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Abstract. Sparse suffix sorting is the problem of sorting b = o(n) suf-
fixes of a string of length n. Efficient sparse suffix sorting algorithms have
existed for more than a decade. Despite the multitude of works and their
justified claims for applications in text indexing, the existing algorithms
have not been employed by practitioners. Arguably this is because there
are no simple, direct, and efficient algorithms for sparse suffix array con-
struction. We provide two new algorithms for constructing the sparse
suffix and LCP arrays that are simultaneously simple, direct, small, and
fast. In particular, our algorithms are: simple in the sense that they
can be implemented using only basic data structures; direct in the sense
that the output arrays are not a byproduct of constructing the sparse
suffix tree or an LCE data structure; fast in the sense that they run
in O(n log b) time, in the worst case, or in O(n) time, when the total
number of suffixes with an LCP value greater than 2⌊log

n
b
⌋+1 − 1 is in

O(b/ log b), matching the time of optimal yet much more complicated al-
gorithms [Gawrychowski and Kociumaka, SODA 2017; Birenzwige et al.,
SODA 2020]; and small in the sense that they can be implemented using
only 8b + o(b) machine words. We also show that our second algorithm
can be trivially amended to work in O(n) time for any uniformly random
string. Our algorithms are non-trivial space-efficient adaptations of the
Monte Carlo algorithm by I et al. for constructing the sparse suffix tree
in O(n log b) time [STACS 2014].
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1 Introduction

Let T = T [1 . . n] be a string of length n over an ordered alphabet Σ. Further let
B ⊆ [1, n] be a set of b > 1 positions in T . Sparse suffix sorting is the problem
of sorting the set of suffixes TB = {T [i . . n] : i ∈ B} lexicographically [18].
This is achieved by constructing the sparse suffix array. The sparse suffix array
SSA = SSA[1 . . b] is the array containing the positions in B in the lexicographical
order of the suffixes in TB. The associated sparse longest common prefix array
SLCP = SLCP[1 . . b] stores the length SLCP[i] of the longest common prefix of
T [SSA[i−1] . . n] and T [SSA[i] . . n] when i ∈ [2, n] or 0 when i = 1. The SSA and
SLCP array can be used to construct the sparse suffix tree in linear time using
the algorithm by Kasai et al. [20]. The sparse suffix tree is the compacted trie of
the set TB. Vice-versa, the SSA and SLCP array can be obtained in linear time
via a pre-order traversal of the sparse suffix tree.

Sparse suffix sorting was introduced as a fundamental step in the construction
of compressed or sparse text indexes [18]. Modern compressed text indexes [24,
10], practical indexes for long patterns [15, 22, 23, 2], and sublinear-space string
algorithms [3, 5] rely on sparse suffix sorting: they first sample a sublinear num-
ber of “important” suffixes, which they next sort to construct their final solution.
Efficient sparse suffix sorting algorithms have existed for more than a decade.
The following algorithms construct SSA explicitly, or implicitly by first con-
structing the sparse suffix tree. Since the size of SSA (and the size of sparse
suffix tree) is Θ(b), the goal of these algorithms is to use O(b) words of space
assuming read-only random access to T . Kärkkäinen et al. presented a deter-
ministic O(n2/s)-time and O(s)-space algorithm, for any s ∈ [b, n] [17, Section
8]. Bille et al. presented a Monte Carlo O(n log2 b)-time and O(b)-space algo-
rithm [6], as well as a Las Vegas O(n log2 n+ b2 log b)-time and O(b)-space algo-
rithm. I et al. presented a Monte Carlo O(n+(bn/s) log s)-time and O(s)-space
algorithm, for any s ∈ [b, n] [16] and a Las Vegas O(n log b)-time and O(b)-
space algorithm. Gawrychowski and Kociumaka [14] presented a Monte Carlo
O(n)-time andO(b)-space algorithm and a Las VegasO(n

√
log b)-time andO(b)-

space algorithm. Birenzwige et al. [7] presented a Las Vegas algorithm running
in O(n) time using O(b) space. Besides this they also presented a deterministic
O(n log n

b )-time and O(b)-space algorithm, for any b = Ω(log n).
The following algorithms also construct SSA, but they work in the restore

model [9]: an algorithm is allowed to overwrite parts of the input, as long as it
can restore it to its original form at termination. Fischer et al. [12] presented
a deterministic O(c

√
log n + b log b log n log∗ n)-time and O(b)-space algorithm,

where c is the number of letters that must be compared for distinguishing the
suffixes in TB. In some cases, this runs in sublinear extra time; extra refers to
the linear cost of loading T in memory. Prezza [26] presented a Monte Carlo
O(n+ b log2 n)-time algorithm using O(1) words of space.

Motivation. Despite the multitude of works on sparse suffix sorting and their
justified claims for applications in text indexing, the existing algorithms have not
been employed by practitioners. Arguably this is because there are no simple,
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direct, and efficient algorithms for SSA construction. The O(n)-time algorithms
of Gawrychowski and Kociumaka [14] and of Birenzwige et al. [7] are far from
simple and do not seem to be practically promising either. The former (Monte
Carlo) algorithm relies heavily on the construction of compacted tries, which in-
duce high constants in space usage, and on a recursive application of difference
cover to construct a Longest Common Extension (LCE) data structure. The lat-
ter (Las Vegas) algorithm relies on an intricate partitioning scheme (sampling)
to construct SSA and on an LCE data structure to compute the SLCP array. The
Monte Carlo O(n log b)-time algorithm of I et al. [16] is simple but it also relies
heavily on compacted tries, which makes it less likely to be employed by prac-
titioners for SSA construction. The Monte Carlo O(n+ b log2 n)-time algorithm
of Prezza [26] makes heavy usage of an LCE data structure as well: construct-
ing the SSA and SLCP array is a byproduct of an in-place LCE data structure.
The latter algorithm is, to the best of our knowledge, the only algorithm which
has been implemented (at least in a simplified form). Due to the interest in
sparse suffix sorting and the above characteristics of the existing algorithms,
we were motivated to revisit this problem to develop efficient, yet simple and
direct, algorithms for SSA construction. Such algorithms may serve as baselines
for practitioners to engineer the SSA and SLCP array construction.

Our Model and Results. We assume the standard word RAM model with word
size Θ(log n); basic arithmetic and bit-wise operations on O(log n)-bit integers
take O(1) time. We assume that we have a read-only random access string T of
length n over an integer alphabet Σ = {1, . . . , nO(1)}, a read-only integer array
A of size b storing the b elements of B, and two write-only integer arrays SSA
and SLCP, each of size b. We thus count the amount of extra space in machine
words used to construct the SSA and SLCP array. We present two algorithms:

1. Our first algorithm, Main-Algo, constructs SSA and SLCP directly ; i.e.,
without first explicitly constructing the sparse suffix tree or an LCE data
structure (see Section 3). Its time complexity is O(n + (bn/s) log s) and its
space complexity is s + 7b + o(b) machine words, for any chosen s ∈ [b, n].
It is a Monte Carlo algorithm that returns the correct output with high
probability ; i.e., with probability at least 1 − n−c, for any constant c ≥ 1
chosen at construction time.Main-Algo is simple in the sense that it can be
implemented using only basic data structures (e.g., dictionaries and arrays)
readily available in widely-used programming languages (e.g., C++, Java,
or Python). Main-Algo is a non-trivial space-efficient simulation of the
algorithm by I et al. for sparse suffix tree construction [16]. A disadvantage
of these two algorithms is that they attain the Θ(n log b) time bound for
s = b in any case. To address this, we develop Parameterized-Algo, a
parameterized algorithm which is input-sensitive.

2. Our second algorithm, Parameterized-Algo, also constructs SSA and
SLCP directly (see Section 4). Its time complexity is O(n + (b′n/b) log b)
and its space complexity is 8b+4b′+ o(b) machine words, where b′ is the to-
tal number of suffixes SSA[i] ∈ B with SLCP[i] ≥ ℓ or SLCP[i+1] ≥ ℓ, where
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ℓ = 2⌊log
n
b ⌋+1 − 1. When b′ = O(b/ log b), Parameterized-Algo runs in

O(n) time, thus matching the time of the optimal yet much more compli-
cated algorithms in [14, 7], using only 8b+o(b) machine words. It is a Monte
Carlo algorithm that returns the correct output with high probability. It is
remarkably simple as it consists of two calls of Main-Algo and a linear-
time step that merges the partial results (however, the proof of correctness
requires some work). The running time of Parameterized-Algo is good
in the following sense: if the instance is reasonably sparse, then ℓ is large
and likely b′ = O(b/ log b), thus it runs in O(n) time. In any case, it runs in
O(n log b) time. For instance, for the full human genome (v. GRCh38) as T ,
where n ≈ 3 · 109, and for b = ⌊

√
n⌋ = 56137 suffixes selected uniformly at

random, b′ = 2525 < ⌊b/ log b⌋ = 3558. We also analyze the time complex-
ity of Parameterized-Algo on random strings and show that it works in
O(n) time (after a trivial amendment), for any string chosen uniformly at
random from Σn and any set TB of b suffixes of T , with high probability.

2 Preliminaries

We consider strings over an integer alphabet Σ = {1, . . . , nO(1)}. The elements
of Σ are called letters. A string T = T [1 . . n] is a sequence of letters from Σ; we
denote by |T | = n the length of T . The fragment T [i . . j] of T is an occurrence of
the underlying substring P = T [i] . . . T [j] occurring at position i in T . A prefix
of T is a substring of T of the form T [1 . . j] and a suffix of T is a substring of T
of the form T [i . . n].

Karp-Rabin Fingerprints. Let T be a string of length n over an integer alphabet.
Let p be a prime and choose r ∈ [0, p−1] uniformly at random. The Karp-Rabin

(KR) fingerprint [19] of T [i . . j] is: ϕT (i, j) = (
∑j

k=i T [k]r
j−k mod p, rj−i+1

mod p). Clearly, if T [i . . i + ℓ] = T [j . . j + ℓ] then ϕT (i, i + ℓ) = ϕT (j, j + ℓ).
On the other hand, if T [i . . i + ℓ] ̸= T [j . . j + ℓ] then ϕT (i, i + ℓ) ̸= ϕT (j, j + ℓ)
with probability at least 1 − ℓ/p [11]. Since we are comparing only substrings
of equal length, the number of different possible substring comparisons is less
than n3. Thus, for any constant c ≥ 1, we can set p to be a prime larger than
max(|Σ|, nc+3) to make the KR fingerprint function perfect with probability at
least 1− n−c. Any KR fingerprint or p fit in one machine word of size Θ(log n).

Lemma 1 ([16]). Any string T ∈ Σn can be preprocessed in O(n) time using
s + O(1) machine words, for any s ∈ [1, n], so that the KR fingerprint of any
length-k fragment of T is computed in O(min{k, n/s}) time.5

I et al. [16] employ the distribute-and-collect technique [25] to group b suffixes,
according to a fixed-length common prefix by using their KR fingerprints, in
O(b logs n) time. We instead use hashing to achieve the same result in O(b) time
with high probability. This gives improved running times in some special regimes
(see Theorem 2 and Theorem 3).

5 I et al. [16] claim O(s) space but from their construction it is evident that in fact
s+O(1) machine words are used.
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3 Main Algorithm

Overview. A summary of our main algorithm (Main-Algo) follows with refer-
ences to the pseudocode given in Algorithms 1 and 2.6 It takes as input a string
T from Σn and an array A of b elements, indicating the starting positions of the
suffixes to be sorted. It also takes an integer jstart, which defines the number
of iterations. In this section, jstart is set to ⌊log n⌋ (the default value), but a
different value is used for the parameterized algorithm presented in Section 4.

Algorithm 1 Main-Algo

Input: string T ∈ Σn, integer b, array A of b integers,
and integer jstart (default ⌊logn⌋)
Output: SSA and SLCP

1: m← b+ 1
2: Lm ← (1, . . . , b)
3: B ← {(m, 0, Lm)}
4: A[m]← A[1]
5: for j = jstart, . . . , 0 do
6: B′ ← ∅
7: for (i, k, Li) ∈ B do
8: Hi ← empty hash table
9: s← |Li|
10: for l ∈ Li do
11: h← ϕT (A[l] + k,A[l] + k + 2j − 1)
12: Hi[h].append(l)
13: Li.erase(l)

14: for h ∈ Hi do
15: f ← Hi[h]
16: if |f | = s then
17: B ← B \ {(i, k, Li)} ∪ {(i, k + 2j , f)}
18: else if |f | ≥ 2 then
19: m← m+ 1
20: Li.append(m)
21: B′ ← B′ ∪ {(m, k + 2j , f)}
22: A[m]← A[f [1]]
23: else if |f | = 1 then
24: Li.append(f)

25: B ← B ∪B′

26: for (i, k, Li) ∈ B do
27: Li.sort(l 7→ T [A[l] + k])

28: return Output-Arrays(B, b,A)

During the first phase
(Algorithm 1, Lines 1-
25), the suffixes are dis-
tributed into groups such
that all suffixes belong-
ing to a particular group
share a common prefix.
At the end of this process,
we are left with a hier-
archy of groups that de-
scribes the exact longest
common prefixes between
suffixes. The members
of each group are then
sorted lexicographically,
which is made possible
by knowing their longest
common prefixes (Algo-
rithm 1, Lines 26-27),
such that a traversal of
the hierarchy will yield
the suffixes in lexico-
graphic order. This is
the second phase (Algo-
rithm 1, Line 28 and
Algorithm 2): a simple
depth-first search is used
to construct the sparse
suffix array and accompa-
nying sparse LCP array
from the hierarchy.

3.1 Computing and Sorting the LCP Groups

During the first phase, the suffixes of A are organized into several LCP groups
stored in set B. Each group in B is represented by a triple (i, k, {v1, . . . , vni

}),
6 We stress that the pseudocode is complete in the sense that it only assumes the
implementation of Lemma 1 (Line 11).
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where i is the index (id) of the group, k is its associated LCP value and v1 through
vni

are its members, which are either suffixes or other groups. To distinguish
between suffixes and groups, the indices 1 through b are reserved for the suffixes
in A and the group numbering starts at b+ 1. At every point of the algorithm,
it holds that in a group (i, k, {v1, . . . , vni

}), all suffixes and groups (with their
respective suffixes) in {v1, . . . , vni

} share a prefix of length at least k. At the start
(base case), there exists just one group (b+ 1, 0, {1, . . . , b}) (Line 3) containing
all suffixes as members.

The LCP groups are then “refined” (the refinement process will be explained
shortly) over the course of ⌊log n⌋ iterations, such that in the end each group
describes the exact longest common prefix of its members rather than just a lower
bound. Specifically, by the end of iteration j (where j descends from ⌊log n⌋ down
to zero), in a group with LCP value k, two suffixes will have an actual longest
common prefix of at least k and at most k + 2j − 1 letters. This gap is closed
once j has reached zero, at which point the refinement process is completed. The
algorithm allows specifying a different starting value for j than ⌊log n⌋, through
the parameter jstart. This is used in the parameterized algorithm described in
Section 4.

The refinement process works as follows in iteration j. We refine every ex-
isting group; let one such group be (i, k, {v1, . . . , vni

}). We create a hash table
(Line 8) and for every group member, with index vi, we take the KR fingerprint
as per Lemma 1 of T [A[vi] + k . . A[vi] + k + 2j − 1] (Line 11).7 If vi denotes a
group, we do the same thing using any given suffix belonging to that group; this
is easily achieved by appending “witness” suffixes to A for every created group
as seen in Lines 4 and 22. (Any suffix can be a witness but we choose the one
with the smallest index.) All the members are grouped in the hash table based
on their KR fingerprints: if two suffixes have the same KR fingerprint, they will
end up in the same entry of the hash table and with high probability have the
same prefix of length k + 2j . To save space, entries are removed from the group
as they are added to the hash table (Line 13). All entries of the hash table are
then inspected (Line 14). We distinguish three cases. In case 1 (Lines 16-17), if
all suffixes in a group end up having the same KR fingerprint, we update the
LCP value of the old group to k+2j rather than creating a new group. In case 2
(Lines 18-22), if two or more suffixes have the same KR fingerprint, a new group
is made with LCP value k+2j , containing these suffixes, and added to B. After
removing the suffixes from their original group, we replace them with the index
of the newly created group (Line 20). In case 3 (Lines 23-24), if a suffix is not
grouped with any other suffix, we append it back to its original group.

Once the iteration with j = 0 ends, all LCP groups describe the exact longest
common prefix of their members.8 We now sort the members of every group
lexicographically (Lines 26-27). Sorting can be done using merge sort or radix
sort, because these algorithms can be performed in place using O(1) additional

7 We assume that A[vi] + k + 2j − 1 ≤ n; otherwise, the suffix ends at position n.
8 This is generally not true when jstart was set to a value less than ⌊logn⌋; in this
case, the LCP values are only correct if they are at most 2jstart+1− 1; see Section 4.
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memory. Moreover, since we now know the exact LCP value for each group, two
members in the same group can easily be compared in constant time: if they
have a longest common prefix of length k, then the first position in which they
differ is k + 1, meaning they can be compared by only comparing their k + 1-th
letters. After this, set B contains the complete and sorted LCP groups, which
are passed on to the second step of the algorithm.

3.2 Constructing the SSA and SLCP Array

The second phase (Algorithm 2) of the main algorithm involves traversing the
groups created in the previous phase in order to construct the SSA and SLCP
array. At this point, the members of each group are sorted lexicographically,
which means that the SSA can be obtained by a simple pre-order walk along
the hierarchy of the groups. For any two members, their exact longest common
prefix is stored by their lowest common ancestor; that is, the group with the
greatest LCP value that both suffixes fall under.

This part of the algorithm is thus a simple depth-first search of the underlying
hierarchy that records all encountered suffixes in SSA in the order they appear.
For every group that is visited, the LCP value of its direct “parent” is stored
with it (Lines 4 and 17). Throughout, a value ℓ is tracked that takes the value
of the lowest LCP value that has been seen since the last suffix was encountered
(Lines 8-9); every time a suffix is appended to SSA, ℓ is appended to the SLCP
array (Lines 11-12). This completes the construction.

Algorithm 2 Output-Arrays

Input: Set B of tuples (i, k, Li) in ascend-
ing order by i, integer b, and array A
Output: SSA and SLCP

1: SSA← empty array
2: SLCP← empty array
3: S ← empty stack
4: S.push((b+ 1, 0))
5: ℓ← 0
6: while S is not empty do
7: (i, ℓ′)← S.pop()
8: if ℓ′ < ℓ then
9: ℓ← ℓ′

10: if i ≤ b then
11: SSA.append(A[i])
12: SLCP.append(ℓ)
13: ℓ←∞
14: else
15: (i, k, Li)← B[i− b]
16: for i′ ∈ Li in reverse order do
17: S.push((i′, k))

18: return SSA and SLCP

3.3 Analysis

We prove the following result (The-
orem 1) by analyzing the time
(Lemma 2) and space (Lemma 3)
complexity of Main-Algo. (The cor-
rectness of the algorithm follows di-
rectly from [16].)

Theorem 1. For any string T ∈ Σn,
any set TB of b suffixes of T , and any
s ∈ [b, n], Main-Algo with jstart set
to ⌊log n⌋ computes the SSA and SLCP
of TB in O(n + (bn/s) log s) time us-
ing s+ 7b+ o(b) machine words. The
output is correct with high probability.

Lemma 2. Main-Algo with jstart
set to ⌊log n⌋ runs in O(n+(bn/s) log s)
time.

Proof. The first phase of the algo-
rithm consists of O(log n) iterations
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and a sorting step. During every iteration, each existing group is considered and
every member within the group is hashed. After being hashed, it is either re-
added to the same group or put into a new group. The total number of groups
is at most b− 1, as the group structure represents a conceptual tree (hierarchy)
with b leaves in which all internal nodes have at least two children. The number
of members in each group is at most b. However, by amortization, it can be seen
that every member (that is, every suffix and every group other than the “root”)
is processed precisely once during every iteration. Thus, we have 2b− 2 = O(b)
members in total.

For every group member, a KR fingerprint is computed. After the one-time
pre-processing of T in O(n) time, the KR fingerprint of a length-k substring can
be computed in O(min{k, n/s}) time (Lemma 1). In the first log s iterations,
the cost is O(n/s), so the total cost of these iterations is O((bn/s) log s). After
log s iterations, the length k of the substring whose KR fingerprint is computed
is k < n/2log s = n/s and so the total cost of all remaining iterations is bn/s +
bn/(2s) + bn/(4s) + · · ·+ b = O(bn/s). Thus the total cost of computing all KR
fingerprints is O(n+ (bn/s) log s).

Every group member has its KR fingerprint taken and added to a hash table
supporting constant worst-case operations with high probability [4, 1]. After-
wards, all members from the hash table are re-added to the groups; for every
KR fingerprint collision a new group is created with its respective members,
and all other members are re-added to the original group. The number of newly
created groups is at most half the number of members in the original group,
as every new group has to contain at least two members. So other than the
fingerprinting, all operations for a single member are performed in constant
time with high probability,9 meaning that the total time for every iteration is
O(b log n) = O((bn/s) log s).

In the sorting step, we have two cases: (a) b < n/ log n and (b) b ≥ n/ log n.
The members in each group are sorted using in-place merge sort [27, 21] (Case
(a)) or in-place radix sort [13] (Case (b)) in O(n) time.

Case (a): b < n/ log n. Sorting k members with merge sort takes O(k log k)
time. Recall that there are at most b− 1 groups and that the total number
of members over all groups is at most 2b − 2 = O(b). If the number of
members to be sorted in group i is ki, then k1 + · · · + kb−1 = O(b) so
the time needed to sort all groups is O(k1 log k1 + · · · + kb−1 log kb−1) =
O((k1 + · · ·+ kb−1) log b) = O(b log b) = O(n).

Case (b): b ≥ n/ log n. We employ the algorithm by Franceschini et al. [13],
which, given an array A of k O(log k)-bit integers, sorts A in place in O(k)
time. Sorting the 2b − 2 members takes O(b) = O(n) time, because every
member can be encoded by its group id, which is a O(log b)-bit integer, and a
letter, which is also a log σ = O(log n) = O(log b)-bit integer, where σ = |Σ|.
The second phase of the algorithm is a simple stack-based DFS. Each of

the O(b) members is pushed to and popped from the stack precisely once. The

9 If this is not the case, we output incorrect arrays deliberately to ensure that our
algorithm is Monte Carlo.
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further operations applied to each member all take O(1) time, so this step takes
O(b) time.

Adding all this together gives O(n) + O(bn/s) · O(log s) + O(n) + O(b) =
O(n+ (bn/s) log s) time. ⊓⊔

We remark that, like the algorithm by I et al. [16], Main-Algo can be
amended to work in O(n) time, when s = b log b.

Lemma 3. Main-Algo can be implemented using s+7b+o(b) machine words,
excluding the read-only string T , the array A representing the set of b suffixes,
and the write-only output arrays SSA and SLCP.

Proof. We analyze the peak space used by the algorithm neglecting the use of
O(1) machine words:

– KR fingerprints: Pre-processing T to compute KR fingerprints takes s
machine words by Lemma 1.

– Array A: Array A starts with b integers as input, but at most b − 1 more
integers are appended to it during the algorithm to store witness suffixes for
new groups, so it stores at most b− 1 extra integers. (Even if A is read-only
we can simulate the append operation by using an extra array.)

– Set B: We implement set B using three integer arrays: K of size b− 1; C of
size b− 1; and L of size 2b− 2. K[i] stores the LCP value for the group with
id i+ b; and L[C[i−1]+1], . . . , L[C[i]] are the group’s member id’s.10 There
are at most b − 1 groups; for every group one integer is stored in K and C
as well as the group member id’s in L. The total number of group members
is at most 2b − 2, since all groups except the “root” group are a member.
Thus B can be implemented using 4b− 4 integers.

– Hash table Hi: While processing group i + b, every group member is (re-
moved from the group and) added to a hash table Hi as satellite value of the
corresponding KR fingerprint key. We use a space-efficient hash table storing
ci = C[i] − C[i − 1] integers (KR fingerprints) as keys: By using [4, 1], we
implement Hi using (1+ϵ)ci machine words, for any ϵ = Ω(log log ci/ log ci).
We need at most b integers to maintain the size of the satellite values per KR
fingerprint because every group can have at most b members. By choosing
ϵ = log log ci/ log ci we need at most 2b+ o(b) machine words in total.

We can delete the fingerprint data structure and the hash table before moving
to the sorting step. Sorting does not use any additional space because merge
sort and radix sort can be implemented in-place [27, 21, 13], thus using only
O(1) additional machine words. The first phase of the algorithm uses at most
s + 7b + o(b) machine words but at the end of it we have 5b + O(1) machine
words stored: array A and set B.

We now analyze the space used in the second phase (Algorithm 2); in partic-
ular, the space taken by the search stack. The stack stores at most every group
and every suffix. However, the stack never simultaneously stores a member and

10 If i = 1 then the group member id’s are L[1], . . . , L[C[i]].
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one of its ancestors, meaning the maximum size of the stack at any point is at
most the maximum width of the sparse suffix tree, which is b. Every element
in the stack consists of two integers, so the stack takes up at most 2b machine
words. No other machine words need to be stored as the maximum stack size b
is known in advance and so the stack is implemented using an array.

Adding this together gives at most s+ 7b+ o(b) machine words in total. ⊓⊔

4 A Simple Parameterized Algorithm

Motivation. Let us start by motivating the parameterization. In real-world
datasets, the b suffixes in TB will generally not share very long prefixes. Even
when they do, it is highly unlikely that all of them have this property. While
Main-Algo is theoretically efficient, it would waste a lot of time with such
datasets by considering large overlaps between suffixes when in reality the longest
common prefixes are much shorter or when only very few suffixes share very long
prefixes. Below, we show a simple method to take advantage of this, by only con-
sidering short common prefixes in the beginning and then extending them only
for the suffixes that happen to share longer prefixes. By considering an extra pa-
rameter b′ indicating the number of suffixes that share longest common prefixes
longer than a certain threshold, we arrive at a time and space complexity that
appears favorable for such real-world datasets.

Main Idea. We design an algorithm for constructing SSA and SLCP which is
parameterized by the total number b′ ≤ b of suffixes which have an LCP value of
at least ℓ = 2⌊log

n
b ⌋+1 − 1 with some other suffix. We show that partitioning the

b suffixes into two classes (one with suffixes with LCP value strictly less than
ℓ; and another with suffixes with LCP value greater than or equal to ℓ) can be
done in O(n) time. In particular, we show that it suffices to invoke Theorem 1
twice: once (with a small change) for the b suffixes; and once (as is) for the b′

suffixes; and then merge the partial results in O(b) time to obtain the final SSA
and SLCP array.

Description and Pseudocode. The pseudocode is given as Parameterized-
Algo (Algorithm 3); it is complete in the sense that it only assumes the imple-
mentation of Main-Algo. A line-by-line explanation of the algorithm follows.

Parameterized-Algo invokes the original algorithm Main-Algo twice
with different arguments. In Line 1, it calls Main-Algo with the full array
A as argument (and s = b). We set the parameter jstart that indicates the
starting value of j (Line 5 of Algorithm 1) to ⌊log n

b ⌋, meaning that j starts at
a lower value than the value ⌊log n⌋ used in the Main-Algo and so it will take
less time to complete. The result of this is that SSA will only be sorted up to
ℓ = 2⌊log

n
b ⌋+1−1 positions. This means that for every consecutive pair of suffixes

in SSA, if their LCP value is less than ℓ, they will already be sorted correctly,
whereas the other suffixes, with associated LCP values of ℓ, will need to be
further sorted in the second phase (Lines 8 to 13) of Parameterized-Algo.
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Algorithm 3 Parameterized-Algo

Input: string T ∈ Σn, integer b, and array A of b inte-
gers
Output: SSA and SLCP

1: SSA, SLCP←Main-Algo(T,A, b, jstart = ⌊log n
b
⌋)

2: ℓ← 2⌊log
n
b
⌋+1 − 1

3: P,A′ ← empty arrays
4: for i = 1, . . . , b do
5: if SLCP[i] = ℓ ∨ (i < b ∧ SLCP[i+ 1] = ℓ) then
6: P.append(i)
7: A′.append(SSA[i])

8: if |A′| > 0 then
9: SSA′, SLCP′ ←Main-Algo(T,A′, |A′|)
10: for i = 1, . . . , |A′| do
11: SSA[P [i]]← SSA′[i]
12: if SLCP[P [i]] = ℓ then
13: SLCP[P [i]]← SLCP′[i]

14: return SSA and SLCP

What remains is to
identify the suffixes that
need to be further sorted,
sort these suffixes sepa-
rately from the others,
and re-insert them into
the output arrays along
with the corrected LCP
values. We use two arrays
A′ and P for this pur-
pose: A′ contains the suf-
fixes; and P tracks the po-
sitions in SSA that these
suffixes are taken from, to
ensure that they will later
be re-inserted at the cor-
rect positions. In Line 5,
we ensure that the right

suffixes are tracked in these arrays, namely those that have an LCP value of
ℓ with their predecessor or successor suffix. If any such suffixes are found, we
invoke Main-Algo again (Line 9), but with just these suffixes (those in array
A′) as input, and with the default value of jstart = ⌊log n⌋. This means that the
suffixes of A′ will now be fully sorted rather than being sorted up to ℓ positions.
Then, in Lines 10 and 11, we insert these re-sorted suffixes at the same positions
that they were taken from before, but in the corrected order. In Lines 12 and
13, we also copy the associated LCP values, but only at the positions in-between
two re-sorted suffixes, as all other LCP values were already correct.

We next state and prove Theorem 2.

Theorem 2. For any string T ∈ Σn and any set TB of b suffixes of T , Parame-
terized-Algo computes the SSA and SLCP of TB in O(n+ (b′n/b) log b) time
using 8b+ 4b′ + o(b) machine words, where b′ is the total number of i such that
SSA[i] ∈ B and SLCP[i] ≥ ℓ or SLCP[i+1] ≥ ℓ, with ℓ = 2⌊log

n
b ⌋+1−1. The output

is correct with high probability. When b′ = O(b/ log b), Parameterized-Algo
runs in O(n) time using 8b+ o(b) machine words.

Time Complexity. The first phase of the algorithm (Line 1) runs in O(log n
b )

iterations. The longest prefixes whose KR fingerprints are computed have length
O(nb ), and there are O(b) KR fingerprints computed in each iteration. This
means that computing the KR fingerprints during the first phase takes O(b) ·
(O(nb ) + O( n

2b ) + O( n
4b ) + . . .) = O(n) time. Hashing the fingerprints takes

O(b log n
b ) = O(n) worst-case time in total with high probability. (Grouping the

fingerprints via distribute-and-collect, like the algorithm by I et al. [16], would
incur a multiplicative factor of logs n.) Sorting takes O(n) time (see Lemma 2).
Therefore the entire first phase runs in O(n) time. The second phase (Lines 8 to
13) computes KR fingerprints of longer prefixes as well and otherwise runs the
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same as Main-Algo, with the exception that only b′ suffixes are now sorted.
By Lemma 2, for s = b, this takes O(n+(b′n/b) log b) time. All other operations
run in single loops over arrays of size b or b′ with constant-time operations, and
thus take O(b) time. Adding everything together gives O(n+(b′n/b) log b) time.
When b′ = O(b/ log b), the running time becomes O(n).

Space Complexity. The first phase of the algorithm uses s + 7b + o(b) machine
words (Lemma 3). The additional arrays P , A′, SSA′ and SLCP′ use 4b′ machine
words in total. The second invocation of Main-Algo uses s+7b′+o(b′) machine
words (Lemma 3). By setting s = b, the algorithm uses 8b+ 4b′ + o(b) machine
words in total. If b′ = O(b/ log b), the algorithm uses 8b+ o(b) machine words.

Correctness. We prove the correctness of SSA by Lemma 6 and that of SLCP by
Lemma 7. To prove these lemmas, we first show the auxiliary Lemmas 4 and 5.

Lemma 4. Let SSA1 be the instance of SSA after the first invocation of Main-
Algo (Line 1). The strings T [SSA1[i] . . n], i ∈ [1, b], are sorted up to their prefix
of length ℓ = 2⌊log

n
b ⌋+1 − 1.

Proof. In Main-Algo, all LCP values can be increased by powers of two in each
iteration. With the starting value jstart = ⌊log n

b ⌋, this adds up to a maximum
LCP value of ℓ in any group. At any point during Main-Algo, two suffixes that
are in the same group with LCP value k share a longest common prefix of length
at least k. Thus, this invocation of Main-Algo will compute the LCP values
between suffixes correctly if they are at most ℓ, and all other LCP values will
be ℓ. The sorting step takes into account only the letter which appears after the
computed (longest) common prefix, so if the LCP between any two suffixes is
less than ℓ the suffixes are sorted correctly. ⊓⊔

Lemma 5. Let SSA1 be the instance of SSA after the first invocation of Main-
Algo (Line 1), and let SSA2 be the instance of SSA returned at the end of
Parameterized-Algo (Line 14). For every i ∈ [1, b], either SSA1[i] = SSA2[i]
and SSA1[i] and SSA2[i] have a longest common prefix of length n− SSA1[i] + 1,
or SSA1[i] ̸= SSA2[i] and SSA1[i] and SSA2[i] have a longest common prefix of
length at least ℓ.

Proof. If SSA1[i] = SSA2[i], this is trivial, so we only concern ourselves with
the case SSA1[i] ̸= SSA2[i]. In this case, the value was overwritten in Line 11,
meaning that the suffix SSA1[i] was stored in A′ in Line 7 to be re-sorted in the
second invocation of Main-Algo. The same must hold for SSA2[i].

Consider the array A′ as it is built in Lines 4-7. By Lemma 4, the suffixes of
SSA1 are sorted up to their length-ℓ prefix; since the entries of A′ appear in the
same order as they appear in SSA1, this must also be the case for A′. Because
the suffixes of A′ are already sorted correctly up to their length-ℓ prefix, it must
be that for every position j ∈ [1, b′], A′[j] and SSA′[j] have the same length-ℓ
prefix. Now note that if SSA1[i] appears in position j in A′, then SSA2[i] will
take the value from SSA′[j]. Since A′[j] and SSA′[j] have a length-ℓ common
prefix, SSA1[i] and SSA2[i] must as well. ⊓⊔
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Lemma 6. The instance SSA2 of SSA returned at the end of Parameterized-
Algo (Line 14), contains the suffixes of A sorted lexicographically.

Proof. We prove this by showing that for any two consecutive positions i and
i+1, SSA2[i] and SSA2[i+1] appear in the right order. Let SSA1 be the instance
of SSA after the first invocation of Main-Algo.

We already know that SSA1 is sorted correctly up to ℓ positions. This means
that for any i, if the longest common prefix of SSA1[i] and SSA1[i+1] is shorter
than ℓ, they already appear in the correct order in this array. If neither suffix
is overwritten after the second phase, this is also trivially the case for them in
SSA2. Now suppose that exactly one of the two (wlog SSA1[i + 1]) is replaced
by some other suffix s while the other remains the same. Let k be the LCP of
SSA1[i] and SSA1[i+1]. By Lemma 5, SSA1[i+1] and s have a longest common
prefix of length at least ℓ. This is longer than k, which is strictly less than ℓ. This
means that the (k + 1)-th letter of s is the same as that of SSA1[i + 1], which
is the first position in which it differs from SSA1[i]. Thus SSA2[i] = SSA1[i] and
SSA2[i+ 1] = s are sorted correctly relative to one another.

The remaining case is when SSA1[i] and SSA1[i+ 1] have a longest common
prefix of length ℓ or longer. In this case, both suffixes are added to A′ to be
re-sorted in the second invocation, and both SSA2[i] and SSA2[i + 1] may take
the value of another suffix. The second invocation of the main algorithm sorts
all suffixes in A′ completely, returning SSA′. The suffixes in SSA′ are then re-
inserted into SSA2, in which they will appear in the same order as they did in
SSA′. Therefore, no matter which suffixes end up at SSA2[i] and SSA2[i+1], they
also appeared consecutively in SSA′ and therefore must be sorted correctly. ⊓⊔

Lemma 7. For any two consecutive positions i and i+1, SLCP[i+1], as returned
by Algorithm 3, gives the length of the longest common prefix of SSA[i] and
SSA[i+ 1].

Proof. Let SSA1 and SLCP1 be the arrays returned by the first invocation of
Main-Algo, and SSA2 and SLCP2 the arrays produced at the end. By Lemma 4,
if SLCP1[i + 1] < ℓ, this value is correct. Therefore, the only values that need
to be overwritten for SLCP2 are when SLCP1[i + 1] = ℓ. The check at Line 12
ensures this. Of course, when SLCP1[i+1] = ℓ, then both SSA1[i] and SSA1[i+1]
are added to A′ in order to be re-sorted in the second invocation. The values at
SSA2[i] and SSA2[i + 1] are then replaced by two suffixes that appear consecu-
tively in SSA′, say SSA′[j] and SSA′[j + 1]. By the correctness of Main-Algo,
the LCP value of these two suffixes is given by SLCP′[j + 1], which is the value
that SLCP2[j + 1] takes. ⊓⊔

Random Strings. Finally, we show that Parameterized-Algo can be trivially
amended to work in O(n) time for any string chosen uniformly at random from
Σn. In particular, we show the following result.

Theorem 3. For any string T chosen uniformly at random from Σn and any
set TB of b suffixes of T , SSA and SLCP of TB can be computed in O(n) time
using O(b) space. The output is correct with high probability.
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Proof. We assume |Σ| ≥ 2, otherwise the problem has a trivial solution. Bollobás
and Letzter [8, Theorem 4] showed that the maximum length of an LCE on T
is at most 2 log|Σ| n+ log|Σ| log|Σ| n with high probability. We bound this from
above by 3 log n and amend Parameterized-Algo as follows:

Case (a): b log n < n. We invoke Main-Algo by setting jstart to the small-
est integer such that 2jstart ≥ 2⌊log n⌋, which gives ℓ = 2⌊log n⌋ · 2 − 1 =
4⌊log n⌋− 1. After the O(n)-time preprocessing of Lemma 1, computing the
KR fingerprints takes O(b)·4(O( logn

1 )+O( logn
2 )+O( logn

4 )+. . .) = O(b log n)
time. Hashing the fingerprints takes O(b) time per iteration with high prob-
ability, and so O(b log n) total time. Merge sort takes O(b log b) time. Since
ℓ > 3 log n, all suffixes of TB will be fully sorted from the first invocation
of Main-Algo. If b′ = O(b/ log b) suffixes are still unsorted after the first
invocation, these will be fully sorted in the second invocation of Main-Algo
in O(n) time (Theorem 2). If b′ = ω(b/ log b), we output incorrect arrays.
The total time complexity is thus O(n + b log n) = O(n). The total space
used is the space used by Main-Algo, which is O(b).

Case (b): b log n ≥ n. Assume that we have O(s) space to sort the b suffixes;
we can do it efficiently using radix sort because it suffices to sort all prefixes
of them of length O(logσ n) by the Bollobas and Letzter’s result, where
σ = |Σ| (otherwise, we output incorrect arrays). The b prefixes are each of
length at most c logσ n, for some c = O(1); so radix sort takes O((b+ s)(c ·
log n/ log σ) · (log σ/ log s)) time, because we have at most (c log n/ log σ)
letters in every prefix, and each time we sort b letters, one from each prefix,
we use (log σ/ log s) rounds of counting sort. Conveniently, the log σ terms
cancel out. Then, because we set s = b, and by the fact that we are in the case
b ≥ n/ log n, we have that log n/ log s = O(1). The total time complexity is
thus O(b + s) = O(b). The total space used is O(s) = O(b). By comparing
adjacent suffixes we compute the SLCP array within the same complexities.

⊓⊔
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