This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI10.1109/COINS61597.2024.10622154.10222486, 2024 |IEEE International Conference on Omni-layer Intelligent Systems (COINS)

Exploring 8-bit Arithmetic for Training Spiking
Neural Networks

Fernandez-Hart, T.
Brunel University, CEDPS,
Department of Electronic and
Computer Engineering,
UB8 3PH, Uxbridge, UK

Kalganova, T.
Brunel University, CEDPS,
Department of Electronic and
Computer Engineering,
UB8 3PH, Uxbridge, UK

Knight, James C.
University of Sussex,
School of Engineering and Informatics,
Brighton, BN1 9QJ, UK
Email: J.C.Knight@sussex.ac.uk

Email: Tim.Fernandez-Hart@brunel.ac.uk Email: Tatiana.Kalganova@brunel.ac.uk

Abstract—Spiking Neural Networks (SNNs) promise improve-
ments in biological plausibility, better noise tolerance and en-
hanced temporal capabilities compared to other Artificial Neu-
ral Networks (ANNs). Furthermore, if they are deployed on
dedicated neuromorphic platforms, they can offer large energy
efficiency gains over ANNs. However, many SNNs are currently
trained using standard Back Propagation Through Time on
GPUs before deployment onto dedicated hardware. While there
has been significant work in performing inference with reduced
precision SNNs, its use during training remains under explored.
This study investigates posit arithmetic, a recently developed
numerical format, to asses its capabilities for training SNNs on
future posit-enabled accelerators. We compare 8-bit posit and
floating-point arithmetic against a 32-bit floating-point reference
and demonstrate that, when quantising all training elements,
8-bit posits achieve performance comparable to 32-bit floating-
point (FP) on both MNIST and the event-based SHD datasets.
These findings suggest that posit arithmetic offers a promising
avenue for future development of hardware for training SNNs.

I. INTRODUCTION

Spiking Neural Networks (SNNs) represent a novel ap-
proach to artificial intelligence, drawing closer inspiration
from the structure and function of biological neural networks
than traditional Artificial Neural Networks (ANNs). Unlike
ANNSs that operate on continuous values, SNNs use discrete
spikes to transmit information, offering several potential ad-
vantages. such as reduced power consumption, better noise
resilience, improved temporal processing, and even the ability
to self repair [11]. Their efficiency partly stems from the sparse
spatial and temporal nature of these spikes, wherein neu-
rons remain mostly inactive, consuming minimal power. This
makes them well-suited for inference on resource-constrained
edge computing devices [17] as well as specialised neuromor-
phic hardware. However, dedicated accelerators for training
SNNs have not yet been developed so it’s common practice to
initially train SNNs on GPUs before transferring them to the
target end device.

Despite their potential, SNNs face certain challenges, par-
ticularly in training processes. The discrete nature of spikes
complicates training methodologies, as conventional gradient
descent techniques cannot be directly applied due to non-
differentiability. Consequently, alternative methods have been
proposed, with one of the most prominent being surrogate

gradient descent [15]. In this technique spikes are used in
the forward pass but the heaviside function is replaced in
the backwards pass with a differentiable, surrogate function.
This technique has seen SNNs now begin to rival ANNs in
some tasks but the use of GPUs for training remains resource
intensive and, similarly to ANNS, is a limiting factor in model
size and energy usage.

Using reduced precision arithmetic is a promising approach
to address this limitation. This technique employs numerical
representations with lower precision than the commonly used
32-bit Floating-Point numbers (FP32), resulting in reduced
memory usage and computational complexity. Consequently,
it lowers energy consumption and speeds up computations.
However, it introduces rounding and truncation errors. The
dominant format for representing real numbers in computers
is the IEEE-754 Floating-Point standard [1], which offers
a wide dynamic range but has been criticized for its mul-
tiple special conditions, wasteful reserved bit patterns, and
numerous rounding modes. Posit arithmetic [6], introduced
in 2017 as a potential hardware-friendly alternative to FP,
incorporates unique regime bits in addition to sign and fraction
bits. While posit arithmetic involves extra overhead due to
dynamic regime bit lengths, it simplifies special conditions
and maximizes bit pattern usage, potentially offering higher
precision for a given bit width compared to FP.

Posits number systems are defined by posit<n, es>, where
n is the total bits and es is the maximum bits used for the
exponent. The regime bits encode values in runs of zeros
or ones following the rule in Equation 2 and can be n — 1
bits long. The regime bits are followed by the exponent bits
(without bias) and if there are any remaining bits these are
used for the fraction which always has an implicit 1, negating
the need for subnormal numbers. Several studies have shown
that for a FP number n bits wide, equal or better accuracy can
be achieved by using a m bit wide posit (where m < n) [9].
The posit standard also includes a large accumulator register
to enable exact dot products to be calculated called the guire
[5]. It is sized at 16n and, is not always implemented [13] in
hardware designs due to its size which can occupy half the
area of the PAU. Moreover, posit arithmetic sensibly reduces
the number of undefined values (NaN) to one, termed NaR

Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works by sending a request to pubs-permissions@ieee.org. See
https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/ for more information

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI10.1109/COINS61597.2024.10622154.10222486, 2024 IEEE International Conference on Omni-layer Intelligent Systems (COINS)

(Not-a-Real).

p = (—1)°useed”2¢ <1 + QJ;) (1)
—k if Ry =0)
(k—1) if Ro=1

In this study, we use QTorch+ [8] to simulate 8-bit posit
arithmetic for training SNN on two datasets. QTorch+ is based
on a “two-kernel” model, where the matrix multiplication
is performed in native precision (typically 32-bit) and the
result is then quantised. This allows QTorch+ to simulate
different configurations of posit and floating-point arithmetics
among others. Furthermore, it is integrated into the PyTorch
framework allowing control of the optimiser, gradient and loss
values during training.

A. Related Work

To the best of our knowledge, this is the first study to eval-
uate posit arithmetic for training SNN. However, a few studies
have previously explored using reduced precision floating-
point arithmetic in addressing the same task. Shymyrbay et al.
[12] proposed a novel gradient function to improve quatisation
aware training, reporting significant memory savings without
much drop in accuracy. However, when using their model dur-
ing inference, scaling and biasing was required to compensate
for the quantisation error. Lui and Neftci [10] demonstrated
how a layer-wise Hessian trace analysis can quantify how a
change in weights influences the loss. The authors claim that
this metric can help with the intelligent allocation of a layer-
specific bit-precision while training SNNs. However, they
use a simplified neuron model, stochastic rounding, gradient
scaling with a focus on fixed-point arithmetic.

Eshraghian and Lu [4] used an annealing algorithm to adjust
the firing thresholds during training of binarised weights,
balancing neuron’s memory and firing rate. However, they
leave the neuron state variables at full precision and needed
an extensive hyperparameter optimisation prior to training.

Existing reduced precision SNN training methods often re-
quire significant hand-tuning of algorithms before training can
occur. We propose a more general approach, that eliminates
this need for researchers. Moreover, our work demonstrates
how well a future 8-bit posit enabled accelerator would
perform when training an SNN. Focusing on the most energy-
intensive phase — training — we aim to use 8-bit values through-
out the entire training pipeline. To achieve this, we compare
the performance of two floating-point arithmetic systems: the
standard IEEE-754 format and the recently developed posit
arithmetic.

B. Contributions

o This work presents the first application of 8-bit posit
arithmetic for training Spiking Neural Networks (SNNs)
on both frame-based and event-based datasets. Our re-
sults demonstrate that SNNs trained with posit arithmetic

achieve high accuracy, and that posits offer greater effec-
tiveness compared to floating-point at the same bit width.

o« We demonstrate that unlike 8-bit floating-point, 8-bit
posits enable successful learning in SNNs without requir-
ing additional efforts such as scaling, biasing, using non-
compliant IEE754 formats, or mixed-precision/weights-
only quantisation for both tasks considered.

o Furthermore, we use loss function selection as a method
to explore training success for posit and FP arithmetic.

II. METHODS
A. Datasets

We trained and tested our network using two different
datasets: MNIST and the Spiking Heidelberg Digits (SHD).
The MNIST dataset is a widely used benchmark for image
classification, consisting of static, frame-based images of
handwritten digits and, here, we treat the pixel intensity of
each frame as a current injected into the first layer of spiking
neurons. The SHD dataset [2] is a dedicated spiking dataset
containing 10,420 spoken samples of the words 0-9 in English
and German, from 12 participants. Each sample lasts between
0.24s and 1.17s and is encoded as spikes from 700 input
channels generated from a model of the cochlea. For com-
putational efficiency, we further temporally downsampled the
SHD dataset into 50 time bins. Both datasets were processed
and loaded using the SNN Tonic framework.

B. Hyperparameter Selection

Similarly to [4], hyperparameters were fine-tuned on the
training sets across a range of FP8 and posit<8, es> con-
figurations, adjusting both the exponent/mantissa combina-
tions and es. This was done using Ray and HyperOpt with
Asynchronous Successive Halving Algorithm to search the
parameter space over 500 trials for each dataset-arithmetic
combination. These aimed to minimise the loss over 20
epochs. The best hyperparameter values are shown in Table
L.

Parameter MNIST SHD
Membrane decay 0.9146 0.9231
Dropout 1 0.0338 0.0931
Dropout 2 N/A 0.1132
es 3 2

Learning Rate 0.0095 0.0037
Slope 3.5857 1.0236
Threshold 1 0.3704 3.5484
Threshold 2 1.3444 42336
Threshold 3 13.710 N/A

TABLE I: Best hyperparameters for 8-bit posit arithmetic on
SHD and MNIST.

C. Frameworks and Libraries

The PyTorch framework was used throughout with the
library Qtorch+ [8] for quantisation and SNNTorch [3] for
SNN simulation. As used in previous studies [10] QPytorch+
provides support for quantised training by means of simulating

Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works by sending a request to pubs-permissions@ieee.org. See
https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/ for more information

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI10.1109/COINS61597.2024.10622154.10222486, 2024 |EEE International Conference on Omni-layer Intelligent Systems (COINS)

reduced precision arithmetics including posit, floating-point
and fixed-point. For the sake of training speed, the dot product
in QTorch+ is done at 32-bits and then quantised to 8-bits.
This design decision is a common choice for quantisation
frameworks [16] and emulates a small quire register for posits.

SNNTorch [3] takes advantage of PyTorch’s efficient GPU
training for training SNNs. Although, compared to other
libraries, it is more limited in the number of potential SNN
parameters it can simulate. SNNTorch also allows training
of both each neuron’s membrane decay and threshold, albeit
at the cost of extra computation and increased model size.
Our preliminary tests showed that including these additional
parameters did not significantly improve accuracy and so
were omitted. Beta and layer thresholds were optimised as
hyperparameters.

D. Network Training

All networks consisted of leaky integrate and fire (LIF)
neurons. The training process was performed for a total of 200
epochs with the test set only used after hyperparameter tuning
for testing at the end of each epoch. During the forwards
pass the input to each neuron and its membrane voltage were
quantised to the specified arithmetic for each layer. Surrogate
gradient decent was used throughout with a fast sigmoid
gradient function. The ADAM optimisation algorithm was
used with 51 = 0.9 and 2 = 0.999, quantising the gradients,
error, accumulator, weights and momentum at each step.

For the MNIST task a convolutional network with the data
normalised between 0, and 1 and the fed as current input to
the first convolutional layer (16C5), followed by a max-pool
(MP2) and an LIF layer. This was repeated for the second
convolutional layer using the spike output from the previous
layer (64C5) followed by another max-pool and finally a fully
connected classifier with 10 output LIFs.

For the SHD task, the data is already encoded as spikes
across 700 input channels and similar to Eshraghian and Lu
[4] this feeds into the first layer of 3000 LIF neurons. This
LIF layer is fully connected to the output layer of 20 LIF
neurons. Although others have used deeper networks for the
SHD dataset, we chose this network structure for a better
comparison with a recent work in quantised SNNs. Dropout
layers were placed after each LIF neuron in the SHD network
and after the final LIF neuron in the MNIST task.

E. Loss Function Testing

During initial testing we noted that loss function choice
had a dramatic effect on training performance. Although
several loss functions are available in SNNTorch, we chose
two, ce_rate_loss () (CE-rate) and mse_count_loss() (MSE-
count) to look at in more depth. CE-rate represents the
spike rate cross entropy loss and is calculated by sequentially
passing spikes from each time step through PyTorch’s cross
entropy loss function. It integrates both LogSoftMax and
NLLLoss into a single function, aggregating the loss across
time, encouraging the correct class to fire at every time step
while suppressing firing from incorrect classes.

Training with Posit<8, 3>, FP8 (exp=4, man=3) and FP32

for MNIST
100 +
80 1
>
1%
g 60 A —— posit<8, 3>
g FP8
< ——- FP32
@
@
40 A
204
0 25 50 75 100 125 150 175 200
Epoch

Fig. 1: Test set accuracy per epoch during training on MNIST
for posit<8, 3>and FP8 with exp = 4 and man = 3.

The MSE-count loss function accumulates a spike count for
each neuron over time and applies PyTorch’s mean square er-
ror loss function with a target of (time steps X correct rate) for
correct classes and (time steps X incorrect rate) for incorrect
classes. We set (correct rate = 0.9) and (incorrect rate = 0.1)
to maximise learning without depressing neuron firing overall.

Although it is common practice to use a cross entropy
loss function for classification tasks we felt the inclusion
of another, different loss function class was instructive in
the understanding of how these functions interact with the
underlying arithmetic formats.

III. RESULTS

A. Frame-Based Dataset: MNIST

1) Training: As Figure 2 illustrates, Posit<8, 3> achieved
an accuracy of 98.57%, largely mirroring the FP32 conver-
gence rate and very close to its accuracy of 99.20%. whereas
FP8 with a 4-bit exponent and 3-bit mantissa was not able
to attain greater than chance level performance. Other FP8
configurations were tested during the hyperparameter sweep,
such as 3-bit exponent and 4-bit mantissa and 5-bit exponent
and 2-bit mantissa but no improvement in accuracy was seen.

2) Loss Function: Interestingly, we observed not only a
significant effect on training with choice of loss function, but
also an interaction between loss function choice and es value.
Figure 2 shows the loss function CE-rate training normally if
es = 3. However, when es = 2 only chance level performance
is obtained. In contrast, performance when using the MSE-
count loss function was not contingent on es choice.

Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works by sending a request to pubs-permissions@ieee.org.
See https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/ for more information

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI10.1109/COINS61597.2024.10622154.10222486, 2024 |IEEE International Conference on Omni-layer Intelligent Systems (COINS)

Effect of Loss Function Choice When Training on MNIST
Using 8-bit Posit Arithmetic

100 -
80 -
> 601 —— df_es2_count_0
© df_es3_count_0
g —— df_es3_rate_0
< —— df_es2_rate_0
40 4
20 A

T T T T

0 10 20 30 40 50
Epoch

Fig. 2: The effect on accuracy of loss function choice when
training on the MNIST dataset using 8-bit posits.

B. Event-Based Dataset: SHD

1) Training: As illustrated in Figure 3, posit<8, 3> was
able to learn without any degradation in performance com-
pared to the FP32. After 200 epochs of training, posit<S8,
3> achieved a mean accuracy over 10 runs of 65.92% with
a standard deviation of 6.15 and a peak accuracy of 72.17%.
This compares favourably to FP32 case that achieved a mean
of 61.93% with a slightly higher standard deviation of 9.69
and a peak accuracy of 70.19%. Similarly to MNIST, despite
an extensive hyperparameter search, FP8 proved inadequate
for learning the SHD classification task.

Posit<8, 2>, FP8 and FP32 Trained on SHD
Over 200 Epochs

704
60 -
504
§40 19 FP32
E —— Posit<8, 2>
1%}
£ 30 FP8
20 A
10 4
0 -
0 25 50 75 100 125 150 175 200

Epoch

Fig. 3: Test set accuracy during training with FP8 and posit<S8,
2>. All used mse_count_loss as the loss function. The central
estimate is the mean over 10 runs with 95% CI shown.

2) Loss Function: Figure 4 illustrates the training compar-
ison between using either MSE-count or CE-rate as the loss
function, with 8-bit posits, where es=2 or es=3. The results

8-bit Posits with Different es Values Trained on SHD
with Rate and Count Based Loss Functions

MSE Count es=2
MSE Count es=3
—— CE Rate es=2
—— CE Rate es=3
=== FP32 Count
-=- FP32 Rate

Accuracy
w
o
L

Epoch

Fig. 4: Comparing the accuracy of two different loss functions
used to train on SHD with posit<8, 2>and FP32.

are summarised over 10 runs, using the mean as the central
estimate with 95% confidence intervals (CI).

The accuracy of the MSE-count loss function is generally
higher than the CE-rate loss function for all es values. Specif-
ically, the MSE-count function achieves a maximum accuracy
of 70.40% for es=2, while the CE-rate loss function only
reaches 37.01% for es=2 with a mean of only 12.68%. CE-
rate performed slightly better for es=3 with a peak accuracy of
35.64% (mean=21.8%, s.d.=3.79), but MSE-count fared worse
with es=3 with a peak accuracy of 55.96% (mean=45.85%,
s.d.=8.73). Additionally, CE-rate tended to be more variable
with overlapping of the 95% confidence interval bands. For
comparison, both loss functions achieved a similar accuracy
of 69.83% for CE-rate and 70.19% for the MSE-count when
using FP32 arithmetic.

IV. DISCUSSION

While previous studies have demonstrated the feasibility of
using 8-bit floating-point arithmetic for learning tasks such
as MNIST classification, significant interventions including
complex algorithms, pre-processing of data, or mixed precision
arithmetic were often required [14]. In contrast, posit arith-
metic demonstrates potential for efficient and straightforward
SNN training by enabling successful learning without addi-
tional interventions or mixed-precision techniques. However,
selecting the optimal es value and appropriate loss function
remain crucial. Additionally, in the MNIST task, the reference
FP32 case suffers greatly from over fitting in this case which
is probably a reflection of the wide and shallow network
architecture. This would likely be solved with a deeper,
narrower architecture.

One reason for training failure in FP8 is the representation
of very small gradients. For example, in the SHD case where
no output spikes are recorded during the first batch the loss
is -2.9957. From here, the gradients for the first weights are

Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works by sending a request to pubs-permissions@ieee.org.
See https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/ for more

information

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI10.1109/COINS61597.2024.10622154.10222486, 2024 |IEEE International Conference on Omni-layer Intelligent Systems (COINS)

given by Equation 3, where L is the loss, S the spike output, U
the membrane voltage, I the input current and W the weight.
Given that %—[{ =1 and aaT{/ = X Equation 3 simplifies.

oL 0L 9SS oU oI

oW 9S8 oU oI OW

If our loss function is CE-rate (logSoftMax (y) followed by

NegativeLogLiklihoodLoss (NLLLoss)), then g—g for a correct

class is given by Equation 4 and an incorrect class is 0.05.

These are then divided by the number of time steps 50 giving
-0.019 for a correct class and 0.001 for an incorrect class.

3)

0L ONLLLoss

ao = A('m"rec = Acorrec 4
XS 99 (Ye t = Y t) 4)
1
=——-1=-0. 5
20 0.95 (5)
The fast surrogate gradient has a partial derivative g—g is
given in Equation 6.
08 1
. - - 6
aU ~ 0+ A0 ©

With representative values U = —4.35 and § = 0.923 887%,
becomes —2.69 x 1076, This gradient value rounds to zero in
FP§ if the exponent has 5, 4, or 3 bits.

posit<8, 2> posit<8, 3> FP8 (e=5, m=2) FP8 (e=4, m=3)
Range
Extent + 16777216 + 281474976710656 + 57344 + 240
Total
Number 255 255 247 239

TABLE II: A table comparing the total number of repre-
sentable values for four arithmetic systems. The count includes
only one value of zero, and excludes all NaN and NaR.

For posit arithmetic the interaction between loss function
and es are equally intriguing. One possible explanation for
these observations is best understood by first examining the
count, range and distribution of values in both posit and
FP representations. Any 8-bit posit configuration represents
28 — 1 = 255 values with the smallest positive representable
value in posit<8, 2> being 5.96 x 1078, and 3.55 x 10~1° for
posit<8, 3>. In contrast, FP8 with e=5 and m=2 can represent
just 247 values with the smallest positive representable value
1.53 x 107° and the largest representable value being 57344.
The reason FP8 represents fewer values is because it has many
more NaN, although these can be minimised by reducing
the number of mantissa bits. Table II shows the range of
representable values for four arithmetic systems posit<§, 2>,
posit<8, 3>, FP8 (e=5, m=2) and FP8 (e=4, m=3) and by
excluding NaN, -0 and NaR, it also shows the number of
values that each system can actually represent. Table II also
shows that posits have much larger dymanic range. However,
the distribution of these values is markedly different between
arithmetics, as shown in Table III and Figure 5.

Table III categorises the count of representable values by
interval, indicating that within the range of £50, a posit
configuration can represent a greater number of values than
FP8. Indeed, only outside the interval of = > 71 does FP8
(e=4, m=3) encompass more of these exact representations,
albeit marginally. Figure 5 shows this visually, demonstrating
that in the interval (—1 x 107% and 1 x 107%) there are
5 representable values using posit<8, 2>, 25 values using
posit<8, 3>, but only 1 value when using FPS.

This may have significant implications during the update
step of training. For example, in the SHD task, after one
batch of 128 samples, the gradients (g) of the weights in the
classification layer have an approximate minimum value of -
0.00004327 a maximum of 0.00000528 (mean=-0.00000132,
5.d.=0.00000394). The weights in this layer have a minimum
value of -0.03124 a maximum of 0.03125 (mean=0.00002,
s.d.= 0.01798). In the best case scenario, using the ADAM
optimiser with 81 = 0.9 and 2 = 0.999 then the first moment
(m1) will be 0.000000528, which quantises to 9.54 x 107
in posit<8, 2>. The second moment relies on the square
of the gradient (¢?) and this saturates the arithmetic to its
lowest possible representable value 5.96 x 10~8. However,
using posit<8, 3>this becomes 1.46 x 10!, with two further
values below that if required. For comparison, FP8 underflows
to 0.0 even for my. Therefore, these intermediate values will
likely have a large impact on such a system and may explain
the interdependence of es and loss function choice.

Range posit<8, 2> posit<8, 3> FP8 (e=5, m=2) FP8 (e=4, m=3)

=+ 0.000001 5 25 1 1
+ 0.001 25 57 41 1

+ 0.1 73 101 93 58

+ 1 129 129 121 114

+2 145 137 129 130

+ 10 181 155 147 166

+ 50 205 173 165 201

+100 213 181 173 217

TABLE III: A table showing the count of values that are
exactly representable for four arithmetic configurations.

This highlights two important aspects of how posit arith-
metic functions. Firstly, posits avoid underflow by saturating
to their lowest representable value. This allows calculations
to continue without introducing a potentially catastrophic 0.0.
Although, in the posit<8, 2>above, avoiding underflow was
not sufficient to allow training to continue. The second aspect
of posit arithmetic is the tapered precision which stems from
the way values are added geometrically.

V. CONCLUSION

Here we showed that posit arithmetic is able to train a
SNN with only 8-bits. Although some variability was noted,
posit arithmetic performed best when es = 3 for the SHD
dataset but es = 2 for the MNIST dataset. The posit standard
dictates es = 2 for all n [5] but some implementations allow
runtime switching between the two levels Tiwari et al. [13].
We also demonstrated the interplay between arithmetic and
loss function providing some insight into the values required

Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works by sending a request to pubs-permissions@ieee.org.
See https:/ljournals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/ for more

information

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI10.1109/COINS61597.2024.10622154.10222486, 2024 |EEE International Conference on Omni-layer Intelligent Systems (COINS)

Distribution of Representable Values for posit<8, 2>, posit<8, 3>, fp8_e5m2 and fp8_e4m3

-0.00100 —0.00075 —0.00050 —0.00025 0.00000
Value

— posit<8, 2>
—— posit<8, 3>
— fp8_esm2
— fp8_edm3

Arithmetic

0.00025 0.00050 0.00075 0.00100

Fig. 5: The distribution of exactly representable values for four
8-bit arithmetics, posit<8, 2>, posit<8, 3>, FP8(e=4, m=3)
and FP8(e=5, m=2) exponent and 2-bit mantissa.

for successful training and why some arithmetic configurations
work better than others.

However, this study suffered from some limitations, firstly
our SHD network architecture was likely not deep enough and
was also too wide as demonstrated by the FP32 over fitting.
Additionally, we only investigated one optimiser algorithm,
which may also have a significant impact on the results.
Furthermore, we did not explore using gradient and loss
scaling which constitute an inexpensive bit-shift if kept to
shift = 2" and have been used successfully in other studies
Ho et al. [7].

Nonetheless, posit arithmetic is an intriguing and powerful
new arithmetic that clearly warrants further investigation.

ACKNOWLEDGEMENTS

JK is funded by EPSRC grant numbers EP/V(052241/1 and
EP/S030964/1.

REFERENCES

[1] IEEE Standard for Floating-Point Arithmetic. IEEE Std
754-2019 (Revision of IEEE 754-2008), pages 1-84, July
2019. doi: 10.1109/IEEESTD.2019.8766229.

B. Cramer, Y. Stradmann, J. Schemmel, and F. Zenke.

The Heidelberg Spiking Data Sets for the Systematic

Evaluation of Spiking Neural Networks. [EEE Trans-

actions on Neural Networks and Learning Systems, 33:

2744-2757, 2019. doi: 10.1109/TNNLS.2020.3044364.

[3] J. Eshraghian, M. Ward, E. Neftci, X. Wang, G. Lenz,
G. Dwivedi, Bennamoun, D. S. Jeong, and W. Lu.
Training Spiking Neural Networks Using Lessons From
Deep Learning. Proceedings of the IEEE, 111:1016—
1054, 2021. doi: 10.1109/JPROC.2023.3308088.

[4] J. K. Eshraghian and W. D. Lu. The fine line between
dead neurons and sparsity in binarized spiking neural
networks, Jan. 2022.

[5] J. Gustafson, G. Bohlender, S. Y. Chung, and V. Dim-
itrov. Standard for Posit™ Arithmetic (2022). Available

(2]

(6]

(7]

(8]

(9]

online at https://posithub.org/docs/posit_standard-2.pdf,
Mar. 2022. Accessed: 01/02/2023.

J. L. Gustafson and I. T. Yonemoto. Beating Floating
Point at its Own Game: Posit Arithmetic. Supercomput-
ing Frontiers and Innovations, 4(2):71-86, Apr. 2017.
doi: 10.14529/jsf1170206.

N.-M. Ho, D.-T. Nguyen, H. D. Silva, J. L. Gustafson,
W.-F. Wong, and 1. J. Chang. Posit Arithmetic for
the Training and Deployment of Generative Adversarial
Networks. In 2021 Design, Automation & Test in Europe
Conference & Exhibition, pages 1350-1355, Feb. 2021.
doi: 10.23919/DATE51398.2021.9473933.

N.-M. Ho, H. De Silva, J. L. Gustafson, and W.-F. Wong.
Qtorch+: Next Generation Arithmetic for Pytorch Ma-
chine Learning. In Next Generation Arithmetic, volume
13253, pages 31-49, Cham, 2022. Springer International
Publishing.

J. Hou, Y. Zhu, S. Du, and S. Song. Enhancing
Accuracy and Dynamic Range of Scientific Data Ana-
lytics by Implementing Posit Arithmetic on FPGA. J
Sign Process Syst, 91(10):1137-1148, Oct. 2019. doi:
10.1007/s11265-018-1420-5.

H. W. Lui and E. Neftci. Hessian Aware Quantization of
Spiking Neural Networks, Aug. 2021. URL http://arxiv.
org/abs/2104.14117. arXiv:2104.14117 [cs].

C. D. Schuman, T. E. Potok, R. M. Patton, J. D. Birdwell,
M. E. Dean, G. S. Rose, and J. S. Plank. A Survey
of Neuromorphic Computing and Neural Networks in
Hardware. arXiv:1705.06963 [cs], May 2017. URL
http://arxiv.org/abs/1705.06963. arXiv: 1705.06963.

A. Shymyrbay, M. E. Fouda, and A. Eltawil. Low
Precision Quantization-aware Training in Spiking Neu-
ral Networks with Differentiable Quantization Func-
tion, May 2023. URL http://arxiv.org/abs/2305.19295.
arXiv:2305.19295 [cs].

S. Tiwari, N. Gala, C. Rebeiro, and V. Kamakoti. PERI:
A Configurable Posit Enabled RISC-V Core. ACM
Transactions on Architecture and Code Optimization, 18
(3):25:1-25:26, Apr. 2021. doi: 10.1145/3446210.

N. Wang, J. Choi, D. Brand, C.-Y. Chen, and
K. Gopalakrishnan. Training Deep Neural Networks with
8-bit Floating Point Numbers. In Advances in Neural
Information Processing Systems, volume 31. Curran As-
sociates, Inc., 2018.

F. Zenke and S. Ganguli. SuperSpike: Supervised Learn-
ing in Multilayer Spiking Neural Networks. Neural
Computation, 30(6):1514-1541, June 2018. ISSN 0899-
7667. doi: 10.1162/neco_a_01086.

T. Zhang, Z. Lin, G. Yang, and C. De Sa. QPyTorch: A
Low-Precision Arithmetic Simulation Framework, Oct.
2019.

G. Zhuang, Z. Bing, Z. Zhou, X. Yao, Y. Huang,
K. Huang, and A. Knoll. An Energy-Efficient Lane-
Keeping System Using 3D LiDAR Based on Spiking
Neural Network. In 2023 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pages

Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works by sending a request to pubs-permissions@ieee.org.
See https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/ for more

information

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI10.1109/COINS61597.2024.10622154.10222486, 2024 IEEE International Conference on Omni-layer Intelligent Systems (COINS)

47634769, Detroit, MI, USA, Oct. 2023. IEEE. doi:
10.1109/IROS55552.2023.10342044.

Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works by sending a request to pubs-permissions@ieee.org. See
https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/ for more information

