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ABSTRACT

In this paper, we propose a method for recognizing silently
spoken words from electroencephalogram (EEG) signals us-
ing a Dense Attention Network (DAN). The proposed net-
work learns features from the EEG data by applying the self-
attentionmechanism on temporal, spectral, and spatial (elec-
trodes) dimensions. We examined the effectiveness of the
proposed network in extracting spatio-spectro-temporal in-
formation fromEEG signals and provide a network for recog-
nition of silently spoken words. The DAN achieved a recog-
nition rate of 80.7% in leave-trials-out (LTO) and 75.1% in
leave-subject-out (LSO) cross validation methods. In a di-
rect comparison with other methods, the DAN outperformed
other existing techniques in recognition of silently spoken
words.

Index Terms— Brain Computer Interface (BCI), Silently
Spoken Speech, Attention Mechanism, Electroencephalo-
gram (EEG)

1. INTRODUCTION

Electroencephalogram (EEG) enables non-invasive record-
ing of brain activity, which can be used to design a communi-
cation based brain computer interface (BCI) for people with
motor disabilities. However, EEG signals have poor spatial
resolution and low signal-to-noise ratio (SNR) [1]. In ad-
dition, EEG signals suffer from inter-trial and inter-subject
variations [1]. Traditional feature extraction methods such
as common spatial patterns (CSP), Fast Fourier Transform
(FFT), and discrete wavelet transform (DTW) cannot easily
adapt to the variations in the EEG signals [2].

On the other hand, deep learning algorithms have been
used to extractingmore robust representations than achieved
by traditional feature engineering [3]. Panachakel [4] used
a multi-layer perceptron for recognition of silently spoken
speech from EEG signals. Further, Kumar [3] proposed a
convolutional long short memory (CNN-LSTM) network
to learn spatio-temporal features for recognition of silent
speech. Similarly, Datta [5] recognized silently spokenwords
using convolutional attention network.

In addition, attention mechanism [6] in deep learning
havemade it feasible to address desirable features in multiple
dimensions of the input [7], [8], [9]. For instance, Squeeze-
and-Excitation (SE) module [9] and Convolution Block Atten-

tion Module (CBAM) [8] have been proposed to highlight im-
portant channel-wise features in the CNNs. However, the
convolutional operationmisses the global information focus-
ing on local neighbourhood and it is computationally more
expensive [10]. On the other hand, the self-attention mecha-
nism can focus on long rage dependencies, enhance desirable
features, and suppresses background noise [11], [7]. Further,
the attention based networks are faster to train and require
less computational resources compared to CNNs [12].

In this work, we propose the Dense Attention Network
(DAN), an architecture designed entirely using fully con-
nected (dense) layers and self-attention mechanism. The
network learns spatial, spectral, and temporal patterns from
EEG spectrograms of silently spoken words. The DAN ex-
ploits inter-dependencies of spectral features from differ-
ent brain regions by applying attention across electrodes
(channels). Further, the DAN learns spatio-spectral repre-
sentations for each time point in the spectrogram separately,
treating it as a time varying input.

We assessed the performance of the proposed network
using two different experimental protocols, one of which
included testing the network on data from an independent
participant, i.e., not used for training the DAN. Further, we
compared the performance of our network with existing
techniques, where our network outperformed previously
proposed methods in recognition of silently spoken words.

2. DATA ACQUISITION AND PRE-PROCESSING

2.1. Data Collection

EEG signals were recorded from 12 participants (Mean age
37, range 21-71); none of the participants had any neuro-
logical or speech-related disorders. A Neuroscan 64 chan-
nel Quik cap (electrodes) was used, with a sampling rate of
1kHz. EEG data collection took place in an EEG lab, where
each participant sat in a chair in front of a computer screen at
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a distance of 1 meter. Participants were instructed to remain
immobile throughout the recording. Each recording session
included the words "Apple" and "Write." To avoid system-
atic presentation order effects, words were presented on the
screen in a random order [13]. Each participant completed 10
trials of each word. Recording of the EEG signals was time-
locked for the accurate timing of the stimulus presentation.
A blank screen was displayed for 1 second prior to the com-
mencement of the stimulus, followed by word presentation
for 2 seconds. Participants were instructed to mentally read
the word as soon as it appeared on the screen. The presenta-
tion of the word was followed by a blank screen for 1 second.
To circumvent overlapping inter-trial EEG activity three sec-
onds (-0.5 s to 2.5 s) of the trial were used for the analysis.
This work has been approved by the College of Engineer-
ing, Design, and Physical Sciences Research Ethics Commit-
tee, Brunel University London, reference number 7361-LR-
Sep/2017-8301-1.

2.2. Pre-processing

The recorded EEG signals were high-pass filtered at 0.1Hz
to remove noise or artifacts due slow voltage shifts at fre-
quencies below 0.1Hz. Similarly, a notch filter was used to
remove the harmonics of the 50Hz line noise. Noise at the
higher frequencies, such as noise due to muscle movement,
was eliminated by means of EMG electrode. Artifacts due
to eye blinks were corrected by measuring the peak-to-peak
voltage of the VEOG signal along with the threshold volt-
age of ±200 µV [14]. Baseline of the raw data was corrected
in real time and during offline processing, using Neuroscan
Curry 8 software.

3. DENSE ATTENTION NETWORK

3.1. Input Feature Map

We used spectrograms of EEG signals to enables more pre-
cise analysis. For Short Time Fourier Transform (STFT), we
used Hann window of length 256 with a temporal overlap
of 87% between two consecutive windows. A shorter win-
dow length was used to enhance the temporal resolution. In
our analysis included frequencies between 5Hz and 330Hz.
Input to the network was a multi-dimensional feature map,
Im ∈ RT×F×C , where T is the time, F is the frequency, and
C is the number of channels (electrodes).

3.2. Network Architecture

Our proposed network learns spectro-spatial features at
each time point separately. DAN uses self-attention and
dense (MLP) layers to learn representations across chan-
nels and frequency information. The attention mechanism
across channel dimension enables the network to select the
most task discriminative electrodes. In addition, spectral

attention helps the network capture interactions between
different frequencies. Furthermore, the network uses self-
attention mechanism to model the temporal dynamics of
EEG spectrograms.

Fig. 1: DAN’s Architecture. The network processes each
time point separately using three blocks which extract spec-
tral and spatial features. This is followed by dimensional-
ity reduction using a dense layer with 256 hidden units and
modelling temporal dynamics using self-attention (temporal
attention). The dense layers in block 2 had 128 hidden units,
and 50 hidden units in block 3. BN: batch-normalization.

The DAN’s architecture is shown in Figure 1. The net-
work consists of three blocks, block 1 shown in Figure 2,
apply attention mechanism along the channel and spectral
dimensions of the input. In each block, we used a resid-
ual connection [15], followed by batch normalisation [16].
Block 2 and 3 learn features using the multi-layer perception
(MLP) with single hidden layer and the exponential linear
unit (ELU ) activation [17]. The MLP is applied first across
channel dimension and then across spectral dimension. The
architecture of blocks 2 and 3 is shown in Figure 3. After
third block, the features across channel and frequency axis
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Fig. 2: Block 1 architecture, used for implementing channel and spectral attention in the network. The figure shows processing
of nth time point Tn. Concat refers to concatenating of two vectors obtained from average and max-pooling operations.

Fig. 3: Block 2 and 3 architecture. The first dense layer
is applied along the channel dimension C , this is followed
by swapping the axes, with the second dense layer applied
across the spectral dimension F . C ′ and F ′ refers to the
transformed features, the dimensions of the transformed fea-
tures depends on the number of hidden units in the dense
layers.

are transformed to a vector and subjected to dimensionality
reduction using a dense layer. This is followed by temporal
attention which provide most discriminative time points for
recognition of silently spoken words.

The attention across the channel dimension is estimated
by aggregating spectral information. The spectral informa-
tion is aggregated using max-pooling and average-pooling
operation, generating two feature descriptors; Icavg , and
Icmax, which are fed to a shared network composed of the
multi-layer perception (MLP). The MLP contains single hid-
den layer with C

r
number of neurons and the ELU acti-

vation, where r is the reduction ratio with default value
as in [8]. The output features from the shared network
are combined by using element-wise summation to form
MC ∈ RT×C×1. For implementing self-attention, we used
the softmax function with inverse temperature β, defined
as:

Softmax =
exp (βxi)∑N

i=1
exp (βxi)

(1)

where xi is a vector of length N . Inverse temperature β
in the softmax function, helps the network avoid background
noise in EEG signals and sharping the weights of important
channel and spectral features [18]. The self-attention was
applied as:

αc = Softmax(tanh (MC)) (2)

a channel feature vector gc is obtained by using αc and
the original input feature map Im. The channel feature vec-
tor gc ∈ RT×F is obtained as:

gc =
C∑

c=1

αcIm (3)

Spectral attention is computed by aggregating channel
information by max-pooling and average-pooling opera-
tion, followed by concatenating the two feature descrip-
tors to form MF ∈ RT×F×1. Attention mechanism is
applied to MF using (2) and (3) to calculate a spectral fea-
ture vector gf ∈ RT×C . The channel and spectral vector
for each time point are multiplied to form attention fea-
ture map Gm ∈ RT×F×C . Further, a refined feature map
Mm ∈ RT×F×C is estimated by combining Gm and Im
using element-wise summation operation. The attention
across temporal dimension is applied with β = 1.

The network was implemented on a NVIDIA P100 GPU
using the Keras library [19] with Tensorflow [20] backend.
DAN used the Adam algorithm [21] for weight optimization.
The network was trained for 200 epochs with a learning rate
of 0.001 and a mini-batch size of 5. Regularization in the net-
work was implemented using the batch-normalization and
residual connections.

4. RESULTS

To discriminate silently spoken words, we used EEG signals
from 12 participants for two words: “Apple” and “Write”.
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Table 1: Classification accuracy of silently spoken words in leave-subject-out (LSO) evaluation method.

β S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 Average

1.5 75.5 77.0 55.0 74.4 98.8 88.9 92.7 53.9 55.6 71.5 86.6 72.0 75.1
1.8 74.5 77.5 54.4 75.5 99.4 87.7 95.0 56.5 53.7 73.5 88.8 69.5 75.3

Although each participant completed 10 trials of a silently
spoken word, some participants ended up with 9 trials be-
cause the trials contaminated by noise were removed during
pre-processing. Two different experimental approacheswere
used to access the performance of the proposed network.
Specifically, two sets of results were obtained at a group-
level, i.e., the data used for evaluation contained EEG signals
from all the participants. The two experimental approaches
are summarized in Table 2. To account for the stochastic na-
ture of deep learning algorithm, the DAN was trained and
evaluated ten times for each test sample.

Table 2: Two experimental approaches: leave-subject-out
(LSO) and leave-trial-out (LTO).

Exp Training Testing

Subjects Trials Subjects Trials

LSO All but one All one All

LTO All 90% All 10%

4.1. Leave Subject Out (LSO)

The LSO cross validation method assessed our network’s
performance by training it on EEG trials from 11 participants
and testing it on trials from a separate participant. Table 1
shows the classification accuracy for the LSO evaluation ap-
proach. The network was evaluated for distinct temperature
β values. The results indicate that our method is capable
of accurately classifying EEG signals from participants who
were not used in the network’s training.

4.2. Leave Trial Out (LTO)

In this LTO cross-validation method, 90% of the EEG trials
from 12 participants were used for training and 10% of the
EEG trials from 12 participants were used for testing the net-
work. The results were evaluated by varying the training and
test trials, and the accuracy was estimated by averaging the
results from all the test trials. As can be seen from Table
3, summarizing the results of the LTO method, the network
achieved a recognition rate of 80.7%.

4.3. Comparison

To validate the effectiveness of the DAN, we compared its
performance with the other baseline methods by implement-
ing them on our EEG dataset. The previousmethods tested in
this work are as follow: (1) Bashivan [1] extracted frequency

Table 3: Evaluation of baseline methods on our EEG dataset
using: leave-subject-out (LSO) and leave-trial-out (LTO)
methods.

Method LSO LTO

Bashivan [1] 63.2 68.8
Panachakel [4] 50.6 52.2
Sereshkeh [22] 63.7 65.0
Kumar [3] 55.8 59.3

Proposed (β = 1.5) 75.1 80.7
Proposed (β = 1.8) 75.3 80.6

information from the EEG signals and converted them to pic-
tures which were evaluated using a CNN-LSTM network; (2)
Panachakel [4] used the time and wavelet domain features
of EEG signals and classification was performed on each
channel separately using a multi-layer perception followed
by hard voting to reach the final decision; (3) Sereshkeh [22]
used discrete wavelet transform (DWT) features such as the
standard deviation (SD) and root mean square (RMS) and
performed classification using a regularized neural network;
and (4) Kumar [3] used a CNN-LSTM network to extract
spatio-temporal features from windows of EEG signals and
used majority voting to reach the final decision.

The performance of the existing methods on our EEG
dataset is shown in Table 3. As can be seen our proposed
network outperformed existing methods in recognition of
silently spoken words from EEG signals. Furthermore, the
proposed network takes less training time, compared to the
baseline networks in [1], [3].

5. CONCLUSION

We proposed the Dense Attention Network (DAN) to recog-
nize silently spoken words from EEG signals, which uses the
self-attentionmechanism and dense layers to learn represen-
tations from spectro-spatial information andmodel temporal
dependencies of EEG spectrograms. The proposed network
is capable of learning essential patterns in EEG signals pro-
duced during silent speech, making it superior to other tested
methods in recognizing silently spoken words. Our Future
work will involve analysis using a larger EEG dataset and
interpretability of the DAN.
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