459

9 4 383.7702 253

5 4 409.7863 602

6 4 420.9528 718

7 4 449.8674 847

3 3 373.1516 393

1 3 456.99 424

8 1 615.2826 879

Best points. Conversely, if this condition is not met, it is isolated from the group and

marked as a never-connected point. Figure 4.5 illustrates that point 8 is connected

to point 1 which is selected as an Other-Best point.

After completing this step, the matrices have been updated as follows:

• Best = [4 10 5]

• Other Best = [1]

• Connected = [2 9 6 7 3]

• NotConnected = ø

• Never Connected = ø

With the current configuration, all points are connected, and no points remain

unconnected. This indicates that complete coverage has been achieved in the network,

fulfilling the objective of the algorithm.

Upon observing Figure 4.5, it becomes evident that there is a noticeable difference

between the network configuration before and after the algorithm was applied. The

105

Chapter 4: Edge-Servers Placement

Figure 4.4: A network of 10 points after choosing the first, second, and third best
points (MCs): Green points = Best points, Black points = connected points and
Cyan = Not-connected points.

algorithm was able to successfully select 4 points out of 10 to achieve complete net-

work connectivity. Each point is now within one hop distance from the nearest Best

point and with not more the maximum distance constraint. Through this process,

several goals were achieved, including reducing cost and delay. Instead of deploying

servers at all ten points, they are now strategically placed at only four points, leading

to a significant reduction in the number of connections required. Additionally, the

algorithm has successfully reduced latency to the greatest extent possible by consid-

ering the distance and number of hops required to reach the servers. By strategically

placing the servers at selected points, the algorithm ensures that data transmission

distances are minimised, resulting in reduced latency. This optimisation of network

infrastructure contributes to improved overall performance and responsiveness of the

system.

106

Chapter 4: Edge-Servers Placement

Figure 4.5: The final network of 10 points: Green points = Best points, Blue pints =
Other best points, Black points = connected points.

- Scenarios 2 and 3 (20 and 30 points respectively)

To demonstrate the effectiveness of the proposed algorithm, Figures 4.6 and 4.7

show two different scenarios involving the selection of the Best points to position edge-

servers among a pool of 20 and 30 points, respectively. Figures 4.6b and 4.7a present

the final shape of the networks of 20 and 30 points after applying the algorithm. The

initial steps of the algorithm involve the identification of the Best three points and

assessing the network’s connectivity. Subsequently, the algorithm proceeds to select

additional Other-Best points to attain complete network connectivity, while adhering

to predefined constraints.

The crucial point that needs to be emphasised, and can be clearly seen when

examining the results, is that the selection of the best points and determination of

their number depends on the shape of the network and the proximity of the points

107

Chapter 4: Edge-Servers Placement

(a) (b)

Figure 4.6: A network of 20 points before (a) and after (b) choosing the best points
(MCs): Green points = Best points, Blue pints = Other best points, Black points =
connected points.

(a) (b)

Figure 4.7: A network of 30 points before (a) and after (b) choosing the best points
(MCs): Green points = Best points, Blue pints = Other best points, Black points =
connected points.

108

Chapter 4: Edge-Servers Placement

to each other. There is no fixed method or specific number of points that must be

chosen in all cases. For instance, in the 20-point networks, seven points were selected

as the best points, while the 30-point network only required five points to be chosen as

the best for full connectivity (see Figures 4.6 and 4.7). Furthermore, this algorithm

ensures minimal delay in accessing services. Users can directly connect to an MC

with edge-servers or through an MC that is one hop away from the edge-servers. By

applying this algorithm, several benefits have been achieved, including a significant

reduction in cost while maintaining low latency. The proposed algorithm ensures that

the delay, which was a key achievement of the HMAN system, is preserved. Figure

4.8 illustrates the comparison of latency before and after implementing the algorithm,

demonstrating that the algorithm successfully maintains the low delay achieved by the

HMAN system. Minimising latency enhances the network’s overall performance and

efficiency, directly benefiting patient care. In medical settings, timely data processing

and rapid response times are critical, where delays can significantly impact patient

outcomes. This preservation of low delay ensures efficient access to services for users.

Table 4.5 provides a comparison that highlights the cost difference‘ between the

HMAN system before and after the application of the OESP algorithm. It is worth

noting that these percentages may vary across different networks, as they are in-

fluenced by the number of points selected as the Best points. The percentages are

determined by calculating the difference in the number of edge servers before and

after the application of OESP. This difference is then divided by the number of edge

servers present before OESP. For instance, in the case of 30 points, the number of

edge servers before OESP is 30, which is subsequently reduced to a range between 5

and 12 by OESP, depending on the shape of the network and the proximity of the

points to each other. Therefore, the calculations are as follows: (12 - 30) / 30 = -60%

to (5 - 30) / 30 = -83%. However, in all cases, there is a significant improvement in

cost while preserving the previously achieved benefits outlined in chapter 3.

109

Chapter 4: Edge-Servers Placement

Figure 4.8: A comparison of latency before and after implementing OESP algorithm
on HMAN architecture.

Table 4.5: A comparison between HMAN and OESP cost

noMCs No. of
edge-server
nodes in
HMAN

No. of
edge-server

nodes in OESP

Deployment
Cost

3 3 3 0

5 5 3 -40%

10 10 3-5 -(50-70)%

15 15 5-7 -(53-66)%

20 20 5-9 -(55-75)%

30 30 5-12 -(60-83)%

In short, this study introduces a novel algorithm for edge server placement in

health monitoring frameworks. By considering the shape of networks and proximity

of nodes, the OESP algorithm overcomes limitations observed in existing literature re-

110

Chapter 4: Edge-Servers Placement

views. Unlike previous approaches, such as [103], [104] and [105], that rely on network

size for edge server selection, it offers a more robust and tailored solution. In addition,

one significant advantage of this study is the careful selection of sites, ensuring that

they are located within one hop from the connected sites. This strategic placement

of edge servers minimises latency and contributes to the overall effectiveness of the

proposed algorithm. By reducing the distance and number of hops required to reach

the servers, the latency is kept to a minimum, resulting in improved performance and

a seamless user experience. The findings of this research contribute to advancing the

field of edge computing in healthcare systems, opening avenues for further exploration

and optimisation in this domain.

4.6 Summary

The primary motivation of s-health is to contribute to reducing hospitalisation rates,

while providing affordable telehealth services to remote patients. By integrating s-

health with edge/fog computing, additional benefits, such as reduced delay and power

consumption, network bandwidth savings, as well as improved security and data pri-

vacy can be achieved. However, a key challenge lies in determining the optimal

placement of edge-servers in a cost-effective manner while ensuring full coverage for

all patients with minimal latency. In this study, two algorithms have been proposed

with the aim of providing an efficient priority offloading/processing mechanism and

solving the edge-server placement problem. The simulation results have shown that

the two proposed algorithms are highly promising. The priority mechanism algorithm

successfully classified patients based on the severity of their disease and prioritised

their services accordingly. On the other hand, the Optimal Edge-Server Placement

(OESP) algorithm effectively identified optimal locations for deploying edge-servers,

achieving objectives such as cost reduction with minimal delay. Although the pro-

111

Chapter 4: Edge-Servers Placement

posed algorithms showcased promising results in improving the efficiency and effec-

tiveness of edge-server placement and priority offloading/processing, further research

is needed to address areas such as load balancing and resource allocation for fully

optimising network performance. In summary, the combination of s-health, edge/fog

computing, and the proposed algorithms offers a comprehensive solution for delivering

cost-effective and efficient telehealth services. This research opens up new avenues for

improving healthcare accessibility, reducing costs, and enhancing patient care through

advanced technologies and intelligent algorithms.

112

Chapter 5

An Adaptive SDN-Based Load

Balancing Method for

Edge/Fog-Based Real-Time

Healthcare Systems

5.1 Introduction

The integration of healthcare with technology has led to the development of healthcare

systems that aim to provide real-time monitoring and effective management of patient

health. Edge and fog computing have emerged as promising solutions for healthcare

applications due to their ability to handle large amounts of data, provide low latency

communication, and support real-time decision making [137].

However, the deployment of these systems in real-world healthcare scenarios re-

quires addressing several technical challenges, one of which is load balancing. Load

balancing refers to the distribution of workloads evenly among multiple nodes in a

network to ensure efficient processing and communication [138]. This approach has

several key benefits, including increased system efficiency, faster performance, and

lower latency. By reducing the load on each server, load balancing minimises the risk

of network failures and improves the overall responsiveness of applications by dis-

113

Chapter 5: Load Balancing

tributing the workload evenly. Furthermore, load balancing increases the availability

of systems to consumers, making it an essential component for applications in fields

such as healthcare and weather forecasting that require a reliable load balancing algo-

rithm to introduce new features over time. In edge and fog-based healthcare systems,

efficient load balancing is critical to avoid overloading of some nodes, which can result

in delays and degraded system performance [139, 140].

There are two main types of load balancing algorithms: static and dynamic. Static

load balancing algorithms divide tasks without considering the current state of the

servers. These algorithms use predefined information such as the execution costs

and/or arrival times of tasks and distribute tasks according to a predetermined strat-

egy, such as round-robin or client-side random. While static load balancing can be

quickly set up, it can be inefficient and unable to adapt to short-term fluctuations in

loads. Dynamic load balancing algorithms, on the other hand, make decisions during

execution based on the current state of the servers, including their health, workload,

and availability. They monitor the health of each server through routine health checks

and redirect traffic from overloaded or underperforming servers to those that are less

used. This keeps the distribution balanced and effective. However, these methods

can be more challenging to set up and often have high computational overhead, which

makes them impractical for large-scale edge/fog-based systems with limited resources

[141, 142, 143].

SDN-based load balancing algorithms are a type of dynamic load balancing al-

gorithm that utilise Software-Defined Networking (SDN) capabilities to manage and

distribute network traffic. These algorithms provide centralised control and real-time

visibility of the network, enabling dynamic reconfiguration in response to changes in

network conditions and traffic patterns. This results in a more flexible and efficient

system than traditional hardware-based load balancing methods. By utilising SDN

technology, SDN-based load balancing algorithms can offer a more dynamic and effec-

114

Chapter 5: Load Balancing

tive way to balance network traffic and optimise network performance [144, 145, 146].

This chapter presents a novel load balancing method that integrates the strengths

of static and SDN-based approaches, offering a practical and scalable solution to the

load balancing challenge in edge/fog-based healthcare systems. The contributions of

this study are as follows:

1. A load balancing framework is introduced for healthcare systems in urban areas,

leveraging edge computing and software-defined networking (SDN) technology.

2. The Load Balancing of Optimal Edge-servers Placement (LB-OESP) algorithm

is proposed, an enhanced version of the OESP algorithm [147] proposed in Chap-

ter 4. While the OESP algorithm achieved its primary objectives successfully,

it might encounter challenges, especially in heavy loads, due to a lack of empha-

sis on load balancing. Acknowledging this drawback, the LB-OESP algorithm

efficiently selects optimal locations for placing edge servers, surpassing the ap-

proach in Chapter 4. Additionally, it ensures a balanced connection of other

facilities to these servers, aiming for an optimal distribution of the expected

load.

3. The SDN-Greedy Heuristic (SDN-GH) algorithm is proposed as an SDN-based

approach. This algorithm dynamically balances the load and facilitates efficient

data offloading within the network.

4. Simulation-based evaluations are conducted to assess the performance of the

proposed algorithms. The results demonstrate favourable outcomes, including

a cost-effective system and reduced latency compared to previous work.

Chapter Organisation : The structure of this chapter is organised as follows.

Section 5.2 presents the proposed system model and problem formulation. In Section

5.3, the load balancing algorithms are introduced. The performance evaluation of the

115

Chapter 5: Load Balancing

proposed algorithms is discussed in Section 5.4, where the results are presented and

analysed . Finally, Section 5.5 provides a summary of the study.

5.2 Preliminaries

5.2.1 Proposed System Model

Figure 5.1 presents a conceptual framework for healthcare systems in urban areas

that leverages edge computing and software-defined networking (SDN) technology.

This model embodies a modern approach to healthcare, utilising edge computing and

SDN technology to deliver fast, efficient, and reliable healthcare services to patients.

The framework comprises various components, including Medical Centres (MCs),

Hospitals (Hs), and Cloud, in conjunction with patients located throughout the entire

region.

Figure 5.1: Proposed Edge/Fog healthcare architecture based on SDN technology.

SDN technology is used to manage the network and make intelligent decisions

about how and where to process data. This is facilitated through a centralised SDN

controller, which maintains a global view of the network and can make informed

decisions about data flow.

116

Chapter 5: Load Balancing

The urban environment is conceptualised as a three-dimensional grid that com-

prises of three distinct entities, namely, Hospitals (Hs), Medical Centers (MCs), and

Patients (users). Each H is responsible for providing medical services to a group of

MCs located within a particular geographic region. Similarly, each MC is responsible

for providing medical services to patients within its local vicinity. Patients, on the

other hand, are dispersed throughout the entire region.

To simplify system representation, a set of assumptions have been established.

Firstly, it is assumed that every MC situated within the grid can potentially serve

as a suitable candidate for the placement of edge-servers. Secondly, all MCs are

considered to be virtually connected only when the distance between any two MCs,

as computed by the distance function d(a, b), is equal to a predetermined value K.

This K value represents the maximum distance that can be utilised for establishing

connectivity between neighboring MCs. Lastly, it is assumed that each MC has a

distinct historical load, i.e., a unique volume and distribution of user requests over

time.

Consequently, the collection of MCs in the system can be expressed as MCs =

{mc1,mc2, ...;mcn}, where each mc denotes a feasible placement location within the

three-dimensional grid, and noMCs represents the number of MCs within that spe-

cific region. The set of edge servers required for complete coverage in this area is

represented as ES = {es1, es2, ...; esk}, with Nes denoting the total number of edge

servers necessary. It is important to note that all edge servers are considered identical

(i.e., homogeneous). The patient population is denoted by P = {p1, p2, ...; pm}, where

m corresponds to the total number of patients in the region.

5.2.2 Problem Formulation

According to Chapter 4, the MCs in the system can be classified into two distinct

categories, namely MCs-Best and MCs-Others. MCs-Best are identified as the op-

117

Chapter 5: Load Balancing

timal placement sites for edge servers, with the constraint that at least three MCs

must be designated as such to enable efficient data offloading to neighbouring MCs.

Conversely, MCs-Others are designated as serverless nodes that must be directly con-

nected to MCs-Best to prevent multi-hop transfers and minimise latency. The tasks

in the system can be accomplished through one of two methods. The first method

involves offloading and processing tasks within the local network, irrespective of load

balance. However, if the computational resources of the existing network are insuf-

ficient, the data may be processed in the cloud through offloading operations, as

noted in Chapter 3. It is worth noting that the increased response latency observed

in the system when the number of tasks increases is attributed to the fact that the

proposed algorithms did not take into account load balance. Load balancing is an

important factor that affects the performance of distributed systems, and it is es-

sential for achieving efficient utilisation of resources and minimising response time.

Therefore, this study should consider incorporating load balancing mechanisms into

the algorithms to improve system performance and reduce response latency.

To address these problems, two main approaches have been proposed. Firstly, the

utilisation of Software-Defined Networking (SDN) technology has been suggested,

which involves granting decision-making authority to the SDN controller in each re-

gion. This approach allows for optimal offloading decisions to be made for tasks,

taking into account a global view of the network and compute resource allocation.

By leveraging SDN technology in this way, the proposed approach aims to reduce

response latency and improve system performance. Secondly, the proposed approach

involves improving the OESP algorithm for selecting the best server sites and reduc-

ing them if possible. This approach aims to minimise the number of MCs designated

as MCs-Best, while still ensuring full coverage for all MCs-Others. By optimising

the placement of MCs-Best, the proposed algorithm aims to reduce deployment costs

while also enhancing the network’s load balancing capabilities.

118

Chapter 5: Load Balancing

By combining these two approaches, the proposed solution aims to enhance the

performance of edge-based healthcare networks, improve load balancing, and reduce

costs. This approach has the potential to make a valuable contribution to the field

of edge computing research, as it addresses some of the most significant challenges

facing the development and deployment of edge computing networks.

To achieve these tasks, a multi-objective optimisation model has been developed,

with the following decision variables defined:

- X represents the placement of edge-servers at MCs

X = {xj | 1 ≤ j ≤ n}

Where:

xj =


1, if esi placed at mcj

0, otherwise.

- Y represents the assignment of patents to MCs

Y = {yij | 1 ≤ i ≤ m, 1 ≤ j ≤ n}

Where:

yij =


1, if pi placed at mcj

0, otherwise.

- E represents the links between MCs

E = {eab | 1 ≤ a, b ≤ n, a ̸= b}

where:

119

Chapter 5: Load Balancing

eab =


1, if mca and mcb are directly connected

0, otherwise.

Let λsum be the set of task arrival rate of patients,

λsum =
m∑
i=1

λi (5.1)

The system response time (SRT) represents the average system latency required

to deliver patient data to a health facility within the architecture. It is calculated as

follows:

SRT =

∑n
i=1 tpi
n

(5.2)

Where:

tpi = Twi + EAP ∗ TAP + (c1 + 1) ∗ tMC + c1 ∗ V + c2 ∗ S

+ c2 ∗ tH + c3 ∗ L+ c3 ∗ tH + c4 ∗B + c4 ∗ tCloud (5.3)

tMC = fQ(K1.λMCsum) +
K1.λMCsum

µMC

(5.4)

tH = fQ(K2.λHsum) +
K2.λHsum

µH

(5.5)

The c1, c2, c3 and c4 represent the counters to count the number of times to reach

a certain unit in the system.

The objective of this study is to improve the proposed architecture in Chap-

120

Chapter 5: Load Balancing

ters 3 and 4 for all tasks generated by patients within the network while consider-

ing the delay requirements of task execution in healthcare systems. The optimisa-

tion problem can be formulated as follows: given a system model with parameters

(G, noMCs [points], K,Nes,m, Twi, TAP , D, λMAX), the goal is to find X among the

best MCs and balance the system to enhance the response time SRT.

Min
∑

Cost(esj,mck).Xj (5.6)

Min SRT (5.7)

Subject to:

1. Nes ≥ 3 : to ensure that at least three edge-servers are placed at three MCs to

preserve previous achievements in chapter 3.

2. d(mca,mcb) = k : to ensure a shorter distance between a patient and an MC

and to avoid the colocated problem.

3.
∑

Eij = 1 or 2 : to ensure that a patient either connects directly with an

edge-servers site or through only one MC to minimise the latency.

4.
∑

yij = 1 (1 ≤ j ≤ n) : to guarantee that all patients must be served, and

each is served from exactly one candidate point.

By formulating the problem in this way and applying the proposed algorithm, the

response time and load balancing in the healthcare system can be improved. The

results of this study are expected to make a valuable contribution to the field of

healthcare systems and edge computing research.

The solution to the optimisation problem involves two algorithms that collabo-

rate to tackle the challenges of diminishing edge computing expenses and minimising

network latency. Algorithm 1 focuses on reducing the number of edge servers (ES),

121

Chapter 5: Load Balancing

thereby minimising the associated cost. while simultaneously executing load balanc-

ing tasks on the chosen nodes. Building upon this, Algorithm 2 utilises a greedy

heuristic method to manage data flow across the network, ensuring balance in load

distribution and optimal resource utilisation, thereby further diminishing latency. By

integrating both algorithms, this solution presents a well-rounded approach, effec-

tively addressing cost management, latency reduction, and resource allocation opti-

misation through proficient load balancing.

5.3 Proposed Load Balancing algorithms

The key objective of the previous chapter was to effectively deploy edge-servers to MCs

within a region to suit the demands of all monitored patients. The study utilised the

OESP algorithm, which demonstrated success in identifying the optimal placement

of edge-servers in MCs-Best. The number of MCs-Best selected was determined by

the shape and size of the network. Each MC-Best was tasked with providing services

to several MCs-Others (i.e., serverless) based on specific parameters defined by the

OESP algorithm. Consequently, the proposed algorithm succeeded in identifying a

cost-effective network with reduced latency but exhibited an imbalance in workload

distribution.

The primary aim of this study is to propose a novel load balancing technique that

can effectively address the issue of load imbalance in similar networks. The main

steps involved in designing such an algorithm can be summarised as follows:

Step 1: Apply the OESP algorithm to identify the optimal sites (MCs-Best) for

placing edge servers among several other sites (MCs-Others) in a specific area.

Step 2: Implement a static load balancing algorithm to reorganise and manage

the connections between the MCs within the local area. This task involves linking

MCs-Others to MCs-Best in a manner that balances the loads among MCs-Best. The

122

Chapter 5: Load Balancing

technique is based on the number of sites and historical data on facility loads. To

achieve this, the MCs-Others should be distributed as evenly as possible among the

MCs-Best. The proposed algorithm for accomplishing this is called LB-OESP and

can be summarised in the following stages:

1. Define the maximum coverage of each MC-Best to gain a better understanding

of the network.

2. Determine the MCs-Best-details matrix, which includes each MC-Best and its

corresponding set of MCs-Others.

3. Identify the Best-MCs-Best (the most optimal MCs-Best sites) to eliminate any

redundant or substitutable MCs-Bests.

4. Test Connectivity (1) between the new MCs-Best to determine if they can be

connected or if additional MCs-Best need to be added.

5. If the result of (4) is false, identify New-MCs-Best that need to be added to the

MCs-Bests to achieve complete connectivity between them.

6. Test Connectivity (2) between the final best sites and update the MCs-Best.

7. Replot all points without connections to distinguish the MCs-Best from the

other sites.

8. Establish efficient connections between the MCs-Best to ensure full connectivity

with the least number of links.

9. Determine and distribute the MCs-Others that should be connected to each

MC-Best to achieve load balancing.

10. Identify the final MCs-Best details matrix, which includes each MC-Best and

its corresponding set of MCs-Others.

123

Chapter 5: Load Balancing

Therefore, the proposed LB-OESP algorithm is a comprehensive approach that

combines the OESP and static load balancing algorithms to effectively balance the

loads among the MCs-Best and MCs-Others, thus addressing the issue of load imbal-

ance in similar networks. The LB-OESP algorithm is presented in Algorithm 1.

Algorithm 1: Load Balancing of Optimal Edge-servers Placement (LB-OESP)

algorithm

Input: A map of MCs-Best and MCs-Others, K = 40 km

Output: Optimise the Cost and SRT

Step 1: Define the maximum coverage

- Combine all MCs-Best in a one matrix called MCs Best.

- Combine all MCs-Other in a one matrix called MCs Others.

for each MCs Best, do

Plot a circle with a radius of K = 40 km.

end

Step 2: Find Best-MCs-Groups matrix

- Greate an MCs Best details matrix = 0.

for each MCs Best, do

Find MC Best Group matrix.

MCs Best details =MCs Best details + MC Best Group.

end

Step 3: Find Best of Best MCs

for each MCs Best, do

if MC Besti Group ⊆MC Bestj Group

Delete MC Besti from MCs Best matrix

Add MC Besti to New Other matrix

end

end

Best MCs Best = updated MCs Best

124

Chapter 5: Load Balancing

MCs Others = MCs Others+New Other

Step 4: Test Connectivity (1)

Generate ConnectivityBest = 0

for i← 1 to size-of(Best MCs Best), do

for k ← 1 to size-of(Best MCs Best), do

if i ̸= k, then

if distance between Best MCs Besti and Best MCs Bestj ≤ 40, do

ConnectivityBest(i, k) = 1

Connected MCs = Connected MCs+Best MCs Besti

else

ConnectivityBest(i, k) = 0

Not Connected MCs = Not Connected MCs+Best MCs Besti

end

else

ConnectivityBest(i, k) = Null

end

end

end

if Not Connected MCs == Null, then

Go to 7

else

Go to 5

end

Step 5: Choose a New MC-Best

for each Not Connected MCs, do

if distance between Not Connected MCs and New Other ≤ 40, then

Add New Other to Best MCs Best

end

end

125

Chapter 5: Load Balancing

Step 6: Test Connectivity (2)

Step 7: Re-plot the MCs position in the map

Step 8: Find new connections between the Best MCs Best

for i← 1 to size-of(Best MCs Best), do

for k ← 1 to size-of(Best MCs Best), do

if i ̸= k, then

Find the nearest Best MCs Best

end

end

Connect the nearest Best MCs Best to Best MCs Besti

- Plot the new links between Best MCs Best

Step 9: Find the number of MCs Others that should connected

to each MC-Best with load balancing.

No Other BestMC = NoOther
NoBest

R1 = int(No Other BestMC) (The minimum number)

R = R1−No Other BestMC

if R == 0, then

R2 = R1

else

R2 = R1 + 1 (The maximum number)

end

- Distribute R1 or R2 of MCs Others to Best MCs Best to achieve best load

balancing

Step 10: Plot the final map based on each found connection between

the Best and Other

Step 3: To address the issue of resource scarcity within the local area, a dynamic

load balancer is required. One potential solution to this problem is to employ a dy-

namic offloading strategy based on software-defined networking (SDN). This approach

126

Chapter 5: Load Balancing

considers the real-time status of the network to identify the most suitable node for

offloading healthcare-related tasks. The SDN controller is responsible for making the

necessary task assignment decisions required for offloading these tasks. Implementing

this approach is expected to improve the utilisation of available resources significantly,

resulting in enhanced processing capabilities and optimal network utilisation.

The proposed algorithm should be simple enough to allow for rapid decision-

making while still meeting the delay requirements. However, it is unnecessary to

offload a task to another lightly loaded site if the offloading time is greater than the

local execution time. In certain scenarios, the time required for communication and

remote execution may diminish the benefits of offloading to a less burdened site. To

address this, a binary decision variable T x2
x1 can be defined as:

T x2
x1 =


1, if toffloading < tlocal

0, otherwise.

(5.8)

The primary function of the SDN controller is to collect data on the MCs, such as

their current workloads, queue durations, and other relevant metrics. Having a global

view of the network allows the controller to leverage AI-based technologies trained on

offline data. This equips the controller to make more informed predictions, including

average propagation delays, queuing delays, and result delivery times. Such forecasts

can be valuable in assessing a task’s response time if it were executed on a different

site than its local site. To optimise SRT and load balancing, Algorithm 2 proposes an

SDN-based greedy heuristic algorithm (SDN-GH). This algorithm aims to determine

whether data offloading is necessary between the system units based on the workload

received by an MC or H relative to their maximum processing capacity. The algorithm

also takes into account the latency time, which is calculated using Equation 5.8.

127

Chapter 5: Load Balancing

Algorithm 2: SDN-based Greedy Heuristic (SDN-GH) algorithm for data

offloading in healthcare architecture

Input: The final map of the architecture (MCs, H,, SDN, Cloud)

Output: Optimise the SRT and load balancing

Step 1: The respective SDN controller receives periodic state reports from each

MC and H.

Step 2

for each MC at a certain time, the SDN do

Calculate CMC(capacity) of each MC.

Calculate CH(capacity) of the local H.

end

Step 3

for each λsum arrived at the same time, the SDN do

if λsum < CMC then

Execute λsum at the local MC

Terminate the process.

Record the response time.

else

Execute CMC of data.

Calculate λoff = λsum − CMC .

Record the response time.

Go to 4.

end

end

Step 4

for each λoff arrived at the same time, the SDN do

Calculate toffloading.

Calculate tlocal.

end

128

Chapter 5: Load Balancing

Step 5

According to Equation 5.8:

set the value of T xi
x between the local MCs (x) and MCs neighbour xi = {x1, x2}

and the value of TH
x between the local MCs (x) and the local H.

if T xi
x and TH

x == zero then

Execute λoff at the local MC.

Record the response time.

Terminate the process.

else

Construct β1 = {T x1
x , T x2

x , TH
x1
}.

end

Step 6

If β1 ̸= Ø then

Determine the MC or H index k = minβ1.

Offload λoff to k for the execution.

The steps from 1-6 are applied to H with its neighbours and the cloud.

else

Execute λoff at the local MC.

Record the response time.

Terminate the process.

end

Step 7 Return: the total response time.

The processing of the data follows a series of scenarios based on the processing

capabilities of various components of the system. If the local MC-Best has enough

processing power, the data is processed locally (Scenario 1). If not, the data is

partially processed at the local MC-Best, and the remainder is divided to be offloaded

to the neighbouring MCs-Best according to their available capacities (Scenarios 2

and 3). If the neighbouring MCs-Best do not have enough processing power, the

129

Chapter 5: Load Balancing

data is partially processed at those sites, and the remaining portion is offloaded to

the local H (Scenario 4). If the local H does not have sufficient processing power,

the data is partially processed at that site, and the remaining portion is offloaded

to the neighbouring Hs (Scenarios 5 and 6). If the neighbouring Hs also lack

adequate processing power, the data is partially processed at those sites, and the

remaining portion is offloaded to the cloud (Scenario 7). Figure 5.2 visualises the

seven scenarios. It is worth noting that in the previous study in Chapter 3, the

implementation of the HOSSC Algorithm led to the successful achievement of five

data processing scenarios, characterised by enhanced privacy, elevated computational

capability, minimised system latency, sustained high service availability, and a scalable

system design. In this study,the number of data processing scenarios was expanded to

seven, which enabled us to improve upon the previously established outcomes while

ensuring load balance and reducing delay time.

Figure 5.2: All potential scenarios based on SDN-GH.

130

Chapter 5: Load Balancing

5.4 Performance Evaluation

The performance of the proposed algorithms was evaluated using a simulator that

combines SDN technology with edge computing for task offloading in the proposed

system. The simulation was conducted on a notebook featuring a 1.8 GHz Intel(R)

Core(TM) i7-8550U CPU, 16 GB RAM, Microsoft Windows 10 operating system, and

MATLAB R2022b. Table 5.1 lists the simulation parameters, primarily derived from

our previous studies in Chapter 3 and 4. Additionally, the following assumptions were

made:

1. The arrangement of MCs is assumed to be random in terms of their distribution.

2. The topology is assumed to be known to the SDN controller, which has access

to information regarding the distances between any two MCs in the front-haul

networks.

3. Valuable information is presumed to be accessible through the utilisation of AI-

based learning technologies. Hence, parameters like the average propagation

delay between MCs are predetermined.

In evaluating performance, the proposed algorithms are compared with those in-

troduced in our previous studies to demonstrate the improvements achieved through

the integration of new technologies into our foundational system. Subsequent sections

present the results of implementing the proposed algorithms.

5.4.1 LB-OESP algorithm

In this section, the results of multiple simulations are presented to assess the effective-

ness of the proposed algorithm. The evaluations were based on randomly generated

MC sites, depicted as points. Since the output of the OESP algorithm (Chapter 4)

serves as the input for the LB-OESP algorithm, identical parameters are defined for

131

Chapter 5: Load Balancing

Table 5.1: SRT System parameters

Symbol Parameter Value

Ps Number of patients 100, 200, 300

n Number of servers in each MC (GP) 5, 6, 7

m Number of servers in each GH 10, 12, 14

rWi Link rate between IoT device and AP 54 Mbps

rAP link rate between AP and the local GP 100 Mbps

rFib link rate between the GPs and GHs Up to 10 Gbps

λi Packet size 30 KB

Twi Wireless Delay 4 ms

TAP Delay between AP and the local GP 2 ms

V Delay between two neighboring GPs (1−K1).λGPsum

10Gbps

S Delay between the GPs and GHs K2.λGHsum

10Gbps

L Delay between two neighboring GHs (1−K2).λGHsum

10Gbps

B Internet Delay 20 ms

µGP , µGH Each GP, GH server service rate 100,200 KB per ms

µCloud Cloud service rate 1000 KB per ms

λGPmax Maximum GP workload 200×n KB

λGHmax Maximum GH workload 200×n KB

both algorithms, as detailed in Table 5.2. To demonstrate the effectiveness of the

approach, the step-by-step process of the algorithm is showcased initially with 10

randomly generated, followed by the presentation of final outcomes when applying

the algorithm to 20 and 30 randomly generated points.

- Scenario 1 - 12 nodes

Initially, a MATLAB code was used to generate ten points within a geographic

region measuring 100 km by 100 km. These points were designated as measurement

sites (MC sites), as previously noted. Subsequently, it was necessary to allocate these

132

Chapter 5: Load Balancing

Table 5.2: LB-OESP simulation parameters.

Symbol Definition value

A The region dimensions 100 km × 100 km

noMCs Number of Points (MCs) 12, 16, 25

x, y Coordinates Randomly created

Dmax Max. distance between two neighbours 40 km

points on a virtual map, as depicted in Figure 5.3.

Figure 5.3: 10 disconnected MCs on a map.

The next step involves using the OESP algorithm to determine the placement of

MCs-Best and MCs-Others, which serve as inputs to the proposed algorithm. The

final map generated by the OESP algorithm is illustrated in Figure 5.4.

The OESP algorithm demonstrates success in selecting the optimal MCs-Best,

133

Chapter 5: Load Balancing

Figure 5.4: The final OESP network of 12 MCs: Green & Blue points = Best-MCs,
Black points = MCs-Others.

which are determined to be (6, 8, 11, and 3). The algorithm successfully establishes a

connection between each MC-Others and a single MC-Best. Despite this achievement,

it is evident that the distribution of loads within the network generated by this

algorithm is not uniform. Specifically, MCs-Best (11 and 6) are each connected to

only one MC-Others, whereas MCs-Best 8 and 3 are connected to three MC-Others

each, thus leading to an imbalance in the load distribution.

Consequently, the central aim of the algorithm is to achieve a balanced distribution

of load in the network. Prior to this objective, the proposed algorithm seeks to

enhance the network by selecting the optimal MCs-Best to reduce redundancies and

minimise costs. To accomplish this, the first task involves determining the Best-MCs-

Best through the evaluation of multiple variables and the implementation of several

procedures as detailed in steps 1 to 6 of the algorithm. Once completed, the network

134

Chapter 5: Load Balancing

will be reconfigured, with connections between sites being adjusted, as illustrated in

Figure 5.5.

Figure 5.5: 12 disconnected MCs on a map. Green points = Best-MCs-Best, Black
points = MCs-Others.

As depicted in Figure 5.5, the selection of the Best-MCs-Best was limited to three

sites, which are (8, 11, and 3), rather than four. MC 6 has been removed from

MCs-Best and assigned to MCs-Others. The subsequent task is to establish opti-

mal connections between these sites, while avoiding duplicated links, accomplished

through step 8 of the algorithm. Figure 5.6 illustrates the configuration of the network

with the connections established between the best sites.

Once the MCs-Best were established and connections between them were in place,

the next step involved integrating the MC-Others into the network. The objective

at this stage was to determine an optimal method of distributing the MC-Others as

evenly as possible among the best sites. This involved determining the preferred num-

135

Chapter 5: Load Balancing

Figure 5.6: The established connections between the best sites in the network.

ber of MC-Others to be connected to each MC-Best, considering the minimum and

maximum threshold. In this particular scenario, with 9 MC-Others and 3 MCs-Best,

the optimal number was 3 MC-Others (both as the minimum and maximum) to be

connected to each MC-Best, taking into account the proximity of the interconnected

sites. Figure 7 depicts the final configuration of the grid after the implementation

of steps 9 and 10. The algorithm has successfully established a network that is both

balanced and cost-efficient in terms of its selection of sites to serve as servers for other

sites.

As illustrated in Figure 5.7, the algorithm has successfully established a network

that is both balanced and cost-efficient in terms of its selection of sites to serve as

servers for other sites.

It is important to note that when the preferred number of MC-Others is not a

whole number, the approach should be to select the nearest integer values. For exam-

136

Chapter 5: Load Balancing

Figure 5.7: The final LB-OESP network of 10 MCs: Green points = Best-MCs-Best,
Black points = MCs-Others.

ple, if the preferred number is 3.3, the minimum value would be 3 and the maximum

would be 4. The algorithm then determines which MC-Best will accommodate 3 or

4 MC-Others based on the proximity of the MC-Others to the respective MCs-Best.

Furthermore, the selection of the MCs-Best is conducted in two stages. The first

stage involves selecting the Best-MCs-Best1 from the MCs-Best and isolating the

remaining elements in a separate matrix. Subsequently, the connectivity between the

Best-MCs-Best1 is tested. If they are connected, the Best-MCs-Best1 are considered

the Best-MCs-Best. In the case of disconnection, the algorithm proceeds by adding

one MC at a time from the isolated matrix until full connectivity between them is

achieved.

- Scenario (2 and 3) – 16 and 25 nodes

The effectiveness of the proposed algorithm is further highlighted in Figures 8

137

Chapter 5: Load Balancing

and 9, which illustrate two distinct scenarios involving 16 and 25 nodes, respectively.

These figures showcase the output maps generated by both the OESP algorithm and

the subsequent LB-OESP algorithm. The algorithm consistently demonstrates its

ability to minimise the number of MCs-Best while achieving optimal load balancing.

It successfully restructures the network by establishing connections between MCs-

Best and linking MCs-Others to MCs-Best in an optimal manner, thereby enhancing

overall network efficiency and performance.

In the 16-node scenario, the proposed algorithm successfully decreased the number

of MCs-Best from 5 to 4 and then reconfigured their connections. Subsequently, it

evenly distributed the MCs-Others among the MCs-Best.

Figure 5.8: A comparison between the final OESP and LB-OESP network of 16 MCs.

In the 25-node scenario, while the LB-OESP algorithm successfully reduced the

number of MCs-Best and reconfigured the network, it was necessary to connect MC-

Best 20 to a larger number of MCs-Others than MC-Best 3. This was due to the

remote location of MC-Best 3, limiting its ability to connect to more MCs-Others.

This is a prime example of the algorithm’s positive aspects, as it possesses the intelli-

gence necessary to construct a network that is optimally connected, incurs the lowest

138

Chapter 5: Load Balancing

cost, and experiences the shortest possible delay time.

Figure 5.9: A comparison between the final OESP and LB-OESP network of 25 MCs.

Table 5.3 provides a cost comparison between the proposed algorithm and previous

studies in Chapters 3 and 4. It is worth noting that these percentages may vary across

different networks, as they are influenced by the number of points selected as Best

points. The percentages are determined by calculating the difference in the number

of edge servers between LB-OESP and OESP. This difference is then divided by the

number of edge servers in OESP. For instance, in the case of 25 points, the number of

edge servers in OESP is 7, which is subsequently reduced to 5 by LB-OESP, depending

on the shape of the network and the proximity of the points to each other. Therefore,

the calculations are as follows: (5 - 7) / 7 = -28%. However, in all cases, there is

a significant improvement in cost while preserving the previously achieved benefits

outlined in chapters 3 and 4.

139

Chapter 5: Load Balancing

Table 5.3: A comparison between HMAN, OESP and LB-OESP cost

noMCs
No. of edge-server nodes in

Deployment Cost
HMAN OESP LB-OESP

12 12 4 3 -25%

16 16 5 4 -20%

25 25 7 5 -28%

5.4.2 SDN-GH algorithm

The SDN-GH algorithm has been designed to efficiently distribute workloads among

the collaborating units, thereby alleviating resource constraints and ensuring high

availability within the system. Accordingly, upon receipt of a request by a node within

the local area, the system evaluates whether the resources on that node suffice for

processing the request. In cases where these resources are inadequate, the algorithm

transfers the request across the cooperating nodes where the necessary resources are

available. If resources are unavailable across all units, the request is redirected either

to another area or to the central cloud.

The results of the conducted simulation are depicted in Figure 5.10, where the

y-axis represents the delivery latency for task processing within the system’s facilities

and the x-axis signifies the number of patients. For the purpose of comparison, two

additional algorithms, the OESP algorithm and the HOSSC algorithm, are employed.

To facilitate a more straightforward evaluation of the system’s viability and benefits,

several parameters have been defined and presented in Table 5.1, which are identical

to the parameters used in previous studies.

It is evident that the algorithm endeavors to minimise processing time by initially

involving proximate collaborative facilities. Subsequently, it gradually extends its

reach to facilities situated farther away, eventually culminating in engagement with

the cloud if necessary. This operational approach aligns with the fundamental tenets

140

Chapter 5: Load Balancing

Figure 5.10: A comparison between HOSSC, OESP and SDN-GH algorithms in terms
of the SRT in the system.

of edge technology. During periods of low workloads, specifically when patient num-

bers are less than 100, the algorithm relies predominantly on the local MC (MCL) and

its neighboring centres (MCN1 and MCN2). Consequently, the delay is kept to a min-

imum. As the workload increases, additional collaborative facilities are hierarchically

included. This expansion encompasses the local hospital (HL) and its neighboring

hospitals (HN1 and HN2), eventually extending to the cloud. The decision-making

process is guided by the algorithm’s adherence to the seven scenarios delineated in

Figure 5.2.

Furthermore, the results indicate a significant enhancement in the system’s per-

formance when utilising the SDN-GH algorithm compared to the HOSSC and OESP

algorithms, with SDN-GH succeeding in reducing the delay by approximately 12%

(28ms - 32ms / 32ms = 12%). This improvement can be attributed to the SDN-GH

141

Chapter 5: Load Balancing

algorithm’s broader scope of data processing within the network, offering six scenar-

ios for local network data processing and only one scenario involving data transmis-

sion to the cloud, resulting in reduced response time. This confirms the efficacy of

the proposed algorithm in promoting a more collaborative approach by distributing

workloads among the system units. Additionally, this reinforces the privacy and avail-

ability of the system while contributing to scalability and capacity improvements, as

previously reported in Chapter 3.

5.5 Summary

This study addressed the crucial challenge of load balancing in the design of smart

healthcare systems. Efficient load balancing is essential to avoid overloading nodes,

which can result in delays and degraded system performance. By integrating static

and SDN-based load balancing algorithms, the proposed method achieved optimal

load balancing in edge/fog-based healthcare systems. The LB-OESP algorithm mini-

mized the number of edge server deployment locations while ensuring balanced work-

load distribution. The SDN-GH algorithm dynamically balanced the load, leading to

improved system performance. The results showed a 12% decrease in system latency

and up to 28% lower deployment costs compared to prior studies., highlighting the ef-

fectiveness of the proposed method. Furthermore, the implementation of the SDN-GH

algorithm enabled seven data processing scenarios, enhancing privacy, computational

capability, system latency, service availability, and system design adaptability. These

findings emphasize the significance of efficient load balancing in improving system

performance in healthcare applications. Future research directions could explore the

scalability of the proposed method for larger networks, investigate its resilience to

network failures and security threats, and extend its applicability to other domains

beyond healthcare. Overall, this study contributes to advancing the field of smart

142

Chapter 5: Load Balancing

healthcare systems and provides valuable insights for designing efficient and reliable

edge/fog-based healthcare networks.

143

Chapter 6

Conclusion and Future Work

6.1 Conclusion

This research undertook the conceptualization and exploration of a cooperative hier-

archical healthcare architecture, designated as HMAN, amalgamating the potential

of Edge/Fog computing. The architectural proposal, enriched by the support of the

HOSSC algorithm, has engendered a framework comprising four distinctive layers:

IoT, Edge/Fog, cloud, and application layers. Through meticulous model analysis

and extensive experimentation, this research has ascertained the manifold benefits

that the HMAN architecture entails.

Notably, the architecture’s adaptability to varied network workloads has been

successfully demonstrated, reaffirming its resilience and robustness in a dynamic op-

erational context. Additionally, the study’s focus on ensuring data privacy and low

latency through locally processed data scenarios has underscored the architecture’s

practicality. The introduction of a comprehensive five-stage evaluation framework has

facilitated the architecture’s meticulous assessment, further corroborating its perfor-

mance and viability.

The empirical results underscore the architecture’s prowess, revealing commend-

144

Chapter 6: Conclusion and Future Work

ably low latencies ranging from 6.043 to 31.45 milliseconds across diverse workloads.

These outcomes reflect the architecture’s inherent computational capacity, scalability,

and availability, affirming its potential to enhance healthcare service delivery.

The integration of s-health with Edge/Fog computing has been a critical focal

point of this study, aimed at revolutionizing remote telehealth services. The fusion

of these domains presents an array of benefits, encompassing reduced latency, lower

power consumption, enhanced data privacy, and improved security. However, the

endeavor also entails intricate challenges, including optimal edge-server placement

and efficient workload prioritization.

The study’s contributions in the form of two novel algorithms have been instru-

mental in addressing these challenges. The proposed priority offloading/processing

mechanism and the Optimal Edge-Server Placement (OESP) algorithm have show-

cased significant promise. The priority mechanism algorithm adeptly classifies pa-

tients based on disease severity and allocates resources accordingly, while the OESP

algorithm effectively determines optimal edge-server locations for cost-efficient de-

ployment with minimal latency.

The third study’s exploration centered on a pivotal challenge in smart healthcare

systems—efficient load balancing. This critical facet significantly influences system

performance, avoiding overburdening nodes, delays, and compromised efficiency. The

integration of static and SDN-based load balancing algorithms has yielded a compre-

hensive approach to attaining optimal load distribution in Edge/Fog-based healthcare

networks [148].

The results showcased impressive outcomes, including a 12% reduction in system

latency and up to 28% decrease in deployment costs compared to previous studies.

The efficacy of the proposed approach has been further highlighted by the SDN-

GH algorithm’s dynamic load balancing capabilities, leading to heightened system

performance. Moreover, the implementation of the SDN-GH algorithm has facilitated

145

Chapter 6: Conclusion and Future Work

seven distinct data processing scenarios, elevating privacy, computational capabilities,

system latency, service availability, and system adaptability.

6.2 Future Directions and Enhancements

The research presented in this thesis offers a robust foundation for advancing the realm

of healthcare architectures and computing paradigms. The insights gained from this

work lay the groundwork for numerous promising future directions and enhancements,

each aimed at further augmenting the efficacy, scalability, and real-world applicability

of the proposed systems.

1. Cross-Country Network Expansion: The current research has primarily fo-

cused on local healthcare networks within cities. An exciting avenue for future

exploration involves expanding the scale of these networks to span across coun-

tries (WAN). Investigating the dynamics of cross-country healthcare networks

introduces unique challenges and opportunities, including latency management,

data privacy regulations, and diverse healthcare infrastructure. Such an expan-

sion can usher in new dimensions of healthcare accessibility and collaboration

on a global scale.

2. Facility Status Monitoring Protocol: To streamline communication pro-

cesses and enhance response times, the development of a specialized protocol

tailored for Software-Defined Networking (SDN) environments could be pur-

sued. This protocol would facilitate real-time monitoring of facility statuses

within the network. By continuously assessing the operational conditions of

network facilities, this protocol would enable proactive adjustments, minimiz-

ing downtime, optimizing resource utilization, and consequently elevating the

overall responsiveness of the system.

146

Chapter 6: Conclusion and Future Work

3. Advanced Resource Allocation Algorithms: Resource allocation stands

as a pivotal concern in healthcare networks. Future research can delve into

designing resource allocation algorithms that dynamically adapt to changing

demands and network conditions. These algorithms could consider variables

such as patient priority, workload diversity, and resource availability to optimize

resource distribution and system efficiency.

4. Intelligent User-Edge Server Assignment: The allocation of users to edge

servers within specific areas warrants comprehensive exploration. The design of

a sophisticated method for user-edge server assignment can mitigate potential

issues that might impact service quality and availability. This method could

incorporate factors like user load, proximity, and edge server capabilities to

ensure optimal user experiences while maximizing resource utilization.

5. Strengthening Security Measures: Security remains a paramount concern

for healthcare systems. Future work can delve deeper into security enhance-

ments by exploring advanced cryptographic techniques and secure multi-party

computation. These techniques can fortify data protection mechanisms, ensur-

ing the confidentiality and integrity of sensitive patient information amidst a

dynamic and interconnected network environment.

6. Leveraging Blockchain for Data Management: The integration of blockchain

technology holds the potential to revolutionize patient data management and

transactional integrity. By harnessing the immutable and transparent nature of

blockchain, the system’s security and trustworthiness can be elevated. Research

in this direction could focus on developing a blockchain-based framework to en-

sure secure and auditable patient data exchange, thereby enhancing the overall

reliability of the ecosystem.

147

Chapter 6: Conclusion and Future Work

7. Real-World Deployment and Validation: To bring the theoretical advance-

ments into practical fruition, real-world deployment within healthcare environ-

ments is essential. Collaboration with healthcare institutions to implement and

evaluate the systems in clinical settings will provide invaluable insights. This

practical feedback loop will enable refinement of the proposed systems based

on real-world challenges and requirements, further solidifying their effectiveness

and applicability.

The envisioned future directions outlined above elucidate a spectrum of oppor-

tunities for building upon the research conducted in this thesis. By delving into

these areas, the proposed systems can be refined, extended, and validated, ultimately

contributing to the advancement of healthcare technology and service delivery.

Finally, It is crucial to highlight that while the proposed framework and algorithms

are specifically designed for healthcare applications, their adaptability extends beyond

this domain. With some modifications, these solutions can be effectively applied to

various other fields such as the Industrial Internet of Things (IIoT) and autonomous

vehicles. The underlying achievements and principles of the framework are versatile,

making it suitable for these applications as well. This flexibility underscores the

robustness and broad potential impact of the developed technologies, paving the way

for their utilization in diverse and innovative ways across multiple industries.

148

Bibliography

[1] S. Oueida, Y. Kotb, M. Aloqaily, Y. Jararweh, and T. Baker, “An edge com-

puting based smart healthcare framework for resource management,” Sensors,

vol. 18, no. 12, 2018. [Online]. Available: https://www.mdpi.com/1424-

8220/18/12/4307

[2] J. M. Corchado and S. Trabelsi, “Advances in sustainable smart cities and

territories,” p. 1280, 2022.

[3] K. Amirthalingam, “Medical dispute resolution, patient safety and the doctor-

patient relationship,” Singapore medical journal, vol. 58, no. 12, p. 681, 2017.

[4] I. Balansard, L. Cleverley, K. L. Cutler, M. G. Sp̊angberg, K. Thibault-Duprey,

and J. A. Langermans, “Revised recommendations for health monitoring of

non-human primate colonies (2018): Felasa working group report,” Laboratory

animals, vol. 53, no. 5, pp. 429–446, 2019.

[5] L. Kong, J. Tan, J. Huang, G. Chen, S. Wang, X. Jin, P. Zeng,

M. Khan, and S. K. Das, “Edge-computing-driven internet of things: A

survey,” ACM Comput. Surv., vol. 55, no. 8, dec 2022. [Online]. Available:

https://doi.org/10.1145/3555308

[6] Y. Zhao, W. Wang, Y. Li, C. Colman Meixner, M. Tornatore, and J. Zhang,

“Edge computing and networking: A survey on infrastructures and applica-

tions,” IEEE Access, vol. 7, pp. 101 213–101 230, 2019.

[7] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang, “A survey

on the edge computing for the internet of things,” IEEE Access, vol. 6, pp.

6900–6919, 2018.

[8] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architecture and

computation offloading,” IEEE Communications Surveys & Tutorials, vol. 19,

no. 3, pp. 1628–1656, 2017.

149

Chapter 6: Conclusion and Future Work

[9] H. J. Damsgaard, A. Ometov, and J. Nurmi, “Approximation opportunities

in edge computing hardware: A systematic literature review,”

ACM Comput. Surv., vol. 55, no. 12, mar 2023. [Online]. Available:

https://doi.org/10.1145/3572772

[10] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakanlahiji,

J. Kong, and J. P. Jue, “All one needs to know about fog computing

and related edge computing paradigms: A complete survey,” Journal

of Systems Architecture, vol. 98, pp. 289–330, 2019. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S1383762118306349

[11] W. G. Hatcher, J. Booz, J. McGiff, C. Lu, and W. Yu, “Edge computing based

machine learning mobile malware detection,” 2017.

[12] W. Hu, Y. Gao, K. Ha, J. Wang, B. Amos, Z. Chen, P. Pillai, and M. Satya-

narayanan, “Quantifying the impact of edge computing on mobile applications,”

in Proceedings of the 7th ACM SIGOPS Asia-Pacific workshop on systems, 2016,

pp. 1–8.

[13] S. Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, and Q. Li, “Lavea: Latency-

aware video analytics on edge computing platform,” in Proceedings of the Second

ACM/IEEE Symposium on Edge Computing, 2017, pp. 1–13.

[14] W. Z. Khan, E. Ahmed, S. Hakak, I. Yaqoob, and

A. Ahmed, “Edge computing: A survey,” Future Generation Com-

puter Systems, vol. 97, pp. 219–235, 2019. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0167739X18319903

[15] S. Hamdan, M. Ayyash, and S. Almajali, “Edge-computing architectures for

internet of things applications: A survey,” Sensors, vol. 20, no. 22, 2020.

[Online]. Available: https://www.mdpi.com/1424-8220/20/22/6441

[16] S. Raza, S. Wang, M. Ahmed, M. R. Anwar et al., “A survey on vehicular edge

computing: architecture, applications, technical issues, and future directions,”

Wireless Communications and Mobile Computing, vol. 2019, 2019.

[17] S. B. Calo, M. Touna, D. C. Verma, and A. Cullen, “Edge computing archi-

tecture for applying ai to iot,” in 2017 IEEE International Conference on Big

Data (Big Data), 2017, pp. 3012–3016.

150

Chapter 6: Conclusion and Future Work

[18] C. M. Fernández, M. D. Rodŕıguez, and B. R. Muñoz, “An edge computing

architecture in the internet of things,” in 2018 IEEE 21st international sympo-

sium on real-time distributed computing (ISORC). IEEE, 2018, pp. 99–102.

[19] M. Marjanović, A. Antonić, and I. P. Žarko, “Edge computing architecture for

mobile crowdsensing,” IEEE Access, vol. 6, pp. 10 662–10 674, 2018.

[20] B. Ali, M. A. Gregory, and S. Li, “Multi-access edge computing architecture,

data security and privacy: A review,” IEEE Access, vol. 9, pp. 18 706–18 721,

2021.

[21] O. Abari, D. Bharadia, A. Duffield, and D. Katabi, “Enabling {high-quality}
untethered virtual reality,” in 14th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 17), 2017, pp. 531–544.

[22] W. Yu, H. Xu, H. Zhang, D. Griffith, and N. Golmie, “Ultra-dense networks:

Survey of state of the art and future directions,” in 2016 25th international

conference on computer communication and networks (ICCCN). IEEE, 2016,

pp. 1–10.

[23] J. Gedeon, J. Krisztinkovics, C. Meurisch, M. Stein, L. Wang, and

M. Mühlhäuser, “A multi-cloudlet infrastructure for future smart cities: An

empirical study,” in Proceedings of the 1st International Workshop on Edge

Systems, Analytics and Networking, 2018, pp. 19–24.

[24] M. Agiwal, A. Roy, and N. Saxena, “Next generation 5g wireless networks:

A comprehensive survey,” IEEE communications surveys & tutorials, vol. 18,

no. 3, pp. 1617–1655, 2016.

[25] P. Bellavista and A. Zanni, “Feasibility of fog computing deployment based on

docker containerization over raspberrypi,” in Proceedings of the 18th interna-

tional conference on distributed computing and networking, 2017, pp. 1–10.

[26] Y. Mansouri and M. A. Babar, “A review of edge computing:

Features and resource virtualization,” Journal of Parallel and Dis-

tributed Computing, vol. 150, pp. 155–183, 2021. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0743731520304317

[27] C. Mart́ın Fernández, M. Dı́az Rodŕıguez, and B. Rubio Muñoz, “An edge com-

puting architecture in the internet of things,” in 2018 IEEE 21st International

Symposium on Real-Time Distributed Computing (ISORC), 2018, pp. 99–102.

151

Chapter 6: Conclusion and Future Work

[28] G. Wang, Y. Zhao, J. Huang, and W. Wang, “The controller placement problem

in software defined networking: A survey,” IEEE network, vol. 31, no. 5, pp.

21–27, 2017.

[29] Y. Jararweh, A. Doulat, A. Darabseh, M. Alsmirat, M. Al-Ayyoub, and

E. Benkhelifa, “Sdmec: Software defined system for mobile edge computing,” in

2016 IEEE international conference on cloud engineering workshop (IC2EW).

IEEE, 2016, pp. 88–93.

[30] J. Ren, D. Zhang, S. He, Y. Zhang, and T. Li, “A survey on end-edge-cloud

orchestrated network computing paradigms: Transparent computing, mobile

edge computing, fog computing, and cloudlet,” ACM Comput. Surv., vol. 52,

no. 6, oct 2019. [Online]. Available: https://doi.org/10.1145/3362031

[31] K. Dolui and S. K. Datta, “Comparison of edge computing implementations:

Fog computing, cloudlet and mobile edge computing,” in 2017 Global Internet

of Things Summit (GIoTS), 2017, pp. 1–6.

[32] Y. Pan, P. Thulasiraman, and Y. Wang, “Overview of cloudlet, fog computing,

edge computing, and dew computing,” in Proceedings of The 3rd International

Workshop on Dew Computing, 2018, pp. 20–23.

[33] K. Bilal, O. Khalid, A. Erbad, and S. U. Khan, “Potentials, trends, and

prospects in edge technologies: Fog, cloudlet, mobile edge, and micro data

centers,” Computer Networks, vol. 130, pp. 94–120, 2018.

[34] M. Muniswamaiah, T. Agerwala, and C. C. Tappert, “A survey on cloudlets,

mobile edge, and fog computing,” in 2021 8th IEEE international conference

on cyber security and cloud computing (CSCloud)/2021 7th IEEE international

conference on edge computing and scalable cloud (EdgeCom). IEEE, 2021, pp.

139–142.

[35] G. Carvalho, B. Cabral, V. Pereira, and J. Bernardino, “Edge computing: cur-

rent trends, research challenges and future directions,” Computing, vol. 103, pp.

993–1023, 2021.

[36] M. Talebkhah, A. Sali, M. Marjani, M. Gordan, S. J. Hashim, and F. Z.

Rokhani, “Edge computing: architecture, applications and future perspectives,”

in 2020 IEEE 2nd International Conference on Artificial Intelligence in Engi-

neering and Technology (IICAIET). IEEE, 2020, pp. 1–6.

152

Chapter 6: Conclusion and Future Work

[37] H. Elazhary, “Internet of things (iot), mobile cloud, cloudlet, mobile iot, iot

cloud, fog, mobile edge, and edge emerging computing paradigms: Disambigua-

tion and research directions,” Journal of network and computer applications,

vol. 128, pp. 105–140, 2019.

[38] M. Y. Akhlaqi and Z. B. M. Hanapi, “Task offloading paradigm in mobile edge

computing-current issues, adopted approaches, and future directions,” Journal

of Network and Computer Applications, vol. 212, p. 103568, 2023.

[39] A. Acheampong, Y. Zhang, X. Xu, and D. A. Kumah, “A review of the current

task offloading algorithms, strategies and approach in edge computing systems,”

Computer Modeling in Engineering & Sciences, 134 (1), pp. 35–88, 2023.

[40] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architecture and

computation offloading,” IEEE communications surveys & tutorials, vol. 19,

no. 3, pp. 1628–1656, 2017.

[41] C. Jiang, X. Cheng, H. Gao, X. Zhou, and J. Wan, “Toward computation

offloading in edge computing: A survey,” IEEE Access, vol. 7, pp. 131 543–

131 558, 2019.

[42] S. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar, and A. Y. Zomaya, “Edge

intelligence: The confluence of edge computing and artificial intelligence,” IEEE

Internet of Things Journal, vol. 7, no. 8, pp. 7457–7469, 2020.

[43] Z. Chang, S. Liu, X. Xiong, Z. Cai, and G. Tu, “A survey of recent advances

in edge-computing-powered artificial intelligence of things,” IEEE Internet of

Things Journal, vol. 8, no. 18, pp. 13 849–13 875, 2021.

[44] H. Hua, Y. Li, T. Wang, N. Dong, W. Li, and J. Cao, “Edge computing with ar-

tificial intelligence: A machine learning perspective,” ACM Computing Surveys,

vol. 55, no. 9, pp. 1–35, 2023.

[45] S. Wang, Y. Zhao, J. Xu, J. Yuan, and C.-H. Hsu, “Edge server placement in

mobile edge computing,” Journal of Parallel and Distributed Computing, vol.

127, pp. 160–168, 2019.

[46] Z. Wang, W. Zhang, X. Jin, Y. Huang, and C. Lu, “An optimal edge server

placement approach for cost reduction and load balancing in intelligent manu-

facturing,” The Journal of Supercomputing, vol. 78, no. 3, pp. 4032–4056, 2022.

153

Chapter 6: Conclusion and Future Work

[47] Y. Gong, “Optimal edge server and service placement in mobile edge comput-

ing,” in 2020 IEEE 9th Joint International Information Technology and Artifi-

cial Intelligence Conference (ITAIC), vol. 9. IEEE, 2020, pp. 688–691.

[48] W. Rafique, L. Qi, I. Yaqoob, M. Imran, R. U. Rasool, and W. Dou, “Comple-

menting iot services through software defined networking and edge computing:

A comprehensive survey,” IEEE Communications Surveys & Tutorials, vol. 22,

no. 3, pp. 1761–1804, 2020.

[49] J. Pan and J. McElhannon, “Future edge cloud and edge computing for internet

of things applications,” IEEE Internet of Things Journal, vol. 5, no. 1, pp. 439–

449, 2017.

[50] A. Wang, Z. Zha, Y. Guo, and S. Chen, “Software-defined networking enhanced

edge computing: A network-centric survey,” Proceedings of the IEEE, vol. 107,

no. 8, pp. 1500–1519, 2019.

[51] R. Beraldi, A. Mtibaa, and H. Alnuweiri, “Cooperative load balancing scheme

for edge computing resources,” in 2017 Second International Conference on Fog

and Mobile Edge Computing (FMEC). IEEE, 2017, pp. 94–100.

[52] R. Mogi, T. Nakayama, and T. Asaka, “Load balancing method for iot sensor

system using multi-access edge computing,” in 2018 Sixth International Sym-

posium on Computing and Networking Workshops (CANDARW). IEEE, 2018,

pp. 75–78.

[53] A. Chandak and N. K. Ray, “A review of load balancing in fog computing,”

in 2019 International Conference on Information Technology (ICIT). IEEE,

2019, pp. 460–465.

[54] T. Qiu, J. Chi, X. Zhou, Z. Ning, M. Atiquzzaman, and D. O. Wu, “Edge com-

puting in industrial internet of things: Architecture, advances and challenges,”

IEEE Communications Surveys & Tutorials, vol. 22, no. 4, pp. 2462–2488, 2020.

[55] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge computing: A

survey,” IEEE Internet of Things Journal, vol. 5, no. 1, pp. 450–465, 2017.

[56] Y. Ai, M. Peng, and K. Zhang, “Edge computing technologies for internet of

things: a primer,” Digital Communications and Networks, vol. 4, no. 2, pp.

77–86, 2018.

154

Chapter 6: Conclusion and Future Work

[57] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge

computing—a key technology towards 5g,” ETSI white paper, vol. 11, no. 11,

pp. 1–16, 2015.

[58] B. Varghese, N. Wang, S. Barbhuiya, P. Kilpatrick, and D. S. Nikolopoulos,

“Challenges and opportunities in edge computing,” in 2016 IEEE international

conference on smart cloud (SmartCloud). IEEE, 2016, pp. 20–26.

[59] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and

challenges,” IEEE internet of things journal, vol. 3, no. 5, pp. 637–646, 2016.

[60] J. Cao, Q. Zhang, W. Shi, J. Cao, Q. Zhang, and W. Shi, “Challenges and

opportunities in edge computing,” Edge Computing: A Primer, pp. 59–70, 2018.

[61] R. Singh, R. Sukapuram, and S. Chakraborty, “A survey of mobility-aware

multi-access edge computing: Challenges, use cases and future directions,” Ad

Hoc Networks, vol. 140, p. 103044, 2023.

[62] M. O’Grady, D. Langton, and G. O’Hare, “Edge computing: A tractable model

for smart agriculture?” Artificial Intelligence in Agriculture, vol. 3, pp. 42–51,

2019.

[63] P. K. Malik, R. Sharma, R. Singh, A. Gehlot, S. C. Satapathy, W. S. Alnumay,

D. Pelusi, U. Ghosh, and J. Nayak, “Industrial internet of things and its appli-

cations in industry 4.0: State of the art,” Computer Communications, vol. 166,

pp. 125–139, 2021.

[64] C. Sandu and I. Susnea, “Edge computing for autonomous vehicles-a scoping

review,” in 2021 20th RoEduNet Conference: Networking in Education and

Research (RoEduNet). IEEE, 2021, pp. 1–5.

[65] L. U. Khan, I. Yaqoob, N. H. Tran, S. A. Kazmi, T. N. Dang, and C. S.

Hong, “Edge-computing-enabled smart cities: A comprehensive survey,” IEEE

Internet of Things Journal, vol. 7, no. 10, pp. 10 200–10 232, 2020.

[66] Z. Chen, W. Hu, J. Wang, S. Zhao, B. Amos, G. Wu, K. Ha, K. Elgazzar,

P. Pillai, R. Klatzky et al., “An empirical study of latency in an emerging class of

edge computing applications for wearable cognitive assistance,” in Proceedings

of the Second ACM/IEEE Symposium on Edge Computing, 2017, pp. 1–14.

155

Chapter 6: Conclusion and Future Work

[67] J. Ren, Y. He, G. Huang, G. Yu, Y. Cai, and Z. Zhang, “An edge-computing

based architecture for mobile augmented reality,” IEEE Network, vol. 33, no. 4,

pp. 162–169, 2019.

[68] Ç. Dilibal, “Development of edge-iomt computing architecture for smart health-

care monitoring platform,” in 2020 4th International Symposium on Multidisci-

plinary Studies and Innovative Technologies (ISMSIT). IEEE, 2020, pp. 1–4.

[69] M. Asif-Ur-Rahman, F. Afsana, M. Mahmud, M. S. Kaiser, M. R. Ahmed,

O. Kaiwartya, and A. James-Taylor, “Toward a heterogeneous mist, fog, and

cloud-based framework for the internet of healthcare things,” IEEE Internet of

Things Journal, vol. 6, no. 3, pp. 4049–4062, 2018.

[70] M. Ahmad, M. B. Amin, S. Hussain, B. H. Kang, T. Cheong, and S. Lee,

“Health fog: a novel framework for health and wellness applications,” The

Journal of Supercomputing, vol. 72, pp. 3677–3695, 2016.

[71] A. Al Omar, M. Z. A. Bhuiyan, A. Basu, S. Kiyomoto, and M. S. Rahman,

“Privacy-friendly platform for healthcare data in cloud based on blockchain

environment,” Future generation computer systems, vol. 95, pp. 511–521, 2019.

[72] T. Muhammed, R. Mehmood, A. Albeshri, and I. Katib, “Ubehealth: A per-

sonalized ubiquitous cloud and edge-enabled networked healthcare system for

smart cities,” IEEE Access, vol. 6, pp. 32 258–32 285, 2018.

[73] R. M. Abdelmoneem, A. Benslimane, E. Shaaban, S. Abdelhamid, and

S. Ghoneim, “A cloud-fog based architecture for iot applications dedicated to

healthcare,” in ICC 2019-2019 IEEE International Conference on Communi-

cations (ICC). IEEE, 2019, pp. 1–6.

[74] A. M. Rahmani, T. N. Gia, B. Negash, A. Anzanpour, I. Azimi, M. Jiang,

and P. Liljeberg, “Exploiting smart e-health gateways at the edge of healthcare

internet-of-things: A fog computing approach,” Future Generation Computer

Systems, vol. 78, pp. 641–658, 2018.

[75] C. Kai, H. Zhou, Y. Yi, and W. Huang, “Collaborative cloud-edge-end task

offloading in mobile-edge computing networks with limited communication ca-

pability,” IEEE Transactions on Cognitive Communications and Networking,

vol. 7, no. 2, pp. 624–634, 2020.

156

Chapter 6: Conclusion and Future Work

[76] D. C. Nguyen, P. N. Pathirana, M. Ding, and A. Seneviratne, “Bedgehealth:

A decentralized architecture for edge-based iomt networks using blockchain,”

IEEE Internet of Things Journal, vol. 8, no. 14, pp. 11 743–11 757, 2021.

[77] M. Rajasekaran, A. Yassine, M. S. Hossain, M. F. Alhamid, and M. Guizani,

“Autonomous monitoring in healthcare environment: Reward-based energy

charging mechanism for iomt wireless sensing nodes,” Future Generation Com-

puter Systems, vol. 98, pp. 565–576, 2019.

[78] I. Azimi, A. Anzanpour, A. M. Rahmani, P. Liljeberg, and H. Tenhunen, “Self-

aware early warning score system for iot-based personalized healthcare,” in

eHealth 360°: International Summit on eHealth, Budapest, Hungary, June 14-

16, 2016, Revised Selected Papers. Springer, 2017, pp. 49–55.

[79] G. Muhammad, S. M. M. Rahman, A. Alelaiwi, and A. Alamri, “Smart health

solution integrating iot and cloud: A case study of voice pathology monitoring,”

IEEE Communications Magazine, vol. 55, no. 1, pp. 69–73, 2017.

[80] S. He, B. Cheng, H. Wang, Y. Huang, and J. Chen, “Proactive personalized

services through fog-cloud computing in large-scale iot-based healthcare appli-

cation,” China Communications, vol. 14, no. 11, pp. 1–16, 2017.

[81] P. Verma, R. Tiwari, W.-C. Hong, S. Upadhyay, and Y.-H. Yeh, “Fetch: a deep

learning-based fog computing and iot integrated environment for healthcare

monitoring and diagnosis,” IEEE Access, vol. 10, pp. 12 548–12 563, 2022.

[82] Q. Wu, X. Chen, Z. Zhou, and J. Zhang, “Fedhome: Cloud-edge based person-

alized federated learning for in-home health monitoring,” IEEE Transactions

on Mobile Computing, vol. 21, no. 8, pp. 2818–2832, 2020.

[83] A. Singh and K. Chatterjee, “Edge computing based secure health monitoring

framework for electronic healthcare system,” Cluster Computing, vol. 26, no. 2,

pp. 1205–1220, 2023.

[84] M. A. Rahman and M. S. Hossain, “An internet-of-medical-things-enabled edge

computing framework for tackling covid-19,” IEEE Internet of Things Journal,

vol. 8, no. 21, pp. 15 847–15 854, 2021.

[85] O. S. Alwan and K. Prahald Rao, “Dedicated real-time monitoring system for

health care using zigbee,” Healthcare technology letters, vol. 4, no. 4, pp. 142–

144, 2017.

157

Chapter 6: Conclusion and Future Work

[86] G. Aceto, V. Persico, and A. Pescapé, “The role of information and commu-

nication technologies in healthcare: taxonomies, perspectives, and challenges,”

Journal of Network and Computer Applications, vol. 107, pp. 125–154, 2018.

[87] M. Pham, Y. Mengistu, H. Do, and W. Sheng, “Delivering home healthcare

through a cloud-based smart home environment (coshe),” Future Generation

Computer Systems, vol. 81, pp. 129–140, 2018.

[88] M. Z. Uddin, “A wearable sensor-based activity prediction system to facili-

tate edge computing in smart healthcare system,” Journal of Parallel and Dis-

tributed Computing, vol. 123, pp. 46–53, 2019.

[89] A. A. Abdellatif, A. Mohamed, C. F. Chiasserini, M. Tlili, and A. Erbad,

“Edge computing for smart health: Context-aware approaches, opportunities,

and challenges,” IEEE Network, vol. 33, no. 3, pp. 196–203, 2019.

[90] H. Yan, M. Bilal, X. Xu, and S. Vimal, “Edge server deployment for health

monitoring with reinforcement learning in internet of medical things,” IEEE

Transactions on Computational Social Systems, 2022.

[91] A. M. Jasim and H. Al-Raweshidy, “Towards a cooperative hierarchical health-

care architecture using the hman offloading scenarios and srt calculation algo-

rithm,” IET Networks, vol. 12, no. 1, pp. 9–26, 2023.

[92] M. Jia, J. Cao, and W. Liang, “Optimal cloudlet placement and user to cloudlet

allocation in wireless metropolitan area networks,” IEEE Transactions on Cloud

Computing, vol. 5, no. 4, pp. 725–737, 2015.

[93] L. Zhao, W. Sun, Y. Shi, and J. Liu, “Optimal placement of cloudlets for access

delay minimization in sdn-based internet of things networks,” IEEE Internet of

Things Journal, vol. 5, no. 2, pp. 1334–1344, 2018.

[94] Z. Xu, W. Liang, W. Xu, M. Jia, and S. Guo, “Efficient algorithms for ca-

pacitated cloudlet placements,” IEEE Transactions on Parallel and Distributed

Systems, vol. 27, no. 10, pp. 2866–2880, 2015.

[95] Q. Fan and N. Ansari, “Cost aware cloudlet placement for big data processing at

the edge,” in 2017 IEEE International Conference on Communications (ICC).

IEEE, 2017, pp. 1–6.

158

Chapter 6: Conclusion and Future Work

[96] J. Meng, W. Shi, H. Tan, and X. Li, “Cloudlet placement and minimum-delay

routing in cloudlet computing,” in 2017 3rd international conference on big data

computing and communications (BIGCOM). IEEE, 2017, pp. 297–304.

[97] H. Yao, C. Bai, M. Xiong, D. Zeng, and Z. Fu, “Heterogeneous cloudlet de-

ployment and user-cloudlet association toward cost effective fog computing,”

Concurrency and Computation: Practice and Experience, vol. 29, no. 16, p.

e3975, 2017.

[98] A. Santoyo-González and C. Cervelló-Pastor, “Network-aware placement opti-

mization for edge computing infrastructure under 5g,” IEEE access, vol. 8, pp.

56 015–56 028, 2020.

[99] D. Li, C. Asikaburu, B. Dong, H. Zhou, and S. Azizi, “Towards optimal sys-

tem deployment for edge computing: a preliminary study,” in 2020 29th In-

ternational Conference on Computer Communications and Networks (ICCCN).

IEEE, 2020, pp. 1–6.

[100] Y. Li and S. Wang, “An energy-aware edge server placement algorithm in mobile

edge computing,” in 2018 IEEE International conference on edge computing

(EDGE). IEEE, 2018, pp. 66–73.

[101] T. Lähderanta, T. Leppänen, L. Ruha, L. Lovén, E. Harjula, M. Ylianttila,

J. Riekki, and M. J. Sillanpää, “Edge computing server placement with capaci-

tated location allocation,” Journal of Parallel and Distributed Computing, vol.

153, pp. 130–149, 2021.

[102] L. Lovén, T. Lähderanta, L. Ruha, T. Leppänen, E. Peltonen, J. Riekki, and

M. J. Sillanpää, “Scaling up an edge server deployment,” in 2020 IEEE Inter-

national Conference on Pervasive Computing and Communications Workshops

(PerCom Workshops). IEEE, 2020, pp. 1–7.

[103] D. Bhatta and L. Mashayekhy, “A bifactor approximation algorithm for cloudlet

placement in edge computing,” IEEE Transactions on Parallel and Distributed

Systems, vol. 33, no. 8, pp. 1787–1798, 2021.

[104] Z. Wang, F. Gao, and X. Jin, “Optimal deployment of cloudlets based on cost

and latency in internet of things networks,” Wireless Networks, vol. 26, no. 8,

pp. 6077–6093, 2020.

159

Chapter 6: Conclusion and Future Work

[105] F. Zeng, Y. Ren, X. Deng, and W. Li, “Cost-effective edge server placement in

wireless metropolitan area networks,” Sensors, vol. 19, no. 1, p. 32, 2018.

[106] Y.-A. Chen, J. P. Walters, and S. P. Crago, “Load balancing for minimizing

deadline misses and total runtime for connected car systems in fog computing,”

in 2017 IEEE International Symposium on Parallel and Distributed Process-

ing with Applications and 2017 IEEE International Conference on Ubiquitous

Computing and Communications (ISPA/IUCC). IEEE, 2017, pp. 683–690.

[107] X. Wang, Z. Ning, and L. Wang, “Offloading in internet of vehicles: A fog-

enabled real-time traffic management system,” IEEE Transactions on Industrial

Informatics, vol. 14, no. 10, pp. 4568–4578, 2018.

[108] Z. Ning, X. Wang, J. J. Rodrigues, and F. Xia, “Joint computation offloading,

power allocation, and channel assignment for 5g-enabled traffic management

systems,” IEEE Transactions on Industrial Informatics, vol. 15, no. 5, pp. 3058–

3067, 2019.

[109] A. Cabrera, A. Acosta, F. Almeida, and V. Blanco, “A dynamic multi–objective

approach for dynamic load balancing in heterogeneous systems,” IEEE Trans-

actions on Parallel and Distributed Systems, vol. 31, no. 10, pp. 2421–2434,

2020.

[110] G. Li, Y. Yao, J. Wu, X. Liu, X. Sheng, and Q. Lin, “A new load balancing

strategy by task allocation in edge computing based on intermediary nodes,”

EURASIP Journal on Wireless Communications and Networking, vol. 2020,

no. 1, pp. 1–10, 2020.

[111] M. Z. Nayyer, I. Raza, S. A. Hussain, M. H. Jamal, Z. Gillani, S. Hur, and

I. Ashraf, “Lbro: Load balancing for resource optimization in edge computing,”

IEEE Access, vol. 10, pp. 97 439–97 449, 2022.

[112] X. He, Z. Ren, C. Shi, and J. Fang, “A novel load balancing strategy of software-

defined cloud/fog networking in the internet of vehicles,” China Communica-

tions, vol. 13, no. Supplement2, pp. 140–149, 2016.

[113] Y. Dong, G. Xu, Y. Ding, X. Meng, and J. Zhao, “A ‘joint-me’task deployment

strategy for load balancing in edge computing,” IEEE Access, vol. 7, pp. 99 658–

99 669, 2019.

160

Chapter 6: Conclusion and Future Work

[114] P. P. Shahrbabaki, R. W. Coutinho, and Y. R. Shayan, “A novel sdn-enabled

edge computing load balancing scheme for iot video analytics,” in GLOBECOM

2022-2022 IEEE Global Communications Conference. IEEE, 2022, pp. 5025–

5030.

[115] X. Chen, Z. Yao, Z. Chen, G. Min, X. Zheng, and C. Rong, “Load balancing for

multi-edge collaboration in wireless metropolitan area networks: A two-stage

decision-making approach,” IEEE Internet of Things Journal, 2023.

[116] R. Sikarwar, P. Yadav, and A. Dubey, “A survey on iot enabled cloud plat-

forms,” in 2020 IEEE 9th International Conference on Communication Systems

and Network Technologies (CSNT). IEEE, 2020, pp. 120–124.

[117] H. N. Al-Anbagi and I. Vertat, “Cooperative reception of multiple satellite

downlinks,” Sensors, vol. 22, no. 8, p. 2856, 2022.

[118] A. Makkar, U. Ghosh, and P. K. Sharma, “Artificial intelligence and edge

computing-enabled web spam detection for next generation iot applications,”

IEEE Sensors Journal, vol. 21, no. 22, pp. 25 352–25 361, 2021.

[119] Lionel Sujay Vailshery. (2023) Iot connected de-

vices worldwide. Accessed on 2023-11-08. [Online]. Avail-

able: https://www.statista.com/statistics/1183457/iot-connected-devices-

worldwide/

[120] Y. A. Qadri, A. Nauman, Y. B. Zikria, A. V. Vasilakos, and S. W. Kim, “The

future of healthcare internet of things: a survey of emerging technologies,” IEEE

Communications Surveys & Tutorials, vol. 22, no. 2, pp. 1121–1167, 2020.

[121] Facts and Factors, “Internet of things (iot) market size, share, trends - global

forecast to 2028.” [Online]. Available: https://www.fnfresearch.com/global-

internet-of-things-iot-market-by-software-792

[122] P. Pace, G. Aloi, R. Gravina, G. Caliciuri, G. Fortino, and A. Liotta, “An edge-

based architecture to support efficient applications for healthcare industry 4.0,”

IEEE Transactions on Industrial Informatics, vol. 15, no. 1, pp. 481–489, 2018.

[123] S. Javaid, S. Zeadally, H. Fahim, and B. He, “Medical sensors and their in-

tegration in wireless body area networks for pervasive healthcare delivery: A

review,” IEEE Sensors Journal, vol. 22, no. 5, pp. 3860–3877, 2022.

161

Chapter 6: Conclusion and Future Work

[124] Y. Zhao, W. Wang, Y. Li, C. C. Meixner, M. Tornatore, and J. Zhang, “Edge

computing and networking: A survey on infrastructures and applications,”

IEEE Access, vol. 7, pp. 101 213–101 230, 2019.

[125] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang, “A survey

on the edge computing for the internet of things,” IEEE access, vol. 6, pp.

6900–6919, 2017.

[126] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture for mobile

computing,” in IEEE INFOCOM 2016-The 35th Annual IEEE International

Conference on Computer Communications. IEEE, 2016, pp. 1–9.

[127] M. Stafford, A. Steventon, R. Thorlby, R. Fisher, C. Turton, and S. Deeny,

Briefing: Understanding the health care needs of people with multiple health

conditions. Health Foundation London, 2018.

[128] K. S. Yarnall, K. I. Pollak, T. Østbye, K. M. Krause, and J. L. Michener,

“Primary care: is there enough time for prevention?” American journal of

public health, vol. 93, no. 4, pp. 635–641, 2003.

[129] T. Østbye, K. S. Yarnall, K. M. Krause, K. I. Pollak, M. Gradison, and J. L.

Michener, “Is there time for management of patients with chronic diseases in

primary care?” The Annals of Family Medicine, vol. 3, no. 3, pp. 209–214,

2005.

[130] L. Lin, X. Liao, H. Jin, and P. Li, “Computation offloading toward edge com-

puting,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1584–1607, 2019.

[131] C. Lakshmi and S. A. Iyer, “Application of queueing theory in health care: A

literature review,” Operations research for health care, vol. 2, no. 1-2, pp. 25–39,

2013.

[132] L. Kleinrock, Queueing systems. Wiley, 1976.

[133] Z. Yang, B. Liang, and W. Ji, “An intelligent end–edge–cloud architecture for

visual iot-assisted healthcare systems,” IEEE Internet of Things Journal, vol. 8,

no. 23, pp. 16 779–16 786, 2021.

[134] F. Wu, C. Qiu, T. Wu, and M. R. Yuce, “Edge-based hybrid system implemen-

tation for long-range safety and healthcare iot applications,” IEEE Internet of

Things Journal, vol. 8, no. 12, pp. 9970–9980, 2021.

162

Chapter 6: Conclusion and Future Work

[135] A. Gutierrez-Torre, K. Bahadori, W. Iqbal, T. Vardanega, J. L. Berral, D. Car-

rera et al., “Automatic distributed deep learning using resource-constrained

edge devices,” IEEE Internet of Things Journal, vol. 9, no. 16, pp. 15 018–

15 029, 2021.

[136] S. Oueida, Y. Kotb, M. Aloqaily, Y. Jararweh, and T. Baker, “An edge com-

puting based smart healthcare framework for resource management,” Sensors,

vol. 18, no. 12, p. 4307, 2018.

[137] M. H. Kashani and E. Mahdipour, “Load balancing algorithms in fog comput-

ing,” IEEE Transactions on Services Computing, vol. 16, no. 2, pp. 1505–1521,

2022.

[138] S. Ebneyousef and A. Shirmarz, “A taxonomy of load balancing algorithms and

approaches in fog computing: a survey,” Cluster Computing, pp. 1–22, 2023.

[139] C. S. M. Babou, D. Fall, S. Kashihara, Y. Taenaka, M. H. Bhuyan, I. Niang,

and Y. Kadobayashi, “Hierarchical load balancing and clustering technique for

home edge computing,” IEEE Access, vol. 8, pp. 127 593–127 607, 2020.

[140] M. Kyryk, N. Pleskanka, M. Pleskanka, and P. Nykonchuk, “Load balancing

method in edge computing,” in 2020 IEEE 15th International Conference on

Advanced Trends in Radioelectronics, Telecommunications and Computer En-

gineering (TCSET). IEEE, 2020, pp. 978–981.

[141] H. Pydi and G. N. Iyer, “Analytical review and study on load balancing in edge

computing platform,” in 2020 Fourth international conference on computing

methodologies and communication (ICCMC). IEEE, 2020, pp. 180–187.

[142] T. A. Al-Janabi and H. S. Al-Raweshidy, “Optimised clustering algorithm-based

centralised architecture for load balancing in iot network,” in 2017 International

symposium on wireless communication systems (ISWCS). IEEE, 2017, pp.

269–274.

[143] A. C. Baktir, A. Ozgovde, and C. Ersoy, “How can edge computing benefit from

software-defined networking: A survey, use cases, and future directions,” IEEE

Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2359–2391, 2017.

[144] C. Tang, C. Zhu, N. Zhang, M. Guizani, and J. J. Rodrigues, “Sdn-assisted

mobile edge computing for collaborative computation offloading in industrial

163

Chapter 6: Conclusion and Future Work

internet of things,” IEEE Internet of Things Journal, vol. 9, no. 23, pp. 24 253–

24 263, 2022.

[145] J. Li, J. Cai, F. Khan, A. U. Rehman, V. Balasubramaniam, J. Sun, and

P. Venu, “A secured framework for sdn-based edge computing in iot-enabled

healthcare system,” IEEE Access, vol. 8, pp. 135 479–135 490, 2020.

[146] M. Priyadarsini, J. C. Mukherjee, P. Bera, S. Kumar, A. Jakaria, and M. A.

Rahman, “An adaptive load balancing scheme for software-defined network con-

trollers,” Computer Networks, vol. 164, p. 106918, 2019.

[147] A. M. Jasim and H. Al-Raweshidy, “Optimal intelligent edge-servers placement

in the healthcare field,” IET Networks, vol. 13, no. 1, pp. 13–27, 2024.

[148] A. Jasim and H. Al-Raweshidy, “An adaptive sdn-based load balancing method

for edge/fog-based real-time healthcare systems,” IEEE Systems Journal, 2024.

164

