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a b s t r a c t 

We consider the single-item single-stocking location stochastic inventory system under a fixed ordering 

cost component. A long-standing problem is that of determining the structure of the optimal control 

policy when this system is subject to order quantity capacity constraints; to date, only partial character- 

isations of the optimal policy have been discussed. An open question is whether a policy with a single 

continuous interval over which ordering is prescribed is optimal for this problem. Under the so-called 

“continuous order property” conjecture, we show that the optimal policy takes the modified multi- (s, S) 

form. Moreover, we provide a numerical counterexample in which the continuous order property is vi- 

olated, and hence show that a modified multi- (s, S) policy is not optimal in general. However, in an 

extensive computational study, we show that instances violating the continuous order property do not 

surface, and that the plans generated by a modified multi- (s, S) policy can therefore be considered, from 

a practical standpoint, near-optimal. Finally, we show that a modified (s, S) policy also performs well in 

this empirical setting. 

© 2023 The Author(s). Published by Elsevier B.V. 
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1. Introduction 

This study focuses on one of the fundamental problems in 

inventory control theory ( Arrow, Harris, & Marschak, 1951; Por- 

teus, 2002 ): the periodic review single-item single-stocking lo- 

cation stochastic inventory system under nonstationary demand, 

complete backorders, and a fixed ordering cost component. By in- 

troducing the concept of K-convexity, Scarf (1960) proved, under 

mild assumptions, that the optimal control policy takes the well- 

known ( s, S) form: if the inventory level falls below the reorder 

point s , one should place an order and raise inventory up to level 

S; otherwise, one should not order. Compared to the case investi- 

gated by Scarf , in which the order quantity is unconstrained, the 

capacitated version of the stochastic inventory problem is inher- 

ently harder, both structurally and computationally. This work is 

concerned with this variant of the problem. We assume the ca- 
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pacity is fixed and known, as opposed to uncertain (e.g. Ciarallo, 

Akella, & Morton, 1994 ). 

If the fixed ordering cost is absent, but ordering capacity con- 

straints are enforced, a so-called modified base stock policy is op- 

timal for both the finite and infinite horizon cases ( Federgruen & 

Zipkin, 1986a; 1986b ). While in a classical base stock policy one 

simply orders up to S, in a modified base stock policy, when the in- 

ventory level falls below S, one should order up to S, or as close to 

S as possible, given the ordering capacity. The classical base stock 

policy is thus “modified” to embed order saturation. 

In the presence of a positive fixed ordering cost, Wijngaard 

(1972) was the first to investigate the influence of capacity con- 

straints on the structure of the optimal control policy. In analogy 

to the aforementioned modified base stock policy, Wijngaard con- 

jectured that an optimal strategy may feature a so-called modified 

(s, S) structure : if the inventory level is greater or equal to s , do not 

order; otherwise, order up to S, or as close to S as possible, given 

the ordering capacity. Unfortunately, both Wijngaard (1972) and 

Shaoxiang & Lambrecht (1996) provided counterexamples that 

ruled out the optimality of a modified (s, S) policy. However, 

Shaoxiang & Lambrecht (1996) proved that, under stationary de- 

mand and a finite horizon, the optimal policy features a so-called 

X − Y band structure: when initial inventory level is below X , it 

is optimal to order at full capacity; when initial inventory level 
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is above Y , it is optimal to not order. Gallego & Scheller-Wolf 

(20 0 0) introduced CK-convexity, a generalisation of Scarf’s K- 

convexity; by leveraging this property, they extended the analysis 

in Shaoxiang & Lambrecht (1996) and further characterized the 

optimal policy by identifying four regions: in two of these regions 

the optimal policy is completely specified, while it is only partially 

specified in the other two regions. Chan & Song (2003) discussed 

further properties of the optimal order policy when the inven- 

tory level falls within Shaoxiang & Lambrecht ’s X − Y band, and 

devised an efficient algorithm to compute optimal policy param- 

eters. Shaoxiang (2004) extended the analysis in Shaoxiang & 

Lambrecht (1996) and proved that the optimal policy continues to 

exhibit the X − Y band structure under infinite horizon; moreover, 

Shaoxiang proved that the X − Y band width is no more than the 

capacity. Gallego & Toktay (2004) investigated the case in which 

the fixed ordering cost is large relative to the variable cost of a 

full order; this assumption allowed them to restrict their analysis 

to full-capacity orders; under this setting they showed that the 

optimal policy is a threshold policy: if the inventory level falls 

below the threshold s , issue a full-capacity order; otherwise, do 

not order. Finally, Shi, Zhang, Chao, & Levi (2014) developed an 

approximation algorithm with worst-case performance guarantee. 

As mentioned in Shi et al. (2014) , when order quantity capac- 

ity constraints are enforced, only some partial characterization of 

the structure of the optimal control policy is available in the liter- 

ature. To the best of our knowledge, the problem of determining 

the structure of the optimal policy of the capacitated stochastic in- 

ventory problem remains open. A long-standing open question in 

the literature, originally posed by Gallego & Scheller-Wolf (20 0 0) , 

is whether a policy with a single continuous interval over which 

ordering is prescribed is optimal for this problem. This is the so- 

called “continuous order property” conjecture, which was later also 

investigated by Chan & Song (2003) . To the best of our knowledge, 

to date this conjecture has never been confirmed or disproved. This 

gap motivates the present study. 

We make the following contributions to the literature on 

stochastic inventory control. 

• In light of the results presented in Shaoxiang (2004) , we 

show how to simplify the optimal policy structure presented 

by Gallego & Scheller-Wolf (20 0 0) . Moreover, we extend the 

discussion in Gallego & Scheller-Wolf (20 0 0) and provide a 

full characterisation of the optimal policy for instances for 

which the continuous order property holds. In particular, we 

show that the optimal policy takes the modified multi- (s, S) 

form . 
• We provide a numerical counterexample in which the con- 

tinuous order property is violated. This closes a fundamen- 

tal and long standing question in the literature: a policy 

with a single continuous interval over which ordering is pre- 

scribed is not optimal in general. Since generating similar 

counterexamples is far from trivial, in our Appendix we il- 

lustrate the analytical insights we relied upon to generate 

such instances. 
• In an extensive computational study comprising 9720 in- 

stances constructed by using realistic demand patterns and 

cost configurations investigated in the literature, we show 

that no violation of the continuous order property is found. 

From a practical standpoint, a modified multi- (s, S) order- 

ing policy can therefore be considered near-optimal for the 

problem under scrutiny. Moreover, we empirically find that 

the number of reorder-point/order-up-to-level pairs that this 

policy features in each period is always less or equal to 6 in 

our test bed. Finally, we show that a well-known heuristic 

policy, the modified ( s, S) policy ( Wijngaard, 1972 ), also per- 

forms well in this empirical setting. 

The rest of this paper is organised as follows. In Section 2 , 

we introduce the well-known stochastic inventory problem as 

originally discussed in Scarf (1960) . In Section 3 , we extend the 

problem description to accommodate order quantity capacity con- 

straints. In Section 4 we summarise known properties of the op- 

timal policy from the literature. In Section 5 we introduce the 

so-called “continuous order property,” which has been previously 

conjectured in the literature, and illustrate the structure that 

the optimal policy would take if this property were to hold. In 

Section 6 we present a numerical counterexample in which the 

continuous order property is violated. In Section 7 we illustrate re- 

sults of our extensive computational study aimed at showing that 

no violation of the continuous order property occurs, that a mod- 

ified multi- (s, S) ordering policy is near-optimal from a practical 

standpoint, and that a modified (s, S) ordering policy also performs 

well in this empirical setting. In Section 8 we draw conclusions. 

2. Preliminaries on the ( s, S) policy 

The rest of this work is concerned with a single-item single- 

stocking point inventory control problem. A finite planning hori- 

zon of n discrete time periods, which are labelled in reverse order 

for convenience, is assumed. Period demands are stochastic, d t in 

period t , with known probability density and cumulative distribu- 

tion functions f t and F t , respectively. The cost components that are 

taken into account include: the ordering cost c(x ) for placing an 

order for x units; the inventory holding cost h for any excess unit 

of stock carried over to next period; and the shortage cost p that 

is incurred for each unit of unmet demand in any given period. 

Unmet demand is backordered. Without loss of generality, it is as- 

sumed that there is no lead-time and deliveries are instantaneous. 1 

Let x represent the pre-order inventory level, and 

̂ C n (x ) denote 

the minimum expected total cost achieved by employing an opti- 

mal replenishment policy over the planning horizon n, . . . , 1 ; then 

one can write 

̂ C n (x ) � min 

x ≤y 

{
c(y − x ) + L n (y ) + 

∫ ∞ 

0 

̂ C n −1 (y − ξ ) f n (ξ )d ξ

}
, 

where ̂ C 0 � 0 and L n (y ) � 

∫ y 
0 

h (y − ξ ) f n (ξ )d ξ + 

∫ ∞ 

y p(ξ − y ) f n (ξ ) 

d ξ . 

Following Scarf (1960) , we assume that the ordering cost takes 

the form 

c(x ) � 

{
0 x = 0 , 

K + v x x > 0 . 

For convex L n (y ) , Scarf (1960) proved that the optimal policy 

takes the (s, S) form, and thus features two policy control parame- 

ters: s and S. In the (s, S) policy, an order of size S − x is placed if 

and only if the pre-order inventory level is x < s . 

More specifically, Scarf (1960) introduced the concept of K- 

convexity ( Definition 1 ). 2 

Definition 1 K-convexity . Let K ≥ 0 , g(x ) is K-convex if for all x , 

a > 0 , and b > 0 , (
K + g(x + a ) − g(x ) 

)
/a ≥

(
g(x ) − g(x − b) 

)
/b. 

By leveraging this concept, Scarf proved that ̂ G n (y ) is K-convex, 

where 

̂ G n (y ) � v y + L n (y ) + 

∫ ∞ 

0 

̂ C n −1 (y − ξ ) f n (ξ )d ξ . 

1 Under complete backordering, it is sufficient to replace the inventory level with 

the inventory position as the state variable, and modify the demand distribution to 

account for the presence of positive lead-time (Scarf, 1960, p. 201) . 
2 A geometrical interpretation of K-convexity can be found in Porteus (2002 , p. 

106–107). 
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This observation implies that the (s, S) policy is optimal, and the 

policy parameters s and S satisfy ̂ G n (s ) = ̂

 G n (S) + K. Note that 

when the order quantity is not subject to capacity constraints, S

coincides with the global minimizer of ̂ G n (y ) . In what follows, we 

will see that this may not be the case when a capacity constraint 

is enforced on the order quantity. 

3. Capacitated ordering 

The stochastic inventory problem investigated in Scarf 

(1960) assumes that order quantity Q in each period can be 

as large as needed. In practice, one may want to impose the 

restriction that 0 ≤ Q ≤ B , where B is a positive value denoting the 

maximum order quantity in each period. 

We generalise ̂ C n (x ) and 

̂ G n (x ) to reflect capacity restrictions 

C n (x ) � min 

x ≤y ≤x + B 

{
c(y − x ) + L n (y ) + 

∫ ∞ 

0 

C n −1 (y − ξ ) f n (ξ )d ξ

}
; (1) 

G n (y ) � v y + L n (y ) + 

∫ ∞ 

0 

C n −1 (y − ξ ) f n (ξ )d ξ . (2) 

Finally, we present a useful result that will be used in the coming 

sections. 

Definition 2. A function f : R → R is coercive if lim x →−∞ 

f (x ) = 

lim x →∞ 

f (x ) = ∞ . 

Lemma 1. G n (x ) is coercive. 

Proof. The limiting behaviour of G n (x ) can be characterized 

as lim x →∞ 

G 

′ 
n (x ) = nh and lim x →−∞ 

G 

′ 
n (x ) = −np, and from the 

fundamental theorem of calculus it follows lim x →∞ 

G n (x ) = 

lim x →−∞ 

G n (x ) = ∞ . �

4. Review of known properties of the optimal policy 

We next introduce 3 “(K, B ) -convexity 1” (KBC1) for a function g

( Gallego & Scheller-Wolf, 20 0 0 ). 

Definition 3. Let K ≥ 0 , B ≥ 0 , g is KBC1 if it satisfies (
K + g(x + a ) − g(x ) 

)
/a ≥

(
g(y ) − g(y − b) 

)
/b 

for 0 < a ≤ B , 0 < b ≤ B , and y ≤ x . 

Example 1. Consider a planning horizon of n = 4 periods, and a 

demand d t distributed in each period t = 1 , . . . , n according to a 

Poisson law with rate λt ∈ { 20 , 40 , 60 , 40 } . Other problem parame- 

ters are K = 100 , h = 1 and p = 10 ; to better conceptualise the ex- 

ample we let v = 0 . In Fig. 1 we plot G n (y ) and illustrate the con- 

cept of KBC1 for the case in which B = 65 . 

Lemma 2. If G n (resp. C n ) is KBC1 and it is optimal to place an order 

at x 0 , then G n (y ) (resp. C n (y ) ) is nonincreasing for y ≤ x 0 . 

Proof. Since G n is KBC1, if it is optimal to place an order at x 0 , say 

an order of a units, then 0 ≥ (K + G n (x 0 + a ) − G n (x 0 )) /a , and G n 

is nonincreasing for y ≤ x 0 , since 0 ≥ (K + G n (x 0 + a ) − G n (x 0 )) /a ≥
(G n (y ) − G n (y − b)) /b, for y ≤ x 0 and 0 < b ≤ B . The proof for C n is 

identical. �

Lemma 3. If G n is KBC1, there exists a pair of values S m 

and s m 

such 

that s m 

� sup { x | C n (x ) = G n (x ) − v x } is the maximum inventory level 

at which it is optimal to place an order, and S m 

� s m 

+ a , where 0 < 

a ≤ B is the order quantity at s m 

. 

3 This was originally called strong CK-convexity in Gallego & Scheller-Wolf 

(20 0 0) ; however, in line with Scarf (1960) , in the present work we used C to de- 

note the cost function, and B for the ordering capacity, hence the concept has been 

renamed (K, B ) -convexity. 

Fig. 1. KBC1 in the context of Example 1 , when B = 65 . For the sake of illustration, 

ˆ g (y ) � (g(y ) − g(y − b)) /b, x = y , and b is a small positive number, obtaining K + 

G n (x + a ) − G n (x ) − a ̂ G n (x ) ≥ 0 for 0 < a ≤ B . 

Proof. Let x 0 be any point at which it is optimal to order, say, 

a units, 0 < a ≤ B . G n (y ) is a nonincreasing function for y ≤ x 0 
( Lemma 2 ). This result implies that there must exist an upper 

bound on inventory level beyond which no ordering is optimal. 

Otherwise G n (y ) would be a nonincreasing function for all y , which 

contradicts Lemma 1 . �

We next introduce “(K, B ) -convexity 2” (KBC2) for a function g

( Shaoxiang, 2004 ). 

Definition 4. Let K ≥ 0 , B ≥ 0 , g is KBC2 if it satisfies (
K + g(x + a ) − g(x ) 

)
/a ≥

(
K + g(y ) − g(y − B ) 

)
/B 

for 0 < a ≤ B and y ≤ x . 

Example 2. In Fig. 2 we plot C n (y ) and illustrate the concept of 

KBC2 for our numerical example. 

Definition 5. g is (K, B ) -convex if it satisfies KBC1 and KBC2. 

Theorem 1. G n (x ) and C n (x ) are (K, B ) -convex. 

Proof. Proofs are available in Gallego & Scheller-Wolf (20 0 0) , 

Shaoxiang (2004) . �

Originally in Shaoxiang & Lambrecht (1996) , and then by intro- 

ducing the concept of KBC2 in Shaoxiang (2004) , Shaoxiang & Lam- 

brecht established existence of a level Y � s m 

beyond which it is 

not optimal to order, and of another level X � Y − B below which 

it is optimal to order up to capacity. The optimal policy therefore 

features a so-called “X − Y band” structure. 

Lemma 4. If G n is KBC2, it is optimal to order up to capacity at any 

y ≤ s m 

− B . 

Proof. Let x 0 be any point at which it is optimal to order some- 

thing. By KBC2, 

0 > 

(
K + G n (x 0 + a ) − G n (x 0 ) 

)
/a ≥

(
K + G n (y ) − G n (y − B ) 

)
/B, 

for all y ≤ x 0 . Thus, 0 > K + G n (y ) − G n (y − B ) , because G n is non- 

increasing for y ≤ x 0 . Hence, it is optimal to order up to capacity 

at any y ≤ x 0 − B . �

Gallego & Scheller-Wolf (20 0 0) further characterised the struc- 

ture of the optimal policy within Shaoxiang & Lambrecht ’s X − Y 
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Fig. 2. KBC2 in the context of Example 1 , when B = 65 . For the sake of illustration, we set x = y . Intuitively, for all a ≤ B , the slope of segment X is greater or equal to the 

slope of segment Z. 

band. In particular, they showed that 

C n (x ) = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

G 

B 
n (x ) x < min { s ′ − B, s } 

α min {−v x + G n (x ) , G 

B 
n (x ) } + (1 − α) G 

S 
n (x ) min { s ′ − B, s } ≤ x < max { s ′ − B, s } 

min {−v x + G n (x ) , G 

S 
n (x ) } max { s ′ − B, s } ≤ x ≤ s ′ 

−v x + G n (x ) x > s ′ 

(3) 

where 

G 

B 
n (x ) � K − v x + G n (x + B ) 

G 

S 
n (x ) � K − v x + min 

x ≤y ≤x + B 
G n (y ) 

s � inf 

{
x | K + min 

x ≤y ≤x + B 
G n (y ) − G n (x ) ≥ 0 

}

s ′ � max 

{
x ≤ S m 

| K + min 

x ≤y ≤x + B 
G n (y ) − G n (x ) ≤ 0 

}
and α is an indicator variable that takes value 1 if s ′ − s > B , and 0 

otherwise. 

Lemma 5. s ′ − B < s ≤ s ′ 

Proof. Observe that s m 

= s ′ , thus s ≤ s ′ ; by Lemma 4 , it is optimal 

to order up to capacity at any x ≤ s m 

− B ; hence C n (x ) = G 

B 
n (x ) for 

x < s ′ − B , and C n (x ) = G 

S 
n (x ) at x = s ′ − B ; therefore s > s ′ − B . �

By leveraging Lemma 5 , it is possible to further simplify Gallego 

& Scheller-Wolf ’s structure of the optimal policy as follows. To the 

best of our knowledge, this simplified policy structure has not 

been previously discussed in the literature. 

Lemma 6. 

C n (x ) = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

G 

B 
n (x ) x < s m 

− B 

G 

S 
n (x ) s m 

− B ≤ x < s 

min {−v x + G n (x ) , G 

S 
n (x ) } s ≤ x ≤ s m 

−v x + G n (x ) x > s m 

(4) 

Proof. Observe that s m 

= s ′ ; because of Lemma 5 , it is clear that 

s m 

− s ≤ B and α = 0 . �

5. The modified multi-( s, S) policy 

We next introduce the continuous order property, and charac- 

terise the structure of the optimal policy for instances for which 

this property holds. 

Definition 6 (Continuous Order Property) . Let x 0 be an inventory 

level at which it is optimal to place an order, C n is said to have the 

continuous order property if it is optimal to place an order at y , 

for all y < x 0 . 

Lemma 7. If C n has the continuous order property, { x | C n (x ) −
(G n (x ) − v x ) < 0 } is a convex set. 

Proof. If C n has the continuous order property, in Gallego & 

Scheller-Wolf ’s policy s = s ′ ; hence for all x ≤ s ′ it is optimal to 

order, that is C n (x ) − (G n (x ) − v x ) ≤ 0 , and for all x > s ′ it is opti- 

mal to not order, that is C n (x ) − (G n (x ) − v x ) > 0 ; hence { x | C n (x ) −
(G n (x ) − v x ) < 0 } is a convex set. �

In Fig. 3 we illustrate Lemma 7 for our numerical example, 

which incidentally satisfies the continuous order property. 

Consider C n as defined in Eq. (1) , let this function be (K, B ) - 

convex, and assume that the continuous order property holds. 

When inventory falls below the reorder threshold s m 

, defined in 

Lemma 3 , the optimal policy takes the following form: at the be- 

ginning of each period, let x be the initial inventory, the order 

quantity Q is computed as 

Q = 

{
min { S k − x, B } s k −1 < x ≤ s k , 

0 x > s m 

; (5) 

where k = 1 , . . . , m and s 0 = −∞ . In essence, the policy features 

m reorder thresholds s 1 < s 2 < . . . < s m 

and associated order-up- 

to-levels S 1 < S 2 < . . . < S m 

; at the beginning of each period, if in- 

ventory drops between reorder threshold s k and reorder threshold 

s k −1 , it is optimal to order a quantity Q = min { S i − x, B } . For con- 

venience, we denote the case Q = B as saturated ordering , and the 

case 0 < Q < B as unsaturated ordering . We shall name this control 

rule modified multi - (s, S) policy , or ( s k , S k ) policy in short. This pol- 

icy structure was also described in Gallego & Scheller-Wolf (20 0 0 , 

p. 612); however, Gallego & Scheller-Wolf did not establish a rela- 

tion between the continuous order property and the optimality of 

this policy. 
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Fig. 3. Lemma 7 in the context of Example 1 , when B = 65 . 

Lemma 8. Consider S m 

and s m 

as defined in Lemma 3 , and let S ∗ � 

arg min y G n (y ) , 

(a) S m 

≤ S ∗; 

(b) G n (S m 

) ≤ G n (x ) for x < S m 

; 

(c) G n (s m 

) > G n (x ) for s m 

< x ≤ S m 

. 

Proof. (a) If s m 

≥ S ∗ − B , then we must necessarily order up to S ∗

as no point dominates a global minimum. If s m 

< S ∗ − B , then we 

do not have sufficient capacity to reach S ∗, hence the optimum or- 

der quantity will be a value a ≤ B ; and from s m 

we will order up to 

a point S m 

� s m 

+ a ≤ S ∗. (b) Assume, ex absurdo, G n (S m 

) > G n (S) 

for some S such that s m 

< S < S m 

; then from s m 

it would not be 

optimal to order up to S m 

, which contradicts Lemma 3 . (c) Assume, 

ex absurdo, G n (s m 

) ≤ G n (s ) for some s such that s m 

< s ≤ S m 

; then 

from s it would be optimal to order up to S m 

, this contradicts the 

fact that s m 

is the maximum inventory level at which it is optimal 

to place an order ( Lemma 3 ). �

Observe that S m 

is not necessarily a minimizer of G n ; this is 

further illustrated in Appendix A . 

By building upon (K, B ) -convexity of G n (x ) and C n (x ) , and 

upon the assumption that the continuous order property in 

Definition 6 holds, we next establish existence of reorder thresh- 

olds s 1 < s 2 < . . . < s m 

and associated order-up-to-levels S 1 < S 2 < 

. . . < S m 

that can be used to control the system according to the 

optimal ordering policy in Eq. (5) . 

Definition 7. A function g : D → R defined on a convex subset D ∈ 

R is quasiconvex if, for all x, y ∈ D and λ ∈ [0 , 1] , 

g 
(
λx + (1 − λ) y 

)
≤ max 

{
g(x ) , g(y ) 

}
. 

Definition 8. The quasiconvex envelope (QCE) ˜ g of a function g on 

a convex subset D ∈ R is defined as 

sup 

{
˜ g (x ) | ̃  g : R → R quasiconvex , ̃  g (x ) ≤ g(x ) ∀ x ∈ D 

}
. 

Lemma 9. The QCE of G n on interval (s m 

, S m 

) is nonincreasing. 

Proof. From Lemma 8 b and Lemma 8 c, it follows G n (s m 

) > G n (x ) ≥
G n (S m 

) for s m 

< x < S m 

. Hence, the QCE of G n on interval (s m 

, S m 

) 

is a nonincreasing function. �

Definition 9. Consider a function g : R → R , a point x in the do- 

main of g is a strict local minimum from the right if there exists 

δ > 0 such that g(y ) > g(x ) for all y ∈ (x, x + δ] . 

Definition 10. Let [ a, b] , a ≤ b, in the domain of a function g be 

a compact interval such that b is a strict local minimum from 

the right, g(x ) = g(b) for all x ∈ [ a, b] , and g(a ) = ˜ g (a ) ; [ a, b] non- 

trivially belongs to the QCE ˜ g of g, if there exists δ > 0 such that 

g(y ) > g(x ) and g(y ) = ˜ g (y ) for all y ∈ (a − δ, a ] ; [ a, b] trivially be- 

longs to the QCE ˜ g of g, if there is no δ > 0 such that g(y ) = ˜ g (y ) 

for all y ∈ (a − δ, a ) . 

The concepts introduced in Definition 10 are illustrated in 

Fig. 4 . 

Assume G n is (K, B ) -convex; this function must be increasing 

over some intervals in (s m 

, ∞ ) , otherwise G n (y ) would be a non- 

increasing function for all y , which contradicts Lemma 1 . Let ̂ S be 

the set of all points a such that interval [ a, b] ∈ (s m 

, S m 

) nontrivially 

belongs to the QCE of G n . 

Lemma 10. Let x 0 be any point at which it is optimal to place an 

order; then either it is the case that arg min y ∈ (x 0 ,x 0 + B ] G n (y ) = x 0 + B , 

or that arg min y ∈ (x 0 ,x 0 + B ] G n (y ) = ̂

 S k , for some ̂  S k ∈ 

̂ S . 

Proof. Assume that at x 0 it is optimal to place an order. Then ei- 

ther the lowest cost will be attained by ordering up to x 0 + B , or 

by ordering up to some local minimum S ∈ (x 0 , x 0 + B ) . Consider 

this latter case. We first show that S must belong to the QCE of G n 

on (s m 

, S m 

) . Assume, ex absurdo, that S does not belong to the QCE 

of G n on (s m 

, S m 

) ; since the QCE of G n is nonincreasing on (s m 

, S m 

) 

( Lemma 9 ), there must exist some other local minimum 

̂ S , such 

that s m 

< ̂

 S < S and G n ( ̂  S ) < G n (S) , which contradicts the fact that 

at x 0 it is optimal to order up to S. Finally, assume interval [ S, b] , 

for some b ≥ S, trivially belongs to the QCE of G n on (s m 

, S m 

) , this 

means there must exist some other local minimum 

̂ S , such that 

s m 

< ̂

 S < S and G n ( ̂  S ) = G n (S) ; hence ordering up to S is no better 

than ordering up to ̂  S . �

Lemma 10 is further illustrated in a numerical example pre- 

sented in Appendix B . 

In what follows, we shall assume that ̂ S � { ̂  S 1 , ̂
 S 2 , . . . , ̂

 S w −1 } ⊆ S
is an ordered set, so that s m 

< ̂

 S 1 < ̂

 S 2 < . . . < ̂

 S w −1 < S m 

, and | ̂  S | ≥
0 . 

Lemma 11. G n (s m 

) > G n ( ̂  S 1 ) > G n ( ̂  S 2 ) > . . . > G n ( ̂  S w −1 ) > G n (S m 

) . 

Proof. Immediately follows from the definition of ̂ S and from 

Lemma 9 . �

Corollary 1. ̂ S is empty if G n is quasiconvex on (s m 

, S m 

) . 

Proof. If G n quasiconvex on (s m 

, S m 

) , from Lemma 9 it follows that 

G n is nonincreasing, and hence it does not admit any strict local 

minima from the right in this interval. �

For the sake of convenience let ̂  S w 

� S m 

. 

Lemma 12. For each ̂ S k ∈ 

̂ S there exists a nonempty set { b| ̂  S k < b < ̂ S k +1 , G n (b) ≥ G n ( ̂  S k ) } . 

Proof. Consider s m 

and S m 

as defined in Lemma 3 . From 

Lemma 11 , G n ( ̂  S k ) > G n ( ̂  S k +1 ) , for s m 

< ̂

 S k < ̂

 S k +1 < S m 

. The result 

in this lemma follows from the extreme value theorem, since 

G n must attain a local maximum at x ∗ ∈ ( ̂  S k , ̂
 S k +1 ) , such that 
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Fig. 4. Graphical illustration of the concepts introduced in Definition 10 ; note that intervals [ a, b] and [ c, d] can be degenerate, and reduce to a single point. 

G n (x ∗) > G n ( ̂  S k ) > G n ( ̂  S k +1 ) . Note that there cannot be a point S ∈ ̂ S , such that ̂  S k < S < ̂

 S k +1 . �

Definition 11. For k = 1 , . . . , w − 1 , b k � max { b| ̂  S k < b < ̂

 S k +1 , 

G n (b) ≥ G n ( ̂  S k ) } , and s k � b k − B ; finally, for the sake of conve- 

nience, we define s 0 � −∞ . 

Lemma 13. s k −1 < ̂

 S k − B < s k 

Proof. This follows from Definition 11 . �

Lemma 14. C n (x ) = −v x + min { G n (x ) , min x ≤y ≤x + B G n (y ) + K} takes 

the general form 

C n (x ) = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

K − v x + G n (x + B ) s k −1 < x ≤ ̂ S k − B k = 1 , . . . , w − 1 

K − v x + G n ( ̂  S k ) ̂ S k − B < x ≤ s k k = 1 , . . . , w − 1 

K − v x + G n (x + B ) s w −1 < x ≤ S m 

− B 

K − v x + G n (S m 

) S m 

− B < x ≤ s m 

−v x + G n (x ) x > s m 

. 

Proof. If at x it is optimal to order a � S − x units, where a > 0 , 

then C n (x ) = K − v x + G n (S) . We consider each interval for x in or- 

der. 

x > s m 

: this case follows from Lemma 3 , since s m 

denotes an 

inventory level beyond which no ordering is optimal. Conversely, 

because of the continuous order property, for x ≤ s m 

it is always 

optimal to order; 

S m 

− B < x ≤ s m 

: in this interval, arg min y ∈ (x,x + B ] G n (y ) = S m 

, this 

follows from the definition of S m 

( Lemma 3 ) and from the fact that 

G n is nonincreasing in (−∞ , s m 

] ( Lemma 2 ); 

s w −1 < x ≤ S m 

− B : in this interval, from Definition 11 it fol- 

lows that arg min y ∈ (x,x + B ] G n (y ) = x + B , since G n ( ̂  S k ) > G n (S m 

) , for 

all k = 1 , . . . , w − 1 ; ̂ S k − B < x ≤ s k , for all k = 1 , . . . , w − 1 : in this 

interval, from Definition 11 and from Lemma 13 , it follows that 

arg min y ∈ (x,x + B ] G n (y ) = ̂

 S k ; 

s k −1 < x ≤ ̂ S k − B , for all k = 1 , . . . , w − 1 : in this interval, 

from Definition 11 and from Lemma 13 , it follows that 

arg min y ∈ (x,x + B ] G n (y ) = x + B , since G n ( ̂  S k ) > G n ( ̂  S k +1 ) ; finally, note 

that if s 0 < x ≤ ̂ S 1 − B , then arg min y ∈ (x,x + B ] G n (y ) = x + B , since G n 

is nonincreasing in (−∞ , ̂  S 1 ] : in fact, G n is nonincreasing in 

(−∞ , s m 

] ( Lemma 2 ), ̂ S is an ordered set, hence by definition there 

exists no point s m 

< S < ̂

 S 1 that is a strict local minimum from the 

right, G n (s m 

) > G n ( ̂  S 1 ) ( Lemma 11 ), and thus G n is nonincreasing 

in (s m 

, ̂  S 1 ] . �

Definition 12. S k � ̂

 S k , for all k = 1 , . . . , w − 1 ; and, for conve- 

nience, let m � w . 

By applying Definition 12 , we can rewrite, for k = 1 , . . . , m , 

C n (x ) 

= 

⎧ ⎨ 

⎩ 

K − v x + G n (x + B ) s k −1 < x ≤ S k − B (saturated ordering) 

K − v x + G n (S k ) S k − B < x ≤ s k (unsaturated ordering) 

−v x + G n (x ) x > s m (no order) 

(6) 

where S 1 , . . . , S m 

are the order-up-to-levels and s 1 , . . . , s m 

the re- 

order points of the (s k , S k ) policy. 

Corollary 2. If the continuous order property holds, the (s k , S k ) policy 

generalises the X − Y band discussed in Shaoxiang (2004) . 

Proof. In Shaoxiang , Y � s m 

and X � Y − B , where X denotes an 

inventory level below which it is optimal to order up to capac- 

ity; hence, their X − Y band has size B . According to Lemma 14 , it 

is optimal to order up to capacity for all x ≤ S 1 − B . According to 

Lemma 8 c, s m 

< S 1 , and thus s m 

− B < S 1 − B . By letting X̄ � S 1 − B , 

we obtain a tighter band X̄ − Y . �

Corollary 3. If the continuous order property holds, the (s k , S k ) policy 

generalises the policy discussed in Gallego & Scheller-Wolf (20 0 0) . 

Proof. Gallego & Scheller-Wolf ’s optimal policy structure fea- 

tures two thresholds: s and s ′ , where −∞ ≤ s ≤ s ′ ≤ S ∗, and S ∗ = 

arg min y G n (y ) . Clearly, s ′ is the same threshold we denoted as 

s m 

, and under the assumption that the continuous order property 

holds, it follows that s = s ′ . Gallego & Scheller-Wolf ’s optimal pol- 

icy therefore reduces to 

C n (x ) = 

⎧ ⎨ 

⎩ 

K − v x + G n (x + B ) x ≤ s m 

− B (saturated) 
K + min x ≤y ≤x + B { G n (y ) − v x } s m 

− B < x ≤ s m 

(unsaturated or saturated) 
−v x + G n (x ) x > s m 

(no order) , 

which is equivalent to Shaoxiang ’s X-Y band. �

Corollary 4. If the continuous order property holds, the (s k , S k ) policy 

generalises the (s, S) policy discussed in Scarf (1960) . 

Proof. When B = ∞ , S m 

− B = −∞ , and from Lemma 14 it is clear 

that the optimal policy must feature a single reorder threshold s 

and order-up-to-level S. �

In Fig. 5 we illustrate G n (y ) for different ordering capacities ( B ∈ 

{ 35 , 65 , 71 , ∞} ) imposed for the problem in Example 1 . 

The optimal (s k , S k ) ordering policy under ordering capacity 

constraints for our numerical example is shown in Table 1 , and in 

Fig. 6 for the case in which B = 65 . 

In Appendix C we characterise the structure of the optimal pol- 

icy for the open numerical example in Shaoxiang & Lambrecht 

(1996 , p. 1015), for which the continuous order property holds. 
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Table 1 

Optimal (s k , S k ) ordering policy under ordering capacity constraints ( B ∈ { 35 , 65 , 71 , ∞} ) for our nu- 

merical example; in all cases the continuous order property holds. 

Period B 

35 65 71 ∞ 

s k S k s k S k s k S k s k S k 

1 39 68 -11 31 -16 27 15 67 

46 81 14 70 7 71 

13 84 

2 64 99 -5 51 27 76 28 49 

28 82 34 105 

35 100 

3 61 96 18 71 12 71 55 109 

55 109 55 109 

4 28 49 28 49 28 49 28 49 

Fig. 5. Numerical example illustrating G n (y ) for different ordering capacities. 

Fig. 6. Optimal ordering policy in period 1 when B = 65 ; note that G n (y ) and Q are 

not plotted according to the same vertical scale. 

6. A counterexample 

The continuous order property in Definition 6 has been orig- 

inally conjectured by Gallego & Scheller-Wolf (20 0 0) , and it was 

later further investigated by Chan & Song (2003) . Gallego & 

Scheller-Wolf (20 0 0) wrote: 

A number of problems still remain. The most vexing is the 

possibility that under the current structure there could exist 

Table 2 

Probability mass functions of the nonstationary demand d t considered in 

Example 3 . 

d 1 34 (0.018) 159 (0.888) 281 (0.046) 286 (0.048) 

d 2 14 (0.028) 223 (0.271) 225 (0.170) 232 (0.531) 

d 3 5 (0.041) 64 (0.027) 115 (0.889) 171 (0.043) 

d 4 35 (0.069) 48 (0.008) 145 (0.019) 210 (0.904) 

a number of intervals [... ] where it is optimal to start and 

stop ordering. An optimal policy with a single continuous in- 

terval over which ordering is prescribed, as was found for all 

of the cases tested [... ], is much more analytically appealing. 

[... ] Unfortunately, the proof of this has thus far eluded us. It 

should be mentioned that it is likewise possible, although we 

believe it unlikely, that such a structure simply does not ex- 

ist. To show this requires a problem instance in which the op- 

timal policy has multiple disjoint intervals in which ordering is 

optimal. Our computational study suggests that this is not the 

case. 

Chan & Song (2003) wrote: 

If our conjecture [the continuous order property] holds, the 

computational time for obtaining the optimal ordering policy 

parameters can be further reduced [... ]. We can only show that 

this conjecture holds for a special case where [the capacity] is 

large enough [... ]. It should be an interesting problem for re- 

searchers to prove or disprove the conjecture is true for small 

[capacity]. 

In the rest of this section, we introduce a numerical instance 

that violates the continuous order property. To the best of our 

knowledge, no such instance has ever been discussed in the lit- 

erature. 

Example 3. Consider a planning horizon of n = 4 periods and a 

nonstationary demand d t distributed in each period t according to 

the probability mass function shown in Table 2 . Other problem pa- 

rameters are K = 250 , B = 41 , h = 1 and p = 26 and v = 0 . 

In Table 3 we report an extract of the tabulated optimal policy 

in which the continuous order property is violated ( Fig. 7 ). 

Our numerical example confirms that it is possible to con- 

struct instances for which it is optimal to start and stop ordering, 

and that the continuous order property conjectured in Gallego & 

Scheller-Wolf (20 0 0) , Chan & Song (20 03) does not hold for the 

general case of the stochastic inventory problem under order quan- 

tity capacity constraints. In Appendix D we discuss the rationale 

underpinning the generation of our counterexample. 
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Table 3 

An extract of the optimal policy for period t = 1 of Example 3 , in which the continuous order property is violated. 

Starting inventory level 593 594 595 596 597 598 599 600 601 

Optimal order quantity 41 40 39 38 37 36 35 34 33 

Starting inventory level 602 603 604 605 606 607 608 609 610 

Optimal order quantity 0 0 0 0 0 0 0 0 0 

Starting inventory level 611 612 613 614 615 616 617 618 619 

Optimal order quantity 0 0 0 0 0 41 41 41 0 

Fig. 7. Lemma 7 does not hold in the context of Example 3 : { x | C n (x ) − (G n (x ) −
v x ) < 0 } is not a convex set; hence the continuous order property is violated and 

s < s ′ . 

7. Computational study 

Albeit in the previous section we demonstrated that it is possi- 

ble to construct instances for which the continuous order property 

does not hold, we must underscore that these instances are hard 

to generate, as they do not show up in numerical experiments fea- 

turing conventional parameter ranges found in the literature. This 

is also the reason why the conjecture in Gallego & Scheller-Wolf 

(20 0 0) , Chan & Song (2003) remained open for over twenty years. 

In this section, we consider an extensive test bed comprising a 

broad family of demand distributions and problem parameters; our 

aim is threefold. First, we aim to show empirically that instances 

that violate the continuous order property do not surface when re- 

alistic cost configurations and demand patterns investigated in the 

literature are considered. In turn, this means that the plans gener- 

ated by the modified multi- (s, S) ordering policy can therefore be 

considered, from a practical standpoint, near-optimal. Second, the 

modified multi- (s, S) ordering policy may feature, in each period, a 

variable number of thresholds s k and associated order-up-to-levels 

S k . In our computational study, the number of thresholds in a mod- 

ified multi-( s, S) policy remains less or equal to 6 in each period. 

Finally, as shown in Table 4 , a modified ( s, S) policy ( Wijngaard, 

1972 ) with parameters (s m 

, S m 

) appears to perform well in the 

context of Example 1 ; in our study we proceed to show that this 

simple policy, which has been known for decades, also performs 

well across all instances considered. 

7.1. Test bed 

In our test bed, the planning horizon comprises n = 20 peri- 

ods. We consider 10 different patterns for the expected value of 

the demand in each period, as shown in Fig. 8 : 2 life cycle pat- 

terns (LCY1 and LCY2), 2 sinusoidal patterns (SIN1 and SIN2), 1 

Table 4 

Modified (s, S) policy ( Wijngaard, 1972 ) parameters and optimality gaps for 

Example 1 , when B ∈ { 35 , 65 , 71 } . 
Period B 

35 65 71 

s m S m s m S m s m S m 

1 46 81 14 70 13 84 

2 64 99 35 100 34 105 

3 61 96 55 109 55 109 

4 28 49 28 49 28 49 

Optimality gap (%) 0.000 0.123 0.192 

Table 5 

Pivot table for our computational study: discrete uniform demand. 

modified (s, S) modified multi- (s, S) 

% optimality gap max thresholds instances 

avg max 

K 250 0.004 0.122 3 270 

500 0.000 0.050 3 270 

1000 0.000 0.007 3 270 

v 2 0.002 0.122 3 270 

5 0.000 0.057 3 270 

10 0.000 0.032 3 270 

p 5 0.000 0.057 3 270 

10 0.001 0.122 3 270 

15 0.001 0.115 3 270 

B 2.0D 0.000 0.047 2 270 

3.0D 0.001 0.122 3 270 

4.0D 0.000 0.062 3 270 

Demand EMP1 0.002 0.122 3 81 

EMP2 0.003 0.044 3 81 

EMP3 0.003 0.039 3 81 

EMP4 0.003 0.057 3 81 

LC1 0.000 0.000 1 81 

LC2 0.002 0.008 1 81 

RAND 0.006 0.018 2 81 

SIN1 0.000 0.002 3 81 

SIN2 0.000 0.001 1 81 

STA 0.000 0.001 1 81 

Overall 0.000 0.122 3 810 

stationary pattern (STA), 1 random pattern (RAND), and 4 empirical 

patterns (EMP1, EMP2, EMP3, EMP4) derived from demand data in 

Kurawarwala & Matsuo (1996) . Further details of expected demand 

rates in each period are given in Table E.1 in Appendix E . 

We consider a broad family of demand distributions commonly 

used in practice: discrete uniform, geometric, Poisson, normal, log- 

normal, and gamma. Demands in different periods are assumed 

to be mutually independent. More specifically, let μt denote the 

mean demand in period t , we investigate a demand that follows a 

discrete uniform distribution in [0 , 2 μt ) ; a demand that follows a 

geometric distribution with mean μt ; and a demand that follows 

a Poisson distribution with rate μt . Finally, given the coefficient of 

variation of the demand in each period c v = σt /μt , where σt is the 

standard deviation of the demand in period t , we consider normal- 
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Fig. 8. Demand patterns in our computational study. 

, lognormal-, and gamma-distributed demands with mean μt and 

standard deviation σt . 

Fixed ordering cost K takes values in { 250 , 500 , 1000 } ; inven- 

tory holding cost h is 1; unit variable ordering cost v takes val- 

ues in { 2 , 5 , 10 } ; unit penalty cost p ranges in { 5 , 10 , 15 } . For the 

case of normal, lognormal, and gamma distributed demand, the co- 

efficient of variation takes values in { 0 . 1 , 0 . 2 , 0 . 3 } . Let D denote 

the average demand rate over the whole n periods horizon for a 

given demand pattern; the maximum order quantity B takes values 

in { round (2 D ) , round (3 D ) , round (4 D ) } , where the round operator 

rounds the value to the nearest integer. 

Since we adopt a full factorial design, we consider 810 in- 

stances for discrete uniform, geometric, and Poisson distributed 

demand, respectively; and 2430 instances for normal, lognormal, 

and gamma distributed demands, respectively, since in these lat- 

ter cases we must also consider the three levels of the coefficient 

of variation. In total, our computational study comprises 9720 in- 

stances. Our experimental design is similar to that investigated in 

a number of existing studies (see e.g. Dural-Selcuk, Rossi, Kilic, & 

Tarim, 2020; Xiang, Rossi, Martin-Barragan, & Tarim, 2018 ). 

7.2. Results 

We run experiments on an Intel(R) Xeon(R) @ 3.5GHz with 

16Gb of RAM. The library used in our experiments is jsdp ( Rossi, 

2022b ). 4 SDP state space boundaries are fixed — inventory may 

range in (−10 0 0 0 , 10 0 0 0) — and in all cases we adopt a unit dis- 

4 The Java code is available at ( Rossi, 2018 ); a self-contained Python code is also 

available at ( Rossi, 2022a ). 
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Table 6 

Pivot table for our computational study: geometric demand. 

modified (s, S) modified multi- (s, S) 

% optimality gap max thresholds instances 

avg max 

K 250 0.274 0.610 3 270 

500 0.238 0.530 3 270 

1000 0.200 0.427 2 270 

v 2 0.284 0.610 3 270 

5 0.235 0.478 3 270 

10 0.193 0.383 3 270 

p 5 0.174 0.368 2 270 

10 0.242 0.510 3 270 

15 0.296 0.610 2 270 

B 2.0D 0.279 0.610 2 270 

3.0D 0.234 0.495 2 270 

4.0D 0.199 0.416 3 270 

Demand EMP1 0.279 0.596 2 81 

EMP2 0.280 0.602 3 81 

EMP3 0.240 0.488 2 81 

EMP4 0.272 0.610 2 81 

LC1 0.241 0.573 1 81 

LC2 0.205 0.435 1 81 

RAND 0.239 0.501 2 81 

SIN1 0.224 0.490 2 81 

SIN2 0.199 0.451 1 81 

STA 0.196 0.452 1 81 

Overall 0.237 0.610 3 810 

Table 7 

Pivot table for our computational study: Poisson demand. 

modified (s, S) modified multi- (s, S) 

% optimality gap max thresholds instances 

avg max 

K 250 0.125 1.918 5 270 

500 0.130 1.583 5 270 

1000 0.029 0.424 5 270 

v 2 0.146 1.918 5 270 

5 0.086 0.972 5 270 

10 0.052 0.650 5 270 

p 5 0.070 1.048 4 270 

10 0.100 1.623 5 270 

15 0.114 1.918 5 270 

B 2.0D 0.103 1.918 4 270 

3.0D 0.100 1.623 4 270 

4.0D 0.081 1.583 5 270 

Demand EMP1 0.204 1.623 4 81 

EMP2 0.176 1.918 4 81 

EMP3 0.181 1.479 5 81 

EMP4 0.248 1.583 5 81 

LC1 0.018 0.154 4 81 

LC2 0.027 0.160 4 81 

RAND 0.043 0.429 4 81 

SIN1 0.016 0.088 3 81 

SIN2 0.017 0.106 4 81 

STA 0.016 0.093 5 81 

Overall 0.095 1.918 5 810 

cretization, therefore running time for each instance is constant; 

a continuity correction is introduced for continuous distributions. 

Monte Carlo simulation runs are determined by targeting an esti- 

mation error of 0.01% for the mean estimated at 95% confidence 

level; we adopt a common random number strategy ( Kahn & Mar- 

shall, 1953 ) across all instances. 

In Tables 5–10 we present the results of our study for each of 

the demand distributions under scrutiny. For all instances investi- 

gated, a modified multi- (s, S) policy is optimal. Moreover, the max- 

imum number of thresholds observed in any given period never 

exceeds 6 over the whole test bed. We also report the average and 

maximum % optimality gap of a modified (s, S) policy with param- 

eters (s m 

, S m 

) extracted from the SDP tables. This policy is found 

to be near optimal in our study, since its average % optimality gap 

is consistently negligible, while the maximum % optimality gap ob- 

served never exceeds 2%. 
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Table 8 

Pivot table for our computational study: normal demand. 

modified (s, S) modified multi- (s, S) 

% optimality gap max thresholds instances 

avg max 

K 250 0.092 2.006 5 810 

500 0.056 1.435 6 810 

1000 0.015 0.565 6 810 

v 2 0.083 2.006 6 810 

5 0.050 0.971 6 810 

10 0.029 0.476 6 810 

p 5 0.034 0.893 5 810 

10 0.060 1.597 6 810 

15 0.068 2.006 6 810 

B 2.0D 0.050 2.006 5 810 

3.0D 0.068 1.597 5 810 

4.0D 0.045 1.435 6 810 

Demand EMP1 0.104 1.597 4 243 

EMP2 0.088 2.006 4 243 

EMP3 0.092 1.435 6 243 

EMP4 0.120 1.392 5 243 

LC1 0.016 0.357 5 243 

LC2 0.019 0.910 6 243 

RAND 0.040 1.347 5 243 

SIN1 0.024 0.437 5 243 

SIN2 0.024 0.742 5 243 

STA 0.015 0.327 5 243 

c v 0.1 0.111 2.006 6 810 

0.2 0.047 1.237 5 810 

0.3 0.006 0.565 4 810 

Overall 0.054 2.006 6 2430 

Table 9 

Pivot table for our computational study: lognormal demand. 

modified (s, S) modified multi- (s, S) 

% optimality gap max thresholds instances 

avg max 

K 250 0.108 1.891 5 810 

500 0.072 1.424 6 810 

1000 0.033 0.579 6 810 

v 2 0.099 1.891 6 810 

5 0.067 0.931 6 810 

10 0.047 0.729 6 810 

p 5 0.050 0.893 5 810 

10 0.076 1.578 6 810 

15 0.086 1.891 6 810 

B 2.0D 0.066 1.891 5 810 

3.0D 0.086 1.578 5 810 

4.0D 0.061 1.424 6 810 

Demand EMP1 0.130 1.578 4 243 

EMP2 0.100 1.891 4 243 

EMP3 0.103 1.424 6 243 

EMP4 0.139 1.285 5 243 

LC1 0.033 0.286 5 243 

LC2 0.035 0.887 6 243 

RAND 0.056 1.262 5 243 

SIN1 0.042 0.600 5 243 

SIN2 0.041 0.695 5 243 

STA 0.030 0.311 5 243 

c v 0.1 0.110 1.891 6 810 

0.2 0.055 0.923 5 810 

0.3 0.048 0.579 4 810 

Overall 0.071 1.891 6 2430 

551 



R. Rossi, Z. Chen and S.A. Tarim European Journal of Operational Research 312 (2024) 541–555 

Table 10 

Pivot table for our computational study: gamma demand. 

modified (s, S) modified multi- (s, S) 

% optimality gap max thresholds instances 

avg max 

K 250 0.101 1.930 5 810 

500 0.068 1.424 6 810 

1000 0.029 0.570 6 810 

v 2 0.094 1.930 6 810 

5 0.062 0.923 6 810 

10 0.043 0.731 6 810 

p 5 0.046 0.894 5 810 

10 0.071 1.585 6 810 

15 0.081 1.930 6 810 

B 2.0D 0.062 1.930 5 810 

3.0D 0.080 1.585 5 810 

4.0D 0.057 1.424 6 810 

Demand EMP1 0.125 1.585 4 243 

EMP2 0.095 1.930 4 243 

EMP3 0.100 1.424 6 243 

EMP4 0.130 1.312 5 243 

LC1 0.029 0.308 5 243 

LC2 0.032 0.894 6 243 

RAND 0.052 1.290 5 243 

SIN1 0.036 0.421 5 243 

SIN2 0.037 0.708 5 243 

STA 0.027 0.317 5 243 

c v 0.1 0.109 1.930 6 810 

0.2 0.050 1.013 5 810 

0.3 0.040 0.570 4 810 

Overall 0.066 1.930 6 2430 

8. Conclusions 

The periodic review single-item single-stocking location 

stochastic inventory system under nonstationary demand, com- 

plete backorders, a fixed ordering cost component, and order 

quantity capacity constraints is one of the fundamental problems 

in inventory management. 

A long standing open question in the literature is whether 

a policy with a single continuous interval over which order- 

ing is prescribed is optimal for this problem. The so-called 

“continuous order property” conjecture was originally posited 

by Gallego & Scheller-Wolf (20 0 0) , and later also investi- 

gated by Chan & Song (2003) . To the best of our knowl- 

edge, to date this conjecture has never been confirmed or 

disproved. 

In this work, we provided a numerical counterexample that vio- 

lates the continuous order property. This closes a fundamental and 

long standing problem in the literature: a policy with a single con- 

tinuous interval over which ordering is prescribed is not optimal. 

Gallego & Scheller-Wolf (20 0 0) provided a partial characterisa- 

tion of the optimal policy to the problem. In light of the results 

presented in Shaoxiang (2004) , we showed how to simplify the op- 

timal policy structure presented by Gallego & Scheller-Wolf (20 0 0) . 

Gallego & Scheller-Wolf (20 0 0) also briefly sketched the form that 

an optimal policy would take under moderate values of K. We for- 

malised this discussion and provided a full characterisation of the 

optimal policy for instances for which the continuous order prop- 

erty holds. In particular, we showed that under this assumption 

the optimal policy takes the modified multi- (s, S) form . 

By leveraging an extensive computational study, we showed 

that instances violating the continuous order property do not sur- 

face when realistic cost configurations and demand patterns inves- 

tigated in the literature are considered. The modified multi- (s, S) 

ordering policy can therefore be considered near-optimal for the 

problem under scrutiny. Moreover, we observed that the number 

of thresholds in a modified multi-( s, S) policy remains less or equal 

to 6 in each period. Finally, we showed that a well-known heuristic 

policy, the modified ( s, S) policy ( Wijngaard, 1972 ), also performs 

well across all instances considered. 

Since a policy with a single continuous interval over which or- 

dering is prescribed is not optimal in general, future works may fo- 

cus on establishing what restrictions (if any) to the problem state- 

ment, e.g. nature of the demand distribution, may ensure that such 

a policy is optimal. 

Appendix A. Possible scenarios one may observe when 

inventory hits level s m 

There are two possible cases one may encounter when inven- 

tory hits reorder threshold s m 

: either we order less than B , or we 

order the maximum allowed quantity B . We next illustrate these 

two possible cases via Example 1 . 

Case 1: The first case ( B = 65 ) is shown in Fig. 6 . In this case there 

are m = 2 local minima up to (and including) the global minimizer 

S m 

. Let y denote the initial inventory and apply Eq. (5) . Since s 2 + 

B ≥ S 2 , if s 1 < y < s 2 we order x = min { S 2 − y, B } ; if y < s 1 we order 

x = min { S 1 − y, B } . Finally, if y ≥ s 2 , we do not order. 

Case 2: The second case ( B = 71 ) is shown in Fig. A.1 . 

In this case there are m = 3 local minima up to (and including) 

the global minimizer S ∗. Let y denote the initial inventory and ap- 

ply Eq. (5) . Since capacity B is insufficient to reach the global min- 

imizer S ∗, if s 2 < y < s 3 we order x = S 3 − s 3 = B ; if s 1 < y < s 2 we 

order x = min { S 2 − y, B } ; and if y < s 1 , we order x = min { S 1 − y, B } . 
Finally, if y ≥ s 3 , we do not order. 

These two cases exhaust all possible scenarios one may observe 

when inventory hits level s m 

. 
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Fig. A.1. Optimal ordering policy in period 1 when B = 71 ; note that G n (y ) and Q are not plotted according to the same vertical scale. If y > s 3 , it is not convenient to order. 

Appendix B. Numerical example illustrating Lemma 10 

Example 4. Consider a planning horizon of n = 12 pe- 

riods; a demand d t distributed in each period t = 

1 , . . . , n according to a Poisson law with rate λt ∈ 

{ 151 , 152 , 58 , 78 , 134 , 13 , 22 , 161 , 43 , 55 , 110 , 37 } ; K = 494 , v = 0 , 

h = 1 , p = 15 , and B = 128 . 

We focus on period 6, and in Fig. B.1 we plot G 6 (y ) for an initial 

inventory y ∈ (60 , 145) . It is clear that at any point x 0 in which it 

is optimal to place an order, if we have sufficient capacity to order 

beyond b 1 , we should do so; however, if we do not have sufficient 

capacity, then we would never order up to S, as this point is clearly 

dominated by ̂ S . Observe that while ̂ S belongs to the QCE of G 6 —

illustrated as a dashed line where it departs from G 6 — S does not. 

Fig. B.1. Example 4 , plot of function G 6 (y ) for an initial inventory y ∈ (60 , 145) ; the 

QCE of G 6 , when it departs from G 6 , is illustrated as a dashed line. Observe that ̂  S 

belongs to the QCE of G 6 , while S does not. 

Table C.1 

Optimal policy as illustrated in Shaoxiang (2004 , p. 417). 

Starting inventory level -3 -2 -1 0 1 2 3 4 5 6 7 

Optimal order quantity 9 8 7 9 8 7 9 8 7 0 0 

Appendix C. Example from Shaoxiang & Lambrecht (1996) 

We hereby illustrate that an (s k , S k ) ordering policy is opti- 

mal for the numerical example originally presented in Shaoxiang 

& Lambrecht (1996 , p. 1015) and also investigated in Shaoxiang 

(2004) under an infinite horizon. 

Example 5. Consider a planning horizon of n = 20 periods and a 

stationary demand d distributed in each period according to the 

following probability mass function: Pr { d = 6 } = 0 . 95 and Pr { d = 

7 } = 0 . 05 . Other problem parameters are K = 22 , B = 9 , h = 1 and 

p = 10 and v = 1 ; note that, if the planning horizon is sufficiently 

long, v can be safely ignored. The discount factor is α = 0 . 9 . 

In Table C.1 we report the tabulated optimal policy as illustrated 

in Shaoxiang (2004 , p. 417). 

In Fig. C.1 we plot G n (y ) for an initial inventory y ∈ (−5 , 50) 

and n = 20 . The optimal (s k , S k ) policy is shown in Table C.2 ; this 

is equivalent to the policy illustrated in Shaoxiang & Lambrecht 

(1996 , p. 1015) and to the stationary policy tabulated in Shaoxiang 

(2004 , p. 417). 

Table C.2 

Optimal (s k , S k ) policy for a generic period t of the example in 

( Shaoxiang & Lambrecht, 1996 ). 

s k S k 

-1 6 

2 9 

5 12 
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Fig. C.1. Optimal ordering policy for the stationary example in Shaoxiang & Lambrecht (1996) ; note that G n (y ) and Q are not plotted according to the same vertical scale. 

Appendix D. Generating counterexamples to the continuous 

order property 

Generating counterexamples to the continuous order property 

is not trivial. We believe this is the reason why the continuous 

order property originally conjectured by Gallego & Scheller-Wolf 

(20 0 0) has not been so far confirmed or disproved. In this section, 

we outline the reasoning we followed to generate our counterex- 

ample. Our analysis was inspired by the work of Gallego & Toktay 

(2004) . 

Lemma 15. Let f be convex, and S be a minimizer of f , then 

g(x ) � min 

y ∈ [ x,x + B ] 
f (y ) − f (x ) = 

⎧ ⎨ 

⎩ 

0 S ≤ x 
f (S) − f (x ) S − B ≤ x ≤ S 
f (x + B ) − f (x ) x ≤ S − B 

is nondecreasing. 

Proof. Following ( Karush, 1959 ), g(x ) is constant for S ≤ x ; it is 

nondecreasing for S − B ≤ x ≤ S, since f (S) is constant, and f is 

nonincreasing in this region; finally, it is nondecreasing for x ≤
S − B , since f is convex and hence f (x + B ) − f (x ) is nondecreas- 

ing for all x . �

Consider G n and C n as defined in Eqs. (1) and (2) , respectively, 

and let these functions be (K, B ) -convex. To show that the contin- 

uous order property holds, one must show that { x | C n (x ) − (G n (x ) −
v x ) < 0 } is the convex set (−∞ , s m 

) . 

Recall that 

C n (x ) = min 

⎧ ⎨ 

⎩ 

L n (x ) + 

∫ ∞ 

0 C n −1 (x − ξ ) f n (ξ )d ξ , 

min x<y ≤x + B { K + v (y − x ) + L n (y ) 

+ 

∫ ∞ 

0 C n −1 (y − ξ ) f n (ξ )d ξ} 

⎫ ⎬ 

⎭ 

, 

G n (x ) = v x + L n (x ) + 

∫ ∞ 

0 

C n −1 (x − ξ ) f n (ξ )d ξ , 

C n (x ) = −v x + min 

{
G n (x ) , K + min 

x ≤y ≤x + B 
G n (y ) 

}
. 

To prove that { x | C n (x ) − (G n (x ) − v x ) < 0 } is a convex set, it is suf- 

ficient to show that the function 

V n (x ) � C n (x ) − (G n (x ) − v x ) 

is nondecreasing in x for each n . Let [ x ] − � min { 0 , x } , and note that 

V n (x ) = 

[
K + min 

x ≤y ≤x + B 
G n (y ) − G n (x ) 

]−
. 

One may want to try and show by induction that V n (x ) is nonde- 

creasing in x for each n . Let C 0 � 0 , then 

V 1 (x ) = 

[
K + min 

x ≤y ≤x + B 
{ v (y − x ) + L 1 (y ) } − L 1 (x ) 

]−
;

since the unit cost v is linear, and L 1 is convex, from Lemma 15 it 

follows that V 1 (x ) is nondecreasing. Given this base case, we may 

then assume that V n (x ) is nondecreasing in x , and try to show that 

V n +1 (x ) is nondecreasing in x . 

First, observe that 

V n +1 (x ) = 

[
K + min 

x ≤y ≤x + B 

(
v y + L n +1 (y ) + 

∫ ∞ 

0 

C n (y − ξ ) f n +1 (ξ )d ξ

)

−
(

v x + L n +1 (x ) + 

∫ ∞ 

0 

C n (x − ξ ) f n +1 (ξ )d ξ

)]−
. 

To investigate whether V n +1 (x ) is nondecreasing, we shall analyse 

K + min 

x ≤y ≤x + B 
v (y − x ) + C n (y ) − C n (x ) 

= min 

x ≤y ≤x + B 

{
K + G n (y ) − G n (x ) − V n (x ) + V n (y ) 

}
, 

since C n (x ) = V n (x ) + G n (x ) − v x . Consider s m 

as defined in 

Lemma 3 , and recall this value denotes an inventory level be- 

yond which no ordering is optimal. There are three intervals 

we need to analyse: x ≤ s m 

− B , s m 

− B < x ≤ s m 

, and x > s m 

. Ob- 

serve that, from the definition of s m 

in Lemma 3 , if x = s m 

, 

then K + min x ≤y ≤x + B G n (y ) − G n (x ) ≤ 0 ; moreover, by induction 

hypothesis V n (x ) is assumed nondecreasing, hence V n (x ) = K + 

min x ≤y ≤x + B G n (y ) − G n (x ) for x ≤ s m 

. 

Let x ≤ s m 

− B ; in this interval V n (x ) = K + min x ≤y ≤x + B G n (y ) −
G n (x ) , thus 

min x ≤y ≤x + B 
{

K + G n (y ) − G n (x ) − V n (x ) + V n (y ) 
}

= min x ≤y ≤x + B 
{

K − ( min x ≤z≤x + B G n (z)) + ( min y ≤w ≤y + B G n (w )) 
}

= min x ≤y ≤x + B 
{

K − G n (x + B ) + min y ≤w ≤y + B G n (w ) 
}

= K + min x ≤y ≤x +2 B G n (y ) − G n (x + B ) , 

= K + min x + B ≤y ≤x +2 B G n (y ) − G n (x + B ) , (D.1) 

because G n (x ) is assumed (K, B ) -convex and, by Lemma 2 , it 

is nonincreasing for x ≤ s m 

, therefore it is also nonincreasing in 

(x, x + B ) , since x ≤ s m 

− B . 

Let s m 

− B < x ≤ s m 

, in this interval V n (x ) = K + 

min x ≤z≤x + B G n (z) − G n (x ) , thus 

min x ≤y ≤x + B 
{

K + G n (y ) − G n (x ) − V n (x ) + V n (y ) 
}

= min x ≤y ≤x + B 
{

G n (y ) + V n (y ) 
}

− min x ≤z≤x + B G n (z) 
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Table E.1 

Expected demand values for demand patterns in our test bed. 

Pattern Expected demand values 

STA 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 

LC1 46 49 50 50 49 46 42 38 35 33 30 28 26 23 21 18 14 11 8 6 

LC2 7 9 11 13 17 22 24 26 32 34 36 41 44 47 48 50 50 49 47 44 

SIN1 47 30 13 6 13 30 47 54 47 30 13 6 13 30 47 30 15 8 11 30 

SIN2 36 30 24 21 24 30 36 39 36 30 24 21 24 30 36 31 24 21 26 33 

RAND 63 27 10 24 1 23 33 35 67 7 14 41 4 63 26 45 53 25 10 50 

EMP1 5 15 46 140 80 147 134 74 84 109 47 88 66 28 32 89 162 36 32 50 

EMP2 14 24 71 118 49 86 152 117 226 208 78 59 96 33 57 116 18 135 128 180 

EMP3 13 35 79 43 44 59 22 55 61 34 50 95 36 145 160 104 151 86 123 64 

EMP4 15 56 19 84 136 67 67 155 87 164 194 67 65 132 35 131 133 36 173 152 

Period 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

= min x ≤y ≤x + B 
{

C n (y ) + v y 
}

− min x ≤z≤x + B G n (z) 

= min s m <y ≤x + B 
{

C n (y ) + v y 
}

− min s m <z≤x + B G n (z) = 0 , (D.2) 

because G n (x ) and C n (x ) are assumed (K, B ) -convex and, by 

Lemma 2 , they are nonincreasing for x ≤ s m 

; and since no 

ordering is optimal beyond s m 

, then min s m <y ≤x + B C n (y ) + v y = 

min s m <z≤x + B G n (z) . 

Let x > s m 

, in this interval K + min x ≤y ≤x + B G n (y ) − G n (x ) > 0 , 

hence V n (x ) = 0 , V n (y ) = 0 , and 

min x ≤y ≤x + B 
{

K + G n (y ) − G n (x ) − V n (x ) + V n (y ) 
}

= K + min x ≤y ≤x + B G n (y ) − G n (x ) > 0 . (D.3) 

Equipped with Eqs. (D.1) , (D.2) , and (D.3) for the intervals we 

considered, it is immediate to see that [
K + min 

x ≤y ≤x + B 
v (y − x ) + C n (y ) − C n (x ) 

]−

= 

⎧ ⎨ 

⎩ 

V n (x + B ) x ≤ s m 

− B 

0 s m 

− B < x ≤ s m 

0 x > s m 

is nondecreasing. However, it is not possible to determine if 

[ K + min x ≤y ≤x + B v (y − x ) + 

∫ ∞ 

0 (C n (y − ξ ) − C n (x − ξ )) f n +1 (ξ )d ξ ] −

is nondecreasing; and reintroducing term min x ≤y ≤x + B L n +1 (y ) −
L n +1 (x ) only worsens the matter. But because of the behav- 

ior of 
[
K + min x ≤y ≤x + B v (y − x ) + C n (y ) − C n (x ) 

]−
in intervals 

s m 

− B < x ≤ s m 

and x ≤ s m 

− B , one may observe that a V n +1 (x ) 

function featuring some decreasing regions may be produced by 

the convolution 

∫ ∞ 

0 (C n (y − ξ ) − C n (x − ξ )) f n +1 (ξ )d ξ , provided 

demand is sufficiently “lumpy.” In other words, the instance must 

feature demand whose probability mass function features some 

values larger than B possessing non negligible probability mass. 

A demand that is so structured may ensure that the convolution 

“bends” sufficiently V n +1 (x ) beyond s m 

so that it turns negative. 

On the basis of this observation, we have generated several ran- 

dom instances as follows. The fixed ordering cost is a randomly 

generated value uniformly distributed between 1 and 500; hold- 

ing cost is 1; penalty cost is a randomly generated value uniformly 

distributed between 1 and 30; the ordering capacity is a randomly 

generated value uniformly distributed between 20 and 200; de- 

mand distribution in each period is obtained as follows: the proba- 

bility mass function comprises only four values in the support, one 

of these values must fall below the given order capacity, the other 

three values must fall above, and be smaller or equal to 300; prob- 

ability masses are then allocated uniformly to each of these values. 

The Java code to generate instances that violate the continuous or- 

der property is available on http://gwr3n.github.io/jsdp/ . 5 

5 File https://github.com/gwr3n/jsdp/blob/master/jsdp/src/main/java/jsdp/app/ 

standalone/stochastic/capacitated/CapacitatedStochasticLotSizingFast.java 

Appendix E. Expected demand values in our test bed 

Expected demand values for demand patterns in our test bed 

are shown in Table E.1 . 
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