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ABSTRACT
Social media users use disease and symptoms words in different
ways, including describing their personal health experiences figu-
ratively or in other general discussions. The health mention classi-
fication (HMC) task aims to separate how people use terms, which
is important in public health applications. Existing HMC studies
address this problem using pretrained language models (PLMs).
However, the remaining gaps in the area include the need for lin-
guistic grounding, the requirement for large volumes of labelled
data, and that solutions are often only tested on Twitter or Reddit,
which provides limited evidence of the transportability of mod-
els. To address these gaps, we propose a novel method that uses
a transformer-based PLM to obtain a contextual representation of
target (disease or symptom) terms coupled with a contrastive loss
to establish a larger gap between target terms’ literal and figurative
uses using linguistic theories. We introduce the use of a simple
and effective approach for harvesting candidate instances from
the broad corpus and generalising the proposed method using self-
training to address the label scarcity challenge. Our experiments on
publicly available health-mention datasets from Twitter (HMC2019)
and Reddit (RHMD) demonstrate that our method outperforms the
state-of-the-art HMC methods on both datasets for the HMC task.
We further analyse the transferability and generalisability of our
method and conclude with a discussion on the empirical and ethical
considerations of our study.

CCS CONCEPTS
•Applied computing→Health informatics; •Computingmethod-
ologies → Natural language processing.
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1 INTRODUCTION
Health mention classification (HMC) seeks to distinguish between
user-generated content posted on social media platforms that dis-
cuss the personal experience with a symptom or condition and
other, non-health related discussions that use the same symptom or
condition keywords. A post on social media that includes a personal
health mention is then assumed to mean that the author or the sub-
ject of the post has the health issue or symptom [21]. Data-driven
public health surveillance might benefit from individuals sharing
health experiences using disease or symptom terms [30].

A major challenge in HMC is distinguishing the literal usage
of disease or symptom terms from the figurative usage of disease
or symptom terms [2]. For example, in a tweet, “I have a cold,
and need to see a doctor,” “cold” is used literally, where a user
is describing their health condition. Whereas, in “when America
sneezes, the world catches a cold.” “sneezes” and “cold” are used
in figurative sense. Figurative use of symptoms and conditions can
introduce errors and flawed conclusions in caseswhere social media-
based natural language processing (NLP) epidemic intelligence tools
depend on counts of keyword occurrences.

With the rapid development of contextualized representations,
recently proposed HMCmethods [2, 30, 31] use pretrained language
models (PLMs) to extract context-dependent representations of
disease or symptom terms and then fine-tune the PLMs for HMC
tasks to achieve state-of-the-art (SOTA) results.

Using PLMs has shown promising performance for HMC [1,
19, 20, 29]. However, existing methods lack contrast between the
literal and figurative use of target terms, that can be improved
through analogical analysis in a given context depending on the
linguistic context [10]. Second, fine-tuned LMs require relatively
large volumes of labelled data to obtain SOTA accuracy on down-
stream tasks, including the HMC task [6, 17, 39]. Existing HMC
datasets that have been made available are relatively small because
annotation can be time-consuming to ensure robustness. Also, fig-
urative phrases may require an expert for annotation and can be
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Figure 1: Examples of selected candidate instances generated
by target-based approach

biased [37], making distinguishing figurative usage of disease or
symptom terms for HMC tasks a significant challenge.

Another challenge in the area relates to the generalisability and
transferability of classifiers. For most previous experiments in HMC
methods, the training and testing is done on the same social media
platform (i.e., Twitter [2, 15, 18] or Reddit [30]). Understanding how
different methods perform across domains and in multi-domain
scenarios remains an important gap.

In this study, we aim to overcome the above limitations for
improving the HMC by presenting a novel method that uses a
contrastive loss to represent the contrast between the literal and
figurative meanings of the target term, improving generalisation
performance through self-training using unlabelled data generated
by a simple approach. We used a transformer-based PLM to ex-
tract contextual information from a post containing a target term.
If the target term is figurative, the semantic meaning is context-
dependent and distinct from the literal usage. The literal usage of
the target term can be explained using non-figurative examples. We
use a contrastive loss to improve context-based representation be-
tween the target term’s literal and figurative usage, making it more
identifiable and allowing the classifier to make informed decisions.

We suggest using a target-based generating approach [24] moti-
vated by a distantly supervised concept [13, 27] for automatically
generating training data to solve label scarcity challenge. Specifi-
cally, all posts in the collected data that include the detection target
term are collected and considered as potential candidate instances.
We leverage the transformer-based PLM to produce pseudo-labels
and include them in training examples to increase the amount
of training data (Figure 1). To enhance the generalisation, we it-
eratively update the pseudo-labels using self-training. Our main
contributions are summarised as follows:

• We propose a novel HMC method that uses contrastive loss for
capturing the semantic inconsistencies in the use of disease or
symptom terms used figuratively based on linguistic theories.

• Our method integrates semi-supervised learning with self train-
ing to deal with the label scarcity issue for HMC.

• Experimental results on two public benchmark HMC datasets
show that the proposed method outperforms state-of-the-art
HMC methods and is robust, generalisable, and transferable for
the HMC task.

2 RELATEDWORK
2.1 Existing HMC Methods
HMC Methods For Twitter: Karisani and Agichtein [18] was
the first to release a personal health mentions (PHMs) dataset in
2017. They collected 7,192 English tweets using disease or symptom
terms for binary classification of personal health mentions. They
demonstrated that lexical and syntactic associations are high-utility
features, which they combined with word embedding-based, and
context-based features. Their method, WESPAD (Word Embedding
Space Partitioning and Distortion), tackles the data scarcity prob-
lem; they distort and partition the word representations based on
labels. However, for figurative mentions in HMC, the WESPAD’s
division and distortion of word embedding can reduce performance
if a text contains a ’noisy’ region and a filtration is applied [2].

Jiang et al. [15] released 12,331 manually annotated English
tweets. The task was a binary classification of tweets being per-
sonal experience tweets (PETs) or non-PETs. They used Long Short
Term Memory Network (LSTM) [12] to predict PET/non-PET. In ad-
dition to generic tweet preprocessing, in their method (JiangLSTM),
they introduced some feature engineering resulting in improving
the results over decision tree (DT) [36], support vector machine
(SVM) [3] and k-nearest neighbours algorithm (kNN) [11] models.

In the HMC task, figurative mentions of symptom terms or dis-
eases are important, which is firstly addressed by Iyer et al. [14].
They presented FeatAug+, where they first computed the average
similarity score between words learned using an external data-
base, i.e., the Sentiment140 dataset [9]. They further concatenated
similarity scores with language-based features like part-of-speech
tags and abstractness to detect figurative mentions of disease or
symptom terms to enhance the HMC task.

Biddle et al. [2] released Twitter HMC2019 and included an addi-
tional label of a figurative mention of disease of symptom terms in
the PHM2017 [18] dataset. To improve performance, their developed
method BiLSTM-Senti employs features from sentiment-based lin-
guistics and context word embeddings. They showed that the tweets
which are misclassified are the ones where health is mentioned
figuratively. Therefore, they argue that context and sentiments
must be accounted for in the HMC task. The method improved on
prior HMC methods and could be further improved by considering
contextual information for sub-domain tasks [28].

Naseem et al. [31] addressed the shortcomings of BiLSTM-Senti
and presented a new method where they combined domain-specific
PLM and part-of-speech to improve the representation. The im-
proved tweet representation was forwarded to bidirectional-LSTM
with attention to disease or symptom terms and word-level lin-
guistic features for the HMC. Experiments on Twitter HMC2019
showed that their method improved the overall performance.
HMC Methods For Reddit: Naseem et al. [30] argued that the
existing HMC studies mostly focused on Twitter data, with limited
disease or symptom terms coverage, ignoring how people interact
on social media and leaving their user behaviour signatures in their
text. To address the problem, they presented a Reddit health men-
tion dataset (RHMD) covering 15 disease or symptom terms. By
including emotional and domain-specific features with the specifica-
tion of disease and symptom terms, they proposed Health-Mention
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Classification Network (HMCNET). The HMCNET has three lin-
guistic features i) neighbouring words and their part-of-speech tags,
ii) detection of the presence or absence of subordinate clauses, and
iii) health-related words derived from corpus features. In this work,
the authors note that differentiating between symptoms or disease
terms is still challenging and prone to errors.

2.2 Existing Pretrained Language Models
Pretrained language models (PLMs) have increased the accuracy on
many downstream NLP tasks with appropriate fine-tuning [4, 25].
In HMC, to model the semantics and contextual features of target
terms, previous studies used BERT and its domain-specific variants
like PHS-BERT [32], COVID Twitter BERT (CT-BERT) [28] that are
trained on social media data to model the contextual representation
of the user-generated textual content on social media [2, 30, 31, 33].
These BERT-based PLMs are widely used to encode user-generated
text in previous HMC studies. For example, Khan et al. [20] eval-
uated the performance of various BERT-based PLMs for health
mention classification and showed that BERT trained on general
corpus performed better than other domain-specific PLMs such
as BioBERT and BertTweet. Karisani et al. [19] trained BERT with
tweets to evaluate the performance of their method on the HMC
task and showed that BERT trained on Wikipedia performs bet-
ter compared to the domain-specific variants of a BERT. A recent
study by Aduragba et al. [1] also showed that fine-tuned versions
of BERT pretrained on Wikipedia performed better compared to
domain-specific variants of BERT,i.e., trained on social media data.

Despite the efficacy of PLMs, onemajor constraint for fine-tuning
PLMs is the need for a large amount of labelled training data. When
labelled training data is insufficient, the performance of fine-tuned
PLMs is degraded, and the number of parameters might result in
overfitting [5, 38]. However, manually annotating and labelling
high-quality, large-scale training data is labour-intensive for HMC.

2.3 Contrastive learning
Contrastive learning seeks to learn an embedding space with pos-
itive pairs nearby and negative pairs far apart. Supervised con-
trastive loss-based methods have demonstrated considerable suc-
cess in various tasks [7, 8, 24, 26]. To the best of our knowledge,
no prior work has used supervised contrastive learning for HMC
on social media. We fill this gap and introduce an optimised loss
function that uses supervised contrastive loss to improve the HMC.

3 METHOD
Given a social media post 𝑃 = {𝑡1, 𝑡2, ..., 𝑡𝑛}, where n indicates the
number of tokens in a post with a target (i.e., disease or symptom)
term 𝑡𝑡 ∈ 𝑃 . HMC task aims to classify whether a target term 𝑡𝑡 is
used figuratively or otherwise, i.e., a personal health mention or a
non-personal health mention. Figure 2 illustrates an overview of
the proposed method.

3.1 Pretrained Language Model
Ourmodel uses a BERT-based pretrained languagemodel (PLM)1, as
a sentence encoder to effectively capture the overall semantics and

1We used both general and domain-specific BERT-based PLM (see results section).

Figure 2: Overall architecture of proposed method.

contextual information of a given post 𝑃 containing a target term
𝑡𝑡 . Following [4], we placed “[CLS]” at the beginning and “[SEP]”
at the ending of the input post 𝑃 and fed the post 𝑃 into BERT PLM
(𝑃𝐿𝑀𝐵𝐸𝑅𝑇 ) to extract the final hidden states H ((equation 1).

𝐻 = 𝑃𝐿𝑀𝐵𝐸𝑅𝑇 ([CLS], 𝑡1, 𝑡2, ..., 𝑡𝑛, [SEP]) (1)
Since the target of our task is to determine if the semantic usage

of a target term 𝑡𝑡 in the post 𝑃 is figurative or not. We extracted
the context-specific representation of a target term 𝑡𝑡 to correctly
identify the use of a target term and used the average of a tokenized
word to derive a fixed-size feature vector. Considering that the
hidden states associated with the target term’s subwords are from
ℎ𝑖 to ℎ 𝑗 , we average these hidden states (equation 2).

𝑐 =
1

𝑗 − 𝑖 + 1

𝑗∑︁
𝑘=𝑖

ℎ𝑘 , (2)

where c denotes the contextualised representation of a target
term 𝑡𝑡 . Then, to predict the figurative use of a term term 𝑡𝑡 , we
inject context enriched representation c to a multi-layer percep-
tron (MLP) with tanh as a activation function and a softmax layer
(equation 3).

𝑝 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊2 (𝑡𝑎𝑛ℎ(𝑊1𝑐 + 𝑏1) + 𝑏2) (3)
where𝑊1 ∈ R𝑑𝑥𝑑 , 𝑏1 ∈ R𝑑 ,𝑊2 ∈ R2𝑥𝑑 , and 𝑏2 ∈ R𝑑 and d

represents BERT’s hidden state size. The cross-entropy loss min-
imisation is used to tune the parameters (equation 4).

𝐿𝑐𝑙𝑠 =
1
𝑀

𝑀∑︁
𝑚=1

𝑦𝑚𝑙𝑜𝑔(𝑝𝑚) (4)

where M denotes the dataset’s size.

3.2 Contrastive Loss
We hypothesised that a figurative term could be recognised when
the literal usage of a target term contrasts with the meaning that the
term adopts in context. The difference between a word’s contextual
and literal sense is a key element for determining the figurative use
of a target term.

The contrastive loss captures the contrastive relationship, mak-
ing the classifier recognisable. The contrastive loss allows the figu-
rative usage of the target term to have a closer semantic representa-
tion and separates literal usage. As illustrated in Figure 2, the target
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word "fever" in cases “a” and “b” is used figuratively rather than its
literal meaning to describe the health condition of a user, as shown
in instance “c”. Therefore, we expect the contextual representation
of the target word "fever" in post “a” and “b” to be closer and farther
away from the representation in post “c” and “d”.

Specifically, given a post 𝑃𝑎 with a target term 𝑡𝑡 as an anchor,
𝑃𝑝 is a positive instance with target term 𝑡𝑡 belonging to a similar
category as 𝑃𝑎 in batch B, whereas 𝑃𝑛 is a negative instance with
target term 𝑡𝑡 corresponding to another category in batch B. We
use equation 2 to compute their contextualised representations 𝑐𝑎 ,
𝑐𝑝 and 𝑐𝑛 (equation 5).

𝐿𝑐𝑜 =
∑︁

(𝑎,𝑝,𝑛) ∈B
𝑑 (𝑐𝑎, 𝑐𝑝 ) + [𝛾 − 𝑑 (𝑐𝑎, 𝑐𝑛)]+, (5)

where [·]+ denotes the functions 𝑓 (𝑥) = 𝑚𝑎𝑥 (0, 𝑥);𝑑 (·, ·) de-
notes the L2-normalized euclidean distance, whereas 𝛾 is a control-
ling parameter that determines the margin.

The contrastive loss requires identifying similarities between
instances of a similar class (label) and comparing them to instances
from other classes (labels). When the data samples represent differ-
ent classes, the contrastive loss widens the gap and maintains them
apart by at least a margin 𝛾 . Capturing the separation in embed-
ding representation between the target term’s literal and figurative
meanings is an essential feature of the HMC tasks.

3.3 Semi-supervised Learning
Motivated by [24], we use Target-basedGeneratingApproach (TGA)
to construct a large-scale training dataset without needing experts
or sophisticated pre-defined rules using Wikipedia as a knowledge
base (see section 4.2 – TGA implementation for details).
Target-basedGeneratingApproach (TGA):The TGA is designed
on a methodology in which if a target term acts as the identification
target in a post, all other posts within a specific corpus having this
target term serve as potential candidate examples. This approach
efficiently generates a large-scale candidate set U using the target
terms in the labelled data as heuristic seeds that can cover a wider
range of topics without requiring any specific manual design. The
fine-tuned PLM may then determine the labels of candidate exam-
ples, and high-confidence samples can be chosen to serve as the
extended data. However, this depends on the PLM’s performance,
which may result in predictive error and noise.
Self training: To reduce the error and the noise in U, we employ
self-training (ST) [22, 35] to construct pseudo-labels for candidate
examples using the fine-tuned PLM and include these in the training
data, where the pseudo-labels and PLM are iteratively updated. We
create pseudo-labels𝑦𝑖 ∈ R𝐾 for every example𝑢𝑖 ∈ 𝑈 (equation 6).

ˆ𝑦𝑖 𝑗 =
𝑝2
𝑖 𝑗
/𝑓𝑗∑

𝑗 𝑝
2
𝑖 𝑗
/𝑓𝑗

(6)

where 𝑝𝑖 𝑗 is the j-th class prediction of 𝑢𝑖 and 𝑓𝑗 =
∑
𝑖 𝑝𝑖 𝑗 is the

summation of the soft frequencies of class j. Equation 6 generates𝑦𝑖
by enhancing high-confidence predictions and decreasing ones with
less confidence by squaring and normalising the existing predic-
tions and preserving more information. The ST objective is defined
as a Kullback–Leibler (KL)-divergence loss between the current
prediction P and the pseudo-label distributions (equation 7).

𝐿𝑠𝑡 = 𝐾𝐿(𝑌 | |𝑃) =
|𝑈 |∑︁
𝑖=1

𝐾∑︁
𝑗=1

𝑦𝑖 𝑗 𝑙𝑜𝑔
𝑦𝑖 𝑗

𝑝𝑖 𝑗
(7)

3.4 Training Process
The overall loss function (L) incorporates contrastive loss 𝐿𝐶𝑂 ,
classification loss 𝐿𝐶𝐿𝑆 for labelled data, and 𝐾𝐿 loss for unlabeled
data U. The overall loss function is shown in equation 8.

𝐿 = 𝐿𝐶𝐿𝑆 + 𝛼𝐿𝐶𝑂 + 𝛽𝐿𝑆𝑇 (8)
Where 𝑎𝑙𝑝ℎ𝑎 and 𝑏𝑒𝑡𝑎 are hyperparameters used to optimise the

contrastive and KL losses, respectively. Following [24], our method
has a two-stage training process (Algorithm 1). First, we use labelled
data to fine-tune the PLM with the first two terms of equation 8,
which can effectively learn contrastive relations and improve the
performance of the HMC tasks. The fine-tuned PLM is then used
to determine soft pseudo-labels for all unlabelled data obtained by
TGA. In the second stage, we use an ST approach to complement the
data for training with pseudo-labelled data and iteratively optimise
the PLM. We iteratively calculate soft pseudo-labels using current
predictions during ST and adjust model parameters (equation 8).

Algorithm 1: Training Process
Input: labelled instances S; candidate

instances U collected by TGA;
PLM f(·;𝜃 ).

Stage 1: fine-tune PLM with labelled training data.
Use the first 2 terms in the equation 8 to update 𝜃 on S.
Stage 2: Optimise PLM using unlabelled data.
for 𝑡 = 1, 2, ...,𝑇 do

Generate pseudo-labels for U using equation 6.
Use equation 8 to update 𝜃 on S.

end
Output: The final fine-tuned PLM f(·;𝜃 ).

4 EXPERIMENTS
4.1 Datasets
We used two benchmark HMC datasets (i.e., HMC2019 and RHMD)
that are widely used in previous HMC studies (Table 1).
Health mention classification 2019 (HMC2019): HMC2019 [2]
consists of 15,393 English tweets and includes ten different disease

Table 1: Total is the number of posts in the HMC and RHMD
datasets. HM, FHM and NHM represent the number of posts
labelled as health mentions, figurative health mentions and
non-health mentions, respectively. ‘# of disease’ represents
the total number of disease or symptom terms.

Dataset Source # of disease FHM NHM HM Total

HMC2019 Twitter 10 4073 7199 4121 15393
RHMD Reddit 15 3225 3430 3360 10015
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or symptom terms such as headache, parkinson, stroke, cough,
depression, fever, cancer, migraine, heart attack and alzheimer. The
proportion of disease or symptom terms that are used figuratively
varies greatly in HMC2019, with a standard deviation of 20.48%;
the percentage of figurative disease or symptom use varies from
3.11% for Parkinson’s disease to 65.30% for a heart attack.
Reddit health mention dataset (RHMD): RHMD [30] consists of
10,015 Reddit posts that mention 15 common disease or symptom
terms such as migraine, asthma, diabetes, OCD, cough, depression,
fever, addiction, allergy, stroke, alzheimer, PTSD, headache, cancer,
and heart attack. There is considerable variation in the proportion
of disease or symptom terms among the labels in RHMD dataset. For
example, the number of posts mentioning depression is 41 (6.46%),
whereas posts mentioning heart attacks were 582 (66.90%). The
standard deviation of disease or symptom terms used figuratively
is 16.92% in RHMD. We used the public version of the dataset that
combines figurative and hyperbolic health mention classes.

4.2 Experimental Settings
Preprocessing: Consistent with previous studies [31], to enhance
the quality of the informal nature of posts, decrease the impact of
out-of-vocabulary words and fix social media-specific consumer
health vocabulary (CHV) terms [16] such as ‘massiveheadache,’
‘PSTD’ ‘OCD’ and ‘Migrane,’ our preprocessing steps included a
spelling correction, and emoticons/emojis were replaced.
Parameter settings and other training details: We used a grid
search optimisation technique to derive the best parameters of our
model. Specifically, we used AdamW [34] to optimise the parame-
ters of our model. We trained our classifier for 30 epochs, stopping
early after ten epochs. The contrastive objective’s margin 𝛾 is fixed
at 1.0. After empirical evaluation, we fixed 𝛼 to 0.2 and 𝛽 to 0.05.
For a fair comparison, we kept our settings the same as the previous
studies [2, 30, 31]. We used the base version of PLMs using the Hug-
gingFace Python library. All models used the same experimental
parameters and 10-fold cross-validation (CV) for consistency, and
reported results are averaged across folds.
TGA implementation: We initially harvest target phrases set as
triggers in all datasets and then leverage TGA to retrieve huge
target-related candidate examples from the same corpora for semi-
supervised learning. We leverage Wikipedia2 as the knowledge
base (KB) since it comprises a broad range of topics, making it a
suitable database that is typically easy and inexpensive to access.
We retrieve and select content from the English Wikipedia dump3
to build huge candidate sets and then leverage the NLTK package
to convert documents into sentences and deduplicate them.

4.3 Evaluation Metrics
The performance of ourmodel is evaluated using F1-score, precision,
recall and a custom metric 𝑇𝑁𝐹𝐻𝑀 used in previous similar works
on HMC [2, 30, 31].

𝑇𝑁𝐹𝐻𝑀 =
𝑡𝑛𝑓 ℎ𝑚

𝑓 ℎ𝑚
, (9)

2Wealso used data from other sources to generate target-related candidate instances but
empirically found that usingWikipedia performed better. Due to page limit restrictions,
results obtained using Wikipedia data are reported here.
3https://dumps.wikimedia.org/enwiki/20210201/

Table 2: Proposed v/s the baselines. F1, Precision (Pre), and
Recall (Rec) scores are averaged across ten folds. * shows that
our method obtained a significant (p < 0.05) improvement
over HMCNET under Mann–Whitney U test.

Model\Dataset HMC2019 RHMD

F1 Pre Rec F1 Pre Rec

BERT 0.76 0.75 0.77 0.65 0.68 0.63
BioBERT 0.73 0.71 0.75 0.63 0.65 0.62
CT-BERT 0.79 0.78 0.80 0.67 0.65 0.68
PHS-BERT 0.80 0.78 0.79 0.68 0.67 0.69

WESPAD 0.52 0.53 0.40 0.59 0.60 0.60
FeatAug+ 0.57 0.52 0.53 0.51 0.51 0.51
JiangLSTM 0.70 0.70 0.66 0.63 0.63 0.63
BERT-MTL 0.77 0.76 0.78 0.67 0.69 0.65

BiLSTM-Senti 0.81 0.81 0.80 0.68 0.67 0.68
BiLSTM-Attn+Senti 0.85 0.84 0.85 0.71 0.70 0.71

HMCNET 0.89 0.89 0.89 0.75 0.75 0.75

Proposed (+BERT) 0.93* 0.93* 0.93* 0.79* 0.78* 0.79
Proposed (+PHS-BERT) 0.95* 0.95* 0.95* 0.81* 0.81* 0.81*

where 𝑇𝑁𝐹𝐻𝑀 is referred to as "the percentage of FHMs accu-
rately identified as non-health mentions, i.e., true negatives."

4.4 Baselines
We evaluated the performance of our method with existing SOTA
methods (discussed in section 2). For PLMs we used BERT [4],
BioBERT [23], CT-BERT [28] and PHS-BERT [32]. For HMC meth-
ods, we used 𝐹𝑒𝑎𝑡𝐴𝑢𝑔+ [14], WESPAD [18], JiangLSTM [15], BERT-
MTL [1], BiLSTM-Senti [2], BiLSTM-Attn+Senti [31] and HMC-
NET [30]. We fine-tuned the PLMs to encode the posts and utilised
the grid-search CV technique to obtain the optimised parameters.

5 RESULTS
5.1 Comparison with Baselines
Overall comparison: Results in Table 2 demonstrate that our
method outperforms all previous HMC methods on the HMC task,
with an F1 score of 0.93 on HMC2019 and an F1 score of 0.79 on
RHMDusing BERT PLM (an absolute increase of 4% on both datasets
than the results of the next best baseline, i.e., HMCNET) and an F1
score of 0.95 on HMC2019 and an F1 score of 0.81 on RHMD using
PHS-BERT, a domain-specific PLM (an absolute increase of 6% on
both datasets than HMCNET). HMCNET additionally uses linguis-
tic features in their model, whereas our method does not utilise
language-based features. We show that PLMs (e.g., BERT, BioBERT,
CT-BERT and PHS-BERT) that are trained on general and domain-
specific corpus perform better compared to methods (e.g., WESPAD,
FeatAug+, JiangLSTM) that use non-contextual methods to encode
text; however these PLMS are less desirable for HMC tasks due to
their inability to contrast between the literal and figurative sense of
target (disease or symptom) terms. We also note that the methods
(e.g., FeatAug+, BERT-MTL, BiLSTM-Senti, BiLSMT-Attn+Senti)
that are designed to capture figurative mentions were less able
to understand the context in which a target term was used. Our

533



WSDM ’24, March 4–8, 2024, Merida, Mexico Usman Naseem, Jinman Kim, Matloob Khushi, & Adam G. Dunn

Figure 3: Correct prediction of figurative (𝑇𝑁𝐹𝐻𝑀 ) use of
disease or symptom terms

method performs better because it can fully use unlabelled data har-
vested by the proposed TGA that enhances the model generalisation
by ST and explicitly capture the contrast between the literal and
figurative mentions of disease or symptom terms by a contrastive
objective. Not surprisingly, the approaches based on transformer-
based PLMs (e.g., proposed, HMCNET, BiLSTM-Senti, BERT-MTL
and BiLSTM-Attn+Senti) are consistently better compared to the
other HMC methods (e.g., WESPAD, FeatAug+, JiangLSTM) due to
the strong expressive power of transformer-based PLMs to capture
rich semantics and contextual information into the representations.
Thus, below we will compare the performance of the proposed
method with only HMC methods.
Identification of figurative health mentions: Figure 3 demon-
strates the effectiveness of our method in capturing figurative
health mentions (𝑇𝑁𝐹𝐻𝑀 ) in comparison to the HMC baselines.
Our method consistently outperforms all other baselines in identi-
fying a disease or symptom term used as figurative health mentions
with an 𝑇𝑁𝐹𝐻𝑀 score of 0.94 on HMC2019 and an 𝑇𝑁𝐹𝐻𝑀 score
of 0.95 on RHMD, which is an absolute increase of 5% on HMC2019
and 10% increase on RHMD than the HMCNET. We attribute this
increase in performance to the effective target-based generating
approach (TGA) that improves the robustness of our method using
self-training and is designed to capture the contrast between the
figurative and other mentions of disease or symptom terms by a
contrastive loss.
Baselines with additional training data:We also investigated
the effect of additional training data (ATD) generated using a target-
based generating approach (TGA) and self-training in baselines
(Figure 4). Although we observed an increase in the overall perfor-
mance (F1-Score) of each tested baseline on both datasets; however,
the proposed method still outperforms all the baselines. We postu-
late this to the use of contrastive loss in our method that helps our
model to the contrast between literal and figurative use of target
terms. Hence, we conclude that the proposed target-based gener-
ating approach (TGA) and self-training address the data scarcity

Figure 4: Comparison using additional training data (ATD)
used in proposed method

issue. The contrastive loss further improves the performance due to
its ability to capture a literal and non-literal sense of target words.
Transferability Test: We also performed the transportability test
where we first performed cross-domain (i.e., train on HMC2019 and
test on RHMD and vice-versa) and multi-domain (i.e., combined
HMC2019 and RHMD as HMC+RHMD) evaluation of our method to
validate the effectiveness and robustness of our method (Figure 5).
It is clear from Figure 5 that the performance of our method drops
less compared to other methods. Our method outperforms previous
methods when trained on HMC2019, which contains 10 target
terms and tested on RHMD, which contains 15 disease terms, i.e.,
5 new target terms that are not seen during the training phase
and consistently outperforms other baselines on both settings (i.e.,
cross-domain and multi-domain). In the first setting (i.e., cross-
domain), when we trained on HMC2019 and tested on RHMD,
our method achieved the highest performance compared to the
baselines. The highest performance achieved by our method is

Figure 5: Transferability test.
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Table 3: Binary scheme: Comparing performance of our
method with the SOTA baselines. F1, Precision (Pre), and
Recall (Rec) scores are averaged over 10 folds. * represents
that our method obtained a significant (p < 0.05) improve-
ment over HMCNET under Mann–Whitney U test.

Model\Dataset HMC2019 RHMD

F1 Pre Rec F1 Pre Rec

WESPAD 0.67 0.67 0.67 0.73 0.74 0.73
FeatAug+ 0.75 0.76 0.73 0.71 0.72 0.71
JiangLSTM 0.72 0.73 0.72 0.73 0.74 0.73
BERT-MTL 0.80 0.79 0.81 0.74 0.74 0.74

BiLSTM-Senti 0.85 0.85 0.85 0.76 0.79 0.77
BiLSTM-Attn+Senti 0.88 0.88 0.88 0.78 0.78 0.78

HMCNET 0.92 0.92 0.91 0.81 0.81 0.80

Proposed 0.96* 0.96* 0.95* 0.85* 0.87* 0.85*

73% which is highest than the baselines. We observed a similar
improvement in performance when using RHMD for training and
HMC2019 for testing. The highest performance achieved is 75%,
the highest among all tested results. In our second setting (multi-
domain), where we combined HMC2019 and RHMD and tested
our method on combined HMC+RHMD data. We observed that
our method outperforms all the baselines in multi-domain settings
and achieved an F1-Score of 85%. This transportability test on both
cross-domain and multi-domain settings validates the robustness
and generalisability of our method.
Labels segregation (Binary label scheme): Following previous
HMC studies [2, 30], we observe results for an alternative scheme
(i.e., binary label) where we used only the figurative health mention
(FHM) and health mention (HM) classes (Table 3). The result shows
that the predictivemodels perform better whenwe adopt this binary
scheme than when we use the original three-class scheme. We
attribute this increase in performance to the potential of reducing
the level of freedom of the output variables (binary classes instead
of three). These findings also indicate that all methods perform
poorlywhen evaluated on terms used in three classes of fine-grained
use of disease or symptom terms. We also notice that our method
outperforms all previous HMC methods when tested on a binary
label scheme with an F1-Score of 0.96 on HMC2019 and 0.85 on
RHMD, which is an absolute increase of 4% on both datasets than
the HMCNET (Table 3).
Disease or symptom wise comparison: Our method obtained
the highest F1-Score on both datasets for each of the disease or
symptom terms (increases in F1-Score range from 0.68% to 11.16%)
compared to the HMC baselines (Table 4). The highest increase
in performance on HMC2019 is observed for ‘Cancer’ (3.18%) and
‘Cough’ (3.31%), whereas for RHMD, the highest increase in per-
formance is noted for ‘OCD’ (11.16%) and ‘Allergic’ (9.83%). We
postulate this increase to the target-based generating approach
(TGA), which constructs diverse training data from Wikipedia con-
taining various topics and avoids the model’s tendency to be biased
toward a specific domain (disease/symptom). The lowest increase
was observed for the ‘fever’ (0.92%) term on HMC2019 and for

‘Alzheimer’ (0.68%) on RHMD. This poor performance is due to the
infrequent use of these disease or symptom terms, as figurative
health mentions. We conclude that our method is robust for deter-
mining the use of disease or symptom terms in HMC because it
outperforms previous HMC methods in determining an individual
disease or symptom term.

5.2 Analysis
Ablation analysis:We conduct an ablation analysis to evaluate
the effectiveness of each component of our method (Table 5). We
compare our method variants without the contrastive loss (w/o
CO) and the self-training (w/o ST). The result shows that each
component is essential for our method, as removing any of them
would significantly decrease performance. When the self-training is
excluded, the F1-score drops by 4% on HMC2019 and 3% on RHMD,
demonstrating the importance of coupling semi-supervised learning
to enhance the generalisation. The contrastive loss captures the
contrast between the literal and figurative semantics of the target
terms and is useful for our method, and removing CO results in a
drop of 3% on HMC2019 and 2% on RHMD. Hence, we infer that our
method’s strengths lie in using both self-training and contrastive
loss, which contributes to increased performance.

Figure 6: Embedding Visualisation of (a) labels w/o CO (top)
and w/ CO (bottom) and (b) target words ‘cancer’ and ‘de-
pression’ w/o CO (top) and w/ CO (bottom). Red represents
the figurative health mention (FHM), blue represents the
non-health mention (NHM) and green represents the health
mention (HM) use of disease or symptom terms.

Qualitative analysis (Embedding Visualisation): We visualise
the contextual embeddings (equation 2), coloured by their labels
(Figure 6a) and their disease or symptom terms (Figure 6b). As
shown in Figure 6, the boundary of different label dots in our
method (bottom) is more pronounced than that in ablated mod-
els without a contrastive loss (top), which reveals that when the
contrastive loss is removed, the literal and figurative and other men-
tions of disease or symptom terms are less distinguishable. Based
on our hypothesis, a figurative health mention is detected if the lit-
eral usage of the target term contrasts with its contextual meaning.
As expected, the proposed contrastive loss explicitly widens the
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Table 4: Disease or symptom-wise performance. F1-Score is averaged across ten folds, and the following (i.e., second-best) result
is underlined. Percentage Improvement (%) shows the increase in performance over the second-best result. *represents that our
method obtained a significant (p < 0.05) improvement over the second best method (underlined) under Mann–Whitney U test.

Disease\Model WESPAD FeatAug+ JiangLSTM BERT-MTL BiLSTM-Senti BiLSTM-Attn+Senti HMCNET Proposed Performance
Increase (%)

HMC2019

Alzheimer 0.49 0.61 0.59 0.65 0.69 0.78 0.75 0.80* 2.17%
Cancer 0.43 0.56 0.42 0.60 0.66 0.73 0.79 0.82* 3.18%
Cough 0.46 0.39 0.56 0.66 0.81 0.66 0.89 0.93* 3.31%

Depression 0.55 0.42 0.54 0.58 0.70 0.61 0.77 0.79* 1.61%
Fever 0.56 0.39 0.59 0.65 0.81 0.72 0.88 0.89* 0.92%

Headache 0.55 0.40 0.54 0.69 0.84 0.77 0.89 0.91* 2.00%
Heart attack 0.48 0.43 0.52 0.70 0.80 0.79 0.86 0.88* 1.43%
Migraine 0.65 0.41 0.69 0.72 0.83 0.80 0.90 0.91* 1.01%
Parkinson 0.48 0.68 0.44 0.61 0.67 0.80 0.78 0.83* 2.91%
Stroke 0.49 0.50 0.49 0.69 0.78 0.70 0.85 0.87* 1.48%

RHMD

Addiction 0.57 0.65 0.43 0.56 0.65 0.57 0.73 0.81 7.60%
Allergic 0.53 0.72 0.39 0.48 0.50 0.65 0.69 0.79* 9.83%

Alzheimer 0.58 0.80 0.23 0.39 0.41 0.81 0.70 0.82* 0.68%
Asthma 0.60 0.68 0.32 0.35 0.37 0.67 0.76 0.77* 1.43%
Cancer 0.61 0.65 0.32 0.45 0.49 0.70 0.79 0.85* 6.44%
Cough 0.51 0.59 0.28 0.31 0.35 0.50 0.72 0.74* 2.46%

Depression 0.58 0.67 0.31 0.39 0.41 0.74 0.68 0.76* 2.86%
Diabetes 0.61 0.83 0.33 0.45 0.49 0.70 0.76 0.80* 3.50%
Fever 0.54 0.62 0.37 0.43 0.46 0.67 0.75 0.82* 7.71%

Headache 0.55 0.65 0.38 0.50 0.37 0.73 0.65 0.75* 2.98%
Heart attack 0.65 0.67 0.46 0.51 0.56 0.76 0.80 0.85* 5.26%
Migraine 0.61 0.51 0.41 0.44 0.45 0.69 0.75 0.82* 7.48%
OCD 0.42 0.55 0.32 0.35 0.36 0.56 0.49 0.68* 11.16%
PSTD 0.58 0.73 0.42 0.49 0.56 0.76 0.66 0.81* 5.04%
Stroke 0.54 0.61 0.26 0.42 0.45 0.67 0.60 0.72* 5.55%

gap between the target word’s literal and figurative usage of target
terms in embedding space and models more concise representations
for data from the similar class (bottom of Figure 6a and Figure 6b).

5.3 Error Analysis
Below we present some of the errors made by our method and de-
scribe its limitations. For example, for a post: ‘**coca cola is actual
cough syrup URL**’ and “**call my girlfriend**asthma**breath
away**” and “**group of kids**called**migraine**,” our method

Table 5: Ablation analysis: Proposed represents a complete
model, Proposed w/o CO is a complete model without con-
trastive loss, and Proposed w/o ST represents a complete
model without self-training. F1, Precision (Pre), and Recall
(Rec) scores are averaged across 10-folds. *represents that
our method obtained a significant (p < 0.05) improvement
than other variants under Mann–Whitney U test.

Model\Dataset HMC2019 RHMD

F1 Pre Rec F1 Pre Rec

Proposed 0.93* 0.93* 0.93* 0.79* 0.78* 0.79*
Proposed w/o CO 0.90 0.91 0.91 0.77 0.77 0.75
Proposed w/o ST 0.89 0.90 0.90 0.76 0.76 0.76

was not able to correctly classify a figurative usage of ‘cough’,
‘asthma’ and ‘migraine’. We postulate these incorrect predictions
due to a lower count of terms in our datasets, posts with a lack of
information, and the use of an external link (i.e., URL).

6 CONCLUSION
We proposed a novel method that uses self-training to build a sim-
ple but effective approach to determine figurative uses of disease or
symptom terms using the pre-trained backbone to extract contex-
tualised information. Specifically, we leverage a simple approach
that automatically builds large data for self training and integrates
a contrastive loss to capture semantic inconsistencies in figurative
mentions. Our results indicated that our method is robust, transfer-
able across different social media platforms and outperform SOTA
HMC benchmarks for the HMC task of distinguishing personal
health mentions across a set of disease and symptom terms.

ETHICAL CONSIDERATIONS
This study aims to enhance social media applications and other
health surveillance tools that automatically detect health mentions
on social media. The annotated datasets we used are publicly avail-
able [2, 30] and include de-identified publicly available posts where
users understand public access and there is no expectation of pri-
vacy. Hence, no ethical approval is required for this research.
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