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Abstract—We perform experiments using dynamic data re-
duction on datasets of moderate complexity, with focus on
classification of a Micro-PCB image dataset. As deep learning
models increase in complexity, the data that they use increases
at a rate we can’t keep up with. The result of this is often slight
improvements to the model’s accuracy, at the improportional
cost of computational runtime, which increases the electricity
used, and ultimately carbon emissions. By using data reduction
techniques, we attempt to identify the least critical data to be ex-
cluded from training, which in turn cuts the environmental cost.
We show the effect of data reduction techniques on moderately
complex image data, including PCB images, to reduce runtime
by 2% and improve the accuracy by 0.013%.

Index Terms—Data reduction, Dynamic Data Reduction,
UMAP

I. INTRODUCTION

With every success of machine learning, the ambition and
complexity increases as we dive deeper into its possibilities.
However, as we increase complexity, we increase the need for
more data to fuel our network models. Such practice is steadily
becoming unsustainable, not only for data collection, but for
network training [1].

Current trends within the AI industry are shifting from
model-centric AI towards data-centric. The focus is changing
from how we can improve the model for performance to how
we can optimise our data for it. As we focus more on what
data is best for our models, we turn our focus to what data
we need most, and what data we do not [2] [3].

In this paper, we analyse both static and dynamic data re-
duction, using non-random data exclusion. We compare these
methods across two datasets of moderate training difficulty,
for the task of image classification.

The paper is structured as follows: Section II discusses
related work, and the methods and experiments are described
in Sections III and IV respectively. Section V discusses the
results, and Section VI concludes the study.

II. RELATED WORK

A. Dimensionality Reduction

For the task of image classification, the primary goal is
to differentiate images between classes. One might attempt
to plot each data point in a dataset, so that the borders that

separates the classes might be found. However, the number
of dimensions that an image represents cause near uniformity
of distance from the classes’ centroid. This problem is known
as the curse of dimensionality [4]. Consider the handwritten
image dataset, MNIST; each image is 28 pixels square with a
single color channel, meaning the dataset is 784-dimensional.
This becomes even more of a challenge as the size of data
increases, where the number of dimensions ranges in the
several hundred thousand.

To counter the effects of high dataset dimensionality, more
data points may be useed for neural network training. How-
ever, this is difficult for some datasets, where data is either
sparse, suffers from class imbalance, or lacks variation. For
example, medical image datasets are both sparse and suffer
from class imbalance [5], and PCB datasets have few images
per class with little difference between them, due to their
design.

Alternatively, Uniform Manifold Approximation and Pro-
jection (UMAP) is a dimensionality reduction algorithm that
has been used widely for pre-processing in machine learning
tasks [6]. It is applicable to many types of data and has been
greatly successful in tasks including image classification [7],
medical science [8], and electronics [9] [10]. By using UMAP
to reduce the dimensionality of a dataset, the distance between
each data point may be much more easily quantified, which
allows further processing tasks such as data reduction.

B. Static Data Reduction

Data reduction is uncommon practice in image classification
tasks, as more often, more data leads to better classification.
However, in cases where some data is undesired, it is beneficial
to remove it; for example, data trimming is the process of
removing extreme values, without comprimising the dataset
[11].

Research in data reduction has shown that data may be
categorised using dimensionality reduction. By displaying data
points in Euclidian space, the data points may be viewed
as ‘near to’ or ‘far from’ the classes’ centroid. With this
information, data may be excluded based on its distance from
its classes’ centroid. This method is effectively data trimming,
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where the valid data range is determined by distance from
each data points’ classes’ centroid.

Instead of reducing the network’s performance, as expected
due to fewer data points being used for training, the accuracy
of the classification may be improved [12]. On top of bonus
accuracy, by training with less data we reduce the runtime of
the training, which correlates to less spent on electricity, which
reduces the carbon footprint of the whole training process.

C. Dynamic Data Reduction

There has been recent research into dynamic data reduc-
tion [13]. Traditionally, the same quantity of data is used
throughout training. However, by using less data, both the
training time and computational resources may be reduced,
at the cost of classification accuracy. Also, by excluding some
data, the model may lose features vital for classification. To
counteract this, it is possible to select a fraction of the data to
use for a fraction of the training, and increase or decrease this
amount of training data as training progresses. This ensures
all data points of a dataset are utilised, but some data points
of less importance are used less for training. The question is,
therefore, how we determine the importance of a single data
point relative to its peers.

The experiments described in this paper investigate data
reduction by means of central and lateral data exclusion.
We also investigate the use of these methods combined with
simple dynamic data reduction methods based on work by
[13]. Previous works focus on adaptive pruning, whereby
data is removed at intervals during training, depending on
its performance [14]. This methodology differs from this by
defining the data reduction process prior to the start of training.
The reduced dataset is used for the first half of training, and
then the full unpruned dataset is used for the remainder of
training. The contributions of this paper are as follows:

• A novel combination of dynamic data reduction and
lateral/central exclusion is explored

• Testing on datasets of moderate complexity is performed
and analysed

• Evidence is given that the combined techniques used are
an improvement on standard data reduction.

III. METHODS

A. Datasets

Two datasets of moderate training difficulty were used for
training. They were chosen in order to evaluate the effective-
ness of data reduction techniques on more complex data than
those used previously [13], as well as to experiment on PCB
image classification specifically.

The first dataset is the Micro-PCB dataset, which consists
of 6500 training images, 1625 test images. Images are down-
scaled to 299x299x3 for training and testing. The data is
split across 13 classes with even class distribution. Each PCB
has been photographed from 25 different perspectives, and 5
unique rotations. This gives images in each class much more
variation, as images of PCBs from a single perspective would
offer very little variation.

The second dataset is Imagenette, which consists 9,469
training images, and 3,925 test images. Images were scaled
to 299x299x3 for training and testing. The dataset is split into
10 classes with between 858 and 993 images per class.

B. Hardware

All experimentation was performed on the same hardware,
for maximum consistency. The CO2 usage was computed with
an online calculator tool [15].

• CPU: Intel i7 10700
• GPU: RTX 4000
• RAM: 64GB
• CO2 emission per hour: 0.0922kg

C. Performance Metrics

The experiments were performed to observe the effect of
reducing data used each epoch of training. To quantify this, the
experimentation results provide the total number of evaluations
performed, where an evaluation is a single image used for
training. The runtime of each experiment is also recorded, to
show how the data reduction method used affects not only the
accuracy of the network, but the runtime. The runtime and
accuracy for each experiment is directly compared with the
baseline for each dataset, to show the increase or decrease in
performance in accuracy and runtime.

The p-values of each experiment are also calculated to
show the statistical significance of each resulting accuracy.
The closer this value is to 0, the greater the statistical sig-
nificance. The p-values were calculated based on analysis of
variance (ANOVA), using the accuracy results of the baseline
experiment (where the full dataset is used, with no reduction)
and each experiment with data reduction, individually.

As the model is otherwise unchanged when run with data
reduction techniques, the CO2 reduction of each experiment
is directly correlated to the runtime. Therefore, CO2 reduction
is equal to the runtime reduction.

D. Network Architecture

The model used for testing is a Convolutional Neural
Network with a Simple Monolithic Architecture. It uses 11
Convolutional Layers, and a primary and secondary Capsule
layer. The Capsule layer uses Homogeneous Vector Capsules,
which replace the fully connected layer, based on the model
used by [12]. This model shows relatively high performance
despite its few network layers.

Tests were run for 250 epochs with a batch size of 120.
Optimisation was performed using the Adam optimiser with
an initial learning rate of 0.98, and an exponential decay rate
of 0.001 per epoch. These values provide consistent initial
settings across all experiments for all datasets.

Online data augmentation was used during the training. The
augmentation used was uniform, and the same methods were
used as those performed in experiments in [12].
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E. Data Selection

By using UMAP for dimensionality reduction, the data
points are represented in Euclidian space, making each data
point observable in relation to every other data point in the
dataset. This in turn allows us to include or exclude data points
depending on their Euclidian distance to the classes’ centroid.
We use this method to perform experiments to show the effect
of exclusion of data closest to the classes’ centroid, and the
data furthest. Previous work has shown that some datasets
perform better with data close to the centroid, and others with
data further, which we investigate for the two datasets chosen.
Experiments performed exclude 1%, 5% and 10% of the data.

We define Static Data Exclusion as data exclusion that is the
same throughout training. Before training is started, the data
to be used for training is selected through the data selection
process, and throughout each loop of training the same reduced
dataset is used.

We define Dynamic Data Exclusion as data exclusion that
changes in some way during training. For the experiments
performed in this paper, we employ a ‘Data Step’ [13] method
to increase the amount of data used during training, at a given
point in training. Prior to that point, a reduced dataset is used
to train with.

IV. EXPERIMENTATION

A. Benchmark

Table I shows the benchmark runtimes and accuracies for
both datasets used. These values will be compared against the
results of all experiments to give a reference to the change in
runtime and accuracy of each data reduction technique.

TABLE I: Benchmark accuracies and runtime

Dataset Evaluations Runtime
(hours)

Test
Accuracy

Average Standard
Deviation

Micro-PCB 1,620,000 1:55 99.96% 5.73E-04
Imagenette 2,340,000 3:15 90.69% 4.05E-03

B. Static Data Exclusion

We perform a total of six experiments for each dataset to
show the effect of static data exclusion. Table II shows the
experimental results of the Micro-PCB dataset, and table III
shows the results of the Imagenette dataset.

The runtimes of all experiments are reduced; this is a
result of fewer evaluations being performed, due to the data
reduction. The amount of runtime reduction correlates propor-
tionally to the amount of data exclusion used.

The percentage differences of the experiments shows a high
amount of variance between lateral and central exclusion,
which is an unexpected result. The expected behaviour is that
the runtimes would be more similar, as the same amount of
reduction is performed, and therefore the same amount of
image evaluations. For example, with the Micro-PCB dataset,
lateral exclusion of 1% of the dataset gives a runtime reduction
of 4.280%, while central exclusion gives a runtime reduction

of 8.422%. This amounts to 4 minutes, which could be the
result of change in conditions that the computer was run under,
such as increase in room temperature.

The results of the experimentation also show a decrease in
average accuracy across all experiments. This decrease is also
proportional to the amount of data excluded. However, there is
a moderate difference in accuracy between central and lateral
exclusion. For example, with the Micro-PCB dataset and data
exclusion of 10%, lateral exclusion gives a decrease of 0.141%
and central exclusion gives a decrease in 0.282%. We must
consider the p-value of these experiments. Lateral exclusion
has a p-value of 0.13, and central exclusion has 0.02. As it is
more than 0.05, the values of lateral exclusion are shown to
be less statistically significant than those of central exclusion,
more prone to random change and less reliable. This may be
reduced by modifying the model to exclude operations that
use randomness, such as those in data augmentation.

The results of the Imagenette datasets show similar patterns.
The maximum reduction in runtime is 8.034%, which is half of
the maximum runtime reduction with the Micro-PCB dataset.
This can be explained by considering that the image data of the
Imagenette dataset is more complex than those of the Micro-
PCB dataset, and as such, evaluating a single image takes more
processing time.

The average accuracies of the Imagenette experiments show
a pattern of lateral exclusion being outperformed by central
exclusion. Firstly, all experiments, except lateral exclusion
of 1%, have a p-value of less than 0.1. These low values
indicate high statistical significance, which suggests a real
difference in model performance. A large p-value would
indicate low statistical significance, meaning any difference
in model performance is likely down to random chance.

The accuracy reductions are:
• lateral exclusion of 5%: 1.024%
• central exclusion of 5%: 0.909%
• lateral exclusion of 10%: 1.895%
• central exclusion of 10%: 0.919%

The accuracy reductions of lateral exclusion experiments are
worse then those of central exclusion. This correlates to work
by [12], where data far from the classes’ centroid appears to
hold more important information for classifying an image.

C. Dynamic Data Exclusion
Based on work by [13], we split the training process into

two sections. The first section uses a reduced dataset, and the
second section uses the complete dataset. Figure 1 shows an
example of the data step for the Micro-PCB dataset, where:

• SE
1 = 125 epochs,

• SE
2 = 125 epochs,

• SD
1 = 90% of the dataset,

• SD
2 = 100% of the dataset.

Table IV shows the experimental results on the Micro-
PCB dataset, and table V shows the results on the Imagenette
dataset.

The first notable result is that p-values are highly variable.
The closer this value is to 1, the less statistically significant it
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TABLE II: Micro-PCB dataset results with static data reduction

Test type Evals Data
exclusion

Runtime
(hours) Test Accuracy Percentage difference

Average P-value Runtime Average Accuracy
Full 1,620,000 - 1:55 99.962% - - -

Lateral exc. 1,590,000 1.00% 1:50 99.833% 0.1657 -4.280% -0.128%
Central exc. 1,590,000 1.00% 1:46 99.897% 0.3015 -8.422% -0.064%
Lateral exc. 1,530,000 5.00% 1:42 99.910% 0.4284 -11.781% -0.051%
Central exc. 1,530,000 5.00% 1:45 99.731% 0.0712 -9.024% -0.231%
Lateral exc. 1,440,000 10.00% 1:36 99.821% 0.1300 -16.654% -0.141%
Central exc. 1,440,000 10.00% 1:36 99.679% 0.0210 -16.903% -0.282%

TABLE III: Imagenette dataset results with static data reduction

Test type Evals Data
exclusion

Runtime
(hours) Test Accuracy Percentage difference

Average P-value Runtime Average Accuracy
Full 2,340,000 - 3:19 90.686% - - -

Lateral exc 2,310,000 1.00% 3:18 90.347% 0.3394 -0.962% -0.373%
Central exc 2,310,000 1.00% 3:18 89.826% 0.0660 -0.996% -0.948%
Lateral exc 2,220,000 5.00% 3:12 89.757% 0.0269 -3.548% -1.024%
Central exc 2,220,000 5.00% 3:14 89.861% 0.0386 -2.989% -0.909%
Lateral exc 2,100,000 10.00% 3:03 88.967% 0.0147 -8.034% -1.895%
Central exc 2,100,000 10.00% 3:08 89.852% 0.0408 -5.910% -0.919%

TABLE IV: Micro-PCB dataset results with dynamic data reduction

Test type Evals Data
exclusion

Runtime
(hours) Test Accuracy Percentage difference

Average P-value Runtime Average Accuracy
Full 1,620,000 - 1:55 99.962% - - -

Lateral exc. 1,605,000 1.00% 1:53 99.974% 0.7328 -2.150% 0.013%
Central exc. 1,605,000 1.00% 1:51 99.897% 0.3015 -3.381% -0.064%
Lateral exc. 1,575,000 5.00% 1:53 99.974% 0.6810 -2.365% 0.013%
Central exc. 1,575,000 5.00% 1:50 99.885% 0.0598 -4.926% -0.077%
Lateral exc. 1,530,000 10.00% 1:48 99.731% 0.2222 -6.427% -0.231%
Central exc. 1,530,000 10.00% 1:48 99.910% 0.3393 -6.413% -0.051%

TABLE V: Imagenette dataset results with dynamic data reduction

Test type Evals Data
exclusion

Runtime
(hours) Test Accuracy Percentage difference

Average P-value Runtime Average Accuracy
Full 2,340,000 - 3:19 90.686% - - -

Lateral exc. 2,325,000 1.00% 3:20 90.217% 0.1516 0.041% -0.517%
Central exc. 2,325,000 1.00% 3:20 90.556% 0.7184 0.093% -0.144%
Lateral exc. 2,280,000 5.00% 3:16 90.399% 0.3929 -1.744% -0.316%
Central exc. 2,280,000 5.00% 3:11 90.122% 0.1394 -4.176% -0.622%
Lateral exc. 2,220,000 10.00% 3:12 90.182% 0.4018 -3.609% -0.555%
Central exc. 2,220,000 10.00% 3:12 90.512% 0.7091 -3.607% -0.191%

should be considered as. This may seem like an unfavourable
result, but this tells us that the results are less distinguishable
from the benchmark accuracies. As we are trying to reduce
the data and maintain performance, this is in fact ideal.

The results of the Micro-PCB dataset show two experiments
with an increase in average accuracy. Lateral exclusion with
both 1% and 5% exclusion have an accuracy increase of
0.013%. As previously mentioned, the high p-values of 0.74
and 0.68 show that the results are not statistically significant,
and highly prone to small random changes in the network
model. Therefore, unfortunately, we must conclude that this
result is unreliable.

The results of the Imagenette dataset show average accuracy
decrease across all experiments. As with the results of the
Micro-PCB dataset, the results are unreliable due to the
varying p-values. Any further analysis can only be considered
as speculation.

V. DISCUSSION

The results of the dynamic data reduction experiments give
much higher p-values than those of static data reduction.
This implies that the difference in accuracy compared to the
benchmark is less statistically significant, and any differences
may be down to random change. This means that the results
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Fig. 1: Dynamic data allocation with a step from 90% data
to full dataset use, for Micro-PCB dataset

are less distinguishable from the benchmark; as the task is
to reduce the data use and maintain the accuracy as much as
possible, this is a desirable result.

The runtime reductions of the Micro-PCB dataset are greater
than those of the Imagenette dataset, despite the same amount
of data reduction implemented. This result shows that the
Imagenette dataset requires more time per image evaluation
than that of the Micro-PCB dataset, which suggests that
the images of the Micro-PCB dataset are less complex than
those of Imagenette. Therefore, the Micro-PCB dataset can be
classed as less computationally demanding, and more suitable
for prototyping new technologies and further experimentation.

The Imagenette dataset has less performance reduction
when trained using central data exclusion. This correlates to
the conclusions of [12]. This means that the data furthest
from the centroid holds more important features necessary for
distinguishing the image from other classes, compared to data
closer to the centroid.

VI. CONCLUSION

The results of this paper have shown the benefits of dynamic
data reduction combined with data selection by means of
lateral and central data identification. The combination of
these techniques yields promising results, although there is
a question regarding the reliability of the reported accuracies,
due to the high p-values they are accompanied with. Future
work might involve conducting experiments that yield low
p-values, so there can be more certainty that the results
are different to the benchmark. More extreme data reduction
would likely force this difference.

Another research direction would be to experiment with
alternative methods of dynamic data reduction, such as starting
training with the full dataset and stepping down to a reduced
dataset. Also, these methods may be applied to other datasets,
to identify what type of data benifits these methods most. In
terms of the Micro-PCB dataset, data may be selected based
on its perspective, to give focus to the most valuable viewing
angles.

The improved accuracies shown in this paper are small, but
with further investigation and optimisation of dynamic data
reduction, we can improve how we train our networks.
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