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Abstract: 
The human proteome is a major source of therapeutic targets. Recent genetic association 
analyses of the plasma proteome enable systematic evaluation of the causal consequences of 
variation in plasma protein levels. Here, we estimated the effects of 1002 proteins on 225 
phenotypes using two-sample Mendelian randomization (MR) and colocalization. Of 413 
associations supported by evidence from MR, 130 (31.5%) were not supported by results of 
colocalization analyses, suggesting that genetic confounding due to linkage disequilibrium (LD) 
is widespread in naive phenome-wide association studies of proteins. Combining MR and 
colocalization evidence in cis-only analyses, we identified 111 putatively causal effects 
between 65 proteins and 52 disease-related phenotypes (www.epigraphdb.org/pqtl/). 
Evaluation of data from historic drug development programmes showed that target-
indication pairs with MR and colocalization support were more likely to be approved, 
evidencing the value of this approach in identifying and prioritising potential therapeutic 
targets. 
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Despite increasing investment in research and development (R&D) in the pharmaceutical 
industry1, the rate of success for novel drugs continues to fall2. Lower success rates make new 
therapeutics more expensive, reducing availability of effective medicines and increasing 
healthcare costs. Indeed, only one in ten targets taken into clinical trials reaches approval 2, 
with many showing lack of efficacy (~50%) or adverse safety profiles (~25%) in late stage 
clinical trials after many years of development3,4. For some diseases, such as Alzheimer’s 
disease, the failure rates are even higher5. 
 
Thus, early approaches to prioritize target-indication pairs that are more likely to be 
successful are much needed. It has previously been shown that target-indication pairs for 
which genetic associations link the target gene to related phenotypes are more likely to reach 
approval6. Consequently, systematically evaluating the genetic evidence in support of 
potential target-indication pairs is a potential strategy to prioritise development programmes. 
While systematic genetic studies have evaluated the putative causal role of both methylome 
and transcriptome on diseases7,8, studies of the direct relevance of the proteome are in their 
infancy 9,10. 
 
Plasma proteins play key roles in a range of biological processes and represent a major source 
of druggable targets11,12. Recently published genome-wide association studies (GWAS) of 
plasma proteins have identified 3606 conditionally independent single nucleotide 
polymorphisms (SNPs) associated with 2656 proteins (‘protein quantitative trait loci’, pQTL) 9, 

13,14,15,16.  These genetic associations offer the opportunity to systematically test the causal 
effects of a large number of potential drug targets on the human disease phenome through 
Mendelian randomization (MR)17. In essence, MR exploits the random allocation of genetic 
variants at conception and their associations with disease risk factors to uncover causal 
relationships between human phenotypes, and has been described in detail previously18,19. 

 
For MR analyses of proteome, unlike more complex exposures, an intuitive way to categorise 
protein-associated variants is into cis-acting pQTLs located in the vicinity of the encoding gene 
(defined as ≤ 500kb from the leading pQTL of the test protein in this study) and trans-acting 
pQTLs located outside this window. The cis-acting pQTLs are considered to have a higher 
biological prior and have been widely employed in relation to some phenome-wide scans of 
drug targets such as CETP20 and IL6R21. Trans-acting pQTLs may operate via indirect 
mechanisms and are therefore more likely to be pleiotropic22, although may support causal 
inference where they are likely to be non-pleiotropic. 
 
Here, we pool and cross-validate pQTLs from five recently published GWAS and use them as 
instruments to systematically evaluate the causal role of 968 plasma proteins on the human 
phenome, including 153 diseases and 72 risk factors available in the MR-Base database 23. 
Results of all analyses are available in an open online database (www.epigraphdb.org/pqtl/), 
with a graphical interface to enable rapid and systematic queries. 
 
 

http://www.epigraphdb.org/pqtl
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Results 
Characterising genetic instruments for proteins 
Figure 1 summarises the genetic instrument selection and validation process. Briefly, we 
curated 3606 pQTLs associated with 2656 proteins from five GWAS9,13,14,15,16. After removing 
proteins and SNPs using criteria such as LD-pruning listed in Online Method: instrument 
selection, we retained 2113 pQTLs for 1699 proteins as instruments for the MR analysis 
(Supplementary Table 1). Among these instruments, we conducted further validation by 
categorising them into three tiers based on their likely utility for MR analysis (Online Methods: 
Instrument validation): 1064 instruments of 955 proteins with the highest relative level of 
reliability (tier 1); 62 instruments which exhibited SNP effect heterogeneity across studies 
(Supplementary Figure 1 and 2), indicating uncertainty in the reliability of one or all 
instruments for a given protein (tier 2; Supplementary Table 2 and 3); and 987 non-specific 
instruments which were associated with more than five proteins (tier 3). For the 263 tier 1 
instruments associated with between two and five proteins, 68 of them influenced multiple 
proteins in the sample biological pathway and thus are likely to reflect vertical pleiotropy and 
remain valid instruments (Supplementary Note: Distinguishing vertical and horizontal 
pleiotropic instruments using biological pathway data)22.  
 
Amongst the 1126 tier 1 and 2 instruments, 783 (69.5%) were cis-acting (within 500kb of the 
leading pQTL) and 343 were trans-acting. Of 1002 proteins with a valid instrument, 765 had 
only a single cis or trans instrument. 66 were influenced by both cis and trans SNPs 
(Supplementary Table 4) and 153 had multiple conditionally distinct cis instruments (381 cis 
instruments showed in Supplementary Table 5).  
 
Estimated effects of plasma proteins on human phenotypes  
We undertook two-sample MR to systematically evaluate evidence for the causal effects of 
1002 plasma proteins (with tier 1 and tier 2 instruments) on 153 diseases and 72 disease 
related risk factors (Supplementary Table 6, Online Methods: Phenotype selection). Overall, 
we observed 413 protein-trait associations with MR evidence (P< 3.5x10-7 at a Bonferroni-
corrected threshold) using either cis or trans instruments (or both for proteins with multiple 
instruments). 
 
Genetically filtering out predicted associations between proteins and phenotypes may 
indicate 4 explanations: causality; reverse causality; confounding by LD between the leading 
SNPs for proteins and phenotypes, or horizontal pleiotropy (Supplementary Figure 3). Given 
these alternative explanations, we conducted a set of sensitivity analyses to establish whether 
the MR association reflects a causal effect of protein on phenotype: tests of reverse causality 
using bi-directional MR24 and MR Steiger filtering25,26; heterogeneity analyses for proteins 
with multiple instruments27, and colocalization analyses28 to investigate whether the genetic 
associations with both protein and phenotype shared the same causal variant (Figure 1). To 
avoid unreliable inference from colocalization analysis due to the potential presence of 
multiple neighbouring association signals, we also developed and performed pair-wise 
conditional and colocalization analysis (PWCoCo) of all conditionally independent instruments 
against all conditionally independent association signals for the outcome phenotypes (Online 
methods: Pairwise conditional and colocalization analysis; Figure 2). For this study, MR and 
colocalization were the two methods filtering reliable associations. After the colocalization 
analysis, 283 of the 413 protein-phenotype associations had profiles supportive of causality.  
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Estimating protein effects on human phenotypes using cis pQTLs 
In the MR analyses using cis-pQTLs, we identified 111 putatively causal effects of 65 proteins 
on 52 phenotypes, with strong evidence of MR (P< 3.5x10-7) and colocalization (posterior 
probability>80%; after applying PWCoCo) between the protein- and phenotype-associated 
signals (Figure 3, Supplementary Table 7). A further 69 potential associations had evidence 
from MR but did not have strong evidence of colocalization (posterior probability<80%; 
Supplementary Table 8), highlighting the potential for confounding by LD and the importance 
of colocalization analyses in MR of proteins. Evidence of potentially causal effects supported 
by colocalization was identified across a range of disease categories including anthropometric 
phenotypes and cardiovascular and autoimmune diseases (Supplementary Note: Disease 
areas of protein-trait associations) and our findings replicated some previous reported 
associations (Supplementary Note: MR results replicated previous findings). 
 
Of 437 proteins with tier 1 or tier 2 cis instruments from Sun et al.9 and Folkersen et al.14, 153 
(35%) had multiple conditionally independent SNPs in the cis region identified by GCTA-
COJO29 (Supplementary Table 5). We applied an MR model which takes into account the LD 
structure between conditionally independent SNPs in these cis regions30. In this analysis, we 
identified 10 additional associations, which had not reached our Bonferroni corrected P-value 
threshold in the single variant cis analysis. Generally, the MR estimates from the multi-cis MR 
analyses were consistent with the single-cis instrumented analyses (Supplementary Table 9).  
 
In regions with multiple cis instruments, 16 of the 111 top cis MR associations only showed 
evidence of colocalization after conducting PWCoCo analysis for both the proteins and the 
human phenotypes, where none was observed between marginal results (Supplementary 
Table 7). For example, interleukin 23 receptor (IL23R) had two conditionally independent cis 
instruments: rs11581607 and rs37623189. Conventional MR analysis combining both 
instruments showed a strong association of IL23R with Crohn’s disease (OR=3.22, 95%CI= 2.93 
to 3.53, P=6.93x10-131; Supplementary Table 9B). There were 4 conditionally independent 
signals (conditional P value<1x10-7) predicted for Crohn’s disease in the same region (data 
from de Lange et al31). In the marginal colocalization analyses, we observed no evidence of 
colocalization (Figure 4 and Supplementary Figure 4, colocalization probability=0). After 
performing PWCoCo with each distinct signal in an iterative fashion, we observed compelling 
evidence of colocalization between IL23R and one of the Crohn’s disease signals for the top 
IL23R signal (rs11581607) (colocalization probability=99.3%), but limited evidence for the 
second conditionally independent IL23R hit (rs7528804) (colocalization probability = 62.9%). 
Additionally, for haptoglobin, which showed MR evidence for LDL-cholesterol (LDL-C), there 
were two independent cis instruments. There was little evidence of colocalization between 
the two using marginal associations (colocalization probability=0.0%). However, upon 
performing PWCoCo, we observed strong evidence of colocalization for both instruments 
(colocalization probabilities = 99%; Supplementary Table 10; Supplementary Figure 5). Both 
examples demonstrate the complexity of the associations in regions with multiple 
independent signals and the importance of applying appropriate colocalization methods in 
these regions. Of the 413 associations with MR evidence (using cis and trans instruments), 
283 (68.5%) also showed strong evidence of colocalization using either a traditional 
colocalization approach (260 associations) or after applying PWCoCo (23 associations), 
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suggesting that one third of the MR findings could be driven by genetic confounding by LD 
between pQTLs and other causal SNPs. 
 
Due to potential epitope-binding artefacts driven by protein-altering variants32, we also flag 
putatively causal links where the lead instrument is a protein-altering variant or is in high LD 
(r2>0.8) with one (Supplementary Table 7 and 8 filtered by column “VEP_pQTL_Ldproxy” 
including missense, stop-lost/gained, start-lost/gained and splice-altering variants).   
 
Using trans-pQTLs as additional instrument sources 
Trans pQTLs are more likely to influence targets though pleiotropic pathways. Among the 
1316 trans instruments we identified from 5 studies, 73.5% were associated with more than 
5 proteins, compared with 1.8 % of cis instruments (Supplementary Table 1). However, in a 
MR context, including non-pleiotropic trans-pQTLs may increase the reliability of the protein-
phenotype associations since (1) they will increase variance explained of the tested protein 
and increase power of the MR analysis; (2) the causal estimate will not be reliant on a single 
locus, where multiple instruments exist; and (3) further sensitivity analyses, such as 
heterogeneity test of MR estimates across multiple instruments, can be conducted. Therefore, 
we extended our MR analyses to include 343 non-pleiotropic trans instruments 
(Supplementary Figure 6). 
 
To utilize trans instruments, we first combined cis and trans instruments for 66 proteins that 
had both cis and trans instruments (noted as cis + trans analysis). However, none reached our 
pre-defined Bonferroni-corrected threshold, and only two protein-phenotype associations 
showed even suggestive evidence (P<1x10-5) (Supplementary Table 11). Further, after 
including trans instruments, 17 of the cis-only signals were attenuated (is it in a table?). 
Secondly, we performed trans-only MR analyses of 293 proteins, and identified 158 
associations with 44 phenotypes that also had strong evidence (posterior probability>0.8) of 
colocalization (Supplementary Table 12). A further 54 trans-only MR associations did not 
have strong evidence of colocalization (Supplementary Table 13). 
 
Some of the trans analyses with MR and colocalization evidence suggest causal pathways that 
are confirmed by evidence from rare pathogenic variants or existing therapies. For example, 
although we had no cis instrument for Protein C (Inactivator Of Coagulation Factors Va And 
VIIIa) (PROC) (Supplementary Figure 7A), we found evidence for a causal association between 
PROC levels and deep venous thrombosis (P=1.27x10-10; colocalization probability>0.9) using 
a trans pQTL, rs867186 (Supplementary Figure 7B), which is a missense variant in PROCR33, 
the gene encoding the endothelial protein C receptor (EPCR). Patients with mutations in PROC 
have protein C deficiency, a condition characterised by recurrent venous thrombosis for 
which replacement protein C is an effective therapy. 
 
From 47 proteins with multiple trans instruments, we identified four additional MR 
associations, but none showed strong evidence of colocalization (Supplementary Table 13) 
and little evidence of heterogeneity (Supplementary Table 14).  
 
Estimating protein effects on human phenotypes using pQTLs with heterogeneous effects 
across studies 
Among the 2113 selected instruments, we checked whether the 1062 instruments with 
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association information in at least two studies showed consistent effect size across studies 
(Supplementary Table 15). For these SNPs, we found that 62 showed evidence of difference 
in effect size across studies (tier 2 instruments), which we performed MR analyses using the 
most significant SNP across studies and report the findings with caution. Some proteins that 
are targets of approved drugs were found to have potential causal effects in this analysis, such 
as interleukin-6 receptor (IL6R) on rheumatoid arthritis (RA)34, and coronary heart disease 
(CHD)21 (Supplementary Table 16). Tocilizumab, a monoclonal antibody against IL6R, is used 
to treat RA, while canakinumab, a monoclonal antibody against interleukin-1 beta (an 
upstream inducer of interleukin-6), has been shown to reduce cardiovascular events 
specifically among patients who showed reductions in interleukin-635. 
 
As another test of heterogeneity across studies, where the same protein was measured in 
two or more studies, we performed colocalization analysis of each pQTL (in one study) against 
the same pQTL (in another study) for the two studies in which we had access to full summary 
results (Sun et al.9 and Folkersen et al.14). Of the 41 proteins measured in both studies, 76 
pQTLs could be tested using conventional colocalization and PWCoCo (Supplementary Table 
15). We found weak evidence of colocalization for 51 pQTLs (posterior probability<0.8), which 
suggested either two different signals were present within the test region or the protein has 
a pQTL in one study but not in the other. In either case, as one of the two distinct signals may 
be genuine, we performed MR analysis of these 25 pQTLs using instruments from each study 
separately. 8 associations had MR evidence but only one showed colocalization evidence (IL27 
levels on human height; Supplementary Table 17).  
 
Sensitivity analyses to evaluate reverse causality  
For potential associations between proteins and phenotypes identified in the previous 
analyses, we undertook two sensitivity analyses to highlight results due to reverse causation: 
bi-directional MR24 and Steiger filtering25 (Online Methods: Distinguishing causal effects from 
reverse causality). In general, we found little evidence of reverse causality for genetic 
predisposition to diseases on protein level changes (more details in Supplementary Note: Bi-
directional MR and Steiger filtering results; Supplementary Data 1).  
 
Drug target prioritisation and repositioning using phenome-wide MR 
Given that human proteins represent the major source of therapeutic targets, we sought to 
mine our results for targets of molecules already approved as treatments or in ongoing clinical 
development. We first compared MR findings for 1002 proteins against 225 phenotypes with 
historic data on progression of target-indication pairs in Citeline’s PharmaProjects 
(downloaded on the 9th of May 2018). Of 783 target-indication pairs with an instrument for 
the protein and association results for a phenotype similar to the indication for which the 
drug had been trialled, 9.2% (73 pairs) had successful (approved) drugs, 69.1% had failed 
drugs (including 195 failed drugs in the clinical stage and 354 drugs which failed in the 
preclinical stage) and 20.3% were for drugs still in development (161 pairs). The 268 pairs for 
successful (73) or failed (195) drugs were included in further analyses (Supplementary Table 
18). We observed eight target-indication pairs of successful drugs with MR and colocalization 
evidence of a potentially causal relationship between protein and disease (Supplementary 
Table 19). After removing duplicate genetic evidence for related indications for the same 
therapy (Online Methods: Drug target validation and repositioning), six successful drugs 
remained from 214 pairs (Supplementary Table 20). In addition to the PROC and IL6R 
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examples discussed earlier, we found Proprotein convertase subtilisin/kexin type 9 (PCSK9) 
(target for evolocumab) for hypercholesterolemia and hyperlipidaemia, Angiotensinogen 
(AGT) for hypertension, IL12B for psoriatic arthritis and psoriasis and TNF Receptor 
Superfamily Member 11a (TNFRSF11A) for osteoporosis. At each of these examples, the 
direction of effect between circulating protein and disease risk was consistent with the 
therapeutic mechanism, except IL6R and PROC at first sight. However, for IL6R and PROC, the 
alleles associated with higher soluble protein levels have been shown to also lead to lower 
intracellular pathway activation36,37, indicating consistency of direction with the therapeutic 
approach. These examples highlight the importance of careful examination of the biological 
mechanisms underlying plasma pQTLs to enable translation. Further removing associations 
potentially driven by protein-altering variants, as well as drugs which were in large part 
motivated by genetic evidence (e.g. PCSK9 fits both exclusion criteria), comparisons of the 
remaining 191 pairs indicated that protein-phenotype associations with MR and 
colocalization evidence remained  more likely to become successful target-indication pairs 
(Table 1). Although we acknowledge the limited sample size of the test set, this raises 
enthusiasm for the utility of pQTL MR analyses with colocalization as a method for target 
prioritization.  
 
Previous efforts have highlighted the opportunities and challenges of using genetics for drug 
repositioning38. We identified 3 approved drugs for which we found pQTL MR and 
colocalization evidence for 5 phenotypes other than the primary indication and 23 drug 
targets under development for 33 alternative phenotypes (Supplementary Table 21). An 
example of urokinase-type plasminogen activator (PLAU) levels associated with lower 
inflammatory bowel disease (IBD) risk is in Supplementary Note: Case study for drug 
repurposing and Supplementary Figure 8. 
 
We also evaluated drugs in current clinical trials and identified 8 additional protein-phenotype 
associations with MR and colocalization evidence (Supplementary Table 22), for which we 
observe MR evidence implicating an increased likelihood of success.  
 
Finally, we compared the 1002 instrumentable proteins (i.e. those that passed our instrument 
selection procedure) against the druggable genome39. 682 of the 1002 (68.1%) 
instrumentable proteins overlapped with the druggable genome (Supplementary Table 23 
and Online Methods: Enrichment of proteome-wide MR with the druggable genome). A 
further enrichment analysis was conducted to assess the overlap between putative causal 
protein-phenotype associations and the druggable genome (Supplementary Table 24). Of the 
295 top findings (120 proteins on 70 phenotypes) with both MR and colocalization evidence, 
250 of them (87.7%) overlapped with the druggable genome (Figure 5). This enrichment 
analysis will become more valuable with the continuous evolution of the druggable genome38. 
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Discussion  
MR analysis of molecular phenotypes against disease phenotypes provides a promising 
opportunity to validate and prioritise novel or existing drug targets through prediction of 
efficacy and potential on-target beneficial or adverse effects40. Our phenome-wide MR study 
of the plasma proteome employed five pQTL studies to robustly identify and validate genetic 
instruments for thousands of proteins. We used these instruments to evaluate the potential 
effects of modifying protein levels on hundreds of complex phenotypes available in MR-Bas23 
in a hypothesis-free approach17. We confirmed that protein-phenotype associations with 
both MR and colocalization evidence predicted a higher likelihood of a particular target-
indication pair being successful and highlight 283 potentially causal associations. Collectively, 
we underline the important role of pQTL MR analyses as an evidence source to support drug 
discovery and development and highlight a number of key analytical approaches to support 
such inference.  
 
In particular, we note the distinct opportunities and methodological requirements for MR of 
molecular phenotypes, such as transcriptomics and proteomics, compared to other complex 
exposures. For example, the number of instruments is often limited for proteins, restricting 
the opportunity to apply recently developed pleiotropy robust approaches41,27. New methods 
such as MR-robust adjusted profile scoring (MR-RAPS)42 allow inclusion of many weak 
instruments in the MR analysis and have been applied to a recent proteome-wide MR study10. 
However, we note some examples where inclusion of multiple weaker instruments can 
reduce power and yield different results to those based on cis instruments alone40,43, and we 
note very limited additional gain from inclusion of trans instruments. A major advantage of 
proximal molecular exposures is the ability to include cis instruments (or interpretable trans 
instruments) with high biological plausibility, limiting the likelihood of horizontal 
pleiotropy22,44. Further, we note the limited gain from inclusion of trans instruments in our 
analysis. However, undue focus on single SNP MR approaches brings susceptibility to other 
pitfalls, such as the inability to examine heterogeneity of effect and to evaluate and remove 
potential epitope artefacts.  
 
To provide robust MR estimates for proteins, we note the important role of a number of 
sensitivity analyses following the initial MR in order to distinguish causal effects of proteins 
from those driven by horizontal pleiotropy, genetic confounding through LD45 and/or reverse 
causation25. Of note, only two-thirds of our putative causal associations had strong evidence 
of colocalization, suggesting that a substantial proportion of the initial findings were likely to 
be driven by genetic confounding through LD between pQTLs and other disease-causal SNPs. 
To avoid misleading results, we suggest that for regions with multiple molecular trait QTLs, it 
is important to consider methods such as PWCoCo, which can avoid the assumptions of 
traditional colocalization approaches of just a single association signal per region46. In the 
current study, application of PWCoCo identified evidence of colocalization for 23 additional 
protein-phenotype associations hidden to marginal colocalization46. We note that recent 
recommendations support the use of colocalization as a follow up analysis to reduce false 
positives47.  
 
An important limitation of this work is that protein levels are known to differ between cell 
types48. In this study, we have estimated the role of protein measured in plasma on a range 
of complex human phenotypes but are unable to assess the relevance of protein levels in 
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other tissues. Whilst eQTL studies highlight a large proportion of eQTLs being shared across 
tissues37, there are many which show cell type and state specificity49, highlighting the 
potential value of applying the current approach to data from proteomics analyses in other 
cell types and tissues. We also hypothesize that in instances with multiple conditionally 
distinct pQTLs, but where we observe colocalization of only certain conditionally distinct 
pQTL-phenotype pairs, that this may reflect underlying cell- and state-specific heterogeneity 
in bulk plasma pQTLs, among which only certain cell-types or states are causal50. Although 
pQTL studies have not yet been performed as systematically across tissues or states as eQTL 
studies, it remains encouraging that our analyses using plasma proteins identify associations 
across a range of disease categories, including for psychiatric diseases for which we may 
expect key proteins to function primarily in the brain.  
 
Evaluating the potential of MR to inform drug target prioritisation, we demonstrated that the 
presence of pQTL MR and colocalization evidence for a target-indication pair predicts a higher 
likelihood of approval. One of the limitations of our approach is the lack of comprehensive 
coverage of genetic data for all phenotypes for which drugs are in development, as well as 
our inability to instrument the entire proteome through pQTLs. As such, ongoing expansions 
in the scale, diversity and availability of GWAS will be important in providing more precise 
estimates of the value of MR and colocalization in drug target prioritization and in enabling 
its broader application.  
 
Another potential limitation of our work is the presence of epitope-binding artefacts driven 
by coding variants that may yield artefactual cis-pQTLs32. In particular, such instances may 
lead to false negative conclusions where, in the presence of a silent missense variant causing 
an artefactual pQTL but with no actual effect on protein function or levels, we do not correctly 
instrument the target protein. In instances where the missense variant appears to be driving 
the association with the phenotype, we suggest that causal inference may remain valid but 
inference on direction of association is challenged. Finally, the limited coverage of the 
proteome afforded by current technologies, leaves the possibility of undetected pleiotropy 
of instruments. While cis-pQTLs are less likely to be prone to horizontal pleiotropy than trans-
pQTLs, it is well known from studies of gene expression that cis variants can influence levels 
of multiple neighbouring genes and hence the same is likely to be true for proteins. Future 
larger GWAS of the plasma proteome are likely to uncover many more variant-protein 
associations, increasing the apparent pleiotropy of many pQTLs.  
 
In conclusion, this study identified 283 putatively causal effects between the plasma 
proteome and the human phenome using the principles of MR and colocalization. These 
observations support, but do not prove, causality, as potential horizontal pleiotropy remains 
an alternative explanation. Our study provides both an analytical framework and an open 
resource to prioritise potential new targets and a valuable resource for evaluation of both 
efficacy and repurposing opportunities by phenome-wide evaluation of on-target 
associations.  
 
 



   
 

11 
 

Acknowledgements 
We are extremely grateful to all the families who took part in the ALSPAC study, the midwives 
for their help in recruiting them, and the whole ALSPAC team, which includes interviewers, 
computer and laboratory technicians, clerical workers, research scientists, volunteers, 
managers, receptionists and nurses. We acknowledge Jack Bowden for statistical support and 
advice relating to MR-Egger regression.  
 
This publication is the work of the authors and Jie Zheng will serve as guarantor for the 
contents of this paper. JZ is funded by a Vice-Chancellor Fellowship from the University of 
Bristol. This research was also funded by the UK Medical Research Council Integrative 
Epidemiology Unit (MC_UU_00011/1 and MC_UU_00011/4), GlaxoSmithKline, Biogen and 
the Cancer Research Integrative Cancer Epidemiology Programme (C18281/A19169). The UK 
Medical Research Council and Wellcome (Grant ref: 102215/2/13/2) and the University of 
Bristol provide core support for ALSPAC. A comprehensive list of grants funding is available 
on the ALSPAC website (http://www.bristol.ac.uk/alspac/external/documents/grant-
acknowledgements.pdf). GH is funded by the Wellcome Trust and the Royal Society 
[208806/Z/17/Z]. MVH is supported by a British Heart Foundation Intermediate Clinical 
Research Fellowship (FS/18/23/33512) and the National Institute for Health Research Oxford 
Biomedical Research Centre. This study was funded/supported by the NIHR Biomedical 
Research Centre at University Hospitals Bristol NHS Foundation Trust and the University of 
Bristol (GDS and TRG). The views expressed in this publication are those of the author(s) and 
not necessarily those of the NHS, the National Institute for Health Research or the 
Department of Health and Social Care. This work was supported by the Elizabeth Blackwell 
Institute for Health Research, University of Bristol and the Medical Research Council Proximity 
to Discovery Award. PE is supported by CRUK [C18281/A19169]. SL is funded by the Bau Tsu 
Zung Bau Kwan Yeun Hing Research and Clinical Fellowship 
(*200008682.920006.20006.400.01) from the University of Hong Kong. JD is funded by the 
National Institute for Health Research [Senior Investigator Award]. JD sits on the International 
Cardiovascular and Metabolic Advisory Board for Novartis (since 2010), the Steering 
Committee of UK Biobank (since 2011), the MRC International Advisory Group (ING) member, 
London (since 2013), the MRC High Throughput Science ‘Omics Panel Member, London (since 
2013), the Scientific Advisory Committee for Sanofi (since 2013), the International 
Cardiovascular and Metabolism Research and Development Portfolio Committee for Novartis 
and the Astra Zeneca Genomics Advisory Board (2018). 
 
Participants in the INTERVAL randomised controlled trial were recruited with the active 
collaboration of NHS Blood and Transplant England (www.nhsbt.nhs.uk), which has supported 
field work and other elements of the trial. DNA extraction and genotyping was co-funded by 
the National Institute for Health Research (NIHR), the NIHR BioResource 
(http://bioresource.nihr.ac.uk) and the NIHR [Cambridge Biomedical Research Centre at the 
Cambridge University Hospitals NHS Foundation Trust] [*]. The academic coordinating centre 
for INTERVAL was supported by core funding from: NIHR Blood and Transplant Research Unit 
in Donor Health and Genomics (NIHR BTRU-2014-10024), UK Medical Research Council 
(MR/L003120/1), British Heart Foundation (SP/09/002; RG/13/13/30194; RG/18/13/33946) 
and the NIHR [Cambridge Biomedical Research Centre at the Cambridge University Hospitals 
NHS Foundation Trust] [*]. A complete list of the investigators and contributors to the 



   
 

12 
 

INTERVAL trial is provided in reference [**]. The academic coordinating centre would like to 
thank blood donor centre staff and blood donors for participating in the INTERVAL trial. 
 
We gratefully acknowledge all studies and databases that have made their GWAS summary 
data available for this study: arcOGEN (Arthritis Research UK Osteoarthritis Genetics), BCAC 
(the Breast Cancer Association Consortium), C4D (Coronary Artery Disease Genetics 
Consortium), CARDIoGRAM (Coronary ARtery DIsease Genome wide Replication and Meta-
analysis), CKDGen (Chronic Kidney Disease Genetics consortium), DIAGRAM (DIAbetes 
Genetics Replication And Meta-analysis), EAGLE (EArly Genetics and Lifecourse Epidemiology 
Consortium), EAGLE Eczema (EArly Genetics and Lifecourse Epidemiology Eczema 
Consortium), EGG (Early Growth Genetics Consortium), ENIGMA (Enhancing Neuro Imaging 
Genetics through Meta Analysis), GCAN (Genetic Consortium for Anorexia Nervosa), GEFOS 
(GEnetic Factors for OSteoporosis Consortium), GIANT (Genetic Investigation of 
ANthropometric Traits), GIS (Genetics of Iron Status consortium), GLGC (Global Lipids 
Genetics Consortium), GliomaScan (cohort-based genome-wide association study of glioma), 
GPC (Genetics of Personality Consortium), GUGC (Global Urate and Gout consortium), 
HaemGen (haemotological and platelet traits genetics consortium), IGAP (International 
Genomics of Alzheimer's Project), IIBDGC (International Inflammatory Bowel Disease 
Genetics Consortium), ILCCO (International Lung Cancer Consortium), IMSGC (International 
Multiple Sclerosis Genetic Consortium), ISGC (International Stroke Genetics Consortium), 
MAGIC (Meta-Analyses of Glucose and Insulin-related traits Consortium), MDACC (MD 
Anderson Cancer Center), MESA (Multi-Ethnic Study of Atherosclerosis), Neale’s lab (a team 
of researchers from Dr Benjamin Neale’s group, who made the UK Biobank GWAS summary 
statistics publically available), OCAC (Ovarian Cancer Association Consortium), IPSCSG (the 
International PSC study group), NHGRI-EBI GWAS catalog (National Human Genome Research 
Institute and European Bioinformatics Institute Catalog of published genome-wide 
association studies), PanScan (Pancreatic Cancer Cohort Consortium), PGC (Psychiatric 
Genomics Consortium), Project MinE consortium, ReproGen (Reproductive ageing Genetics 
consortium), SSGAC (Social Science Genetics Association Consortium), TAG (Tobacco and 
Genetics Consortium), TRICL (Transdisciplinary Research in Cancer of the Lung consortium) 
and UK Biobank.  
 
JZ acknowledges his grandmother ChenZhu for all her support, may she rest in peace.  
 
Author contribution  
JZ, VH and DB performed the Mendelian randomization analysis; JZ and DB performed the 
colocalization analysis; JZ performed the conditional analysis; VH, YL, BE and TRG developed 
the database and web browser; JZ and VW performed the drug target prioritisation and 
enrichment analysis. JZ and RS conducted the druggable genome analysis; JZ and PE 
conducted the pathway and protein-protein interaction analysis; AG, TGR, BE, HM, JY, CL, SL 
and JR conducted supporting analyses; JS, BBS, JD, HR, JCM provided key data and supported 
the MR analysis; JL, KE, LM, MVH, MH, DW, MRN reviewed the paper and provided key 
comments. JZ, VH, DB, VW, PH, AB, GDS, GH, RAS and TRG wrote the manuscript. JZ, TRG and 
RAS conceived and designed the study and oversaw all analyses.  
 



   
 

13 
 

Competing Interests Statement 
AG, LM, MH, DW, MN, RS and RAS are employees and shareholders in GlaxoSmithKline. HR, 
JL and KE are employees and shareholders in Biogen. VH is employed on a grant funded by 
GlaxoSmithKline. DB is employed on a grant funded by Biogen. TRG, GH and GDS receive 
funding from GlaxoSmithKline and Biogen for the work described here. AB has received grants 
from Merck, Novartis, Biogen, Pfizer and AstraZeneca.  
 
This work was supported by Health Data Research UK, which is funded by the UK Medical 
Research Council, Engineering and Physical Sciences Research Council, Economic and Social 
Research Council, Department of Health and Social Care (England), Chief Scientist Office of 
the Scottish Government Health and Social Care Directorates, Health and Social Care Research 
and Development Division (Welsh Government), Public Health Agency (Northern Ireland), 
British Heart Foundation and Wellcome. 
 
*The views expressed are those of the authors and not necessarily those of the NHS, the NIHR 
or the Department of Health and Social Care. 
**Di Angelantonio E, Thompson SG, Kaptoge SK, Moore C, Walker M, Armitage J, Ouwehand 
WH, Roberts DJ, Danesh J, INTERVAL Trial Group. Efficiency and safety of varying the 
frequency of whole blood donation (INTERVAL): a randomised trial of 45 000 donors. Lancet. 
2017 Nov 25;390(10110):2360-2371. 
 
 



 

 

References 
1. Plenge, R. M., Scolnick, E. M. & Altshuler, D. Validating therapeutic targets through 

human genetics. Nat Rev Drug Discov 12, 581–594 (2013). 

2. Hay, M., Thomas, D. W., Craighead, J. L., Economides, C. & Rosenthal, J. Clinical 

development success rates for investigational drugs. Nat Biotechnol 32, 40–51 (2014). 

3. Arrowsmith, J. & Miller, P. Phase II and Phase III attrition rates 2011–2012. Nat Rev 

Drug Discov 12, 569 (2013). 

4. Harrison, R. K. Phase II and phase III failures: 2013–2015. Nat Rev Drug Discov 15, 817 

(2016). 

5. Cummings, J. L., Morstorf, T. & Zhong, K. Alzheimer’s disease drug-development 

pipeline: few candidates, frequent failures. Alzheimers Res Ther 6, 37 (2014). 

6. Nelson, M. R. et al. The support of human genetic evidence for approved drug 

indications. Nat Genet 47, 856–860 (2015). 

7. Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts 

complex trait gene targets. Nat Genet 48, 481–487 (2016). 

8. Richardson, T. G. et al. Systematic Mendelian randomization framework elucidates 

hundreds of CpG sites which may mediate the influence of genetic variants on disease. 

Hum Mol Genet (2018) doi:10.1093/hmg/ddy210. 

9. Sun, B. B. et al. Genomic atlas of the human plasma proteome. Nature 558, 73–79 

(2018). 

10. Chong, M. et al. Novel Drug Targets for Ischemic Stroke Identified Through Mendelian 

Randomization Analysis of the Blood Proteome. Circulation (2019) 

doi:10.1161/CIRCULATIONAHA.119.040180. 

11. Santos, R. et al. A comprehensive map of molecular drug targets. Nat Rev Drug Discov 

16, 19–34 (2017). 



 

 

12. Imming, P., Sinning, C. & Meyer, A. Drugs, their targets and the nature and number of 

drug targets. Nat Rev Drug Discov 5, 821–834 (2006). 

13. Suhre, K. et al. Connecting genetic risk to disease end points through the human blood 

plasma proteome. Nat Commun 8, 14357 (2017). 

14. Folkersen, L. et al. Mapping of 79 loci for 83 plasma protein biomarkers in 

cardiovascular disease. PLoS Genet 13, e1006706 (2017). 

15. Yao, C. et al. Genome-wide Association Study Of Plasma Proteins Identifies Putatively 

Causal Genes, Proteins, And Pathways For Cardiovascular Disease. Nat Commun 

9(1):3268 (2018). 

16. Emilsson, V. et al. Co-regulatory networks of human serum proteins link genetics to 

disease. Science (2018) doi:10.1126/science.aaq1327. 

17. Evans, D. M. & Davey Smith, G. Mendelian Randomization: New Applications in the 

Coming Age of Hypothesis-Free Causality. Annu Rev Genomics Hum Genet 16, 327–350 

(2015). 

18. Davey Smith, G. & Ebrahim, S. ‘Mendelian randomization’: can genetic epidemiology 

contribute to understanding environmental determinants of disease? Int J Epidemiol 32, 

1–22 (2003). 

19. Zheng, J. et al. Recent Developments in Mendelian Randomization Studies. Curr 

Epidemiol Rep 4, 330–345 (2017). 

20. Millwood, I. Y. et al. Association of CETP Gene Variants With Risk for Vascular and 

Nonvascular Diseases Among Chinese Adults. JAMA Cardiol 3, 34–43 (2018). 

21. Interleukin-6 Receptor Mendelian Randomisation Analysis (IL6R MR) Consortium et al. 

The interleukin-6 receptor as a target for prevention of coronary heart disease: a 

mendelian randomisation analysis. Lancet 379, 1214–1224 (2012). 



 

 

22. Swerdlow, D. I. et al. Selecting instruments for Mendelian randomization in the wake of 

genome-wide association studies. Int J Epidemiol 45, 1600–1616 (2016). 

23. Hemani, G. et al. The MR-Base platform supports systematic causal inference across the 

human phenome. Elife 7, (2018). 

24. Timpson, N. J. et al. C-reactive protein levels and body mass index: elucidating direction 

of causation through reciprocal Mendelian randomization. Int J Obes 35, 300–308 

(2011). 

25. Hemani, G., Tilling, K. & Davey Smith, G. Orienting the causal relationship between 

imprecisely measured traits using GWAS summary data. PLoS Genet 13, e1007081 

(2017). 

26. Hemani, G. et al. Automating Mendelian randomization through machine learning to 

construct a putative causal map of the human phenome. bioRxiv (2017) 

doi:10.1101/173682. 

27. Bowden, J. et al. A framework for the investigation of pleiotropy in two-sample summary 

data Mendelian randomization. Stat Med 36, 1783–1802 (2017). 

28. Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic 

association studies using summary statistics. PLoS Genet 10, e1004383 (2014). 

29. Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics 

identifies additional variants influencing complex traits. Nat Genet 44, 369–75, S1-3 

(2012). 

30. Burgess, S., Dudbridge, F. & Thompson, S. G. Combining information on multiple 

instrumental variables in Mendelian randomization: comparison of allele score and 

summarized data methods. Stat Med 35, 1880–1906 (2016). 

31. de Lange, K. M. et al. Genome-wide association study implicates immune activation of 

multiple integrin genes in inflammatory bowel disease. Nat Genet 49, 256–261 (2017). 



 

 

32. Solomon, T. et al. Identification of Common and Rare Genetic Variation Associated With 

Plasma Protein Levels Using Whole-Exome Sequencing and Mass Spectrometry. Circ 

Genom Precis Med 11, e002170 (2018). 

33. Taylor, F. B., Jr, Peer, G. T., Lockhart, M. S., Ferrell, G. & Esmon, C. T. Endothelial cell 

protein C receptor plays an important role in protein C activation in vivo. Blood 97, 

1685–1688 (2001). 

34. Hashizume, M. et al. Tocilizumab, a humanized anti-IL-6R antibody, as an emerging 

therapeutic option for rheumatoid arthritis: molecular and cellular mechanistic insights. 

Int Rev Immunol 34, 265–279 (2015). 

35. Ridker, P. M. et al. Modulation of the interleukin-6 signalling pathway and incidence 

rates of atherosclerotic events and all-cause mortality: analyses from the Canakinumab 

Anti-Inflammatory Thrombosis Outcomes Study (CANTOS). Eur Heart J 39, 3499–3507 

(2018). 

36. Ferreira, R. C. et al. Functional IL6R 358Ala allele impairs classical IL-6 receptor 

signaling and influences risk of diverse inflammatory diseases. PLoS Genet 9, e1003444 

(2013). 

37. Stacey, D. et al. Elucidating mechanisms of genetic cross-disease associations: an 

integrative approach implicates protein C as a causal pathway in arterial and venous 

diseases. medRxiv (2020) doi:10.1101/2020.03.16.20036822. 

38. Sanseau, P. et al. Use of genome-wide association studies for drug repositioning. Nat 

Biotechnol 30, 317–320 (2012). 

39. Finan, C. et al. The druggable genome and support for target identification and validation 

in drug development. Sci Transl Med 9, (2017). 



 

 

40. Holmes, M. V., Ala-Korpela, M. & Smith, G. D. Mendelian randomization in 

cardiometabolic disease: challenges in evaluating causality. Nat Rev Cardiol 14, 577–590 

(2017). 

41. Bowden, J., Davey Smith, G. & Burgess, S. Mendelian randomization with invalid 

instruments: effect estimation and bias detection through Egger regression. Int J 

Epidemiol 44, 512–525 (2015). 

42. Zhao, Q., Wang, J., Hemani, G., Bowden, J. & Small, D. S. Statistical inference in two-

sample summary-data Mendelian randomization using robust adjusted profile score. 

aRxiv (2018).  

43. Evans, D. M. et al. Mining the human phenome using allelic scores that index biological 

intermediates. PLoS Genet 9, e1003919 (2013). 

44. Timpson, N. J. Commentary: One size fits all: are there standard rules for the use of 

genetic instruments in Mendelian randomization? Int J Epidemiol 45, 1617–1618 (2016). 

45. Hemani, G., Bowden, J. & Davey Smith, G. Evaluating the potential role of pleiotropy in 

Mendelian randomization studies. Hum Mol Genet 27, R195–R208 (2018). 

46. Wu, Y. et al. Colocalization of GWAS and eQTL signals at loci with multiple signals 

identifies additional candidate genes for body fat distribution. Hum Mol Genet (2019) 

doi:10.1093/hmg/ddz263. 

47. Wainberg, M. et al. Opportunities and challenges for transcriptome-wide association 

studies. Nat Genet 51, 592–599 (2019). 

48. Uhlén, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 

1260419 (2015). 

49. GTEx Consortium et al. Genetic effects on gene expression across human tissues. Nature 

550, 204–213 (2017). 



 

 

50. Kim-Hellmuth, S. et al. Genetic regulatory effects modified by immune activation 

contribute to autoimmune disease associations. Nat Commun 8, 266 (2017). 

 
 
 



 

 

Figure Legend  
Figure 1. Study design of this phenome-wide MR study of the plasma proteome. The study 
included instrument selection and validation, outcome selection, 4 types of MR analyses, 
colocalization, sensitivity analyses and drug target validation.   
 
Figure 2. A demonstration of pair-wise conditional and colocalization (PWCoCo) analysis. 
Assume there are two conditional independent association pQTL signals (SNP 1 and SNP 2) 
and two conditional independent outcome signals (SNP 1 and SNP3) in the tested region. A 
naïve colocalization analysis using marginal association statistics will return weak evidence of 
colocalization (showed in regional plots A and D). By conducting the analyses conditioning on 
SNP 2 (plot B) and 1 (plot C) for the pQTLs and conditioning on SNP 1 (plot E) and 3 (plot F) 
for the outcome phenotype, each of the 9 pair-wise combinations of pQTL and outcome 
association statistics (represented as lines with different colours in the middle of this figure) 
will be tested using colocalization. In this case, the combination of plot B and plot E shows 
evidence of colocalization but the remaining 8 do not.  
 
Figure 3. Miami plot for the cis-only analysis, with circles representing the MR results for 
proteins on human phenotypes. The labels refer to top MR findings with colocalization 
evidence, with each protein represented by one label. The colour refers to top MR findings 
with P<3.09x10-7, where red refers to immune mediated phenotypes, blue refers to 
cardiovascular phenotypes, green refers to lung related phenotypes, purple refers to bone 
phenotypes, orange refers to cancers, yellow refers to glycemic phenotypes, brown refers to 
psychiatric phenotypes, pink refers to other phenotypes and grey refers to phenotypes that 
showed less evidence of colocalization. The X-axis is the chromosome and position of each 
MR finding in the cis region. The Y-axis is the -log10 P value of the MR findings, MR findings 
with positive effects (increased level of proteins associated with increasing the phenotype 
level) are represented by filled circles on the top of the Miami plot, while MR findings with 
negative effects (decreased level of proteins associated with increasing the phenotype level) 
are on the bottom of the Miami plot.  
 
Figure 4. Regional association plots of IL23R plasma protein level and Crohn’s disease in the 
IL23R region. A. and B. the regional plots of IL23R protein level and Crohn’s disease without 
conditional analysis, Plot B listed the sets of conditionally independent signals for Crohn’s 
disease in this region: rs7517847, rs7528924, rs183020189, rs7528804 (a proxy for the second 
IL23R hit rs3762318, r2=0.42 in the 1000 Genome Europeans) and rs11209026 (a proxy for 
the top IL23R hit rs11581607, r2=1 in the 1000 Genome European), conditional P value < 
1x10-7; C. the regional plot of IL23R with the joint SNP effects conditioned on the second hit 
(rs3762318) for IL23R; D. the regional plot of Crohn’s disease with the joint SNP effects 
adjusted for other independent signals except the top IL23R signal rs11581607; E. the regional 
plot of IL23R with the joint SNP effects conditioned on the top hit (rs11581607) for IL23R; F. 
the regional plot of Crohn’s disease with the joint SNP effects adjusted for other independent 
signals except the second IL23R signal rs3762318. The heatmap of the colocalization evidence 
for IL23R association on Crohn’s disease (CD) in the IL23R region was presented in 
Supplementary Figure 4. 
 
Figure 5. Enrichment of phenome-wide MR of the plasma proteome with the druggable 
genome. In this figure, we only showed proteins with convincing MR and colocalization 



 

 

evidence with at least one of the 70 phenotypes. The X-axis shows the categories of 70 human 
phenotypes, where the phenotypes have been grouped into 8 categories: 8 autoimmune 
diseases (red), 3 bone phenotypes (purple), 8 cancers (orange), 12 cardiovascular phenotypes 
(blue), 4 glycemic phenotypes (yellow), 2 lung phenotypes (green), 4 psychiatric phenotypes 
(brown) and 29 other phenotypes (pink). The Y-axis presents the tiers of the druggable 
genome (as defined by Finan et al) of 120 proteins under analysis, where the proteins have 
been classified into 4 groups based on their druggability: tier 1 contained 23 proteins which 
are efficacy targets of approved small molecules and biotherapeutic drugs, tier 2 contained 
11 proteins closely related to approved drug targets or with associated  drug-like compounds, 
tier 3 contained 58 secreted or extracellular proteins or proteins distantly related to approved 
drug targets, and 28 proteins have unknown druggable status (Unclassified). The cells with 
colours are protein-phenotype associations with strong MR and colocalization evidence. Cells 
in green are associations overlapping with the tier 1 druggable genome, where cells in yellow, 
red or purple were associations with tier 2, tier 3 or unclassified. More detailed information 
shown in Supplementary Table 24.  
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Table 1. Enrichment analysis comparing target-indication pairs with or without MR and colocalization evidence 
 

 Mendelian randomization and colocalization evidence 

Target-indication pair approved  
after clinical trials 

 YES NO 
YES 4 40 
NO 0 147 

 
Note: The protein-phenotype association pairs were grouped into four categories: 1) pairs with both MR/colocalization indications of causality 
and drug trial success; 2) pairs with MR and colocalization evidence but no drug trial evidence; 3) pairs with no strong MR or colocalization 
evidence but with drug trial evidence; and 4) pairs with no strong MR, colocalization or drug trial evidence. The cut-off for MR evidence was p< 
3.5x10-7; the cut off for colocalization evidence was posterior probability > 80%. The drug trial evidence was obtained from PharmaProjects 
database. The MR and colocalization analysis results involved in this analysis including both Tier 1 and Tier 2 instruments in both cis and trans 
region. More results comparing MR and trial evidence for cis-only and tier 1 instruments can be found in Supplementary Table 20. 
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	The human proteome is a major source of therapeutic targets. Recent genetic association analyses of the plasma proteome enable systematic evaluation of the causal consequences of variation in plasma protein levels. Here, we estimated the effects of 1002 proteins on 225 phenotypes using two-sample Mendelian randomization (MR) and colocalization. Of 413 associations supported by evidence from MR, 130 (31.5%) were not supported by results of colocalization analyses, suggesting that genetic confounding due to linkage disequilibrium (LD) is widespread in naive phenome-wide association studies of proteins. Combining MR and colocalization evidence in cis-only analyses, we identified 111 putatively causal effects between 65 proteins and 52 disease-related phenotypes (www.epigraphdb.org/pqtl/). Evaluation of data from historic drug development programmes showed that target-indication pairs with MR and colocalization support were more likely to be approved, evidencing the value of this approach in identifying and prioritising potential therapeutic targets.
	Despite increasing investment in research and development (R&D) in the pharmaceutical industry1, the rate of success for novel drugs continues to fall2. Lower success rates make new therapeutics more expensive, reducing availability of effective medicines and increasing healthcare costs. Indeed, only one in ten targets taken into clinical trials reaches approval 2, with many showing lack of efficacy (~50%) or adverse safety profiles (~25%) in late stage clinical trials after many years of development3,4. For some diseases, such as Alzheimer’s disease, the failure rates are even higher5.
	Thus, early approaches to prioritize target-indication pairs that are more likely to be successful are much needed. It has previously been shown that target-indication pairs for which genetic associations link the target gene to related phenotypes are more likely to reach approval6. Consequently, systematically evaluating the genetic evidence in support of potential target-indication pairs is a potential strategy to prioritise development programmes. While systematic genetic studies have evaluated the putative causal role of both methylome and transcriptome on diseases7,8, studies of the direct relevance of the proteome are in their infancy 9,10.
	Plasma proteins play key roles in a range of biological processes and represent a major source of druggable targets11,12. Recently published genome-wide association studies (GWAS) of plasma proteins have identified 3606 conditionally independent single nucleotide polymorphisms (SNPs) associated with 2656 proteins (‘protein quantitative trait loci’, pQTL) 9, 13,14,15,16.  These genetic associations offer the opportunity to systematically test the causal effects of a large number of potential drug targets on the human disease phenome through Mendelian randomization (MR)17. In essence, MR exploits the random allocation of genetic variants at conception and their associations with disease risk factors to uncover causal relationships between human phenotypes, and has been described in detail previously18,19.
	For MR analyses of proteome, unlike more complex exposures, an intuitive way to categorise protein-associated variants is into cis-acting pQTLs located in the vicinity of the encoding gene (defined as ≤ 500kb from the leading pQTL of the test protein in this study) and trans-acting pQTLs located outside this window. The cis-acting pQTLs are considered to have a higher biological prior and have been widely employed in relation to some phenome-wide scans of drug targets such as CETP20 and IL6R21. Trans-acting pQTLs may operate via indirect mechanisms and are therefore more likely to be pleiotropic22, although may support causal inference where they are likely to be non-pleiotropic.
	Here, we pool and cross-validate pQTLs from five recently published GWAS and use them as instruments to systematically evaluate the causal role of 968 plasma proteins on the human phenome, including 153 diseases and 72 risk factors available in the MR-Base database 23. Results of all analyses are available in an open online database (www.epigraphdb.org/pqtl/), with a graphical interface to enable rapid and systematic queries.
	Figure 1 summarises the genetic instrument selection and validation process. Briefly, we curated 3606 pQTLs associated with 2656 proteins from five GWAS9,13,14,15,16. After removing proteins and SNPs using criteria such as LD-pruning listed in Online Method: instrument selection, we retained 2113 pQTLs for 1699 proteins as instruments for the MR analysis (Supplementary Table 1). Among these instruments, we conducted further validation by categorising them into three tiers based on their likely utility for MR analysis (Online Methods: Instrument validation): 1064 instruments of 955 proteins with the highest relative level of reliability (tier 1); 62 instruments which exhibited SNP effect heterogeneity across studies (Supplementary Figure 1 and 2), indicating uncertainty in the reliability of one or all instruments for a given protein (tier 2; Supplementary Table 2 and 3); and 987 non-specific instruments which were associated with more than five proteins (tier 3). For the 263 tier 1 instruments associated with between two and five proteins, 68 of them influenced multiple proteins in the sample biological pathway and thus are likely to reflect vertical pleiotropy and remain valid instruments (Supplementary Note: Distinguishing vertical and horizontal pleiotropic instruments using biological pathway data)22. 
	Amongst the 1126 tier 1 and 2 instruments, 783 (69.5%) were cis-acting (within 500kb of the leading pQTL) and 343 were trans-acting. Of 1002 proteins with a valid instrument, 765 had only a single cis or trans instrument. 66 were influenced by both cis and trans SNPs (Supplementary Table 4) and 153 had multiple conditionally distinct cis instruments (381 cis instruments showed in Supplementary Table 5). 
	We undertook two-sample MR to systematically evaluate evidence for the causal effects of 1002 plasma proteins (with tier 1 and tier 2 instruments) on 153 diseases and 72 disease related risk factors (Supplementary Table 6, Online Methods: Phenotype selection). Overall, we observed 413 protein-trait associations with MR evidence (P< 3.5x10-7 at a Bonferroni-corrected threshold) using either cis or trans instruments (or both for proteins with multiple instruments).
	Genetically filtering out predicted associations between proteins and phenotypes may indicate 4 explanations: causality; reverse causality; confounding by LD between the leading SNPs for proteins and phenotypes, or horizontal pleiotropy (Supplementary Figure 3). Given these alternative explanations, we conducted a set of sensitivity analyses to establish whether the MR association reflects a causal effect of protein on phenotype: tests of reverse causality using bi-directional MR24 and MR Steiger filtering25,26; heterogeneity analyses for proteins with multiple instruments27, and colocalization analyses28 to investigate whether the genetic associations with both protein and phenotype shared the same causal variant (Figure 1). To avoid unreliable inference from colocalization analysis due to the potential presence of multiple neighbouring association signals, we also developed and performed pair-wise conditional and colocalization analysis (PWCoCo) of all conditionally independent instruments against all conditionally independent association signals for the outcome phenotypes (Online methods: Pairwise conditional and colocalization analysis; Figure 2). For this study, MR and colocalization were the two methods filtering reliable associations. After the colocalization analysis, 283 of the 413 protein-phenotype associations had profiles supportive of causality. 
	In the MR analyses using cis-pQTLs, we identified 111 putatively causal effects of 65 proteins on 52 phenotypes, with strong evidence of MR (P< 3.5x10-7) and colocalization (posterior probability>80%; after applying PWCoCo) between the protein- and phenotype-associated signals (Figure 3, Supplementary Table 7). A further 69 potential associations had evidence from MR but did not have strong evidence of colocalization (posterior probability<80%; Supplementary Table 8), highlighting the potential for confounding by LD and the importance of colocalization analyses in MR of proteins. Evidence of potentially causal effects supported by colocalization was identified across a range of disease categories including anthropometric phenotypes and cardiovascular and autoimmune diseases (Supplementary Note: Disease areas of protein-trait associations) and our findings replicated some previous reported associations (Supplementary Note: MR results replicated previous findings).
	Of 437 proteins with tier 1 or tier 2 cis instruments from Sun et al.9 and Folkersen et al.14, 153 (35%) had multiple conditionally independent SNPs in the cis region identified by GCTA-COJO29 (Supplementary Table 5). We applied an MR model which takes into account the LD structure between conditionally independent SNPs in these cis regions30. In this analysis, we identified 10 additional associations, which had not reached our Bonferroni corrected P-value threshold in the single variant cis analysis. Generally, the MR estimates from the multi-cis MR analyses were consistent with the single-cis instrumented analyses (Supplementary Table 9). 
	In regions with multiple cis instruments, 16 of the 111 top cis MR associations only showed evidence of colocalization after conducting PWCoCo analysis for both the proteins and the human phenotypes, where none was observed between marginal results (Supplementary Table 7). For example, interleukin 23 receptor (IL23R) had two conditionally independent cis instruments: rs11581607 and rs37623189. Conventional MR analysis combining both instruments showed a strong association of IL23R with Crohn’s disease (OR=3.22, 95%CI= 2.93 to 3.53, P=6.93x10-131; Supplementary Table 9B). There were 4 conditionally independent signals (conditional P value<1x10-7) predicted for Crohn’s disease in the same region (data from de Lange et al31). In the marginal colocalization analyses, we observed no evidence of colocalization (Figure 4 and Supplementary Figure 4, colocalization probability=0). After performing PWCoCo with each distinct signal in an iterative fashion, we observed compelling evidence of colocalization between IL23R and one of the Crohn’s disease signals for the top IL23R signal (rs11581607) (colocalization probability=99.3%), but limited evidence for the second conditionally independent IL23R hit (rs7528804) (colocalization probability = 62.9%). Additionally, for haptoglobin, which showed MR evidence for LDL-cholesterol (LDL-C), there were two independent cis instruments. There was little evidence of colocalization between the two using marginal associations (colocalization probability=0.0%). However, upon performing PWCoCo, we observed strong evidence of colocalization for both instruments (colocalization probabilities = 99%; Supplementary Table 10; Supplementary Figure 5). Both examples demonstrate the complexity of the associations in regions with multiple independent signals and the importance of applying appropriate colocalization methods in these regions. Of the 413 associations with MR evidence (using cis and trans instruments), 283 (68.5%) also showed strong evidence of colocalization using either a traditional colocalization approach (260 associations) or after applying PWCoCo (23 associations), suggesting that one third of the MR findings could be driven by genetic confounding by LD between pQTLs and other causal SNPs.
	Due to potential epitope-binding artefacts driven by protein-altering variants32, we also flag putatively causal links where the lead instrument is a protein-altering variant or is in high LD (r2>0.8) with one (Supplementary Table 7 and 8 filtered by column “VEP_pQTL_Ldproxy” including missense, stop-lost/gained, start-lost/gained and splice-altering variants).  
	Trans pQTLs are more likely to influence targets though pleiotropic pathways. Among the 1316 trans instruments we identified from 5 studies, 73.5% were associated with more than 5 proteins, compared with 1.8 % of cis instruments (Supplementary Table 1). However, in a MR context, including non-pleiotropic trans-pQTLs may increase the reliability of the protein-phenotype associations since (1) they will increase variance explained of the tested protein and increase power of the MR analysis; (2) the causal estimate will not be reliant on a single locus, where multiple instruments exist; and (3) further sensitivity analyses, such as heterogeneity test of MR estimates across multiple instruments, can be conducted. Therefore, we extended our MR analyses to include 343 non-pleiotropic trans instruments (Supplementary Figure 6).
	To utilize trans instruments, we first combined cis and trans instruments for 66 proteins that had both cis and trans instruments (noted as cis + trans analysis). However, none reached our pre-defined Bonferroni-corrected threshold, and only two protein-phenotype associations showed even suggestive evidence (P<1x10-5) (Supplementary Table 11). Further, after including trans instruments, 17 of the cis-only signals were attenuated (is it in a table?). Secondly, we performed trans-only MR analyses of 293 proteins, and identified 158 associations with 44 phenotypes that also had strong evidence (posterior probability>0.8) of colocalization (Supplementary Table 12). A further 54 trans-only MR associations did not have strong evidence of colocalization (Supplementary Table 13).
	Some of the trans analyses with MR and colocalization evidence suggest causal pathways that are confirmed by evidence from rare pathogenic variants or existing therapies. For example, although we had no cis instrument for Protein C (Inactivator Of Coagulation Factors Va And VIIIa) (PROC) (Supplementary Figure 7A), we found evidence for a causal association between PROC levels and deep venous thrombosis (P=1.27x10-10; colocalization probability>0.9) using a trans pQTL, rs867186 (Supplementary Figure 7B), which is a missense variant in PROCR33, the gene encoding the endothelial protein C receptor (EPCR). Patients with mutations in PROC have protein C deficiency, a condition characterised by recurrent venous thrombosis for which replacement protein C is an effective therapy.
	From 47 proteins with multiple trans instruments, we identified four additional MR associations, but none showed strong evidence of colocalization (Supplementary Table 13) and little evidence of heterogeneity (Supplementary Table 14). 
	Among the 2113 selected instruments, we checked whether the 1062 instruments with association information in at least two studies showed consistent effect size across studies (Supplementary Table 15). For these SNPs, we found that 62 showed evidence of difference in effect size across studies (tier 2 instruments), which we performed MR analyses using the most significant SNP across studies and report the findings with caution. Some proteins that are targets of approved drugs were found to have potential causal effects in this analysis, such as interleukin-6 receptor (IL6R) on rheumatoid arthritis (RA)34, and coronary heart disease (CHD)21 (Supplementary Table 16). Tocilizumab, a monoclonal antibody against IL6R, is used to treat RA, while canakinumab, a monoclonal antibody against interleukin-1 beta (an upstream inducer of interleukin-6), has been shown to reduce cardiovascular events specifically among patients who showed reductions in interleukin-635.
	As another test of heterogeneity across studies, where the same protein was measured in two or more studies, we performed colocalization analysis of each pQTL (in one study) against the same pQTL (in another study) for the two studies in which we had access to full summary results (Sun et al.9 and Folkersen et al.14). Of the 41 proteins measured in both studies, 76 pQTLs could be tested using conventional colocalization and PWCoCo (Supplementary Table 15). We found weak evidence of colocalization for 51 pQTLs (posterior probability<0.8), which suggested either two different signals were present within the test region or the protein has a pQTL in one study but not in the other. In either case, as one of the two distinct signals may be genuine, we performed MR analysis of these 25 pQTLs using instruments from each study separately. 8 associations had MR evidence but only one showed colocalization evidence (IL27 levels on human height; Supplementary Table 17). 
	For potential associations between proteins and phenotypes identified in the previous analyses, we undertook two sensitivity analyses to highlight results due to reverse causation: bi-directional MR24 and Steiger filtering25 (Online Methods: Distinguishing causal effects from reverse causality). In general, we found little evidence of reverse causality for genetic predisposition to diseases on protein level changes (more details in Supplementary Note: Bi-directional MR and Steiger filtering results; Supplementary Data 1). 
	Given that human proteins represent the major source of therapeutic targets, we sought to mine our results for targets of molecules already approved as treatments or in ongoing clinical development. We first compared MR findings for 1002 proteins against 225 phenotypes with historic data on progression of target-indication pairs in Citeline’s PharmaProjects (downloaded on the 9th of May 2018). Of 783 target-indication pairs with an instrument for the protein and association results for a phenotype similar to the indication for which the drug had been trialled, 9.2% (73 pairs) had successful (approved) drugs, 69.1% had failed drugs (including 195 failed drugs in the clinical stage and 354 drugs which failed in the preclinical stage) and 20.3% were for drugs still in development (161 pairs). The 268 pairs for successful (73) or failed (195) drugs were included in further analyses (Supplementary Table 18). We observed eight target-indication pairs of successful drugs with MR and colocalization evidence of a potentially causal relationship between protein and disease (Supplementary Table 19). After removing duplicate genetic evidence for related indications for the same therapy (Online Methods: Drug target validation and repositioning), six successful drugs remained from 214 pairs (Supplementary Table 20). In addition to the PROC and IL6R examples discussed earlier, we found Proprotein convertase subtilisin/kexin type 9 (PCSK9) (target for evolocumab) for hypercholesterolemia and hyperlipidaemia, Angiotensinogen (AGT) for hypertension, IL12B for psoriatic arthritis and psoriasis and TNF Receptor Superfamily Member 11a (TNFRSF11A) for osteoporosis. At each of these examples, the direction of effect between circulating protein and disease risk was consistent with the therapeutic mechanism, except IL6R and PROC at first sight. However, for IL6R and PROC, the alleles associated with higher soluble protein levels have been shown to also lead to lower intracellular pathway activation36,37, indicating consistency of direction with the therapeutic approach. These examples highlight the importance of careful examination of the biological mechanisms underlying plasma pQTLs to enable translation. Further removing associations potentially driven by protein-altering variants, as well as drugs which were in large part motivated by genetic evidence (e.g. PCSK9 fits both exclusion criteria), comparisons of the remaining 191 pairs indicated that protein-phenotype associations with MR and colocalization evidence remained  more likely to become successful target-indication pairs (Table 1). Although we acknowledge the limited sample size of the test set, this raises enthusiasm for the utility of pQTL MR analyses with colocalization as a method for target prioritization. 
	Previous efforts have highlighted the opportunities and challenges of using genetics for drug repositioning38. We identified 3 approved drugs for which we found pQTL MR and colocalization evidence for 5 phenotypes other than the primary indication and 23 drug targets under development for 33 alternative phenotypes (Supplementary Table 21). An example of urokinase-type plasminogen activator (PLAU) levels associated with lower inflammatory bowel disease (IBD) risk is in Supplementary Note: Case study for drug repurposing and Supplementary Figure 8.
	We also evaluated drugs in current clinical trials and identified 8 additional protein-phenotype associations with MR and colocalization evidence (Supplementary Table 22), for which we observe MR evidence implicating an increased likelihood of success. 
	Finally, we compared the 1002 instrumentable proteins (i.e. those that passed our instrument selection procedure) against the druggable genome39. 682 of the 1002 (68.1%) instrumentable proteins overlapped with the druggable genome (Supplementary Table 23 and Online Methods: Enrichment of proteome-wide MR with the druggable genome). A further enrichment analysis was conducted to assess the overlap between putative causal protein-phenotype associations and the druggable genome (Supplementary Table 24). Of the 295 top findings (120 proteins on 70 phenotypes) with both MR and colocalization evidence, 250 of them (87.7%) overlapped with the druggable genome (Figure 5). This enrichment analysis will become more valuable with the continuous evolution of the druggable genome38.
	MR analysis of molecular phenotypes against disease phenotypes provides a promising opportunity to validate and prioritise novel or existing drug targets through prediction of efficacy and potential on-target beneficial or adverse effects40. Our phenome-wide MR study of the plasma proteome employed five pQTL studies to robustly identify and validate genetic instruments for thousands of proteins. We used these instruments to evaluate the potential effects of modifying protein levels on hundreds of complex phenotypes available in MR-Bas23 in a hypothesis-free approach17. We confirmed that protein-phenotype associations with both MR and colocalization evidence predicted a higher likelihood of a particular target-indication pair being successful and highlight 283 potentially causal associations. Collectively, we underline the important role of pQTL MR analyses as an evidence source to support drug discovery and development and highlight a number of key analytical approaches to support such inference. 
	In particular, we note the distinct opportunities and methodological requirements for MR of molecular phenotypes, such as transcriptomics and proteomics, compared to other complex exposures. For example, the number of instruments is often limited for proteins, restricting the opportunity to apply recently developed pleiotropy robust approaches41,27. New methods such as MR-robust adjusted profile scoring (MR-RAPS)42 allow inclusion of many weak instruments in the MR analysis and have been applied to a recent proteome-wide MR study10. However, we note some examples where inclusion of multiple weaker instruments can reduce power and yield different results to those based on cis instruments alone40,43, and we note very limited additional gain from inclusion of trans instruments. A major advantage of proximal molecular exposures is the ability to include cis instruments (or interpretable trans instruments) with high biological plausibility, limiting the likelihood of horizontal pleiotropy22,44. Further, we note the limited gain from inclusion of trans instruments in our analysis. However, undue focus on single SNP MR approaches brings susceptibility to other pitfalls, such as the inability to examine heterogeneity of effect and to evaluate and remove potential epitope artefacts. 
	To provide robust MR estimates for proteins, we note the important role of a number of sensitivity analyses following the initial MR in order to distinguish causal effects of proteins from those driven by horizontal pleiotropy, genetic confounding through LD45 and/or reverse causation25. Of note, only two-thirds of our putative causal associations had strong evidence of colocalization, suggesting that a substantial proportion of the initial findings were likely to be driven by genetic confounding through LD between pQTLs and other disease-causal SNPs. To avoid misleading results, we suggest that for regions with multiple molecular trait QTLs, it is important to consider methods such as PWCoCo, which can avoid the assumptions of traditional colocalization approaches of just a single association signal per region46. In the current study, application of PWCoCo identified evidence of colocalization for 23 additional protein-phenotype associations hidden to marginal colocalization46. We note that recent recommendations support the use of colocalization as a follow up analysis to reduce false positives47. 
	An important limitation of this work is that protein levels are known to differ between cell types48. In this study, we have estimated the role of protein measured in plasma on a range of complex human phenotypes but are unable to assess the relevance of protein levels in other tissues. Whilst eQTL studies highlight a large proportion of eQTLs being shared across tissues37, there are many which show cell type and state specificity49, highlighting the potential value of applying the current approach to data from proteomics analyses in other cell types and tissues. We also hypothesize that in instances with multiple conditionally distinct pQTLs, but where we observe colocalization of only certain conditionally distinct pQTL-phenotype pairs, that this may reflect underlying cell- and state-specific heterogeneity in bulk plasma pQTLs, among which only certain cell-types or states are causal50. Although pQTL studies have not yet been performed as systematically across tissues or states as eQTL studies, it remains encouraging that our analyses using plasma proteins identify associations across a range of disease categories, including for psychiatric diseases for which we may expect key proteins to function primarily in the brain. 
	Evaluating the potential of MR to inform drug target prioritisation, we demonstrated that the presence of pQTL MR and colocalization evidence for a target-indication pair predicts a higher likelihood of approval. One of the limitations of our approach is the lack of comprehensive coverage of genetic data for all phenotypes for which drugs are in development, as well as our inability to instrument the entire proteome through pQTLs. As such, ongoing expansions in the scale, diversity and availability of GWAS will be important in providing more precise estimates of the value of MR and colocalization in drug target prioritization and in enabling its broader application. 
	Another potential limitation of our work is the presence of epitope-binding artefacts driven by coding variants that may yield artefactual cis-pQTLs32. In particular, such instances may lead to false negative conclusions where, in the presence of a silent missense variant causing an artefactual pQTL but with no actual effect on protein function or levels, we do not correctly instrument the target protein. In instances where the missense variant appears to be driving the association with the phenotype, we suggest that causal inference may remain valid but inference on direction of association is challenged. Finally, the limited coverage of the proteome afforded by current technologies, leaves the possibility of undetected pleiotropy of instruments. While cis-pQTLs are less likely to be prone to horizontal pleiotropy than trans-pQTLs, it is well known from studies of gene expression that cis variants can influence levels of multiple neighbouring genes and hence the same is likely to be true for proteins. Future larger GWAS of the plasma proteome are likely to uncover many more variant-protein associations, increasing the apparent pleiotropy of many pQTLs. 
	In conclusion, this study identified 283 putatively causal effects between the plasma proteome and the human phenome using the principles of MR and colocalization. These observations support, but do not prove, causality, as potential horizontal pleiotropy remains an alternative explanation. Our study provides both an analytical framework and an open resource to prioritise potential new targets and a valuable resource for evaluation of both efficacy and repurposing opportunities by phenome-wide evaluation of on-target associations. 
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	Figure 1. Study design of this phenome-wide MR study of the plasma proteome. The study included instrument selection and validation, outcome selection, 4 types of MR analyses, colocalization, sensitivity analyses and drug target validation.  
	Figure 2. A demonstration of pair-wise conditional and colocalization (PWCoCo) analysis. Assume there are two conditional independent association pQTL signals (SNP 1 and SNP 2) and two conditional independent outcome signals (SNP 1 and SNP3) in the tested region. A naïve colocalization analysis using marginal association statistics will return weak evidence of colocalization (showed in regional plots A and D). By conducting the analyses conditioning on SNP 2 (plot B) and 1 (plot C) for the pQTLs and conditioning on SNP 1 (plot E) and 3 (plot F) for the outcome phenotype, each of the 9 pair-wise combinations of pQTL and outcome association statistics (represented as lines with different colours in the middle of this figure) will be tested using colocalization. In this case, the combination of plot B and plot E shows evidence of colocalization but the remaining 8 do not. 
	Figure 3. Miami plot for the cis-only analysis, with circles representing the MR results for proteins on human phenotypes. The labels refer to top MR findings with colocalization evidence, with each protein represented by one label. The colour refers to top MR findings with P<3.09x10-7, where red refers to immune mediated phenotypes, blue refers to cardiovascular phenotypes, green refers to lung related phenotypes, purple refers to bone phenotypes, orange refers to cancers, yellow refers to glycemic phenotypes, brown refers to psychiatric phenotypes, pink refers to other phenotypes and grey refers to phenotypes that showed less evidence of colocalization. The X-axis is the chromosome and position of each MR finding in the cis region. The Y-axis is the -log10 P value of the MR findings, MR findings with positive effects (increased level of proteins associated with increasing the phenotype level) are represented by filled circles on the top of the Miami plot, while MR findings with negative effects (decreased level of proteins associated with increasing the phenotype level) are on the bottom of the Miami plot. 
	Figure 4. Regional association plots of IL23R plasma protein level and Crohn’s disease in the IL23R region. A. and B. the regional plots of IL23R protein level and Crohn’s disease without conditional analysis, Plot B listed the sets of conditionally independent signals for Crohn’s disease in this region: rs7517847, rs7528924, rs183020189, rs7528804 (a proxy for the second IL23R hit rs3762318, r2=0.42 in the 1000 Genome Europeans) and rs11209026 (a proxy for the top IL23R hit rs11581607, r2=1 in the 1000 Genome European), conditional P value < 1x10-7; C. the regional plot of IL23R with the joint SNP effects conditioned on the second hit (rs3762318) for IL23R; D. the regional plot of Crohn’s disease with the joint SNP effects adjusted for other independent signals except the top IL23R signal rs11581607; E. the regional plot of IL23R with the joint SNP effects conditioned on the top hit (rs11581607) for IL23R; F. the regional plot of Crohn’s disease with the joint SNP effects adjusted for other independent signals except the second IL23R signal rs3762318. The heatmap of the colocalization evidence for IL23R association on Crohn’s disease (CD) in the IL23R region was presented in Supplementary Figure 4.
	Figure 5. Enrichment of phenome-wide MR of the plasma proteome with the druggable genome. In this figure, we only showed proteins with convincing MR and colocalization evidence with at least one of the 70 phenotypes. The X-axis shows the categories of 70 human phenotypes, where the phenotypes have been grouped into 8 categories: 8 autoimmune diseases (red), 3 bone phenotypes (purple), 8 cancers (orange), 12 cardiovascular phenotypes (blue), 4 glycemic phenotypes (yellow), 2 lung phenotypes (green), 4 psychiatric phenotypes (brown) and 29 other phenotypes (pink). The Y-axis presents the tiers of the druggable genome (as defined by Finan et al) of 120 proteins under analysis, where the proteins have been classified into 4 groups based on their druggability: tier 1 contained 23 proteins which are efficacy targets of approved small molecules and biotherapeutic drugs, tier 2 contained 11 proteins closely related to approved drug targets or with associated  drug-like compounds, tier 3 contained 58 secreted or extracellular proteins or proteins distantly related to approved drug targets, and 28 proteins have unknown druggable status (Unclassified). The cells with colours are protein-phenotype associations with strong MR and colocalization evidence. Cells in green are associations overlapping with the tier 1 druggable genome, where cells in yellow, red or purple were associations with tier 2, tier 3 or unclassified. More detailed information shown in Supplementary Table 24. 
	Table 1. Enrichment analysis comparing target-indication pairs with or without MR and colocalization evidence
	Mendelian randomization and colocalization evidence
	NO
	YES
	Target-indication pair approved 
	40
	4
	YES
	after clinical trials
	147
	0
	NO
	Note: The protein-phenotype association pairs were grouped into four categories: 1) pairs with both MR/colocalization indications of causality and drug trial success; 2) pairs with MR and colocalization evidence but no drug trial evidence; 3) pairs with no strong MR or colocalization evidence but with drug trial evidence; and 4) pairs with no strong MR, colocalization or drug trial evidence. The cut-off for MR evidence was p< 3.5x10-7; the cut off for colocalization evidence was posterior probability > 80%. The drug trial evidence was obtained from PharmaProjects database. The MR and colocalization analysis results involved in this analysis including both Tier 1 and Tier 2 instruments in both cis and trans region. More results comparing MR and trial evidence for cis-only and tier 1 instruments can be found in Supplementary Table 20.

