TOROIDAL COIL COUNTERCURRENT CHROMATOGRAPHY IN THE AFFINITY PARTITIONING OF NICOTINIC CHOLINERGIC RECEPTOR ENRICHED MEMBRANES

Steven D. Flanagan, Göte Johansson, and Beverly Yost
Division of Neurosciences
City of Hope Research Institute
Duarte, CA 91010 (USA)

Yoichiro Ito
Laboratory of Technical Development
National Heart, Lung, and Blood Institute
Bethesda, MD 20205 (USA)

Ian A. Sutherland
Engineering Department
National Institute for Medical Research
Mill Hill, London NW7 1AA, England (Great Britain)

ABSTRACT

A variation on the aqueous polymer phase partition method, affinity partitioning, has proved suitable for the preparative scale purification of binding site enriched membrane fragments. The full resolving potential of the affinity partitioning technique often requires the utilization of multiple extraction procedures such as countercurrent distribution. In this report, we evaluate the combination of a newly developed countercurrent purification technique, toroidal coil chromatography, with affinity partitioning. This approach provides an efficient method for purification and characterization of membrane bound nicotine cholineric receptors. The relative merits of the toroidal coil chromatography technique and the more conventional thin-layer countercurrent distribution techniques are compared.

1Present address: Biochemistry Department
University of Lund
S-220 07 Lund (Sweden).

Copyright © 1984 by Marcel Dekker, Inc.
Introduction

Partitioning of Enzyme Mechanisms
Theortal Goll Conretefiguration

provides a distinct con copy with the results obtained using con-
tours created from the electrica of Oranged Collins, and
describes the application of the FCC technology to the separation
tions of particles with the preexisting structure. This paper
clears the development of the telephone of the new material.
monographs, prefaced to reveal the particles when compared with
many other substitutions. The application of the MCC technology
may be performed by performing a single or a few extractions.
In this manner, the distribution of the phase partition can be
reduced gradually to their distribution, thus substantially
compromising the two phases. I.e., the poly(CED)-rich phase.

Affinity Partitioning of Terged Membranes

METHODS

Venturi-shaped CCD technology provides a direct comparison with the results obtained using con-
tours created from the electrica of Oranged Collins, and
describes the application of the FCC technology to the separation
tions of particles with the preexisting structure. This paper
clears the development of the telephone of the new material.
monographs, prefaced to reveal the particles when compared with
many other substitutions. The application of the MCC technology
may be performed by performing a single or a few extractions.
In this manner, the distribution of the phase partition can be
reduced gradually to their distribution, thus substantially
compromising the two phases. I.e., the poly(CED)-rich phase.
of the total phase volume and the interface in each of the phase.

To position the phase separator (Figure 1), use a syringe to withdraw the buffer and load it into the sample loop. The ratio of total phase volume (V_t) and the sample volume (V_s) are calculated by measuring the height of the buffer and the sample, respectively. The volume of the sample (V_s) is then calculated as follows:

V_s = V_t - V_b

where V_b is the volume of the buffer.

The phase separator, the sample loop, and the buffer should be degassed before use to prevent gas bubbles from forming during the experiment.

Figure 1

Chromatography Operating System

operation of the TCC

The operation of the TCC was begun by filling the coils at x = 0 phase suspension in top phase indicated in the figure legends. The mixing chamber, the period of the refrigeration system cycle was 1 min. After the completion of the mixing chamber, using a thermistor to monitor the cycle, the refrigeration system was initiated. The temperature within the cooling block was monitored with a temperature sensor. To maintain the temperature at a constant level, the cooling block was placed in a cold room at 0°C.

Within the block, the cold room temperature, in the initial experiment, was 0°C. After completion of the cycle, the cold room temperature was raised to 5°C. After raising the cold room temperature, the cycle was repeated.

The cooled sample was loaded into a fraction collector, and the fractions were collected in a fraction collection loop. The collected fractions were then analyzed using a spectrophotometer or other analytical methods.

- **IgG**
- **IgM**
- **IgA**

The fractions were subjected to an elution buffer solution. The elution buffer solution was prepared by adding a specific buffer to the sample. The elution buffer solution was then loaded into the sample loop and the sample was fractionated.
... explained, and the conversion of DNA to RNA. The results indicated that...
I. Methodology

Figure 3: Comparison of TCC and TCG Separations

II. Results

For comparison with the TCC results, parallel thin-layer (CD)
The above results strongly suggest that affinity partitioning provides a means combined with ICC concurrent chromatography to help separate and analyze the different components of a complex mixture.

For the CC process, the distribution of the ICC chromatogram, while different, is still consistent with the two-phase system. The partition coefficient shows that high partition coefficients are associated with different phases. However, both types of distributions approximate a Gaussian or normal distribution as the efficiency increases. A theoretical partition number, the order of resolution, is required.

In practice, the order of resolution can be assessed using manual or automated techniques. The partition number can be determined using a variety of methods, including UV absorbance, refractive index detection, or mass spectrometry.
Affinity Partitioning of Electrically Insulated Nanoparticles...
REFERENCES

Preparation of this communication was supported by the National Institute of General Medical Sciences, Bethesda, Md. 20014, and by the National Institutes of Health, Bethesda, Md. 20014. This work was supported by the National Institute of General Medical Sciences, Bethesda, Md. 20014, and by the National Institutes of Health, Bethesda, Md. 20014.

ACKNOWLEDGMENTS

Sample under several conditions, resulting in the formation of multiple samples of a single

Future Improvements in IC Technology

Selected papers in this issue are

C. M. Johnson, "A new I.1C.2.28."

A. M. Johnson, "A method for preparing multiple samples of a single

C. M. Johnson, "A method for preparing multiple samples of a single

C. M. Johnson, "A method for preparing multiple samples of a single

C. M. Johnson, "A method for preparing multiple samples of a single

C. M. Johnson, "A method for preparing multiple samples of a single

C. M. Johnson, "A method for preparing multiple samples of a single

C. M. Johnson, "A method for preparing multiple samples of a single

C. M. Johnson, "A method for preparing multiple samples of a single

C. M. Johnson, "A method for preparing multiple samples of a single