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Abstract

There has been an exponential growth in the performance and output of sequencing technologies (omics data) with full
genome sequencing now producing gigabases of reads on a daily basis. These data may hold the promise of personalized
medicine, leading to routinely available sequencing tests that can guide patient treatment decisions. In the era of high-
throughput sequencing (HTS), computational considerations, data governance and clinical translation are the greatest rate-
limiting steps. To ensure that the analysis, management and interpretation of such extensive omics data is exploited to its
full potential, key factors, including sample sourcing, technology selection and computational expertise and resources,
need to be considered, leading to an integrated set of high-performance tools and systems. This article provides an up-
to-date overview of the evolution of HTS and the accompanying tools, infrastructure and data management approaches
that are emerging in this space, which, if used within in a multidisciplinary context, may ultimately facilitate the develop-
ment of personalized medicine.
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Introduction

Over the past decade, there have been exponential advances in
our capacity to sequence a human genome. As recently as 2016,
it would have taken over a day [1]. Now, using current technol-
ogy [2], it is possible to process a genome sequence within an
hour [3, 4]. The development of high-throughput sequencing
(HTS) technologies has been central to achieving this, with mas-
sively parallel sequencing offering larger throughput than the
conventional Sanger sequencing [5] approach.

While advances have been made across all aspects of the
sequencing workflow, the focus on platform development has
made a significant contribution to driving down machine size
and HTS costs while facilitating performance gains. In addition,
this has been enhanced by reductions in both the cost of com-
putational power and size, as expected through Moore’s law [6].
However, since 2007 [7], the reduction in the sequencing cost
per genome has surpassed Moore’s law; thus, we are now in the
era of the sub-$1000 genome. An extensive review of the past
10 years of HTS can be found in [8] along with additional
technological solutions in [9, 10] and more recently in [11].

The decreasing costs of HTS have brought it within the reach
of smaller laboratories, facilitating the generation of high-
dimensional in-house data sets, with typical HTS devices produc-
ing over 100 gigabases (Gb) of reads in 24 h [12]. As with other
examples of ‘Big Data’, the steps involved in the design, pre-
processing, normalization and downstream analysis of HTS data
are significant. Furthermore, there are substantial challenges pre-
sented, including sample collection and quality control, selection
of HTS technology, to the integration of data sets across platforms
and technologies. HTS data therefore present its own set of in silico
and computational challenges, leading to a ‘Data Deluge’ [13] in
which the emphasis has moved from data generation to the ability
to store, access, share and analyse the data effectively. As reported

by Sboner et al. [14], these additional elements contribute towards
a more realistic assessment of the true cost of HTS use. In add-
ition, there are also data governance and patient privacy implica-
tions, particularly resulting from the speed of change brought
about by the application of HTS in clinical workflows [15, 16].

Considering these intersecting challenges within the biomed-
ical domain, particularly with regard to clinical (and commercial)
translation, HTS can be considered from the perspectives of four
key stakeholders: biologists, clinicians and patients alongside
bioinformaticians/computer scientists. Against this background,
we consider common HTS bottlenecks that can be encountered
at different workflow stages. We then present potential in silico
and computational solutions, extending on the review in [17],
and examine further rate-limiting issues that may in turn be
raised. We therefore conclude with a discussion on the future
role of HTS in facilitating biomedical research and its potential
translation to clinical decision-making tools.

HTS: from biomedical research to clinical
application

In the biomedical domain, HTS can be used to characterize bio-
logical markers (biomarkers), including genes and proteins,
often derived from human tissue or blood, to understand dis-
ease development and progression and/or predict treatment
response or patient survival [18]. Biomarkers can be classified
into three categories: diagnostic (presence or absence of dis-
ease), predictive (how a patient responds to treatment) and
prognostic (how long a patient survives post-intervention) [18].

Markers and drivers of disease development, progression
and treatment response can be detected at the deoxyribonucleic
acid (DNA), ribonucleic acid (RNA) or protein levels with a range
of HTS techniques (Figure 1). We consider both biomarker and
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Figure 1. Summary schema of omics levels with associated technologies, data types, outputs, analytical considerations and research and clinical applications. Five lev-

els or components, genome, epigenome, transcriptome, proteome and metabolome are presented, all of which can be considered with respect to the phenome (com-

mon patient characteristics). Key associations between omics levels are also represented, including transcription (between the genome and transcriptome), histone

modification and TF-binding (connecting the epigenome with the proteome) and translation (from the transcriptome to the proteome).

Source: Adapted from: [19–21] and [22].
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HTS applications at five key omics levels, genome, epigenome,
transcriptome, proteome and metabolome. These levels are
connected via genetic data transfer processes, including tran-
scription, translation, binding and protein modification [23, 24].
As shown in Figure 1, each of these omics levels can be consid-
ered with respect to patient characteristics, such as risk of dis-
ease or response to a treatment, i.e. phenotypes.

At the genome (DNA) level, alterations in genes are analysed,
e.g. single-nucleotide polymorphisms (SNPs), indels, copy num-
ber variations (CNVs) and fusion genes [25] (Figure 1). SNPs
(equivalent to ‘typos’ in the genome), indels (insertion or deletion
of bases in a sequence) and CNVs (where portions of the genome
are repeated) have been linked to disease susceptibility. SNPs in
the VCAM-1 and ARFGEF2 genes, a deletion in the CTFR gene and
CNVs in the HLA gene were found to be associated with cases of
sickle cell anaemia [26], cystic fibrosis (CF) [27] and rheumatoid
arthritis [28], respectively. Fusion genes, when two individual
genes form a hybrid gene, can also be associated with disease de-
velopment, as with TMPRSS2-ERG in prostate cancer [29].
Microarrays [30], and more recently, DNA-sequencing (DNA-seq),
comprising whole-genome sequencing (WGS), whole-exome
sequencing (WES) and targeted sequencing (TS) have been used
to study these alterations. WGS enables the interrogation of
alterations in both the coding and non-coding regions of the gen-
ome [31] and has been used to identify multiple SNPs relating to
the diagnosis of tuberculosis and treatment resistance [32]. WES
is limited to coding regions, approximately 1% of the genome
[31]. A more affordable option than WGS, WES may omit poten-
tially informative gene regulation regions, though its use was
well founded in a study of intellectual disability, as three novel
disease-causing candidate genes were identified [33]. TS focuses
on specific regions of the genome and is useful when prior infor-
mation is known about the disease [34], e.g. in a study to under-
stand resistance to first-line antimalarial therapy, TS identified
six novel resistance-causing mutations [35].

Epigenomics encompasses the chemical modification,
through internal or external factors, of DNA, which in turn can
repress the corresponding gene expression, leading to disease or
treatment resistance (Figure 1) [36]. Both microarray and
sequencing technologies can be used to quantify DNA methyla-
tion status. Bisulphite conversion is necessary for both older
(microarray) and newer sequencing-based technologies, facilitat-
ing the detection of methylated cytosines (one of four DNA com-
ponent bases), though is a harsh process that can affect the
quality of DNA for downstream analysis [37]. Whole-genome
bisulphite sequencing (WGBS) was used to identify methylation
of the IFITM3 gene as a candidate in the development of kidney
disease [38]. Legendre et al. [39] used WGBS to develop a blood-
based methylation patterns that could be used to stratify breast
cancer patients into metastatic disease risk groups. Chromatin
immunoprecipitation sequencing (ChIP-seq) allows for the pre-
cise characterization of transcription factor (TF)-binding sites (lo-
cation at which a protein binds to DNA to initiate transcription)
and patterns of histone (a DNA packaging protein) modification,
both of which can affect gene expression. Using this technology,
advances in understanding the impact of the epigenome on the
development of metastatic disease in patients with early pros-
tate cancer were made [40]. Within oestrogen receptor-positive
(ERþ) breast cancer, the use of ChIP-Seq helped to identify the
prognostic role of the gene FOXA1 in facilitating ER-binding [41].

The transcriptome encompasses all RNA found in the cell
(Figure 1). Messenger RNA (mRNA) is the most commonly studied
form of RNA. The transcriptome, capturing the downstream sig-
nals from the genome and epigenome, has been used for

molecular subtyping and studying drug response [42–45], apply-
ing both microarray and HTS technologies. For example, using
microarray technology, four breast cancer subtypes associated
with patient response to chemotherapy were defined based on a
set of RNA patterns (PAM50) [46]. Other RNA types such non-
coding RNAs and microRNA (miRNA) have also been described
[47]. In particular, miRNA has been shown to be important in dis-
ease development and progression through gene regulatory
functionality [48]. miRNAs have been associated with relapsing–
remitting multiple sclerosis [49] and dormancy of the human im-
munodeficiency virus type 1 (HIV-1) in patients treated with anti-
retroviral therapy [50]. RNA can be studied through both
microarray and RNA-Sequencing (RNA-Seq) with RNA-Seq also
allowing for the discovery of additional modifications, e.g. fusion
genes, similar to the genome level [51]. RNA-Seq has also been
extensively used, often within a multi-omics or integrative con-
text. This has resulted in the characterization of novel molecular
subgroups associated with treatment response and/or survival in
multiple cancer studies, including pancreatic [43], oesophageal
[44], prostate [42] and cholangiocarcinoma [45]. microRNA
sequencing (miRNA-Seq) has also been used in the identification
of miRNAs that were significantly associated with remote meta-
static disease in lung adenocarcinoma [52].

All the previous elements (genome, epigenome and transcrip-
tome) contribute to the proteome, the set of proteins that com-
prise an organism (Figure 1) [53]. The sequence, structure and
expression of proteins are encoded by the genome but can be
altered at the transcriptional level with the potential for changes
being introduced at translation [53]. In comparison with other
omics levels, it is relatively poorly characterized [54]. Array-based
methods, including reverse phase protein array (RPPA) and mass
spectrometry (MS) technologies can be applied at this level [55].
Using an array-based technology, Velez et al. [56] identified pro-
tein targets for a tailored treatment of a patient with inflamma-
tory disease of the retina, reversing sight loss. In addition to
array-based methods, MS or liquid chromatography (LC)-MS can
be used to study the sequence and structure of proteins, each
having a unique weight (mass) fingerprint that can be used to
identify their presence in a sample [55]. Liao et al. [57] used LC-MS
to identify candidate proteins in samples obtained from rheuma-
toid arthritis patients with none erosion.

Metabolomics is the study of the chemical fingerprints that
cellular processes leave behind (Figure 1), i.e. metabolites, which
are small molecules, such as amino acids or lipids, resulting from
the breakdown of proteins through protein–protein interactions
[19]. Similar to proteins, metabolites are identified and studied by
MS generating metabolite profiles. The study of metabolites is a
well-established and important element in drug discovery, par-
ticularly the understanding of the metabolism of a drug and po-
tential associated toxicities [58]. Lipidomics, the study of lipid
levels, such as cholesterol and triglyceride, in blood and tissue is
a fast-emerging sub-field within metabolomics [59, 60]. Using MS,
Sales et al. [61] characterised a ‘lipotype’ in men that corre-
sponded to a potential risk of developing metabolic syndrome.
While, Ke et al. [62] discovered that in epithelial ovarian cancer,
patients post-surgery, who had recurred were found to have high
levels of lipid and amino acid metabolism.

Research applications of HTS

The research community’s reliance on microarray technology is
now being replaced by a welcoming endorsement of sequencing
technologies. This trend can be seen in the work of the flagship
The Cancer Genome Atlas (TCGA) consortium [63]. In 2008, the
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first TCGA publication in glioblastoma used Sanger sequencing
and array-based technologies to analyse patient samples at the
genomic, epigenomic and transcriptomic levels [64]. In 2017,
WES, RNA-Seq and miRNA-Seq, in addition to array-based SNP,
methylation and protein analysis were used in a study of uter-
ine carcinosarcoma [65]. As predicted [66], sequencing, particu-
larly, RNA-Seq technology is rapidly replacing microarray-based
approaches, because of its technical superiority [67] and ability
to derive novel biological insights [68]. Moreover, using data
from TCGA, pan-cancer studies analysing data from 10 000 solid
tumours identified the impact of important biologies such as
impaired DNA damage response [69] and comprehensive
immune biology across cancers [70]. Indeed, this subsequent
improvement in understanding the driving biologies and poten-
tial vulnerabilities of cancers demonstrate the importance of
HTS in advancing our understanding of disease.

Clinical applications and limitations of HTS

HTS has also been applied within clinical trial contexts including
in the development of early cancer detection assays or tests and
selection of new treatments for patients not responding to stand-
ard regimes [71, 72]. Three current clinical trials use TS at the gen-
ome level (Figure 1). The first, the STRIVE Study, is using
sequencing to detect and analyse circulating cell-free nucleic acids,
present in blood samples taken from patients who had undergone
a screening mammogram to improve early detection of breast can-
cer [73]. Another trial, NCI-Match, has enrolled cancer patients
(with solid tumours or lymphomas) that had received treatment,
yet had progressed, to help determine drug repurposing options,
thereby improving outcomes for cancer patients [74]. Another ex-
ploratory study, the Michigan Oncology Sequencing Project (Mi-
ONCOSEQ) uses a multi-sequencing approach to stratify clinical
trial-eligible patients, with metastatic or refractory cancers. Mi-
ONCOSEQ also considers the bioethical issues surrounding genom-
ic testing and results disclosure to patients and clinicians [75].

Reaching the clinical trial stage does not always result in suc-
cess. Despite identifying a drug–target mutation in nearly half of
patients enrolled, the MOSCATO trial [76] reported the ability to
deliver this therapy in less than one quarter of patients, of whom
11% responded. The large numbers screened for a limited clinical
response is an important shortcoming of current HTS
approaches. Despite this, HTS approaches have already resulted
in improved outcomes. Sequencing the genome of one excep-
tional responder in a failed clinical trial of everolimus in bladder
cancer, an inhibitor of the gene mTOR, identified a mutation of a
key mTOR regulator, the TSC1 gene [77]. Further sequencing dis-
covered this mutation in 8% of bladder cancers. Initiatives are
now ongoing to sequence exceptional responders in clinical trials
to identify other, currently unknown, targetable mutations [78],
demonstrating the prospective potent impact of HTS.

Although HTS-based clinical trials may not always fulfil
their original potential, crucially, platform and diagnostic
acceptance of HTS by regulatory bodies has been forthcoming.
In 2013, the Illumina MiSeqDx was the first HTS platform to be
approved as an in vitro diagnostic tool by the Food and Drug
Administration (FDA), alongside two Illumina diagnostic assays,
the CF Clinical Sequencing and CF 139-Variant assays, both of
which target the region around the CFTR gene at the genomic
level, for screening and diagnosis purposes [79–81]. Later, in
2016, the FDA published draft guidance for the development of
further HTS-based assays for rare inherited diseases [82]. Then,
in 2017, the FDA approved a further three HTS-based in vitro
diagnostic tests, including FoundationOne’s companion

diagnostic, F1CDx [83], Memorial Sloan Kettering Cancer
Center’s MSK-IMPACT [84] and Thermo Fisher Scientific’s
Oncomine Dx Target Test [85, 86]. Both F1CDx and MSK-IMPACT
can detect sequence modifications in various cancers to identify
patients who may benefit from a number of targeted therapies
[83, 84]. Similarly, Thermo Fisher Scientific’s Oncomine Dx
Target Test also quantifies genomic sequence changes in
tumours to guide treatment for non-small cell lung cancer [86].

Translating research into clinical applications

However, regulatory approval does not equate to a global clinical
acceptance and uptake. A number of breast cancer predictive
transcriptome-based tests were derived in the pre-HTS era, such
as PAM50 (Prosigna, NanoString Technologies, United States) [46,
87] and MammaPrint (MammaPrint BluePrint, Agendia BV, The
Netherlands) [88, 89], both of which were later developed into
commercial tests, the latter using RNA-Seq. Both were approved
by both the FDA for use in the United States and in the European
Economic Area through the Conformité Européene (CE) mark [82,
90–92] and included in the updated clinical decision-making
guidelines from the European Group on Tumor Markers [93].
However, the National Comprehensive Cancer Network [94],
while acknowledging other tests were available, only referred to
the possible use of the OncotypeDx assay (Genomic Health, CA,
USA) [95], which was developed using an older, targeted, RNA-
quantification technology, reverse transcription polymerase
chain reaction. Understandably, there is still a sense of caution
regarding the use of HTS in a clinical context [96, 97], with an ar-
gument that further randomized trials are required to demon-
strate the effectiveness of approved tests.

In choosing an HTS technology, users need to consider not
only the biological hypothesis being tested but also sample col-
lection and quality control issues, together with downstream
computational and analytical overheads associated with a
chosen platform. Whether working at the research or clinical
translation level, a multidisciplinary approach is required at
each HTS stage, bringing together clinicians, biologists and bio-
informaticians to ensure ultimate patient benefit.

HTS platforms, pipelines and challenges

Against this heterogeneous background of regulatory approval
and clinical acceptance, we examine additional barriers to
and facilitators of HTS application to personalized medicine.
We consider the key initial challenges, including sample collec-
tion [98] and quality [99], choice of platform [100], library prepar-
ation [101] and sequencing and data analysis [100] (Figure 2).
We also highlight key stakeholders at each level.

Sample collection

Patient tissue forms the backbone of personalized medicine re-
search. Samples for analysis may originate from formalin-fixed,
paraffin-embedded (FFPE) or fresh-frozen samples. With FFPE,
sample quality can be compromised by RNA degradation, lead-
ing to HTS library construction failure [98] (Figure 2). Microarray
platforms have been developed to reliably quantify transcrip-
tion from FFPE samples [102]. Although results with respect to
RNA-Seq have been promising [103], some suggest that the
bottleneck of RNA degradation currently restricts the use of HTS
to DNA-seq, e.g. TS or WES [104]. With regard to the latter, the
limited concordance between a WES study of fresh-frozen and
FFPE melanoma samples raises concerns [105]. Where there is
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prior knowledge of a disease, a TS approach, focused on
selected genes or regions, can be more appropriate, maintaining
resolution, with increasing efficiency and affordability [106].
With the development of FFPE-tailored pre-processing pipelines
alongside refinement in the underlying technologies, it is
expected that HTS accuracy will potentially improve, enabling
clinical uptake [105, 107]. An alternative approach to adjusting
the technology would be to switch to fresh-frozen tissue
(or adopt a combined strategy). Such a move would involve
input from clinicians, including surgeons and pathologists,
particularly in biobanks. This would represent a much more
efficient alternative to FFPE, with less technical limitations
and could facilitate faster clinical decision-making, though
it can present considerable storage and maintenance implica-
tions [108].

Sample heterogeneity

Once a sample has been taken from tissue, its composition can
be affected by heterogeneity, e.g. in tumour samples, signals
may originate from multiple cell types including stroma and im-
mune compartments [99] (Figure 2). This composition varies
across samples and has implications for biomarker develop-
ment, with the potential to confound results. At a bioinformat-
ics level, in silico optimisation and/or gene list-based approaches
have been applied to separate out signals (termed deconvolu-
tion) into their respective cell types [99, 109–112]. Once stratified
into separate cell-type components, standard downstream
analyses can follow. Experimental (biological) alternatives,
namely, cell-specific HTS technologies, are also being used.
Single-cell RNA-Seq (scRNA-Seq) has been successful in predict-
ing treatment response in lung adenocarcinoma [113], glioblast-
oma [114] and melanoma [115]. The processing particularly
of scRNA-Seq data requires special consideration. Standard
methods, as used with ‘bulk’ or multi-cell data, are not always

appropriate [116–118]. While scRNA-Seq may appear to be a
viable alternative to in silico approaches, it has been suggested
that cell-sorting or cell isolation experimental methods may in
turn alter gene expression levels [119].

Platform choice

While sample type considerations may impact on platform
choice, an overall assessment of an HTS platform’s abilities,
relative strengths and weaknesses, from biological, clinical and
bioinformatics perspectives, will facilitate the appropriate ap-
plication of the resultant data [100] (Figure 2). Recent platform
examples include the IlluminaVR MiSeq [120], Ion PGMTM

(Personal Genome Machine) [121], the PacBio RS II [122] and
Qiagen Gene Reader (Sequencing-By-Synthesis) [123]. Last year,
the NovaSeq Series from Illumina exceeded existing perform-
ance measures guaranteeing an average sequencing time of 1 h
per genome [2]. Genomics England has had a partnership with
Ilumina since 2014 [124] and has more recently in 2018 extended
its partnerships to include Edico Genomics. This new alliance
offers a high-performance DRAGEN Bio-IT Platform [4, 125] that
reports performance greater than the 2017 NovaSeq solution.
An extensive review of the past 10 years of HTS can be found in
[8] along with additional technological solutions in [9, 10] and
more recently in [11].

Library preparation

Once a suitable platform has been selected, library preparation,
the conversion of nucleic acid materials derived from tissue,
etc., into a form suitable for sequencing input, is the next key
but potentially a challenging step [101] with biological and bio-
informatics implications (Figure 2). Amplification of libraries
by polymerase chain reaction (PCR) is prone to introducing
bias; although PCR-free methods exist, these too are not

Figure 2. Overview of stages, barriers, facilitators and stakeholders in HTS pipelines from hypothesis setting to clinical interpretation. Eight common stages involved

within a generic HTS pipeline/workflow are presented, set against factors acting as barriers to, or facilitators of, progress towards commercial/clinical translation and

key stakeholders.
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challenge-free [101]. Library preparation methods are crucial
when only small amounts of DNA be obtained from clinical
samples. Sundaram et al. [126] compared seven library prepar-
ation methods for ChIP-Seq analysis of HeLa cell lines
(a preclinical model of cervical cancer) against a PCR-free library
preparation approach. This study concluded that there was an
inverse correlation between the number cycles of amplification
and performance.

Sequencing

There are different HTS approaches depending on the choice of
platform, each of which uses bespoke protocols. As such, the
output from data from different HTS workflows/platforms can
vary [127]. This lack of standardization can present a challenge
when comparing the quality and accuracy of output (Figure 2).
Although primarily a bioinformatics issue, both biologists and
clinicians need to be aware of how different protocols can
impact results. Within a clinical diagnostic context, accuracy,
reproducibility and standardization of HTS results can be
improved through focusing on the development of reference
standards [128].

Regardless of technology applied, the initial analysis or
base-calling (whereby bases are assigned to peaks) is usually
performed using platform-associated proprietary software.
Alignment to a reference genome, or alternatively de novo assem-
bly, is next performed. Novel methods in both sequence align-
ment and assembly are routinely proposed and published [129],
such as the cloud computing-based CloudBurst and Rainbow
[130, 131]. Additionally, enabling technologies such as Hadoop
MapReduce can be used to implement algorithms, including
RMAP and Bowtie [132] (covered in the ‘HPC Solutions’ section).

Data analysis and interpretation

Post-alignment, the appropriate analysis of data is central to an
HTS project [133] (Figure 2). As the size and complexity of HTS
data increase, the development of new analytical methods is
required, optimization for speed and memory usage being key
[9]. Given the relative youth of HTS, the lack of consensus be-
tween HTS analytical methodologies is not surprising [128, 134].
Regardless of hypothesis, platform, library preparation,
sequencing protocol or downstream analytical algorithm, it is
clear that HTS usage will demand extensive use of resources,
both technical and human. The recruitment of skilled bioinfor-
maticians, who can develop and manage the most appropriate
tools and work within a multidisciplinary context, is crucial.
Therefore, training, and standardization of training, in the use
of HTS technologies is also key, as recognized by the NGS
Trainer Consortium [135, 136].

Analytical/computational challenges

HTS data sets are both high-dimensional and complex in struc-
ture. Integrating such data with other data sets, platforms or
technologies, to obtain a complete disease profile, is therefore
both algorithmically and computationally challenging. A com-
prehensive review of meta-omics (integration of independent
data sets at the same omics level) and poly-omics (integration
of different omics types) algorithmic approaches is presented
in Ma and Zhang [22]. Poly-omics projects such as TCGA
have applied consensus-based methods to detect connecting
patterns between different omics levels, e.g. Cluster of Cluster
Assignments (COCA) [137] in breast cancer [138] and
iCluster [139] in application to prostate cancer [42] and

hepatocellular carcinoma [140]. Alternatively, network-based
approaches [141–143] to data analysis have the potential to inte-
grate data from disparate sources, while providing clinically
relevant results. Multidisciplinary initiatives such as molecular
tumour boards [144, 145], which bring together bioinformati-
cians, biologists and clinicians, can also help address the issue
of translating complex data to be relevant to clinical care pro-
viders and patients.

The associated algorithmic approaches can require significant
computational power. The resources offered by high-
performance computing (HPC) can thus be exploited by bioinfor-
maticians/computer scientists. There is now a major focus on
the development of computing tools [146], platforms [147–149],
data governance and infrastructure guidelines. A range of HPC
solutions to support HTS is examined in the next section.

HPC solutions

HPC can be achieved by using both hardware and software to
partition tasks into groups of discrete and independent compu-
tations allowing them to be scheduled in parallel, with the
seamless integration of results. There are a number of possible
HPC solutions that can be tailored to meet computational
demands. A short introduction is provided on these distinct
HPC areas: cluster [150], graphics processing units (GPUs), cloud
computing platforms [151] and field-programmable gate arrays
(FPGAs) (Figure 3), together with example solutions in the HTS
domain. Each approach differs in terms of technology, cost, per-
formance, scalability and ease of implementation.

Commodity clusters

Commodity clusters (Figure 3, Supplementary Table S1) have
attained popularity within bioinformatics, because of their rela-
tively low cost and scalability [152, 153]. They consist of regular
desktops, with central processing units (CPUs) (for handling
computations) or networked with servers (larger versions of
desktops), [154] linked together to form a distributed computer
system. This type of infrastructure enables parallel computing
to be undertaken in (small) laboratories using low-cost hard-
ware and standard software. However, technical experience is
required in-house for the set-up; interconnection of desktops,
set-up of the operating system and configuration of parallel pro-
gramming software.

Open-source software frameworks such as Apache Hadoop
[155] can support the scheduling of parallel operations, along
with computational load and fault management. Hadoop [156]
uses the MapReduce parallel programming framework, as
popularized by Google, to facilitate the processing on data sets
within the cluster infrastructure.

Kawalia et al. [157] describe a WES workflow, which incorpo-
rates MapReduce-like components for parallel calculations on
clusters, enabling a ‘catch-up’ between data production and
data processing and analysis (Table 1). MapReduce concepts
have also been implemented in many other parallel solutions
(Table 1) such as the Genome Analysis Toolkit (GATK) [146], a
platform used for DNA- and RNA-Seq analysis in TCGA [42] and
the 100 000 Genomes Project [158].

GPU computing

GPUs (Figure 3, Supplementary Table S2) are card-based devices,
which can be slotted into the graphics port of a laptop or desk-
top. One GPU card can comprise hundreds of computational
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units, in comparison with a CPU, offering increased scalability
and processing performance [154, 181, 182]. Considering the
price to performance ratio, parallel GPUs are potentially a more
affordable and efficient option when compared with multiple,
sequential CPUs [181–183].

Owing to the low cost and high-throughput processing capa-
bilities, the GPU solution would be suitable for use in small re-
search groups/laboratories. Code developed to run on CPUs
cannot be ported to GPUs because of differences in architecture
design. Therefore, computational expertise is a must. Also, data
transfer between CPU and GPU memories [184] can create com-
putational bottlenecks, limiting the potential for performance
gain. Furthermore, modern GPUs have a complex architecture,
which is vendor-dependent, e.g. Advanced Micro Devices Inc
(AMD)\ATI Technologies Inc (ATI) or NVIDIA. Compute Unified
Device Architecture (CUDA) [185] offered by NVIDIA is the most
used platform and model for GPU parallel programming.

A large number of CUDA-compatible HTS data processing
and analysis tools have been developed in the past for use with
RNA-seq [163] and DNA-seq, e.g. Cushaw [186], BarraCUDA
[187], SOAP3 [188], CUDASWþþ [189] and SeqNFind [183], with a
focus on sequence alignment using GPUs [186, 187] or CPUs and
GPUs combined [189] (Table 1).

Cloud computing

Cluster and GPU-based solutions can be implemented in-house.
Cloud computing (Figure 3, Supplementary Table S3) refers to
the use of off-site (remote) computers or servers for storage and
processing, accessed by a user across a network connection.
A major advantage of cloud solutions is that they provide adapt-
able storage and performance, without the necessity to deploy
and maintain internal resources [147, 148], thereby providing
scalable solutions to individual researchers through to large-
scale clinical labs.

At the start of the ‘Big Data’ era, cloud computing was domi-
nated by the use of Hadoop-based clusters. Since then, there
has been a significant growth in the services provided by cloud
vendors, offering data and project management tools that facili-
tate collaborations, regulate access to shared data and enable
visualization and analysis of that data. Commercial options
provide powerful solutions; however, organizations can develop
their own private clouds using open-source facilities. These in-
house servers may be regarded as more suitable solutions
for sensitive data (e.g. patient information). Public clouds can
be a viable option if sensitive data are encrypted, anonymized
or used at a sufficiently abstract level omitting sensitive
details [190].

Figure 3. Overview of the difference options for high HPC. This is an illustration of commodity clusters, GPUs, FPGAs and cloud solutions. It highlights differences in

performance, flexibility and level of custom design.

Note: HDL, hardware description language; RTL, register-transfer level.
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The major players in commercial cloud provision, Amazon
Web Services (AWS) Elastic Compute Cloud [191], Google
Genomics [192] and Microsoft Azure [193], guarantee data secur-
ity, with scalability and speed. High-profile HTS studies such as
the 100 000 Genome Sequencing project have used private
clouds while partnering with private companies, including AWS
[194] and UK Cloud [195].

While commercial cloud solutions provide user-friendly
interfaces with extensive toolkits, there are inherent disadvan-
tages, including a lack of flexibility [196]. Open-source alterna-
tives include platforms and pipelines, such as the alignment
tool CloudBurst [130], a platform that combines virtual machine
and cloud technologies, and CloVR [149] and the automated
pipeline, Crossbow [167] (Table 1). However, open-source solu-
tions arguably require more investment from the user, includ-
ing system installation and management and the
implementation of data analysis pipelines [196], all requiring
substantial technical skills [149, 197].

FPGA-based platforms

FPGA devices (Figure 3, Supplementary Table S4) are program-
mable integrated circuits, which consist of an array of
configurable logic blocks each comprising local memory and
computational units. The FPGA’s strength lies in its ability to re-
configure the dedicated hardware resources to meet the specific
design needs of the implemented algorithms. FPGAs can yield
great performance gains over GPUs for highly regular parallel
operations. However, they are significantly more difficult to
program, although this process has been simplified through re-
cent high-level synthesis tools [198–200].

Furthermore, as with GPUs, FPGAs need to be part of a larger
HPC environment for controlling which operations are sent to
the device. However, vendors such as Intel have been develop-
ing hybrid CPU-FPGA Programmable Acceleration Cards [201]

providing support for an acceleration stack of software, firm-
ware and tools to assist this process. Recently, FPGAs have also
found application in cloud platforms, such as Microsoft Azure
[202] and Amazon AWS [203] providing additional flexibility and
performance. Development would still need to be undertaken
by bioinformaticians/computer scientists with computational
skills in hardware design; however, the tools and solutions are
evolving to make FPGA acceleration a more accessible option
[199–203].

FPGAs have been used in computational biology settings
[170], though to a lesser extent than cluster, GPU and cloud-
based options with respect to HTS (Table 1). The most high-
profile example involves Edico Genome, developers of the
FPGA-powered DRAGEN Bio-IT Platform [4] and their partner-
ship with Genomics England [125]. FPGAs are central to enabling
this work, offering acceleration on sequencing pipeline compu-
tational bottlenecks, e.g. alignment and mapping. Owing to its
high level of parallelism, DRAGEN can process a ‘whole human
genome at 30x coverage in about 20 minutes, compared to
20-30 hours using a CPU-based system’ [4].

Each technology discussed offers advantages in their own
right, providing performance gains dependent on the
approaches taken. However, these solutions differ in terms
of scalability, flexibility, cost and computational expertise for
implementation. These solutions do not necessarily need to be
taken individually, and the combination of clusters, GPUs,
FPGAs and cloud-based workflows offers great promise to pro-
vide tailored genomic analysis solutions.

Data management and governance

While technological and bioinformatics developments have
paved the way for the generation of HTS data on smaller
machines within reduced time frames and limited budgets, new
challenges have arisen. Governance comes to the fore when

Table 1. Example HTS applications using cluster, GPU, cloud and FPGA HPC solutions

HPC solution HTS personalized medicine applications

Cluster Exome analysis workflow: [157]
GATK [146] used by TCGA [42] and the 100 000 Genomes Project [158]
Sequence alignment BLAST [159]
Dimensionality reduction, Self-Organizing Maps (SOM) [160]

GPU Process-intensive tasks such as RNA-seq alignment [161] and assembly [162].
Review of GPUs applied to RNA-Seq on cancer [163] such as parallel construction of Fuzzy C-Means clustering algorithm

[164]
Read mapping [165]
Error correction [166]

Cloud HTS read mapping algorithms such as CloudBurst [130], CloVR [149] and the Crossbow [167]
Tailored bioinformatics platforms: BIOVIA ScienceCloud [147], DNAnexus [148], BaseSpace Sequence Hub [168] and

Seven Bridges [169]
Key projects have used public and private clouds, namely, International Cancer Genome Consortium and 100 000

Genomes Project
FPGA Survey of FPGAs used in computational biology contexts: [170]

General overview: [171, 172]
Alignment algorithms: [173, 174].
Basic Local Alignment Search Tool (BLAST) FPGA accelerators: [175–177]
Short read mapping: [174]
Genome sequencing: MapReduce framework with acceleration on FPGA [178]
Large-scale protein sequence alignment: [173]
Complexity analysis of sequence tracts algorithm for low-complexity regions (LCRs) in protein sequences: [179]
DRAGEN (Dynamic Read Analysis for Genomics) Processor: [180]
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considering the storage, sharing and privacy of the resultant
data generated.

Data size

While HTS data production costs are falling, the associated stor-
age costs are reducing at a much slower rate [5]. Obtaining the
actual sequence is only one part of a more complex overhead.
Data storage, transmission, navigation and searches and the
associated data processing resource and tools must also be con-
sidered [14, 204].

Management of large genomic data sets is discussed by
Batley and Edwards [205]. Although data volume reduces from
terabytes/gigabytes at the raw sequence stage, to gigabytes/
megabytes once stored in text sequence format, there are fur-
ther challenges in terms of data searchability and accessibility.
Using standard sequence comparison algorithms is time-con-
suming; furthermore, tools such as BLAST are computationally
intensive [160, 177, 206].

Compression techniques offer another effective storage so-
lution [207–209], often comparing sequences against reference
genomes [204, 210]. In Brandon et al. [204] resultant differences
were encoded using entropy-based methods such as Huffman.
Through such techniques, a 345-fold compression rate was
achieved, in one example reducing a 56 MB sequence down to
167 KB.

The graphical representation and interpretation of data is
also an important factor, particularly as data sets increase in
size and diversity, leading to the development of visualization
tools [211, 212].

Data security

Genetic information can provide the ultimate insight into the
health of private individuals. As such it needs to be treated with
the greatest levels of confidence, security and ethical standards.
Once such data become a component of a computer

infrastructure, high-level cyber security measures need to be
used, namely, encryption, authentication and authorization
[213]. Furthermore, before inclusion in a publicly available HTS
repository, donor anonymity must be safeguarded [214, 215].

The US Presidential Commission for the Study of Bioethical
Issues recommended that there needs to be ‘strong baseline
protections while promoting data access and sharing’ [216].
Such sharing should be with the goal of progressing biological
knowledge for public benefit.

Recognizing the translational challenges posed by data repo-
sitories [217], bodies such as the Electronic MEdical Records and
GEnomics (eMERGE) Consortium [218] have contributed towards
developing good practice guidelines and standards in the gov-
ernance of genomic data (Table 2). In sharing or publishing
data, ensuring the anonymity of patients is routinely achieved
through de-identification. In certain research areas, e.g. the
study of rare diseases, there is a risk of traceability through pub-
lication of associated information such as age, ethnicity and
gender [214]. The security and storage of such data can be fur-
ther protected by considering it as protected health information
(PHI).

Despite the computational benefits of cloud-based solutions,
the security of data and subsequent analysis held within such
frameworks are still considered bottlenecks [224]. Cloud-based
providers have responded, through the development of in-built
facilities, such as encryption, auditing, data backup and recov-
ery, to comply with data governance and management regula-
tions as required, e.g. by the Health Insurance Portability and
Accountability Act (HIPAA) of 1996 [225]. Examples include AWS
DNAnexus [148] and the hybrid offering from Microsoft Azure
[226]. HTS-tailored alternatives such as BC Platforms can be
implemented in-house, targeting security- and cost-conscious
end users [227].

Genetic databases can be shared successfully and at a global
scale. One such example, GenBank, is a generic sequence data-
base (nucleotide sequences and their protein translations)
established and coordinated by the National Center for

Table 2. US and EU organizations established for the protection of health and personal data

Legislation Date Description

Health Insurance Portability and Accountability Act (HIPPA) 1996 HIPPA safeguards individuals’ PHI [219]. Its privacy rules set
guidelines on how health data can be disseminated through
suitable de-identification. Two standards (Safe Harbor and
Expert Determination) may be used for the de-identification
process [220]

Health Information Technology for Economic and Clinical Health
Act (HITECH)

2009 HIPAA was later supplemented by the Health Information
Technology for Economic and Clinical Health Act (HITECH)

Genetic Information Nondiscrimination Act of 2008 (GINA) 2008 A US Federal Law that prohibits discrimination in health insur-
ance and employment as a result of genetic information
[221]

Note however that GINA does not provide complete coverage,
e.g. it does not prohibit health insurers from using genetic
information in determining insurance premiums

Patient Protection and Affordable Care Act (ACA) of 2010 2010 Makes it illegal for health insurers to raise premiums or remove
cover for those with pre-existing conditions

Directive 95/46/EC of the European Parliament and Council of the
European Union (EU)

1995 This directive covers the protection of individuals with regard
to the processing of personal data and on the free movement
of such data. (Official Journal of the European Union L 281:
0031–0050.)

Directive (EU) 2016/680 With effect
from 2018

Directive 95/46/EC will be repealed and replaced by the regula-
tion and directive on the protection of natural persons with
regard to the processing of personal data—General Data
Protection Regulation (GDPR) [222, 223]

Regulation (EU) 2016/679/
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Biotechnology (part of the National Institutes of Health in the
United States) [228]. The initiative is part of the International
Nucleotide Sequence Database Collaboration (INSDC), compris-
ing members from DNA DataBank of Japan (DDBJ) and the
European Nucleotide Archive (ENA) [229–231].

The INSDC collections, comprising submissions from both
small- and large-scale independent laboratories, are freely
available. INSDC adds to its database daily, with a GenBank pub-
lic update every 2 months. The expansion of GenBank’s data-
base has doubled approximately every 18 months [232],
highlighting the growth, supporting infrastructure and accept-
ance, in sharing sequencing data. The European Bioinformatics
Institute (EBI) repository, ArrayExpress [233], also allows
researchers to upload their HTS data sets for public distribution.
In depositing data, standardization is required, e.g. Minimum
Information About a Microarray Experiment (MIAME) and
Minimum Information about a high-throughput nucleotide
SEQuencing Experiment (MINSEQE) guidelines [234].

Ethical issues surrounding genetic data

There are multiple ethical challenges when handling HTS data.
Apart from the obvious examples, e.g. a data breach, there are
other more subtle, unanticipated incidences. A key case is that of
Henrietta Lacks. Henrietta died from cervical cancer in 1951; yet,
the cell line derived from her tumour (HeLa) is still replicating and
has become a pivotal resource as a preclinical model [235]. The eth-
ical conflict in this example arose from the lack of consideration
for the family of Lacks and indeed lack of consent with regard to
the publication of the results from sequencing of the cell line. An
uploaded sequenced HeLa sample was retracted from the ENA
because of privacy concerns in 2013 [236, 237]. This highlighted the
lack of clarity and legislation surrounding ownership over donated
samples and the potential impact for family members.

Furthermore, if we consider the process of genetic discovery,
what is the line between research and clinical diagnosis [238]?
This presents many quandaries for retrospective research proj-
ects in particular. If a cancer patient, who had agreed to donate
material from their tumour for a research project, was found
to possess a particular gene mutation, do researchers have a re-
sponsibility to inform the patient and/or the patient’s family
[75]? If a compound had not yet been approved for treating this
particular mutation, this new knowledge could not be used to
advance the health of the patient.

If we take it on ourselves to sequence our DNA, could this
impact insurance? Table 2 provides a summary of current legis-
lation for the United States and European Union (EU). Both the
US Health Information Technology and Clinical Health Act
(HITECH) and the EU Directive 2016/680 Regulation 2016/679
provide safeguarding of individuals health data and how it is
handled and transmitted. As part of the 2010 US Patient
Protection and Affordable Care Act (ACA) cancer risk assess-
ment, via genetic testing, was promoted as a preventive meas-
ure under the assurance that no person would be negatively
impacted by changes in cost or provision in their insurance
cover [239]. While the legislation was not fully comprehensive
of all conditions, the ‘good-will’ of preventive medicine, based
on personalized risk, was present. However, with current
changes in US legislation and the development of the
‘Preserving Employee Wellness Programs Act’ [240], concerns
have been raised regarding the protection of employees’ rights
[241]. The full implications are unclear, but it does appear that
employees will be given fewer options in terms of privacy, con-
tradicting the legislation as set out by the 2008 Genetic

Information Nondiscrimination Act (GINA). If employers are
empowered to this extent, there is a risk that the public will lose
confidence in, and acceptance of, genetic testing, impacting
negatively on the uptake in preventative screening.

Discussion

We have provided a broad overview of the facilitators and bar-
riers associated with the widespread adoption of HTS in
personalized medicine (Figure 2). Technological advances have
been a key driver in offering affordable and efficient access to
sequencing solutions, with the 1 h genome sequence now a
reality [3] and Illumina forecasting a $100 cost per genome
within 3–10 years [242]. Illumina have also been developing
chip-based sequencing incorporating their DNA- and RNA-Seq
technologies into a semiconductor device with the resulting
product launched in 2017 [243].

In terms of computational power to perform analysis, tech-
nology is at a significant stage. Cloud platforms offer scalability,
security and computational performance [148, 191, 193, 227,
244]. Meanwhile, advances beyond the cloud also continue with
visions for silicon chip-based and mobile solutions [243, 245]
with an eye towards real-time processing of HTS data.

A multidisciplinary approach to technological development
and translational research is required to promote HTS within
personalized medicine. However, barriers must be acknowl-
edged; the phenomenal production rate of sequencing data has
the potential to overwhelm current computing infrastructures
and bioinformatics resources [5, 14, 246].

Addressing heterogeneity in output through standardization
is crucial when considering HTS data integration with health-
care informatics structures. In particular, to consider assimila-
tion, electronic healthcare records, raw HTS data and associated
ontologies, must be normalized [247]. This challenge has been
recognized with a call for replicable and auditable workflows
[171]. This must be supported by an investment in informatics
infrastructure, with a focus on storage and software develop-
ment [248]. Patient consent highlights the need for a goodwill
‘buy-in’ by the general public, in terms of data-sharing, along-
side a closer patient involvement [215]. This can only be
achieved if there is confidence in privacy assurances.

A disconnect between HTS data production and the analytics
required to facilitate biological understanding still exists.
Li et al. [249] acknowledge that ‘integrative analysis of this rich
clinical, pathological, molecular and imaging data represents
one of the greatest bottlenecks in biomarker discovery research
in cancer and other diseases’. This may be addressed by larger
studies such as the 100 000 Genome Project, which aims to se-
quence the genomes of 100 000 patients enabling downstream
integration of results with associated clinico-pathological data
[158] or the PatientsLikeMe project, which is collaborating with
governmental and pharmaceutical companies [250].

Such large-scale projects will depend on the standardization
of data management and analysis, if HTS-produced biomarkers
are to be translated into the clinic for patient diagnosis and
treatment stratification. Also, avoiding the ‘Winner’s Curse’ can
be achieved through the use of appropriate study design, robust
statistical methods and validation [251, 252]. Standardized,
replicable pipelines, from sequencing to downstream analysis,
are therefore now required, such as the FDA/HUPO Proteomics
Standards Initiative-established Sequencing Quality Control
(SEQC) project [253]. While we are still playing bioinformatics
catch-up with the HTS wave, new small-scale real-time
sequencing solutions are coming on-stream [3, 4, 32]. It is
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essential that we apply the lessons learned from the previous
computational and governance challenges to keep pace with
new HTS developments.

Conclusion

To ensure its place within the personalized medicine arsenal,
first and foremost, the computational resources required for
HTS processing must be accessible in terms of costs, skills and
efficiency. Standardization in HTS processing and analytical
pipelines will facilitate validation and ensure replication of
results, within clinically relevant time frames. This, in turn,
alongside multidisciplinary collaboration, will enable its full
integration into patient care and treatment, through the provi-
sion of new diagnostic, predictive and prognostic tests.

Key Points

• An overview on sequencing technologies and their role
in personalized medicine.

• Identification of current bottlenecks in the translation
of ‘omic’ data to personalized medicine.

• Up-to-date review on current computational technolo-
gies, infrastructure and future solutions to handling
and analysing of sequencing data in real time.

• The changing required in clinical governance in the
face of rapid adoption of sequencing technologies into
clinical workflows.

• This paper provides a review of high-throughput
sequencing in the context of biomedical research to
clinical use with a focus on applications, pipelines,
processes and technologies along with challenges.

Supplementary Data

Supplementary data are available online at https://academi-
c.oup.com/bib.
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