
IEEE SYSTEMS JOURNAL, VOL. 18, NO. 2, JUNE 2024 1139

An Adaptive SDN-Based Load Balancing Method for
Edge/Fog-Based Real-Time Healthcare Systems

Ahmed M. Jasim , Member, IEEE, and Hamed Al-Raweshidyg , Senior Member, IEEE

Abstract—Edge/fog computing has gained significant popularity
as a computing paradigm that facilitates real-time applications,
especially in healthcare systems. However, deploying these systems
in real-world healthcare scenarios presents technical challenges,
among which load balancing is a key concern. Load balancing aims
to distribute workloads evenly across multiple nodes in a network
to optimize processing and communication efficiency. This article
proposes an adaptive load-balancing method that combines the
strengths of static and software-defined networking (SDN)-based
load balancing algorithms for edge/fog-based healthcare systems. A
new algorithm called load balancing of optimal edge-server place-
ment (LB-OESP) is proposed to balance the workload statically in
the systems, followed by the presentation of an SDN-based greedy
heuristic (SDN-GH) algorithm to manage the data flow dynamically
within the network. The LB-OESP algorithm effectively balances
workloads while minimizing the number of edge servers required,
thereby improving system performance and saving costs. The SDN-
GH algorithm leverages the benefits of SDN to dynamically balance
the load and provide a more efficient system. Simulation results
demonstrate that the proposed method provides an adaptive load-
balancing solution that takes into consideration changing network
conditions and ensures improved system performance and reliabil-
ity. Furthermore, the proposed method offers a 12% reduction in
system latency and up to 28% lower deployment costs compared to
the previous studies. The proposed method is a promising solution
for edge/fog-based healthcare systems, providing an efficient and
cost-effective approach to managing workloads.

Index Terms—Edge/fog, healthcare, load balancing, software-
defined networking (SDN).

I. INTRODUCTION

THE integration of healthcare with technology has led to
the development of healthcare systems that aim to pro-

vide real-time monitoring and effective management of patient
health. Edge and fog computing have emerged as promising
solutions for healthcare applications due to their ability to handle
large amounts of data, provide low-latency communication, and
support real-time decision making [1].

Manuscript received 18 July 2023; revised 28 December 2023 and 30 March
2024; accepted 13 May 2024. Date of publication 31 May 2024; date of current
version 20 June 2024. This work was supported by Brunel University London,
U.K. (Corresponding author: Hamed Al-Raweshidy.)

Ahmed M. Jasim is with the Department of Electronic & Electrical En-
gineering, Brunel University London, UB8 3PH London, U.K., and also
with the Department of Computer Engineering, College of Engineering,
University of Diyala, Baqubah, Iraq (e-mail: ahmed.jasim@brunel.ac.uk,
ahmed.1985m@yahoo.com, ahmed.1985m@uodiyala.edu.iq).

Hamed Al-Raweshidy is with the Department of Electronic & Electrical
Engineering, Brunel University London, UB8 3PH London, U.K. (e-mail:
Hamed.Al-Raweshidy@brunel.ac.uk).

Digital Object Identifier 10.1109/JSYST.2024.3402156

However, the deployment of these systems in real-world
healthcare scenarios requires addressing several technical
challenges, one of which is load balancing. Load balancing refers
to the distribution of workloads evenly among multiple nodes
in a network to ensure efficient processing and communication
[2]. This approach has several key benefits, including increased
system efficiency, faster performance, and lower latency. By
reducing the load on each server, load balancing minimizes the
risk of network failures and improves the overall responsiveness
of applications by distributing the workload evenly [3]. Further-
more, load balancing increases the availability of systems to
consumers, making it an essential component for applications
in fields such as healthcare and weather forecasting that require a
reliable load-balancing algorithm to introduce new features over
time [4]. In edge and fog-based healthcare systems, efficient load
balancing is critical to avoid overloading of some nodes, which
can result in delays and degraded system performance.

There are two main types of load-balancing algorithms: static
and dynamic. Static load-balancing algorithms divide tasks
without considering the current state of the servers. These al-
gorithms use predefined information such as the execution costs
and/or arrival times of tasks and distribute tasks according to
a predetermined strategy, such as round-robin or client-side
random. While static load balancing can be quickly set up, it
can be inefficient and unable to adapt to short-term fluctuations
in loads. Dynamic load-balancing algorithms, on the other hand,
make decisions during execution based on the current state of the
servers, including their health, workload, and availability. They
monitor the health of each server through routine health checks
and redirect traffic from overloaded or underperforming servers
to those that are less used. This keeps the distribution balanced
and effective. However, these methods can be more challenging
to set up and often have high computational overhead, which
makes them impractical for large-scale edge/fog-based systems
with limited resources [5], [6], [7], [8].

SDN-based load-balancing algorithms are a type of dynamic
load-balancing algorithm that utilize software-defined network-
ing (SDN) capabilities to manage and distribute network traf-
fic. These algorithms provide centralized control and real-time
visibility of the network, enabling dynamic reconfiguration in
response to changes in network conditions and traffic patterns.
This results in a more flexible and efficient system than tra-
ditional hardware-based load-balancing methods. By utilizing
SDN technology, SDN-based load balancing algorithms can
offer a more dynamic and effective way to balance network
traffic and optimize network performance [9], [10], [11].

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-9276-577X
https://orcid.org/0000-0002-3702-8192
mailto:ahmed.jasim@brunel.ac.uk
mailto:ahmed.1985m@yahoo.com
mailto:ahmed.1985m@uodiyala.edu.iq
mailto:Hamed.Al-Raweshidy@brunel.ac.uk

1140 IEEE SYSTEMS JOURNAL, VOL. 18, NO. 2, JUNE 2024

The growing global population has placed significant strain
on urban healthcare systems, resulting in 2.6 million annual
fatalities attributed to inadequate management [12], [13]. These
challenges are further compounded by inefficiencies in patient
transfers and fragmented care, leading to suboptimal health
outcomes and increased burden on healthcare providers. For
instance, delays in accessing specialized care and difficulties
in coordinating treatment across multiple providers hinder the
delivery of timely and effective healthcare services.

Previous studies [24], [25] have explored the potential of
edge/fog computing to address these challenges by establishing
healthcare systems for monitoring patients in need. However,
one significant obstacle faced by such systems is the increased
response latency experienced as the workload grows, primar-
ily due to inadequate load balancing in the underlying algo-
rithms. With urban populations expected to continue growing
rapidly, urgent action is imperative to adapt healthcare systems
and ensure they can meet the evolving needs of urban resi-
dents. Integrating edge/fog computing solutions with efficient
load-balancing mechanisms holds great promise in improv-
ing healthcare delivery efficiency, enhancing patient outcomes,
and alleviating the strain on healthcare providers. This study
aims to enhance the system by incorporating load-balancing
mechanisms into the algorithms. This strategic improvement
seeks to optimize resource utilization, minimize response time,
and build upon the achievements of the previous study. This
article presents a novel load-balancing method that integrates
the strengths of static and SDN-based approaches, offering a
practical and scalable solution to the load-balancing challenge
in edge/fog-based healthcare systems. The contributions of this
article are as follows.

1) A load-balancing framework is introduced for healthcare
systems in urban areas, leveraging edge computing, and
SDN technology.

2) The load balancing of optimal edge-servers placement
(LB-OESP) algorithm is proposed, an enhanced version
of the OESP algorithm proposed in [24]. While the OESP
algorithm achieved its primary objectives successfully, it
might encounter challenges, especially in heavy loads, due
to a lack of emphasis on load balancing. Acknowledging
this drawback, the LB-OESP algorithm efficiently selects
optimal locations for placing edge servers (ESs), surpass-
ing the approach in [24]. In addition, it ensures a balanced
connection of other facilities to these servers, aiming for
an optimal distribution of the expected load.

3) The SDN-greedy heuristic (SDN-GH) algorithm is pro-
posed as an SDN-based approach. This algorithm dy-
namically balances the load and facilitates efficient data
offloading within the network.

4) Simulation-based evaluations are conducted to assess
the performance of the proposed algorithms. The re-
sults demonstrate favorable outcomes, including a cost-
effective system and reduced latency compared to previous
work.

Paper Organization: The structure of this article is orga-
nized as follows. In Section II, we review the related work.
Sections III and IV present the proposed system model and
problem formulation. In Section V, we introduce the LB-OESP

and the SDN-GH algorithms. The performance evaluation of
the proposed algorithms is discussed in Section VI, where we
present and analyze the results. Finally, in Section VII, we draw
conclusions based on the findings of this study and discuss
potential avenues for future research.

II. RELATED WORK

Edge computing has garnered significant attention for enhanc-
ing cloud computing systems by enabling data processing at the
network edge, closer to the data source. The advantages offered
by edge computing, such as reduced latency and improved user
experience, have sparked substantial research interest, resulting
in a significant body of literature in this field. In this sec-
tion, we review recent advancements in edge computing and
load balancing, with a particular focus on the crucial issue
of load balancing in edge/fog-based applications due to the
growing demand for real-time data processing and low-latency
communication.

Various load-balancing approaches have been proposed to
address this challenge. For instance, Chen et al. [14] proposed a
task allocation model to address load balancing at the server level
in fog computing. By treating tasks offloaded by other servers as
a single large aggregation task, they calculated the completion
time of large aggregation tasks on each server. These studies
demonstrate the diverse strategies proposed for load balancing
in edge/fog-based environments. Wang et al. [15] developed a
distributed city-wide traffic management system and proposed
an offloading algorithm for real-time traffic management in fog-
based Internet of Vehicle (IoV) systems. Their focus on minimiz-
ing the average response time of the Traffic Management Server
highlights the importance of efficient offloading and real-time
management in IoV environments. Ning et al. [16] investigated
a joint computation offloading, power allocation, and channel
assignment scheme for 5G-enabled traffic management systems.
Their integrated approach aimed to enhance system performance
and efficiency, showcasing the growing research interest in
load-balancing techniques for emerging network paradigms.

A dynamic load-balancing approach with multiple objectives
was proposed by Cabrera et al. [17]. Their dynamic load balanc-
ing approach, utilizing the Ull multiobjective framework, aims
to optimize application performance and resource efficiency.
By separating metric gathering, objective functions, and load
balancing algorithms, they provide a flexible and cost-effective
solution. Similarly, Li et al. [18] addressed the load-balancing
problem by proposing a strategy for task allocation based on
intermediary nodes. Their multistep process, involving classifi-
cation, evaluation, and task assignment, contributes to improved
load balancing and resource utilization.

Considering the resource optimization aspect, Nayyer et al.
[19] developed the load balancing for resource optimization ap-
proach. It tackles both resource scarcity and under-provisioning
issues in cloudlets, maximizing resource utilization at the
cloudlet level. Their approach ensures stable resource utilization
without compromising application performance, demonstrating
the potential for enhancing resource efficiency in edge comput-
ing systems. Similarly, He et al. [20] introduced an enhanced
constrained particle swarm optimization algorithm within the

JASIM AND AL-RAWESHIDY: ADAPTIVE SDN-BASED LOAD BALANCING METHOD FOR EDGE/FOG-BASED REAL-TIME HEALTHCARE SYSTEMS 1141

Fig. 1. Proposed edge/fog healthcare architecture based on SDN technology.

context of a software-defined cloud-fog network. Their algo-
rithm improves performance by leveraging the opposite property
of mutated particles and reducing the inertia weight linearly.
Dong et al. [21] proposed HEELS, a task deployment strategy
for load balancing in edge computing combined with cloud
computing. By leveraging clustering analysis and an improved
GSO algorithm with SCA, they achieved efficient task deploy-
ment and long-term load balancing. This study aligns with the
goal of optimizing resource allocation and performance in edge
computing environments.

Furthermore, Shahrbabaki et al. [22] proposed an SDN-
enabled scheme for load balancing in edge nodes used for real-
time IoT video data analytics. By utilizing incoming and out-
going traffic load measurements, the scheme estimates the load
at each server and assigns a load score to determine workload
distribution. Through periodic rerouting of IoT video streaming
flows based on load scores, the proposed solution achieves a
balanced workload distribution. The effectiveness of this scheme
is demonstrated through simulation results, showcasing its po-
tential in reducing the average video frame data analytics at edge
nodes through workload balancing. Chen et al. [23] proposed
a novel method called TDBEC for load balancing in multi-
edge collaboration in WMANs. TDBEC employs a two-stage
decision-making approach using DNN-based and DQN-based
models to optimize task scheduling and adjust operations. The
method achieves load balancing through centralized and decen-
tralized decision-making based on global and local information,
respectively. By incorporating these decision-making models,
TDBEC provides an efficient load-balancing mechanism for
multiedge collaboration in WMANs.

In summary, the existing methods in the literature can be
mainly categorized into static, dynamic, and occasionally cen-
tralized or/and decentralized load-balancing techniques. The
majority of existing research in this field has primarily focused
on addressing the load balancing problem through separate uti-
lization of these methods. However, this approach has revealed
limitations in terms of adaptability, real-time responsiveness,
and the requirement of significant resources. In contrast to
previous research, the proposed algorithm integrates these

diverse approaches, combining the simplicity of static methods
with the adaptability and responsiveness of dynamic methods
while utilizing fewer resources. Moreover, it incorporates lo-
calized decision-making centralization and network collabora-
tion or decentralization across different areas. The proposed
approach employs a load-balancing algorithm to make initial
load-balancing decisions and subsequently utilizes an SDN-
based algorithm to offload data within the network, either locally
within the areas or between them. This combined approach
offers a practical and scalable solution to the load-balancing
challenge in edge/fog-based healthcare systems. To the best of
our knowledge, this study is the first to propose such a combined
static and SDN-based load-balancing method specifically for
edge/fog-based healthcare applications.

III. PROPOSED SYSTEM MODEL

Fig. 1 presents a conceptual framework for healthcare sys-
tems in urban areas that leverages edge computing and SDN
technology. This model embodies a modern approach to health-
care, utilizing edge computing and SDN technology to deliver
fast, efficient, and reliable healthcare services to patients. The
framework comprises various components, including Medical
Centers (MCs), Hospitals (Hs), and Cloud, in conjunction with
patients located throughout the entire region.

SDN technology is used to manage the network and make
intelligent decisions about how and where to process data.
This is facilitated through a centralized SDN controller, which
maintains a global view of the network and can make informed
decisions about data flow.

The urban environment is conceptualized as a 3-D grid
that comprises three distinct entities, namely, Hs, MCs,
and Patients (users). Each H is responsible for provid-
ing medical services to a group of MCs located within
a particular geographic region. Similarly, each MC is
responsible for providing medical services to patients within
its local vicinity. Patients, on the other hand, are dispersed
throughout the entire region.

1142 IEEE SYSTEMS JOURNAL, VOL. 18, NO. 2, JUNE 2024

To simplify system representation, a set of assumptions has
been established. First, we assume that every MC situated within
the grid can potentially serve as a suitable candidate for the
placement of edge-servers. Second, we postulate that all MCs
are connected in a virtual sense only when the distance between
any two MCs, as computed by the distance function d(a,b),
is equal to a predetermined value K. This K value represents
the maximum distance that can be utilized for establishing
connectivity between neighboring MCs. Finally, we assume that
each MC has a distinct historical load, i.e., a unique volume and
distribution of user requests over time.

Consequently, the collection of MCs in the system is denoted
as MCs= {mc1, mc2,...; mcn}, where each mc denotes a feasible
placement location within the 3-D grid, and noMCs represents
the number of MCs within that specific region. The set of ESs
required for complete coverage in this area is represented as ES
= (es1, es2,...; esk), with Nes denoting the total number of ESs
necessary. It is important to note that all ESs are considered
identical (i.e., homogeneous). The patient population is denoted
by P= (p1, p2, …; pm), where m corresponds to the total number
of patients in the region.

IV. PROBLEM FORMULATION

According to [24], the MCs in the system can be classified
into two distinct categories, namely MCs-Best and MCs-Others.
MCs-Best are identified as the optimal placement sites for ESs,
with the constraint that at least three MCs must be designated as
such to enable efficient data offloading to neighboring MCs,
specifically, the MCs directly connected with it. Conversely,
MCs-Others are designated as serverless nodes that must be
directly connected to MCs-Best to prevent multihop transfers
and minimize latency. The tasks in the system can be accom-
plished through one of two methods. The first method involves
offloading and processing tasks within the local network, ir-
respective of load balance. However, if the computational re-
sources of the existing network are insufficient, the data may be
processed in the cloud through offloading operations, as noted
in [25]. It is worth noting that the increased response latency
observed in the system when the number of tasks increases
is attributed to the fact that the proposed algorithms did not
take into account load balance. Load balancing is an important
factor that affects the performance of distributed systems, and
it is essential for achieving efficient utilization of resources and
minimizing response time. Therefore, this study should consider
incorporating load-balancing mechanisms into the algorithms to
improve system performance and reduce response latency.

To address these problems, two main approaches have been
proposed. First, the utilization of SDN technology has been
suggested, which involves granting decision-making authority
to the SDN controller in each region. This approach allows for
optimal offloading decisions to be made for tasks, taking into
account a global view of the network and compute resource
allocation. By leveraging SDN technology in this way, the
proposed approach aims to reduce response latency and improve
system performance. Second, the proposed approach involves
improving the OESP algorithm for selecting the best server
sites and reducing them if possible. This approach aims to

minimize the number of MCs designated as MCs-Best, while
still ensuring full coverage for all MCs-Others. By optimizing
the placement of MCs-Best, the proposed algorithm aims to
reduce deployment costs while also enhancing the network’s
load balancing capabilities.

By combining these two approaches, the proposed solution
aims to enhance the performance of edge-based healthcare net-
works, improve load balancing, and reduce costs. This approach
has the potential to make a valuable contribution to the field
of edge computing research, as it addresses some of the most
significant challenges facing the development and deployment
of edge computing networks.

To achieve these tasks, a multiobjective optimization model
has been developed, with the following decision variables de-
fined.

1) X represents the placement of edge-servers at MCs

X = {xj | 1 ≤ j ≤ n}
where

xj =

{
1, if esi placed at mcj
0, otherwise

2) Y represents the assignment of patients to MCs

Y = {yij | 1 ≤ i ≤ m, 1 ≤ j ≤ n}
where

yij =

{
1, if pi is assigned to mcj
0, otherwise

3) E represents the links between MCs

E = {eab |, 1 ≤ a, b ≤ n, a �= b}
where

eab =

{
1, if mca and mcb are directly connected
0, otherwise

.

Let λsum be the set of task arrival rate of patients λi

λsum =

m∑
1=1

λi. (1)

The system response time (SRT) represents the average sys-
tem latency required to deliver patient data to a health facility
within the architecture [25]. It is calculated as follows:

SRT =

∑n
i = 1 tpi
n

(2)

where

tpi = Twi + EAP∗TAP + (c1 + 1) ∗tMC + c1∗V + c2

∗ S + c2∗tH + c3 ∗ L+ c3∗tH+c4∗B + c4∗tCloud

(3)

tMC = fQ (K1.λMCsum) +
K1.λMCsum

µMC
(4)

tH = fQ (K2.λHsum) +
K2.λHsum

µH
. (5)

JASIM AND AL-RAWESHIDY: ADAPTIVE SDN-BASED LOAD BALANCING METHOD FOR EDGE/FOG-BASED REAL-TIME HEALTHCARE SYSTEMS 1143

The tpi is the average latency of the offloaded tasks by a pa-
tient, tMC, and tH are the latency at the MCs and Hs respectively.
The c1, c2, c3, and c4 represent the counters to count the number
of times to reach a certain unit in the system.

The objective of this study is to improve the proposed archi-
tecture in [24] and [25] for all tasks generated by patients within
the network while considering the delay requirements of task
execution in healthcare systems. The optimization problem can
be formulated as follows: given a system model with parameters
(G, noMCs [points], K, Nes, m, Twi, TAP, λMAX), the goal is to
find X among the best MCs and balance the system to enhance
the response time SRT as described in [24] and [25]

min
∑

Cost (esj, mck) . Xj (6)

min SRT (7)

Subject to
d(mca,mcb) = K : to ensure a shorter distance between a

patient and an MC and to avoid the colocated problem.∑
Eij = 1 or 2 : to ensure that a patient either connects

directly with an edge-servers site or through only one MC to
minimize the latency.∑

yij = 1 (1 ≤ j ≤ n) : to guarantee that all patients are
served, and each patient should be served from exactly one
candidate MC.

By formulating the problem in this way and applying the
proposed algorithm, the response time and load balancing in the
healthcare system can be improved. The results of this study
are expected to make a valuable contribution to the field of
healthcare systems and edge computing research.

The solution to the optimization problem involves two al-
gorithms that collaborate to tackle the challenges of diminish-
ing edge computing expenses and minimizing network latency.
Algorithm 1 focuses on reducing the number of ESs, thereby
minimizing the associated cost, while simultaneously executing
load-balancing tasks on the chosen nodes. Building upon this,
Algorithm 2 utilizes a greedy heuristic method to manage data
flow across the network, ensuring balance in load distribution
and optimal resource utilization, thereby further diminishing
latency. By integrating both algorithms, this solution presents
a well-rounded approach, effectively addressing cost manage-
ment, latency reduction, and resource allocation optimization
through proficient load balancing.

V. PROPOSED LOAD BALANCING ALGORITHMS

The key objective of the previous study [24] was to effectively
deploy ESs to MCs within a region to suit the demands of all
monitored patients. The study employed the OESP algorithm,
which demonstrated success in identifying the optimal place-
ment of ESs in MCs-Best. The number of MCs-Best selected was
determined by the shape and size of the network. Each MC-Best
was tasked with providing services to several MCs-Others (i.e.,
serverless) based on specific parameters defined by the OESP
algorithm. Consequently, the proposed algorithm succeeded in
identifying a cost-effective network with reduced latency but
exhibited an imbalance in workload distribution.

Algorithm 1: Load Balancing of Optimal Edge-Servers
Placement (LB-OESP) Algorithm.

1144 IEEE SYSTEMS JOURNAL, VOL. 18, NO. 2, JUNE 2024

The primary aim of this article is to propose a novel load-
balancing technique that can effectively address the issue of
load imbalance in similar networks. The main steps involved in
designing such an algorithm can be summarized as follows.

Step 1: Apply the OESP algorithm [24] to identify the optimal
sites (MCs-Best) for placing ESs among several other sites
(MCs-Others) in a specific area.

Step 2: Implement a static load-balancing algorithm to reor-
ganize and manage the connections between the MCs within the
local area. This task involves linking MCs-Others to MCs-Best
in a manner that balances the loads among MCs-Best. The
technique is based on the number of sites and historical data
on facility loads. To achieve this, the MCs-Others should be
distributed as evenly as possible among the MCs-Best. The
proposed algorithm for accomplishing this is called LB-OESP
and can be summarized in the following stages.

1) Define the maximum coverage of each MC-Best to gain
a better understanding of the network.

2) Determine the MCs-Best details matrix, which includes
each MC-Best and its corresponding set of MCs-Others.

3) Identify the Best-MCs-Best (the most optimal MCs-Best
sites) to eliminate any redundant or substitutable MCs-
Bests.

4) Test Connectivity 1) between the new MCs-Best to deter-
mine if they can be connected or if additional MCs-Best
needs to be added.

5) If the result of 4) is false, identify New-MCs-Best that
need to be added to the MCs-Bests to achieve complete
connectivity between them.

6) Test Connectivity 2) between the final best sites and
update the MCs-Best.

Algorithm 2: SDN-GH Algorithm for Data Offloading in
Healthcare Architecture.

7) Replot all points without connections to distinguish the
MCs-Best from the other sites.

8) Establish efficient connections between the MCs-Best to
ensure full connectivity with the least number of links.

9) Determine and distribute the MCs-Others that should be
connected to each MC-Best to achieve load balancing.

JASIM AND AL-RAWESHIDY: ADAPTIVE SDN-BASED LOAD BALANCING METHOD FOR EDGE/FOG-BASED REAL-TIME HEALTHCARE SYSTEMS 1145

10) Identify the final MCs-Best details matrix, which in-
cludes each MC-Best and its corresponding set of MCs-
Others.

Therefore, the proposed LB-OESP algorithm is a comprehen-
sive approach that combines the OESP and static load-balancing
algorithms to effectively balance the loads among the MCs-Best
and MCs-Others, thus addressing the issue of load imbalance
in similar networks. The LB-OESP algorithm is presented in
Algorithm 1.

Step 3: To address the issue of resource scarcity within the
local area, a dynamic load balancer is required. One potential
solution to this problem is to employ a dynamic offloading
strategy based on SDN. This approach considers the real-time
status of the network to identify the most suitable node for
offloading healthcare-related tasks. The SDN controller is re-
sponsible for making the necessary task assignment decisions
required for offloading these tasks. Implementing this approach
is expected to improve the utilization of available resources
significantly, resulting in enhanced processing capabilities and
optimal network utilization.

The proposed algorithm should be simple enough to allow
for rapid decision-making while still meeting the delay require-
ments. However, it is unnecessary to offload a task to another
lightly loaded site if the offloading time is greater than the
local execution time. In certain scenarios, the time required for
communication and remote execution may diminish the benefits
of offloading to a less burdened site. To address this, we can
define a binary decision variable T x2

x1 as

T x2
x1 =

{
1, if toffloading < tlocal

0, otherwise
. (8)

The primary function of the SDN controller is to collect data
on the MCs, such as their current workloads, queue durations,
and other relevant metrics. Having a global view of the net-
work allows the controller to leverage AI-based technologies
trained on offline data. This enables the controller to make more
informed predictions, including average propagation delays,
queueing delays, and result delivery times. Such forecasts can be
valuable in assessing a task’s response time if it were executed
on a different site than its local site. To optimize SRT and
load balancing, Algorithm 2 proposes an SDN-GH algorithm.
This algorithm aims to determine whether data offloading is
necessary between the system units based on the workload
received by an MC or H relative to their maximum processing
capacity. The algorithm also takes into account the latency time,
which is calculated using (8).

The processing of the data follows a series of scenarios based
on the processing capabilities of various components of the
system. If the local MC-Best has enough processing power, the
data is processed locally (Scenario 1). If not, the data is partially
processed at the local MC-Best, and the remainder is divided to
be offloaded to the neighboring MCs-Best according to their
available capacities (Scenarios 2 and 3). If the neighboring
MCs-Best do not have enough processing power, the data is
partially processed at those sites, and the remaining portion is
offloaded to the local H (Scenario 4). If the local H does not have
sufficient processing power, the data is partially processed at that

Fig. 2. All potential scenarios based on SDN-GH.

site, and the remaining portion is offloaded to the neighboring
Hs, specifically, the Hs directly connected with it (Scenarios
5 and 6). If the neighboring Hs also lack adequate processing
power, the data is partially processed at those sites, and the
remaining portion is offloaded to the cloud (Scenario 7). Fig. 2
visualizes the seven scenarios.

It is worth noting that in the previous study [25], the im-
plementation of the HOSSC algorithm led to the successful
achievement of five data processing scenarios, characterized by
enhanced privacy, elevated computational capability, minimized
system latency, sustained high service availability, and a scalable
system design. In this study, we expanded the number of data
processing scenarios to seven, which enabled us to improve upon
the previously established outcomes while ensuring load balance
and reducing delay time.

VI. PERFORMANCE EVALUATION

The performance of the proposed algorithms was evaluated
using a simulator that combines SDN technology with edge com-
puting for task offloading in the proposed system. The simulation
was conducted on a notebook featuring a 1.8 GHz Intel Core
i7-8550U CPU, 16 GB RAM, Microsoft Windows 10 operating
system, and MATLAB R2022b. Table I lists the simulation
parameters, primarily derived from our previous studies [24]
and [25] . In addition, the following assumptions were made.

1) The arrangement of MCs is assumed to be random in terms
of their distribution.

2) The topology is assumed to be known to the SDN
controller, which has access to information regarding
the distances between any two MCs in the front-haul
networks.

3) Valuable information is presumed to be accessible through
the utilization of AI-based learning technologies. Hence,
parameters like the average propagation delay between
MCs are predetermined.

In evaluating performance, the proposed algorithms are com-
pared with those introduced in our previous studies to demon-
strate the improvements achieved through the integration of
new technologies into our foundational system. Subsequent
sections present the results of implementing the proposed
algorithms.

1146 IEEE SYSTEMS JOURNAL, VOL. 18, NO. 2, JUNE 2024

TABLE I
SRT SIMULATION PARAMETERS

TABLE II
LB-OESP SIMULATION PARAMETERS

A. LB-OESP Algorithm

In this section, the results of multiple simulations are pre-
sented to assess the effectiveness of the proposed algorithm.
The evaluations were based on randomly generated MC sites,
depicted as points. Since the output of the OESP algorithm [24]
serves as the input for the LB-OESP algorithm, identical param-
eters are defined for both algorithms, as detailed in Table II. To
demonstrate the effectiveness of the approach, the step-by-step
process of the algorithm is showcased initially with ten randomly
generated, followed by the presentation of final outcomes when
applying the algorithm to 20 and 30 randomly generated points.

Fig. 3. 10 disconnected MCs on a map.

Fig. 4. Final OESP network of 10 MCs: Green & Blue points = best-MCs,
Black points = MCs-others.

1) Scenario 1–12 Nodes: Initially, a MATLAB code was
used to generate ten points within a geographic region measuring
100 km by 100 km. These points were designated as measure-
ment sites (MC sites), as previously noted. Subsequently, it was
necessary to allocate these points on a virtual map, as depicted
in Fig. 3.

The next step involves using the OESP algorithm to determine
the placement of MCs-Best and MCs-Others, which serve as
inputs to the proposed algorithm. The final map generated by the
OESP algorithm is illustrated in Fig. 4. It is evident that the OESP
algorithm successfully identified optimal locations (MCs-Best),
specifically (6, 11, 8, and 3), for server placement. However,
concurrently, it overlooked considerations for load balancing
by not taking into account the fair distribution of MCs-Others
equally among MCs-Best sites. For instance, certain MCs-Best
are solely connected to one MCs-Others, such as 6 and 11, while
others are linked to three MCs-Others, such as 8 and 3.

JASIM AND AL-RAWESHIDY: ADAPTIVE SDN-BASED LOAD BALANCING METHOD FOR EDGE/FOG-BASED REAL-TIME HEALTHCARE SYSTEMS 1147

Fig. 5. Ten disconnected MCs on a map. Green points= best-MCs-best, Black
points = MCs-others.

Fig. 6. Established connections between the best sites in the network.

Consequently, the central aim of the algorithm is to achieve
a balanced distribution of load in the network. Prior to this
objective, the proposed algorithm seeks to enhance the network
by selecting the optimal MCs-Best to reduce redundancies and
minimize costs. To accomplish this, the first task involves de-
termining the Best-MCs-Best through the evaluation of mul-
tiple variables and the implementation of several procedures
as detailed in steps 1–6 of the algorithm. Once completed, the
network will be reconfigured, with connections between sites
being adjusted, as illustrated in Fig. 5.

As depicted in Fig. 5, the selection of the Best-MCs-Best
was limited to three sites, which are (8, 11, and 3), rather than
four. MC 6 has been removed from MCs-Best and assigned
to MCs-Others. The subsequent task is to establish optimal
connections between these sites while avoiding duplicated links,
accomplished through step 8 of the algorithm. Fig. 6 illustrates

Fig. 7. Final LB-OESP network of ten MCs: Green points = best-MCs-best,
Black points = MCs-others.

the configuration of the network with the connections estab-
lished between the best sites.

Once the MCs-Best were established and connections be-
tween them were in place, the next step involved integrating
the MC-Others into the network. The objective at this stage was
to determine an optimal method of distributing the MC-Others
as evenly as possible among the best sites. This involved deter-
mining the preferred number of MC-Others to be connected to
each MC-Best, considering the minimum and maximum thresh-
old. In this particular scenario, with nine MC-Others and three
MCs-Best, the optimal number was three MC-Others (both as
the minimum and maximum) to be connected to each MC-Best,
taking into account the proximity of the interconnected sites.
Fig. 7 depicts the final configuration of the grid after the im-
plementation of steps 9 and 10. The algorithm has successfully
established a network that is both balanced and cost-efficient in
terms of its selection of sites to serve as servers for other sites.

It is important to note that when the preferred number of
MC-Others is not a whole number, the approach should be to
select the nearest integer values. For example, if the preferred
number is 3.3, the minimum value would be 3 and the maximum
would be 4. The algorithm then determines which MC-Best will
accommodate 3 or 4 MC-Others based on the proximity of the
MC-Others to the respective MCs-Best.

Furthermore, the selection of the MCs-Best is conducted in
two stages. The first stage involves selecting the Best-MCs-
Best1 from the MCs-Best and isolating the remaining elements
in a separate matrix. Subsequently, the connectivity between the
Best-MCs-Best1 is tested. If they are connected, the Best-MCs-
Best1 are considered the Best-MCs-Best. In case of disconnec-
tion, the algorithm proceeds by adding one MC at a time from the
isolated matrix until full connectivity between them is achieved.

2) Scenario (2 and 3)—16 and 25 Nodes: The effectiveness
of the proposed algorithm is further highlighted in Figs. 8 and 9,
which illustrate two distinct scenarios involving 16 and 25 nodes,
respectively. These figures showcase the output maps generated

1148 IEEE SYSTEMS JOURNAL, VOL. 18, NO. 2, JUNE 2024

Fig. 8. Comparison between the final OESP and LB-OESP network of 16 MCs.

Fig. 9. Comparison between the final OESP and LB-OESP network of 25 MCs.

by both the OESP algorithm and the subsequent LB-OESP
algorithm. The algorithm consistently demonstrates its ability
to minimize the number of MCs-Best while achieving optimal
load balancing. It successfully restructures the network by estab-
lishing connections between MCs-Best and linking MCs-Others
to MCs-Best in an optimal manner, thereby enhancing overall
network efficiency and performance.

In the 16-node scenario, the proposed algorithm successfully
decreased the number of MCs-Best from 5 to 4 and then recon-
figured their connections. Subsequently, it evenly distributed the
MCs-Others among the MCs-Best.

In the 25-node scenario, while the LB-OESP algorithm suc-
cessfully reduced the number of MCs-Best and reconfigured the
network, it was necessary to connect MC-Best 20 to a larger
number of MCs-Others than MC-Best 3. This was due to the
remote location of MC-Best 3, limiting its ability to connect to
more MCs-Others. This is a prime example of the algorithm’s
positive aspects, as it possesses the intelligence necessary to
construct a network that is optimally connected, incurs the lowest
cost, and experiences the shortest possible delay time.

TABLE III
COMPARISON BETWEEN HMAN AND OESP COST

Table III provides a cost comparison between the proposed
algorithm and previous studies [24], [25], highlighting the dif-
ferences. It is important to note that these percentage variations
may differ depending on the specific network configurations,
as they are influenced by the selection of the best points. The
choice of best points is dependent on the network’s shape and
characteristics. Nonetheless, significant cost improvements are
evident across all scenarios.

JASIM AND AL-RAWESHIDY: ADAPTIVE SDN-BASED LOAD BALANCING METHOD FOR EDGE/FOG-BASED REAL-TIME HEALTHCARE SYSTEMS 1149

Fig. 10. Comparison between HOSSC, OESP, and SDN-GH algorithms in
terms of the SRT in the system.

B. SDN-GH Algorithm

The SDN-GH algorithm has been designed to efficiently
distribute workloads among the collaborating units, thereby
alleviating resource constraints and ensuring high availability
within the system. Accordingly, upon receipt of a request
by a node within the local area, the system evaluates whether
the resources on that node suffice for processing the request.
In cases where these resources are inadequate, the algorithm
transfers the request across the cooperating nodes where the
necessary resources are available. If resources are unavailable
across all units, the request is redirected either to another area
or to the central cloud.

The results of the conducted simulation are depicted in Fig. 10,
where the y-axis represents the delivery latency for task pro-
cessing within the system’s facilities and the x-axis signifies
the number of patients. For the purpose of comparison, two
additional algorithms, the OESP algorithm and the HOSSC
algorithm as outlined in [24] and [25] are employed. To facilitate
a more straightforward evaluation of the system’s viability and
benefits, several parameters have been defined and presented
in Table I, which are identical to the parameters used in [24]
and [25].

It is evident that the algorithm endeavors to minimize process-
ing time by initially involving proximate collaborative facilities.
Subsequently, it gradually extends its reach to facilities situated
farther away, eventually culminating in engagement with the
cloud if necessary. This operational approach aligns with the
fundamental tenets of edge technology. During periods of low
workloads, specifically when patient numbers are less than 100,
the algorithm relies predominantly on the local MC (MCL)
and its neighboring centers (MCN1 and MCN2). Consequently,
the delay is kept to a minimum. As the workload increases,
additional collaborative facilities are hierarchically included.
This expansion encompasses the local hospital (HL) and its
neighboring hospitals (HN1 and HN2), eventually extending
to the cloud. The decision-making process is guided by the
algorithm’s adherence to the seven scenarios delineated in Fig. 2.

TABLE IV
NUMBER OF PATIENTS SERVED IN EACH UNIT (PURPLE INDICATES UNUSED

UNITS AT A CERTAIN STAGE)

Furthermore, the results indicate a significant enhancement in
the system’s performance when utilizing the SDN-GH algorithm
compared to the HOSSC and OESP algorithms. This improve-
ment can be attributed to the SDN-GH algorithm’s broader scope
of data processing within the network, offering six scenarios for
local network data processing and only one scenario involving
data transmission to the cloud, resulting in reduced response
time. This confirms the efficacy of the proposed algorithm in pro-
moting a more collaborative approach by distributing workloads
among the system units. In addition, this reinforces the privacy
and availability of the system while contributing to scalability
and capacity improvements, as previously reported in [25].
This also marks a considerable enhancement when compared
to the latency of 75 ms recorded in [26], which utilized almost
identical simulation parameters. The noteworthy decrease in
service delay, quantified at over 50%, is ascribed to the pioneer-
ing load-balanced architecture employing the nearest units for
collaborative data processing. This comparison emphasizes the
superior performance of our proposed framework in real-world
healthcare scenarios.

Finally, to corroborate the algorithmic outcomes concerning
efficiency and scalability, Table IV presents pertinent scalar
findings derived from the system, affirming the efficacy of the
algorithm in the prudent allocation of workloads to intercon-
nected health facilities. This allocation is adaptively executed
in accordance with the available capacity at each facility. The
load distribution process is discernibly balanced to a degree that
facilitates the system’s operability under diverse loads, thereby
affirming the scalability of the system, particularly after the
implementation of the proposed load balancing algorithm.

VII. CONCLUSION

This study addressed the crucial challenge of load balancing in
the design of smart healthcare systems. Efficient load balancing
is essential to avoid overloading nodes, which can result in delays
and degraded system performance. By integrating static and
SDN-based load-balancing algorithms, the proposed method
achieved optimal load balancing in edge/fog-based healthcare
systems. The LB-OESP algorithm minimized the number of ES
deployment locations while ensuring balanced workload distri-
bution. The SDN-GH algorithm dynamically balanced the load,
leading to improved system performance. The results showed a
12% decrease in system latency and up to 28% lower deployment
costs compared to prior studies, highlighting the effectiveness of
the proposed method. Furthermore, the implementation of the
SDN-GH algorithm enabled seven data processing scenarios,

1150 IEEE SYSTEMS JOURNAL, VOL. 18, NO. 2, JUNE 2024

enhancing privacy, computational capability, system latency,
service availability, and system design adaptability. These find-
ings emphasize the significance of efficient load balancing in im-
proving system performance in healthcare applications. Future
research directions could explore the scalability of the proposed
method for larger networks, investigate its resilience to network
failures and security threats, and extend its applicability to other
domains beyond healthcare. Overall, this study contributes to
advancing the field of smart healthcare systems and provides
valuable insights for designing efficient and reliable edge/fog-
based healthcare networks.

REFERENCES

[1] M. H. Kashani and E. Mahdipour, “Load balancing algorithms in fog
computing,” IEEE Trans. Serv. Comput., vol. 16, no. 2, pp. 1505–1521,
Mar./Apr. 2023, doi: 10.1109/TSC.2022.3174475.

[2] S. Ebneyousef and A. Shirmarz, “A taxonomy of load balancing algorithms
and approaches in fog computing: A survey,” Cluster Comput., vol. 26,
no. 5, pp. 3187–3208, 2023, doi: 10.1007/s10586-023-03982-3.

[3] C. S. M. Babou et al., “Hierarchical load balancing and cluster-
ing technique for home edge computing,” IEEE Access, vol. 8,
pp. 127593–127607, 2020, doi: 10.1109/ACCESS.2020.3007944.

[4] M. Kyryk, N. Pleskanka, M. Pleskanka, and P. Nykonchuk, “Load bal-
ancing method in edge computing,” in Proc. IEEE 15th Int. Conf. Adv.
Trends Radioelectron., Telecommun. Comput. Eng., 2020, pp. 978–981,
doi: 10.1109/TCSET49122.2020.235584.

[5] H. Pydi and G. N. Iyer, “Analytical review and study on load
balancing in edge computing platform,” in Proc. 4th Int. Conf.
Comput. Methodol. Commun., 2020, pp. 180–187, doi: 10.1109/IC-
CMC48092.2020.ICCMC-00036.

[6] T. A. Al-Janabi and H. S. Al-Raweshidy, “Optimised clustering
algorithm-based centralised architecture for load balancing in IoT net-
work,” in Proc. Int. Symp. Wireless Commun. Syst., 2017, pp. 269–274,
doi: 10.1109/ISWCS.2017.8108123.

[7] H. N. Al-Anbagi and I. Vertat, “Pre-detection combining of small satellite
downlink’s replicas,” in Proc. Int. Conf. Elect., Comput. Energy Technol.,
2022, pp. 1–6, doi: 10.1109/ICECET55527.2022.9873068.

[8] A. C. Baktir, A. Ozgovde, and C. Ersoy, “How can edge computing
benefit from software-defined networking: A survey, use cases, and future
directions,” IEEE Commun. Surv. Tut., vol. 19, no. 4, pp. 2359–2391,
Oct.–Dec. 2017, doi: 10.1109/COMST.2017.2717482.

[9] C. Tang, C. Zhu, N. Zhang, M. Guizani, and J. J. P. C. Rodrigues, “SDN-
assisted mobile edge computing for collaborative computation offloading
in industrial Internet of Things,” IEEE Internet Things J., vol. 9, no. 23,
pp. 24253–24263, Dec. 2022, doi: 10.1109/JIOT.2022.3190281.

[10] J. Li et al., “A secured framework for SDN-based edge computing in
IoT-enabled healthcare system,” IEEE Access, vol. 8, pp. 135479–135490,
2020, doi: 10.1109/ACCESS.2020.3011503.

[11] M. Priyadarsini, J. C. Mukherjee, P. Bera, S. Kumar, A. H. M. Jakaria, and
M. A. Rahman, “An adaptive load balancing scheme for software-defined
network controllers,” Comput. Netw., vol. 164, pp. 1–11, 2019.

[12] K. Amirthalingam, “Medical dispute resolution, patient safety and the
doctor-patient relationship,” Singap. Med. J., vol. 58, no. 12, pp. 681–684,
2017, doi: 10.11622/smedj.2017073.

[13] I. Balansard et al., “Revised recommendations for health monitoring of
non-human primate colonies,” FELASA Work. Group Rep. Lab. Animals,
vol. 53, no. 5, pp. 429–446, 2019, doi: 10.1177/0023677219 44541.

[14] Y. A. Chen, J. P. Walters, and S. P. Crago, “Load balancing for min-
imizing deadline misses and total runtime for connected car systems
in fog computing,” in Proc. IEEE Int. Symp. Parallel Distrib. Process.
Appl. IEEE Int. Conf. Ubiquitous Comput. Commun., 2017, pp. 683–690,
doi: 10.1109/ISPA/IUCC.2017.00107.

[15] X. Wang, Z. Ning, and L. Wang, “Offloading in Internet of Vehicles: A fog-
enabled real-time traffic management system,” IEEE Trans. Ind. Informat.,
vol. 14, no. 10, pp. 4568–4578, Oct. 2018, doi: 10.1109/TII.2018.2816590.

[16] Z. Ning, X. Wang, J. J. P. C. Rodrigues, and F. Xia, “Joint computation
offloading, power allocation, and channel assignment for 5G-enabled
traffic management systems,” IEEE Trans. Ind. Informat., vol. 15, no. 5,
pp. 3058–3067, May 2019, doi: 10.1109/TII.2019.2892767.

[17] A. Cabrera, A. Acosta, F. Almeida, and V. Blanco, “A dynamic multi-
objective approach for dynamic load balancing in heterogeneous sys-
tems,” IEEE Trans. Parallel Distrib. Syst., vol. 31, no. 10, pp. 2421–2434,
Oct. 2020, doi: 10.1109/TPDS.2020.2989869.

[18] G. Li et al., “A new load balancing strategy by task allocation in edge
computing based on intermediary nodes,” J. Wireless Commun. Netw.,
vol. 3, pp. 1–10, 2020, doi: 10.1186/s13638-019-1624-9.

[19] M. Z. Nayyer et al., “LBRO: Load balancing for resource optimiza-
tion in edge computing,” IEEE Access, vol. 10, pp. 97439–97449, 2022,
doi: 10.1109/ACCESS.2022.3205741.

[20] X. He, Z. Ren, C. Shi, and F. Jian, “A novel load balancing strategy of
software-defined cloud/fog networking in the Internet of Vehicles,” Chin.
Commun., vol. 13, no. S2, pp. 145–154, 2016.

[21] Y. Dong, G. Xu, Y. Ding, X. Meng, and J. Zhao, “A ‘joint-me’ task
deployment strategy for load balancing in edge computing,” IEEE Access,
vol. 7, pp. 99658–99669, 2019, doi: 10.1109/ACCESS.2019.2928582.

[22] P. P. Shahrbabaki, R. W. L. Coutinho, and Y. R. Shayan, “A novel
SDN-enabled edge computing load balancing scheme for IoT video
analytics,” in Proc. IEEE Glob. Commun. Conf., 2022, pp. 5025–5030,
doi: 10.1109/GLOBECOM48099.2022.10000605.

[23] X. Chen, Z. Yao, Z. Chen, G. Min, X. Zheng, and C. Rong, “Load balancing
for multi-edge collaboration in wireless metropolitan area networks: A
two-stage decision-making approach,” IEEE Internet Things J., vol. 10,
no. 19, pp. 17124–17136, Oct. 2023, doi: 10.1109/JIOT.2023.3272010.

[24] A. M. Jasim and H. Al-Raweshidy, “Optimal intelligent edge-server
placement in the healthcare field,” Inst. Eng. Technol. Netw., vol. 13, no. 1,
pp. 13–27, 2023, doi: 10.1049/ntw2.12097.

[25] A. M. Jasim and H. Al-Raweshidy, “Towards a cooperative hierarchical
healthcare architecture using the HMAN offloading scenarios and SRT
calculation algorithm,” Inst. Eng. Technol. Netw., vol. 12, no. 1, pp. 9–26,
2023, doi: 10.1049/ntw2.12064.

[26] M. Asif-Ur-Rahman et al., “Toward a heterogeneous mist, fog,
and cloud-based framework for the Internet of Healthcare Things,”
IEEE Internet Things J., vol. 6, no. 3, pp. 4049–4062, Jun. 2019,
doi: 10.1109/JIOT.2018.2876088.

Ahmed M. Jasim (Member, IEEE) received the B.E.
degree in electronics and communications engineer-
ing from the University of Mosul, Mosul, Iraq, in
2007, the M.Sc. degree in computer systems and net-
works from East Ukrainian Volodymyr Dahl National
University, Luhansk Oblast, Ukraine, in 2014. He
is currently working toward the Ph.D. degree with
Brunel University London, Uxbridge, U.K.

His permanent work is as a Lecturer with the
Department of Computer Engineering, University of
Diyala, Baqubah, Iraq. He has authored or coauthored

a couple of journal and conference papers. His research interests include com-
puter networks, IoT, and edge/fog/cloud computing.

Hamed Al-Raweshidy (Senior Member, IEEE) re-
ceived the B.Eng. and M.Sc. degrees from the Univer-
sity of Technology, Baghdad, Iraq, in 1977 and 1980,
respectively, the Postgraduate Diploma degree from
Glasgow University, Glasgow, U.K., in 1987, and the
Ph.D. degree from Strathclyde University, Glasgow,
U.K., in 1991.

He was with the Space and Astronomy Research
Centre, Baghdad, PerkinElmer, Waltham, MA, USA,
British Telecom, London, U.K., Oxford University,
Oxford, U.K., Manchester Metropolitan University,

Manchester, U.K., and Kent University, Canterbury, U.K. He is currently the
Director with the Wireless Network Communications Centre, Brunel University
London, Uxbridge, U.K.

https://dx.doi.org/10.1109/TSC.2022.3174475
https://dx.doi.org/10.1007/s10586-023-03982-3
https://dx.doi.org/10.1109/ACCESS.2020.3007944
https://dx.doi.org/10.1109/TCSET49122.2020.235584
https://dx.doi.org/10.1109/ICCMC48092.2020.ICCMC-00036
https://dx.doi.org/10.1109/ICCMC48092.2020.ICCMC-00036
https://dx.doi.org/10.1109/ISWCS.2017.8108123
https://dx.doi.org/10.1109/ICECET55527.2022.9873068
https://dx.doi.org/10.1109/COMST.2017.2717482
https://dx.doi.org/10.1109/JIOT.2022.3190281
https://dx.doi.org/10.1109/ACCESS.2020.3011503
https://dx.doi.org/10.11622/smedj.2017073
https://dx.doi.org/10.1177/0023677219 ignorespaces 44541
https://dx.doi.org/10.1109/ISPA/IUCC.2017.00107
https://dx.doi.org/10.1109/TII.2018.2816590
https://dx.doi.org/10.1109/TII.2019.2892767
https://dx.doi.org/10.1109/TPDS.2020.2989869
https://dx.doi.org/10.1186/s13638-019-1624-9
https://dx.doi.org/10.1109/ACCESS.2022.3205741
https://dx.doi.org/10.1109/ACCESS.2019.2928582
https://dx.doi.org/10.1109/GLOBECOM48099.2022.10000605
https://dx.doi.org/10.1109/JIOT.2023.3272010
https://dx.doi.org/10.1049/ntw2.12097
https://dx.doi.org/10.1049/ntw2.12064
https://dx.doi.org/10.1109/JIOT.2018.2876088

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

