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Abstract

Motivation: Conserved non-coding elements (CNEs) represent an enigmatic class of genomic ele-

ments which, despite being extremely conserved across evolution, do not encode for proteins.

Their functions are still largely unknown. Thus, there exists a need to systematically investigate

their roles in genomes. Towards this direction, identifying sets of CNEs in a wide range of organ-

isms is an important first step. Currently, there are no tools published in the literature for systemat-

ically identifying CNEs in genomes.

Results: We fill this gap by presenting CNEFinder ; a tool for identifying CNEs between two given

DNA sequences with user-defined criteria. The results presented here show the tool’s ability of

identifying CNEs accurately and efficiently. CNEFinder is based on a k-mer technique for comput-

ing maximal exact matches. The tool thus does not require or compute whole-genome alignments

or indexes, such as the suffix array or the Burrows Wheeler Transform (BWT), which makes it flex-

ible to use on a wide scale.

Availability and implementation: Free software under the terms of the GNU GPL (https://github.

com/lorrainea/CNEFinder).

Contact: lorraine.ayad@kcl.ac.uk

1 Introduction

Conserved non-coding elements (CNEs) are a pervasive class of

elements that are usually identified by inspecting whole-genome

alignments between two or more genomes. CNEs can be extremely

conserved across evolution, yet they do not encode for proteins.

Some of these elements play roles in the development of multicellu-

lar organisms acting as enhancers (Aparicio et al., 1995). Although

they can be referred to in the literature with different names (UCEs,

UCNEs, CNS, to name a few), the prevailing view is that these sets

of elements are largely overlapping, with their genesis, functions and

evolutionary dynamics being largely unknown. We refer the inter-

ested reader to (Polychronopoulos et al., 2014a, 2017) for a concise

introduction on CNEs.

CNE identification methods may be classified into two major

categories: alignment-based and alignment-free methods.

1.1 Alignment-based methods
Alignment-based methods identify CNEs by inspecting pairwise or

multiple whole-genome alignments. Several tools exist that generate

whole-genome alignments, such as BLASTZ (Schwartz et al., 2003),

MULTIZ (Blanchette et al., 2004), and LASTZ (Harris, 2007).

For a pair of sequences, CNEs are defined as elements which satisfy

specific length and sequence identity percentage thresholds

(Bejerano et al., 2004; Dubchak et al., 2000; Sandelin et al., 2004b).

The threshold values depend on the evolutionary distance between

species under comparison. Not all CNEs identified by whole-

genome comparisons of mammalian genomes appear conserved

when the same conservation criteria are used on more distant gen-

ome comparisons. Thus, those thresholds are somewhat arbitrary.

1.2 Alignment-free methods
Alignment-free methods avoid some of the problems associated

with whole-genome alignments, such as computational complexity,

highly fragmented assemblies, and inflexibility. Variants of

BLAST are usually used in the homology search on repeat- and cod-

ing sequence-masked genomes (Babarinde and Saitou, 2016).

Warnefors et al. (2016) proposed an alignment-free method based

on k-mers. All k-mers occurring a single time in the reference gen-

ome are mapped to the species of interest with a short-read aligner

and then overlapping hits are merged into longer CNEs. This ap-

proach increases the sensitivity of CNE detection by overcoming the

ambiguities and errors in the alignment, such as gap insertions and

occurrences of a split across alignment blocks. However, this ap-

proach incurs a small false positive rate due to mishandling of hits

with multiple copies, either from genome duplications or assembly
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errors. Most importantly, and similar to many other cases, the

authors do not make their implementation for identifying CNEs

publicly available.

1.3 CNE databases
There also exist many CNE databases which contain already pre-

computed sets of CNEs: Ancora (Engström et al., 2008), CEGA

(Dousse et al., 2015), cneViewer (Persampieri et al., 2008),

CONDOR (Woolfe et al., 2007), UCbase (Lomonaco et al., 2014),

UCNEbase (Dimitrieva and Bucher, 2013), and VISTA (Visel et al.,

2007). On the one hand, this highlights the importance of this re-

search topic among the biological community. On the other hand,

these databases are static and seldom updated. Furthermore, the sets

of CNEs stored in these databases are identified using custom

scripts, written in different programming languages, and tailored to

the biological needs of each study.

1.4 Our contribution
In summary, we would like to stress the need for comprehensive

tools for identifying CNEs. We present CNEFinder, a tool for identi-

fying CNEs between two given DNA sequences with user-defined

criteria. CNEFinder applies the k-mer technique of Khiste and Ilie

(2015) for computing maximal exact matches. Hence it does not re-

quire or compute the whole-genome alignment of the two sequences;

it does not require or compute a whole-genome index such as the

suffix array or the BWT—see (Kurtz et al., 2004), for instance—and

it thus finds CNEs from the two sequences directly with user-

defined criteria. We have designed CNEFinder in a way that we

hope proves useful for the biological community: the tool identifies

all CNEs around genes of interest with the aim to facilitate function-

al experiments. Genome- or chromosome-wide CNE trends may

also be revealed as demonstrated by our results. We anticipate that

CNEFinder will be a useful tool towards cracking the still largely en-

igmatic regulatory code of our genome.

2 Materials and methods

CNEFinder was implemented in the Cþþ programming language

with OpenMP API for multi-platform shared-memory parallel pro-

gramming. Our implementation (along with a several-page docu-

mentation) is distributed under the GNU General Public License

(GPL), and is made freely available at https://github.com/lorrainea/

CNEFinder.

Given two DNA sequences, a reference sequence x and a query

sequence y, CNEFinder uses the state-of-the-art k-mer method pre-

sented by Khiste and Ilie (2015), in conjunction with the well-

known seed and extend strategy (Altschul et al., 1990; Kurtz et al.,

2004; Pearson, 2000), to identify CNEs between x and y. The DNA

sequences are first pre-processed to remove exons and simple and

low-complexity repeats from the search, allowing the tool to search

for CNEs more accurately. CNEs can then be identified by searching

the intergenic and intronic regions around a specific gene as input by

the user. CNEs can also be identified through the input of specific

index positions of chromosomes that exist in the pair of DNA

sequences. Moreover, CNEFinder is able to search for CNEs in en-

tire chromosomes. CNEFinder uses a three-stage approach, specific-

ally tailored for CNE identification, described in detail below.

2.1 Identifying matches
The k-mer-based method (Khiste and Ilie, 2015) for identifying

maximal exact matches between two sequences is used to identify

exact matches (or anchors) between x and y. The k-mers of x are

first computed using standard bitwise operations; they are then

hashed using double hashing; and, finally, they are stored. The cor-

responding k-mers in y are then matched using the stored hash table.

Attempts to extend the matches of all occurrences of stored posi-

tions in the table are carried out. These positions are then returned

as maximal exact matches.

We measure the identity score between two strings using the sim-

ple edit distance model (Levenshtein, 1966). In this model, the total

number of unit-cost edit operations required to transform one string

into the other is minimised. The considered operations are inser-

tions, deletions or substitutions of letters. Given a lower bound ‘ on

the length of the reported elements and a lower bound t 2 ð0; 1� on

the relative identity threshold between two elements (1 returns iden-

tical substrings in x and y), maximal exact matches of minimum

length b‘=ð‘� t � ‘þ 1Þc are computed via applying the k-mer-

based method (Khiste and Ilie, 2015). This ensures for exact matches

to be identified, which can then be extended, such that each pair of

elements with minimum length ‘ can have an edit distance of at

most ‘� t � ‘. This follows from a simple counting argument. The

user can alternatively set an explicit value for this minimum length,

and then the maximum of the two values is considered for the

computation.

2.2 Merging matches
The anchors found are then merged to produce co-linear sequences

of non-overlapping matches and processed further if the combined

length of the matches is above a lower bound of nucleotides set by

the user with respect to ‘. The exact identity score at each merging

step is calculated by considering the total edit distance of the gaps

between the anchors to be merged. The merging process is termi-

nated once the addition of another gap would force the relative iden-

tity score to drop below threshold t. For edit-distance computation,

we apply the fast bit-vector algorithm by Myers (1999). Note that

this algorithm applies only for simple edit distance.

2.3 Extending matches
The last stage is to check whether the merged matches can be further

extended to the left or to the right. At each step of the extension pro-

cess, the edit distance of the extension in the left and right direction

of the merged matches is computed using Myers’ algorithm (Myers,

1999). The current match is extended in both directions if the

threshold allows it or otherwise in the direction having the smallest

edit distance. This procedure is repeated until the computed relative

identity score of the current length of the match reaches t or when

the maximum length u of one of the elements, which is defined by

the user, has been reached.

Note that due to the way the extension stage works, the esti-

mated identity score may not be the actual identity score for the

whole element: the estimated score could be smaller or equal to the

actual. To re-adjust and allow for further extension, the actual iden-

tity score is computed for the whole element using Myers’ algorithm

(Myers, 1999), and the extension process continues accordingly.

Those matches that are of length at least ‘ and at most u with rela-

tive identity score of at least t are reported as CNEs.

3 Results

All datasets and output files referred to in this section can be found

at https://github.com/lorrainea/CNEFinder. To demonstrate the

accuracy and efficiency of CNEFinder we have conducted the
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following experiments on a standard desktop PC with an Intel Core

i7-4790 CPU at 3.60 GHz with 16 GB of RAM running a GNU/

Linux operating system. All optional parameters were set as default

unless stated otherwise.

3.1 CNEFinder against UCNEbase
The first experiment carried out was to identify how accurate CNEF

inder is in computing CNEs by comparing against previously identi-

fied CNEs stored in the UCNEbase (Dimitrieva and Bucher, 2013),

a well-established CNE database. Specifically, this experiment

involved identifying CNEs within five different genes between the

Human (hg19) and Chicken (galGal3) genomes. Six different length

ranges in base pairs (bp) were tested to identify whether CNEFinder

obtained the same CNEs as those present in the UCNEbase. A rela-

tive identity threshold of t ¼ 95% was used for all datasets. The

results show that CNEFinder identifies almost all elements listed in

UCNEbase for these datasets and parameters. Table 1 shows the

number of CNEs output by CNEFinder that are overlapping with

those stored in the UCNEbase. The table presents these results in the

form a=b, where a represents the number of CNEs computed by

CNEFinder that were found in the UCNEbase, and b the number of

CNEs with a length within the specified range stored in the

UCNEbase. We only compute the overlap of the identified CNEs

against those in UCNEbase as a precision test as there is no ideal set

of CNEs to compare against. This overlap analysis is shown in

Table 1 using the average percentage of overlapping nucleotides be-

tween the CNEs output by CNEFinder and those stored in the

UCNEbase. It was computed using the BEDTools Suite (Quinlan

and Hall, 2010). Note that the majority of CNEs found by CNEFin

der were in fact longer in length (bp) than those in the UCNEbase,

in addition to having a high overlap percentage for all genes at all

length ranges. The full list of identified CNEs can be found online in

the same location as the datasets.

3.1.1 Genomic distribution of CNEs along the chromosome

We also wanted to find out whether the elements returned by

CNEFinder are true CNEs in the biological sense. CNEs are known

to form clusters in genomes (Sandelin et al., 2004a), and the distan-

ces between consecutive elements follow power-law-like distribu-

tions (Polychronopoulos et al., 2014b, 2016). We plotted the

genomic distribution of human CNEs as identified by CNEFinder

between Chromosome 4 (chr4) of the Human (hg38) and Chicken

(galGal4), with t ¼ 90% and ‘ ¼ 50 bp. As a control, we also plot-

ted the same number of human CNE-like elements; that is elements

that have one by one, the same length as every CNE in the real set

but are distributed randomly on chr4. The function

plotCNEDistribution from the CNEr R/Bioconductor package

(Tan, 2017) was used to produce the plots in Figure 1. Evidently

from Figure 1, in the case of elements identified by CNEFinder,

many elements are clustered around the same genomic position,

while in the case of the control elements, this is clearly the contrary.

The latter demonstrates that the elements identified by CNEFinder

are indeed CNEs as they display an important biological property.

3.1.2 Efficiency of CNEFinder

We also conducted the following typical runs to demonstrate

the time and memory efficiency of CNEFinder. First, we recorded

the time taken to compute CNEs with minimum and maximum

length (bp), 200–250, 250–300, 300–350, 350–400, 400–450, and

450–500, with t ¼ 90%, between the 143–148 Mbp region of

Chromosome 2 of the Human (hg19) genome and the 34–39 Mbp

region of Chromosome 7 of the Chicken (galGal3) genome using

eight CPU cores. These were, respectively, 4.4s, 4.4s, 4.5s, 4.8s,

4.3s, and 5.2s. The maximum memory used for these runs was 1.6

GB of RAM. Second, we recorded the time taken to compute CNEs

with minimum and maximum length 200–500 bp with t ¼ 90%

using the whole Chromosome 2 of the human (hg19) genome and

the whole Chromosome 7 of the chicken (galGal3) genome using

eight CPU cores. This was 32 m 30 s. The maximum memory used

for this run was 5.6 GB of RAM.

3.1.3 Comparison with local-alignment tools

In the last experiment, we exhibit the need for a tool specifically tail-

ored for CNE identification. To this end, we compared CNEFinder

to YASS, a state-of-the-art local alignment search tool (Noé and

Kucherov, 2005). YASS works by identifying seeds between a pair

of DNA sequences and then extends these matches to local align-

ments between the sequence pair. We ran YASS using regions

76.57–79.01 Mbp of Chromosome 8 of the Human (hg19) genome

and 123.57–124.82 Mbp of Chromosome 2 of the Chicken

Table 1. CNEs identified for five genes for different length ranges and t ¼ 95%

200� 250 bp 250� 300 bp 300� 350 bp

# CNEs % Nucleotides # CNEs % Nucleotides # CNEs % Nucleotides

Gene Overlapping Overlapping Overlapping Overlapping Overlapping Overlapping

ZEB2 31/31 84.59 18/18 87.31 20/20 90.36

TSHZ3 35/36 78.49 16/17 80.01 8/8 84.85

EBF3 28/28 87.90 17/17 90.81 16/16 88.21

BCL11A 20/20 81.24 28/28 85.75 14/14 93.61

ZFHX4 18/18 88.02 22/22 89.82 10/10 86.86

350� 400 bp 400� 450 bp 450� 500 bp

# CNEs % Nucleotides # CNEs % Nucleotides # CNEs % Nucleotides

Gene Overlapping Overlapping Overlapping Overlapping Overlapping Overlapping

ZEB2 14/14 83.17 19/19 91.56 5/5 92.45

TSHZ3 6/6 88.50 12/12 89.36 2/2 90.68

EBF3 6/6 78.46 8/8 83.91 3/3 82.21

BCL11A 10/10 90.73 4/4 83.49 5/5 88.04

ZFHX4 6/6 93.58 5/5 93.10 6/6 87.98
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(galGal3) genome. These are the exact regions used to compute the

CNEs for gene ZFHX4 found in Table 1. A dissimilarity threshold

of 5% was used to make the experiments as similar as possible. For

the elements identified by YASS that did overlap with those in the

UCNEbase, the average percentage of overlapping nucleotides was

only 31.01%. This can be explained by the optimality criterion of

local alignments that does not allow for constraints on the lengths of

the alignments. Note that a comparison with other local-alignment

tools is beyond the scope of this paper. The rationale of this experi-

ment was to demonstrate the inapplicability of local alignment tech-

niques for CNE identification.

4 Conclusion

Due to the lack of published tools for identifying CNEs and

the need to systematically investigate their roles in genomes,

we have presented CNEFinder, a tool specifically tailored for

CNE identification given two DNA sequences. CNEFinder

does not require or compute the whole-genome alignment or

whole-genome indexes of the two sequences. It thus finds CNEs

from the two sequences directly with user-defined criteria.

Experimental results provided here show the accuracy of

CNEFinder, compared to existing well-established static data-

bases, as well as its efficiency and ability to reveal biological CNE

trends on a chromosome level.
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Noé,L. and Kucherov,G. (2005) YASS: enhancing the sensitivity of dna simi-

larity search. Nucleic Acids Res., 33, W540–W543.

Pearson,W.R. (2000) Flexible sequence similarity searching with the FASTA3

program package. Methods Mol. Biol., 132, 185–219.

(a) (b)

Fig. 1. Genomic distribution of CNEs along human (hg38) chr4. (a) Elements found by CNEFinder . (b) CNE-like elements. For more information, see the text

i746 L.A.K.Ayad et al.



Persampieri,J. et al. (2008) cneViewer: a database of conserved non-coding

elements for studies of tissue-specific gene regulation. Bioinformatics, 24,

2418–2419.

Polychronopoulos,D. et al. (2014a) Classification of selectively constrained

DNA elements using feature vectors and rule-based classifiers. Genomics,

104, 79–86.

Polychronopoulos,D. et al. (2014b) Conserved noncoding elements follow

power-law-like distributions in several genomes as a result of genome dy-

namics. Plos One, 9, e95437–e95412.

Polychronopoulos,D. et al. (2016) Fractality and entropic scaling in the

chromosomal distribution of conserved noncoding elements in the human

genome. Gene, 584, 148–160.

Polychronopoulos,D. et al. (2017) Conserved non-coding elements: develop-

mental gene regulation meets genome organization. Nucleic Acids Res., 45,

12611–12624.

Quinlan,A.R. and Hall,I.M. (2010) BEDTools: a flexible suite of utilities for

comparing genomic features. Bioinformatics, 26, 841–842.

Sandelin,A. et al. (2004a) Arrays of ultraconserved non-coding regions span

the loci of key developmental genes in vertebrate genomes. BMC Genomics,

5, 99.

Sandelin,A. et al. (2004b) JASPAR: an open-access database for eukaryot-

ic transcription factor binding profiles. Nucleic Acids Res., 32,

D91–D94.

Schwartz,S. et al. (2003) Human-mouse alignments with BLASTZ. Genome

Res., 13, 103–107.

Tan,G. (2017). CNEr. http://bioconductor.org/packages/release/bioc/html/

CNEr.html.

Visel,A. et al. (2007) VISTA Enhancer Browser–a database of tissue-specific

human enhancers. Nucleic Acids Res., 35, D88–D92.

Warnefors,M. et al. (2016) Combinatorial gene regulatory functions

underlie ultraconserved elements in Drosophila. Mol. Biol. Evol., 33,

2294–2306.

Woolfe,A. et al. (2007) CONDOR: a database resource of developmentally

associated conserved non-coding elements. BMC Dev. Biol., 7, 100.

CNEFinder: finding conserved non-coding elements in genomes i747

http://bioconductor.org/packages/release/bioc/html/CNEr.html
http://bioconductor.org/packages/release/bioc/html/CNEr.html

