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Abstract

By a delicate analysis for the Stein’s equation associated to the a-stable
law approximation with a € (0,2), we prove a quantitative stable
central limit theorem in Wasserstein type distance, which generalizes
the results in the series of work [9, 10, 21] from the univariate case
to the multiple variate case. From an explicit computation for Pareto’s
distribution, we see that the rate of our approximation is sharp. The
analysis of the Stein’s equation is new and has independent interest.
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1 Introduction

This paper is concerned with the multivariate stable approximation by Stein’s
method. A probability measure 7 on R? with d > 2 is strictly stable if, for
any a > 0, there is b > 0 such that 7(\)* = 7(bA), A € RY, where 7 is the
characteristic function of 7. For strictly stable measures, a and b have to satisfy
the relation b = a'/® where o € (0,2) is the stability parameter. A strictly
a-stable measure 7 is characterised by a finite non-zero spectral measure v on
the sphere S?~! and, in and only in the case a = 1, a vector v € R?, see [18,
Remark 14.6]. Our working assumption in the case o = 1 is that v = 0 and the
center of mass of v vanishes, namely, fgd_l Ov(df) = 0. The first condition is
artificial and the second is equivalent to strict stability of 7 in the case a = 1.
Under the condition v = 0, we have a unified representation for any « € (0, 2),

2(\) = exp [—/ u(d@)/ (ei<w>—1—1<A,ro>ka(7«))% . AeRY
§d-1 0

(1)

where ko () = 1a—1,e(0,1] + lac(i,2)- The family of strictly stable laws is
therefore as rich as the family of finite measures on S%~!. From now on, let
1 denote the integral in the exponent of (1) and call it the characteristic
exponent.

The spectral measure v plays a crucial role in the study of multivariate
stable laws. The distributional properties of = change dramatically from one
type of v to another. For instance, if v is the uniform probability measure
on S41 then 1(\) = o|\|* with o > 0 so that 7 is rotationally invariant.
Hereafter, |a| denotes the Euclidean norm of a € R? Another example is

when v = Zle O¢; + 0_c, where 0. denotes the Dirac mass at some point and

{ei,1 < i < d} is the canonical basis of R%, then 1()\) = Z?Zl o;|Ai|* for some

o; > 0 so that the marginal distributions of 7 are independent one-dimensional
symmetric stable laws. A third type of example is when v is a fractal measure
on S%1, then 7 can be wildly anisotropic with correlated marginals. In this
paper, we shall consider not only each of the aforementioned types of v, but
also mixtures of these types.

To assess convergence rates of a sequence towards a multivariate stable
law, we use Stein’s method — a vast range of ideas and tools that allow one to
study the proximity between a probability measure and a target distribution.
The scope of the method has been considerably extended since Stein [19] pro-
posed his elegant approach for normal approximation. In particular, Barbour
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[4] devised the generator approach which is applicable to target distributions
that can be realized as the stationary distribution of a "nice” Markov process.
Barbour’s approach is the one adopted in this paper and it takes the following
steps. First, one constructs a Markov process (X;);>o with infinitesimal gen-
erator A that converges in distribution to m as ¢ — oo for any initial condition
Xo = € R% Second, one considers Stein’s equation (or Poisson equation in

the PDE literature)
Af( )— (33) —W(h) (2)

with h € LY(w) and 7w(h) = [h(z . By exploiting properties of the
transition semigroup (Qt)t>0 determmed by A, in particular Qoh = h, Qoch =
[ h(z)m(dz) and the relation 4 7 Q¢ = AQ¢, one argues that

Ful@) = — /0 7 Qu () — w ()t (3)

is in the domain of A and solves (2). Third, one uses the integral form (3)
and properties of (Q¢)i>0 to derive regularity estimates for the solution (3).
To see why these steps lead to an upper bound for the distance between an
arbitrary distribution and 7, let Z denote a strictly stable random vector with
distribution =, for any R%valued random vector F', one has

E[h(F)] — E[M(Z)] = E[Afn(F)]-

Ranging h in a class of functions that is large enough to guarantee convergence
in distribution, and using the regularity estimates of (3) obtained in the third
step, together with the explicit form of A, one would obtain an upper bound
for a certain distance between F' and Z.

Carrying out rigorously each of the aforementioned steps and claims in the
context of stable approximation is a non-trivial task. In dimension one, Xu
[21] considered the case of symmetric a-stable law with « > 1. The approach
of [21] was then generalized in [9] to asymmetric a-stable law with o > 1, and
in [2] to a class of infinitely divisible distributions with finite first moment.
Later, Chen et al. [10] considered non-integrable a-stable approximation (a <
1). In higher dimensions, Arras and Houdré [3, Theorem 4.2] executed the
aforementioned second step (construction of the solution to Stein’s equation)
for a class of self-decomposable distributions which includes multivariate stable
laws. However, regularity estimates of the solution are obtained only when test
functions have their 0-th, first and second partial derivatives bounded by 1.
Therefore, the results in [3] cannot be used to derive bounds for multivariate
stable approximation in Wasserstein(-type) distance that we address in this
paper.

The main contribution of this paper is the regularity estimates for the
solution to Stein’s equation in the context of multivariate stable approxi-
mation and Lipschitz(-type) test functions, which in turn allows to obtain
Wasserstein bounds. Such bounds were not available in previous work. Our
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approach relies on delicate density estimates of multivariate strictly stable
laws. Recent advances on heat kernel estimates of anisotropic non-local opera-
tors e.g. [8, 11, 12, 20] allow us to handle a diversified class of spectral measures.
Since real life high dimensional data are often anisotropic (see [14, 15, 17] and
the references therein), the rich class of spectral measures that we consider
would widen the applicability of our results. In terms of application, we provide
the rate of convergence for the classical multivariate stable limit theorem.

The rest of this paper is organized as follows. After introducing the Markov
process converging to m, we construct a solution to Stein’s equation (Propo-
sition 1), present the regularity estimates for the solution (Theorem 3) and
obtain Wasserstein bounds for multivariate stable approximation (Theorem
5). Theorem 3 is proved in Section 3 and Theorem 5 is proved in Section 4.
Example is given in Section 5.

2 Preliminaries and statement of the main
results

2.1 Ornstein-Uhlenbeck type processes

The Markov process we construct in the first step of Barbour’s program is the
so-called Ornstein-Uhlenbeck type process which is a simple stochastic differ-
ential equation (SDE) driven by stable Lévy processes. We refer the reader to
Applebaum [1] for background on stochastic calculus of Lévy processes, and
Sato [18] for general facts about Lévy processes.

Let (Zi)¢>0 be a strictly stable Lévy process, a process with independent
and stationary increments having marginal Z; distributed as 7, given by (1).
Consider the SDE
Xy =1 [ X,ds + Z,

o : (4)
0=

Such an equation can be solved explicitly
t

X =ge = +/ e~ dZ,, (5)
0

see [18, p.105], and provides an interpolation between any Dirac mass and .
This follows from the fact that (X[):>o is a scaled and time-changed Lévy
process, i.e.

th g xefi + eiiZetfl g xefé + Zlfe—ty (6)

see [10, Section 2.3], where 2 denotes equality in distribution. For the second

equality we have used the self-similarity of the process (Z;);>0, namely Z; 4
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c*/® 7, in distribution for any ¢, ¢ > 0. One sees that as t — oo, X converges in
distribution to Z; ~ m. For another proof of the latter fact, one may check the
condition of a general result [18, Th. 17.5] for self-decomposable distributions.

An application of Itd’s formula for semimartingales with jumps to (X[)¢>0
shows that (see [1, Chapter 6] for details) the generator of X is

L0 Vi), (7)

«

AV f(z) = £ f(z) -

where recalling the definition of k. (r) (1),

viao) [ " r8) — £(2) k)8, V()

(8)

Here d3' = [[°(1—cosy)y ' ~*dy = o 'T'(1 —a)cos Z2, a € (0,2) \ {1} with

dq =limy—1 dy = 2/m, and v is normalized to have total mass 1.

Lo f(z) = da /

gd—1

2.2 Solving Stein’s equation

Now one can write down Stein’s equation associated with the multivariate
stable distribution 7 as follows

AWV f(x) = h(z) — 7 (h), 9)

where h € L'(r). In view of obtaining bounds in Wasserstein distance, we
consider h belonging to the space Lip; of Lipschitz continuous functions with
Lipschitz constant at most 1. It is standard that Lip; C L'(7) if @ > 1, while
Lip; N L'(7) is a strict subset of Lip; if a < 1. Whenever a < 1, we let
0 < 8 < « and consider h € Hg = Lip; N HO6l(B, 1) where H61(3,1) is the
class of Holder continuous functions of order 8 and Holder constant at most
1. Namely h € Hg means

Ih(z) = h(y)| < o=yl Az —yl°.

The Lipschitz continuity imposes smoothness and the Holder condition
imposes global growth rate of the function h which is crucial to make sense of
(9) in the case a < 1 thanks to the simple inclusion H51(3,1) C L (7).

We construct a solution to Stein’s equation by using the process (X[)¢>0,
as described in the introduction. Denote by p(t,z) := p(z) the density of the
driving process (Z;):>o0 in (4). Write p(z) := pi(z). By (6), one sees that

q(t,2,y) = pr_e—t(y — e x) = s(t) "V p(s(t) "/ (y — e~ x)),  (10)

t

where y — ¢(t,z,y) is the density of X7, s(t) = 1 — e~ * and we used the

self-similarity of (Z;)>0 in the second equality.
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Proposition 1 (Solution to Stein’s equation) Suppose h € Lipy ifa > 1 and h € Hg
for some B < o if a < 1. Set

@)= - /OOO E[h(X7) — m(h)]dt,
T /0°° /pl—ff‘ (y — e~ 2)(h(y) — (h))dydt

- /OOO /]Rd p(y) (1 — ey + &™) — n(y)] dydt. (11)

Then A% f is well-defined and f solves Stein’s equation (9).

The proof of this Proposition somewhat standard in view of recent develop-
ments [9, 10, 21] on stable approximation with Lipschitz(-type) test functions,
we give a proof in the Appendix for the sake of completeness.

Remark 1(1) Note that the last two identities follow from (10) and a change
of variables. We end this subsection by verifying that (11) is well-defined.
When « € (1,2), this is obvious. When « € (0, 1], since h € Hg, we have

(1= e )Yy + e~ z) — h(y)]
< e a] el 4 y(1 - (1 - YY) A (1 - (1 - Y,
which is integrable with respect to 1;~odt ® p(y)dy, as desired.
(ii) Throughout the paper, we often use the facts that E|Z;|® < oo for any

B € (0, «), where Z; is the strictly a-stable Lévy process. For the convenience
of readers, we obtain the moment estimate of Z; in Lemma 17 in Appendix

A.

2.3 Probability metric

In the case a > 1, we shall consider multivariate stable approximation in the
classical Wasserstein distance given by

dw (p1, p2) = sup |p1(h) = p2(h)].

h€Lip,

In the case a < 1, we shall consider Wasserstein-type distance given by

dw, (1, p2) = sup |pa(h) — pa(h)], 0< B <o
heH g

2.4 Spectral measures

Obtaining sharp density estimates for general multivariate stable law is very
sensitive to the form of the spectral measure. The seminal work of Watanabe
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[20] seems to be the first which identifies the best, worse and a range of different
rates of decay of stable densities in relation to the spectral measures.

For our purpose, we need not only density estimates but also gradient and
fractional derivative (the operator £*") estimates of stable densities. Our set-
ting is that of Bogdan et al. [8]. In fact, [8] addressed Lévy-type operators with
a jump kernel equivalent to the Lévy measure of a general multivariate stable
law. The condition on the spectral measure therein is that the corresponding
Lévy measure is a y-measure. Let u denote the Lévy measure of a multivariate
strictly stable distribution, i.e., for measurable A C R?,

w(A) = /gdl v(df) /OOO 1,4(7”0)%.

Definition 1 We say p is a y-measure for some v > 0 if there exists a finite ¢ > 0
such that for all z € S~ and 0 < r < 1/2, one has

u(B(x,7)) <er?.

Here B(z,r) is the Euclidean ball with center z and radius r > 0.

It is easy to see that the Lévy measure of stable laws are y-measures with
v € [1,d]. The following examples show that this is a rather general setting.

FEzxample 1 Suppose that v is absolutely continuous with respect to uniform measure
on 4! with density k bounded from above and below. Then for measurable A C Rd,

k(x/|x|)dx
) = [ ST

This is the setting (restricting to the Lévy case) of Chen and Zhang [11, 12] where the
densities, their gradient and fractional derivatives are estimated. One readily checks
that p is a d-measure.

Ezample 2 Suppose that v = Z?:l a;0z; where 0. is a Dirac mass and {z1, ...,z } C
S%1. Then 1 is a d-measure. In the particular case where z;’s are the canonical
basis and k = d, we have a multivariate stable law with independent marginals. The
desired estimates follows from their counterparts in dimension 1.

Ezample 8 Let 1 < < d. Suppose that v is supported on E C S?=1 which is Ahlfors
regular of order v — 1, namely, there exists ¢ such that

H'7 ' B(z,r)NE)< e, z€E,

where H® is the s-dimensional Hausdorff measure. Then v is -measure whenever
it is absolutely continuous with respect to (v — 1)-dimensional Hausdorff measure
with bounded density. In [8] only density and gradient estimates were obtained.
Computing fractional derivatives of stable densities requires a little more work, which
we do in this paper following the arguments of [11, 12]. It was observed in [20]
that, subject to further lower bounds on the v-measure of balls, sharp two-sided
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estimates can be obtained for stable densities. Since we are only concerned with
upper bounds, we do not need to impose these additional assumptions. For aspects
of fractal measures, we refer to [16].

Erample 4 Any linear combination of v in the previous three examples is again a
y-measure with an appropriate ~.

We gather estimates about stable densities which are useful for our purpose.

Lemma 2 Let p(x) be the density of a multivariate strictly a-stable law with char-
acteristic exponent (1) for all a € (0,2) and [ga—, Ov(df) = 0 when o = 1. Suppose
that the Lévy measure p is a y-measure with v € [1, d] satisfying v > d — a. Suppose
also that v is symmetric i.e. v(B) = v(—B) for any B C S%~!. Then, there exists a
finite constant C' = C,, 4., > 0 such that for all z,y € R

C

Ip(z)| < Aot (12)
C
S TTTmha 1
Vo)l < e (13)
2 C
IV=p(@)llop < Ax Dot (14)
and
p(@) P < Clle — ol A D) (s + ey ), ()
(T4 fehotr (1 + [yt
where V2 is the Hessian and || - [lop denotes the operator norm.

Remark 2 a) In the setting of Example 1, Chen and Zhang [12] obtained these
estimates with v = d without the symmetry assumption on the spectral
measure, extending their earlier work [11]. It is an open problem to obtain
these general estimates in the setting of [8] without the symmetry condition.

b) Regularity estimates of solutions to Stein’s equation and Wasserstein
bounds in the sequel rely on this Lemma. In view of Item a), all the
upcoming results extend to non-symmetric v in the setting of Example 1.

¢) Equations (12)-(14) were proved in [8, Lemma 2.4]. Equation (15) follows
from (13) by the mean value theorem.

d) In the above Lemma, if v(df) = m (the rotationally invariant a-stable

Lévy process), where V(S%71) is the surface area of S?~! and V(S?7!) =

—g&d/;), then we can obtain that

— —4 o 2% 1 sin 2T D ((d+a)/2)T (/2
max{2 1, garr(%/z))v zwd(/(%t )/2)T( /)}

(T +la)™ |

p(x) <
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that is, the dependence of the constant C' on the dimension in (12) is expo-
nential and similar conclusions can be made about the gradient (13) and
Hessian matrix (14). The specific details will be given in Lemma 18 in
Appendix A. For the general case, the dependence of the constants on the
dimension may need to analysis some infinite series, which is beyond the
scope of this paper, we omit here.

2.5 Main results

Theorem 3 (Regularity estimates for the solution) Let f be given by (11) for h €
Lipy in the case @« > 1 and h € Hg for some B < « in the case a < 1. Suppose that
the assumption of Lemma 2 holds.

i) If « € (1,2). Then there exists a finite constant C > 0 depending on «,d, v,
Voo < o, (16)
sup [|[V2f(@)[lop < C, (17)

zeRd

where || f|lco = SUpyera |f(z)| is the L= norm. Further, for all z,y € R¢

2d,C

— |z -y
T LR (18)

LY f(x) = LYY fy)| <
1) If a =1, then there exists finite C' > 0 depending on B,d,v such that

IV flloe <1, (19)

15 flloe < C (20)

and for any x,y € R? with |z —y| <1 and w € R,

IVf(z) = Vf(y) < C(1~logle —y|)lz -yl (21)
|f (@ +w) = f(2)] < Clw| A ], (22)

[, V(@) < O+ [2|7). (23)

L2 fx) = L2 f(y)] < Clo = y|(1 = log|a — y]). (24)

iii) If a € (0,1), then there exists finite C > 0 depending on «, B,d,v such that

IV £lloo < a, (25)
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I1£%7 flloe < C, (26)
IVf(z) = VYl < Clz -yl (27)

and for any x,y € R?, one has

|f(@+y) — f)] < Cly| Alyl”, (28)

[, V(@) < O+ [2|7). (29)

Further, for anyn € (0, 1), there exists finite C > 0 depending on «, B,d,v,n
such that for any x,y € R?,

L9V f(x) = L7 f(y)] < Cla —y|". (30)

In addition, we denote Fz is the class of functions h : RY — (R, dg) such
that |Vh(z)| < Wl‘l_[; Then, we have the following proposition.

Proposition 4 Let a € (0, %] and f be given by (11) for h € HgNFg with B € (0, a).
Suppose that the assumption of Lemma 2 holds and denote B := max{8,d — v} €
(0, @). Then, there exists a finite constant C > 0 depending on o, 8,d,v,v such that
for any x € Rd,

IV f(2)] < 0(1/\ |x|5*1).

The second result is concerned with Wasserstein(-type) bounds for limit
theorems with multivariate stable limit.

Let n € N and let ¢y 1,Cn,2, -+, Cn,n be a sequence of independent random
vectors satisfying E|(, ;|® < oo for any 8 € (0,a) and i =1,--- ,n.

Set

Cn,l - ECn,l + -+ Cn,n - Egn,n; (OAS (15 2)7
Sn = Cn,l - ECn,,11(0,1](|§n,1|) R Cn,n - Egn,n]-(o,l](Kn,nD, o = 17
Cn,l + Cn,Q + -+ Cn,n, [OAS (0, 1)

and
Sp(i) = Sn—Cnyiy  1<i<n.

Denote I, = 7-n and set 7, ; = z}/“gn,i, then we have the following Theorem.

Theorem 5 (Wassertein bounds) Suppose that the assumption of Lemma 2 holds.
Let n € N and G, My, © = 1,--+,n are defined as above. Denote the density
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function of Ny ; by py, ;(r)drv(d0) and when a € (0, 1], further assume that py,, , (1)
1S mon-increasing,

(1) When « € (1,2), there exists a finite constant C' > 0 depending on a,d,v

such that
dw (£(Sn), )
<C) {” EE[a 2 + 0 2 (Elpai])”
i=1

Q=

_2 a _
+n w/o r2|m_pnm(r)}dr+n

o0
‘/lé |% - 7/,I)"']n,i (T)dr}

(2) When o = 1, there exists a finite constant C > 0 depending on B,d,v such
that

dw, (£(Sn), 1)

n

ln oo
CZ {n‘Q /0 7“(1 — log(lglr))pnn,i(r)dr +n P /ln rﬁ}d[% — rpnnyi(r)H

0o l
n 1
! /l Py, (r)dr +n 2 /O r*(1 —log(l,'r)) |~z dr = pn,. (T)dr|}~

(3) When « € (%, 1), there exists a finite constant C > 0 depending on «, 8,d,v
such that

dWﬁ (C(Sn)v M)

o

N
Q
—~
3
|
wf8
St
S—
=
wl -

—1pnn,i<r>dr+n—?/ (A%~ 1y, ()]

1

— > _lte b
+n 1/; P (r)dr +n~ 7w / O£+1|7no¢+1 — Py (7 )|d7‘+R"7a7i};
0

o

where

Rn,a,i =n «

/Sd_l Gu(dﬁ)H . fal;,_Tw — /Olﬁ rpnnyi(r)dr).

(4) When « € (0, ] there exists a finite constant C' > 0 depending on «, 3,d, v
such that

sup_ |BA(S,) — p(h)|
heHsNFs
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1
L

+1/ Py, (r)dr 0w /1 tﬂ|d =t (0]
i 1

1

00 L
— _lte
o 1/; P, (r)dr +n~ 7 Ol+1|7no¢+1 = P (7 )|d7ﬁ+Rn7aﬂ3}'
’I{Ll 0

Remark 3 In order to use the Leave-one-out method to prove the above theorem,
when a € (0, %], we need better decaying property with respect to the solution of
the Stein’s equation (9), hence we consider the case h € Hg N Fg. An example
v—Paretian distribution for this theorem will be given in Section 5.

3 Proof of Theorem 3 and Proposition 4
3.1 Proof of Theorem 3

Now we prove all the claims of Theorem 3.

Proof of (16), (19) and (25) For any a € (0,2), denote s = (1 — e~ ) and z =
t

y —e oz, it is easy to check

_t
Vap(s,z) = —e @ V.p(s, 2), Vyp(s,z) = Vp(s, z).
Notice that ||[VhA|lco < 1, from which it is readily checked that one can differentiate
under the integral sign in (11). Hence,

Vi) =— /Oo Vap(s,z) (h(y) (h))dydt
/ /]Rd _QVZp S Z) (h’( ) M(h))dydt (31)
- / /Rd e_zvyp(& Z) (h(y) - U(h))dydt

/ /]Rd (s, 2)Vh(y)dydt.

o
IV flloo < VA ]loo / % / p(s, 2)dydt
0 R4

ot
= HVhHoo/O e @ /}de(s,z)dzdt:ozHVhHoo.

Therefore,

Proof of (17) From (31) we see that
IV 1@lop < [~ [ e ¥ 19apl. )Ry,
Thanks to the scaling property p(s,z) = s~ %p(s~/*2), we have

_2t _d+1 _1
IV @lop < 19l [ e % [ 57 10p(s™ % olapar
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o —1/a —2t
— VAl / s g% / V() dudt,
0 Rd

where the equality is by taking u = s~Vey, Then, by Lemma 2 (13), there exists a
finite C' > 0 such that
a—1 2

=)

«

o0
V24 (@)llop < C[[ Ve / sV # 4t = C|[Vhllso B
0

where B(a,b) is the Beta function. O

Proof of (18) Before proving (18), we give another representatlon of the operator
LYY Fix a € (1,2). Let f € CQ(Rd) be such that [V f||oc + ||V f|lse < c0. We have

a, 1/ da 0 Vf J:—‘,—u@)) < ,Vf(ﬂ,’» d
LY /Sd 1/ duv(df), =z €R". (32)

Indeed, one can write

a/ /°° (0, Vi@ +ub) = 6.V ) 4 o ap)
sa-1Jo

Tl-{—oz

a/ I /°° (0. Vf(x +u9)>—<0’vf(w)>drduu(d9)
Sd-1.J0 u

,,.1+a

[ee]
d—1J0o
implying (32). Using (32), we can write

g ﬁa’”f(l‘) _ L’a’”f(y)’
_‘/ / 0,V f(z+ud)) — (6, Vf(z)) — (0, Vf(y+ub)) + (97Vf(y)>duy(d0)
S§d—1

\ I
&

(=)

Il
S

Q|§“
w2

u()ﬂ

<f /°° 0,95+ ) = V1) = V4w +00) + VI 1)

§d—1 u™

, S , eyl 4

<Al =l [ | A_y‘ ua) 209 [T —auan)

2|V £lloo
“E-aa-n Y
ending the proof. O

Proof of (21) and (27) Let a € (0, 1]. Differentiating under the integral, we have

Vf(z)=— /000 /]Rd eit/ap(u)Vh(s(t)l/au + eit/aa:)dudt. (33)

Choose B = |z — y|“. Applying successively (33), a change of variables, and Lemma
2, we get that

IVf(z) = Viy)l
< /OZ*W/ Ip(u— s(t)fl/aeft/ax) —plu— s(t)fl/aeft/ay)||Vh(u5(t)1/a)|dudt
0 R4

<CIVAllo [ e (5077w —yl) A
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[ee]
<C||Vh| o / eV —y) A1)t
0

<C( P mttagy [ otiay-1/ag, <oB+ [ e tlogy,
<C(J, e /e o~ yl) <C(B+ i e |z —yl),

where in the third inequality, we use the fact that s(t)fl/aeft/a = (et - 1)71/01 <
t~1/% If @ = 1, then for B = lz —yl <1,

1 oS
IVf(z) = Vfy)l < C(B+ (/B t_ldt+/1 e_tdt)|x—y|)
<C(1 —loglx — z|)|z — 2|
If « € (0,1), then for B = |z — y|*

Vf(z)— Vi) < C(B+ /B 7%t — 2[) < Clx — |

O
Proof of (22) and (28) For a € (0,1], one has by (11)
x—|—w
/ / )V 4 et b w)) — h(s(t) Y%z + et/ %)) dz dt.
Thus, for A ;RHg with 8 € (0, a)
|z +w) - f(@)] < / /R ezl A ful) = (0l Alw).
O

Proof of (20) and (26) We first prove (26). By (28), for a € (0, 1),
o g |f(z +r0) — f(z)]
<
£ (@)] <do /Sd 1 / 7“"""1 dru(df)

ada o B Ay
/Sdl/ a+1dr7/d9) C.

Now it remains to bound HL’l’”fHoo. By (21), for |w| < 1, one has

1
Fla +w) - f(a) — (V(@),w)] = /0 (Vf (@ +uw) — Vf(x),w) du

1
< Jul / IV + uw) — V f(z)|du
0
1
< Clwl? 141 d
< |w|/0u(+og )du

1
Tal”

L
ulw|

< Clwl*(1 + log
It follows from (22) that

| f / / 1+log )drv(de) + / / PP 2drv(dO) ) C.
Sd—1 §d—1

d
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Proof of (23) and (29) For « € (0, 1], one has by (9) that
(2, Vf(2)| = a| £ f(z) — [A(z) = h(0)] + [7(h) — h(0)]|.
Thus, by (20) and (26), we have

a, V(@) < C[1+ [z Alel’] < C(1+z)?).
The proof is complete. O

It remains to prove (24) and (30). We need two lemmas.

Lemma 6 Let o € (0,1] and h € Hg with 8 € (0, a).

1) If & =1, then for any a > 0,

[t ntantan) o] < Ca +a)

2) If a € (0,1), then for any a > 0,

/dﬁa’”p(y)h(ay) dy‘ < Ca”.
R

Proof 1) Notice that for any y € RY,

L2 p( /Sd 1/ ng Py +710) = pY) 4., a0
/Sd 1/ p(y +1r0) — ( ) (ro, Vp(y ))dw(de).

By Fubuni’s theorem,

‘/Rd/gd 1/ y*”’ P +10) = W) 4oy (ag)h(ay) )dy|
:‘/Rd /Sd_l/ _g(h(ay—are)—h(ay))dru(de)dy]

<a
Sd 1 ]Rd.

Applying Fubini’s theorem, integration by parts and the estimate of Vp(z) (Lemma
2), we get
1 — J—
‘ / / / ply +10) — py) — (r6,Vp(y)) dw(dg)h(ay)dy‘
R4 Jsd-1 Jo 7“2

1 1 o
R Jsi-1t Jo Jo r
1 1 _

<a||wz||oo\// // 2ty £79) = P iy ) |

]Rd Sd—l 0 0 r

L 1UT

<CaIIVh||oo/ / / — dudrv(df) < Ca.

Sd—l 0 0 T

v(df) < Ca®.
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2) We have by Fubini’s theorem that, for any a > 0,

e nman o
_da‘/w /Sd 1/ y+:5+1 PW) 11 (d0) h(ay dy‘
:da‘/Rd /SCH/O L (h(ay—ar@)—h(ay))drlx(d@)dy‘
—da| /R ) /S N / - 55?31 (h(ay—u@)—h(ay))duu(d@)dy‘

) o
< < .
daa /Sd ) / /d e E— — 7 d duy(dﬁ) < Ca

Thus, the assertion is proved. O

Lemma 7 Let o € (0,1]. Then

/]Rd £ p(2)|dz < C

Proof If a = 1, then by Lemma 2, we get that, for any |u| <1
Cy < c
L+ ]z +u) ™ = @+ )
where in the last inequality, we use the fact that 2(1+ |z 4+u|) > 2+ 2| — |u| = 1+ ]z].
It follows that, for any |w| < 1,

[V?p(z +u)| <

¢
(1 427+

Ip(z +w) —p(2) —w-Vp(2)| < w|?.

Thus, we have that

[ee]
/Rd 1LY p(2)]dz < dy /Rd /Sd 1/ WLWdru(d@)dz

+d1/Rd/Sd 1/1 lp(z + rb) — ( ) (r0, Vip(z )>|drll(d9)dz

<2 v <C.
di +dq /]Rd /Sd—l/o (1+|Z|),H_1dr1/(d9)dz C

If @ € (0,1), then by Lemma 2,

o, > lp(z+10) — p(2)|
/]R L% p(z)|dz < da /]Rd /Sd 1/ atl ————=——%drv(df)dz
cof [ i <c

We are ready to complete the proof of Theorem 3.
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Proof of (24) and (30) Set s(t) =1—e~' and h = h — E[h(Z)]. We claim that
£ f( / [ (e ) @)h(y) dy di

. /OOOS(t)_le_tdt L Db (s e ) dz (@

The second equality follows from (10). To see that the first one holds, note that
h € Hg so that Fubini’s theorem implies

- /OOO e (/Rd a(t, y)g(y)dy> (z)dt.

For each fixed ¢t > 0, applying Lemma 2 justifies a further use of Fubini’s theorem,
we are led to

£V (/Rd a(t, - y)h( ) / LYY q(t, ) (@)h(y)dy,

and the claim follows. Now let o = 1 and let z,y € R? be such that lx —y| < 1. By
Lemma 7, we get that

\ /R JE DY)z + 7 ) — h(s(t)/ 0z 4 e ) dz

<ol [ | )] a:
Rd

By Lemma 6, we get that, for ¢t < 1,

/]Rd (Ll’yp)(z)h (s(t)l/az + e_t/ax) dz—/Rd (L'l’”p)(z)h (s(t)l/az + e_t/ay) dz

< C(s(t) + s(t)?) < Cs(t)”. (35)
Let B = |z — y|1/ﬂ Then by (34), we get that
B o)
1LY f(z) — £57 ()| < (/ s(t) s dt+/ s() " e dtfz )
0 B
§C’(BB+/ ttet dt|x—y|)
B

1 oo
:C(Bﬂ+ /tildt—i—/ e tdt |w—y|)
B 1

< Clz —y[(1 —loglz —yl),
If « € (0,1), by Lemma 7, we get that

‘/ (L) (2) (R(s(t)Y %2 + e %) — h(s(t) 2 + eV Y%)) dz

eit/a|w — y|/ (Ea’l’p)(z)| dz < Clzx —y|.
By Lemma 6 applied to h(- 4+ e~/ %z), h(- + e t/%y) € Hg, we get that,

/R (L) ((5(0) 2 + e ) de - /R (L) (502 + ety ) dz
< Cs(t).
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Thus, we get that, for any 7 € [0, 1],

V)b (s(t) % + e % ) dz—
L @R (s oz e ow)a— [
< C(s(t) Az —yl) < CsB)(LAs() " o = yl)7 < Cs() e — . (36)

Then, by (34) and (36), we get that

L% f(w) = L9 f(y)] < C/DO s(t)'s() e dtla —y|"
0

(L% p)(2)h (s(t)l/ et/ ay) dz

o0
< c/ s(t) e~  dt|z — y|"
0

oo
< C/ e (1=mt dtlz — y|7 < Clz —y|",
0

completing the proof. O

3.2 Proof of Proposition 4

When |z| < 1, the conclusion is obvious.
When |z| > 1, notice that

Vi == [ [ e a0y et dy

as |y| = 2s(t)~ Vet |z|, that is, s(t)/*|y| > 2e~/*|z|, we have

e%t|x|1_B|Vh(s(t)l/ay + e_t/"‘a:)|

e%t|x|1’ﬂ

~ . 1713
L+ |s(t)Voy + e t/og|
e%t|x|1’ﬂ eﬁc;xlt|x|1’ﬂ

1+ (s(t)l/a|y| _ e*t/a|x|)1*ﬂ X 1 +e¥tlxl“ﬁ X

<

3

which implies
|Vh(s(t)1/°‘y + e_t/ax)| < e¥t|x|ﬁ_1.

These imply

/ / e ap(y)Vh(s(t)/*y + e~/ *x)dydt
0 Jly|>2s(t)-1ee—t/a|g]

o
< / / e~ Ep(y)e’ = a P~ dydt
0 ly|>2s(t)~1/ @e=t/|x|

<'“'B_1/ / e Stp(y)dydt = Llzlf1,
0 Rd 6
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As |y| < $s(t)~ Ve |z, that is, s(t)Y/*|y| < e~ |z|, we have

e%t|x|1_ﬂ

L (emt/a] = s()'/elyl)

e af

e%t|x|1_B|Vh(s(t)l/ay + e_t/"‘a:)| <

< <2

B-1 )

14 28-1e o tx|l-P
which implies
|Vh(s(t)1/ay + e_t/"‘a:)| < 261;_Bt|a:|ﬂ_1.

These imply

71

t 2
efap(y)Vh(s(t)l/ay + e*t/ax)dydt < Fa

yl % ) 1/("67t/("|I|

As Ls(t)~Vee /o] < |yl < 2s(t) "V e~/ %|z|, (12) implies

/ / eft%p(y)Vh(s(t)l/ay—i—eft/aa:)dydt
0 JLs(t)=1/ et/ |z|<|y|<25(t) 1/ @e=t/2|a]
In(1+]z]*) |y|7(a+7)
<C / 675/ 1_ﬁalydt
0 Jemt/alal <s(0)/alyl<2e- /ool |s(t)1/ oy + e~teg]

° t
+/ 6_5/ dydt| .
In(1+]z[*) Fs(t) "1/ et/ o z|<ly|<2s(8) " vemt/ vz

For the first term, we have

In(1+|z|%) . |y| a+y)
/ e« / 3 dydt
0 Jemt/eel<s(/ oy <2e /e |s(t)1 /oy 4 et/ x|
In(1+|z|*) 2s(t) "/ %™ x| = (a+1+y—d)
g/ / / g drdodt
0 §d—1 J Lg(¢)—1/ae—t/a|q| | 1/ar9_67t/a|x||

In(1+|xz|®) a7V ||~ (et +1=d)
<C/ ets(t)T/ g drdt
0 %S(t)—l/ae—t/a‘w‘ (e—t/a|x| _ S(t)l/o"l“)

In(1+|z|) wpr [T e | ||~ (@+r+1-d)
+ C/ els(t) e / g drdt.
0 s(t)—1ae—t/a|g] (s(t)l/ar _ eft/a|x|)
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Then, one can write

In(1+|2|*) wpa SOV ||~ (et +1=d)
/ els(t) o / T drdt
0 1s(t)~Veet/o|g| (e—t/“|a:| — S(t)l/a’l“)

—t/a

1 In(14|z|) \ e lzl
:7|w|a+7+1d/0 e s(t)/o —rlfﬁdrdt

C In(1+]z*)
/ eTﬁtdt
0

STalerati-ap

28 In(14[a]*) C
STajerati-ap¢ S apra
whereas
In(1+|z|®) . 2s(t) "M e || 2| (etr+1-d)
/ ets(t)%/ i T drdt
0 s(t)—Lee—t/a|g] (S(t)l/ar_eft/a|x|)
o C
Sgrri=d

These imply

In(14]=|%) |y|7(a+7)
/ e @ / 5 dydt
0 Lemt/oz|<s(t)/ o ly|<2et x| |s(t)H/ oy 4 e~t/ag]
o C
NE R

For the second term,

> t
/ e @ / dydt
In(1+]xz[*) ss(t) Vet || ly|<2s(t) T et/ |

<Oz e~ (el —1)"Medt
In(1+]z|)
<% e T dt < Ce*éln(lﬂw\“‘) < C|x|71.

h |z In(1+|z|®)
The proof is complete.

4 Proof of Theorem 5

4.1 Alternate expressions for £

The following lemma gathers useful alternate expressions for the operator L.
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Lemma 8 Let a € (0,2) and f € C2(R?%). We have, for all z € R? and a > 0,
a.) When « € (1,2),

(Loz l/f dOt éd ) / 0 Vf + u@)) <97 vf(l')> duv(d@)

dqa'™® (ub, V f x—!—au@))—(u@,Vf(x))
= /sd 1/ duv(df)

uaJrl

provided that ||V f|lsc < 0o and sup,cga ||[V2f(2)]lop < 0.
b.) When oo =1,

" )=z

0,V f(x+ ub)) — (9 V()1 (0,1)(u))
=d /Sd 1/ duv(do)

) (10,95 + au0)) - 08,9101 )
=d; /Sd 1/ duv(df)

provided that g4 5~ |flztub)—f(2)— <u9 Vi@l .y (umdw/(d@) < oo and
S J° K0,V f(x+ud))— (9 V(@)1 (umduy(dG) < 0o

c.) When « € (0,1),
O Y () da {0,V f(z + ub)) -
(£ f)()——/gdl/ e duw(dd)

1 e
_ (ud, V f (z + auf))
= /Sd 1/ gy duv(df).

provided [y, 1 [ Wﬁfinuu(dG) < 00, fyus [0 UONILAuO) gy (ap) <
Q.

Proof Note that the conditions on f ensure that all the integrals are well defined
and we can use Fubini’s theorem in the following proof.

(LYY f)(x) =da /Sd 1/ flz+710) — f(x) — ka(r)(r8,V f(z))) 1d_:a (d6)
= — ka(r x uiy

da/sd 1/ / 0,Vi(x+ub)) —ka(r){0,Vf(z)))d o (dO)
- - r T dr uv

cdo [T [T 0.9+ ) a0, 50 e dustao),

since ka(r) = 1o—1,re(0,1) + Lag(1,2) and [ga—1 Ov(df) = 0 when o = 1, we further
have

(L2 f)(x da /Sd 1/ 0,Vf(x+ud)— ka(U)(@,Vf(ﬂC))duy(da)

a

_daa” ™" al * (ub, V f(z + aub) — ka(u)(ub, V f(z))
/Sd 1/ duv(d9).

ua+1

d

Now we check that the solution f to Stein’s equation satisfies the
integrability condition of the previous proposition.



Springer Nature 2021 IWTEX template

22 Multivariate stable approximation by Stein’s method

Lemma 9 Let a € (%, 1) and h € Hg with 8 € (0,c). Let f be defined as (11). If
a=1and de_1 0v(df) = 0, then for any = € ]Rd,

/ /°°| Vi +r0)) - (9 Vi (@)1,1(r))
Sd—1

drdd < C(1 + In|z)).

If @ € (0,1), then for any = € Rd,

sd—1 Jo ro

Proof When @ =1 and |z| < 1, we have

[ [ - 0 S e
§d—1

-/ / .91 4100 = Oy [ [ LOT It 4
d—1 Sd-1J1

T T

By (21), we have
1
gd—1 0

and by (19) and (23), we have

/ /°°| Vfﬂf+7“9)>|dd9
_/:d 1/°°|r9,VfT(gc+r9))|drd9

© (z+710),V(x+710))|+ |{(x,Vf(x+1rb))|
g/sd 1/ drdé

r2

oo B 00 B8
<C/' /ﬁ Lzt ol +lelgqp <o [~ 1H2ET coa . @)
§d—1 T 1 T

When oo =1 and |z| > 1, we have

/ /°° (0, Vf(z +r0)) — (0, Vf(2)1(0,1)(r))]
§d—1 T

drdd

_ =l |0,V f(x +16)) — (0,V Vf [0,V f(z +r0))]
7/§d—1/0 " drd0+/Sd 1/| drd®é.

By (21) and (19), we have
/ /m [0,V f(z 4 70)) — (0, Vf(2)1(0,1)(r))|
Sd 1

r

_ "0,V (@ +70)) — (8, V(2))] 0, Vi + o)
_/341/ . drdé)—k/Sdil/l - drdé

<C(1+In|z|),
and by (19) and (23), we have

/‘ /W|9fo+w»ud9
si-1J|z

drdd
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/ /°°|7“9 fo—|—r9))|dd9
si-1 J|z|

((x+710),Vf(x+r0)|+|(z,Vf(z+10))
</Sd 1/H drdé

2
oo B
<C/ / 1—|—|w+r9| +|x|d a0
Sdl ‘

1+ |z + _ _
Ltlal+r” <CA+ |2zt + 2P <

<C

2
|| T

When « € (0,1) and |z| < 1, we have

[ [T,
si-1 Jo re

1 00
_ (0, Vf(z +r0))] [0, Vf(z +r0))]
_/3471/0 B E— drdf + /Sd71/1 S — drdé.

By (25), we have

1
/ /' Vfg“”"g dd9<0/ —drdd <
Sdl

and by (25) and (29), we have

/ /Do {6,V f(z+70)] 1 40
g1 re

[{r0, Vf(z +r0))|
/Sd 1/ WP 2 drdo
/ / $+T9 Vf(x+7“9)>|—|—|<x Vf( +7‘0)>|de0
§d—1

7«aJrl

1+ |z +r0]® + |z 1+ x| + 7
<O/Sd1/ e dd9<C’/ LR <o+ ).

When « € (0,1) and |z| > 1, we have
/ /°°|0Vf(x+r0)>|d 40
Sd 1

||
/ / | x—|—r9 dd@—i—/ / 0,Vf x+r0))|dd9.
Sd—1 sd—1 J|z|

v (25), we have
o] ol
/ / [0,V /( wHQ [0,V f(z+ 10))] 4, 49 <c/ idrde Clel*e,
gd—1

and by (25) and (29), we have

/ /°°|9Vf +r9)>|dd0
/S /|°°|r0 fo+r9)|d a0
=1 Jz|

7qoz+1

® (z+710),Vf(x+710))|+ [{x,Vf(x+rb))
/Sd 1/| e drdf

23



Springer Nature 2021 IWTEX template

24 Multivariate stable approximation by Stein’s method
00 B
<C/ / 1+|x+r+01| +|a:|drd9
sd—1 J|z| ro
00 B
<o [T o 4 lal)al® + 2 < OO + 2.
|| r
The proof is complete. a

Lemma 10 Let o € (0, 3] and h € Hp N F with B € (0,a). Let f be defined as
(11) and denote B = max{f8,d — v} € (0,c). Then, for any = € RY,

si-1 Jo re

Proof When |z| < 1, the proof is similar to the proof of Lemma 9. When |z| > 1,
Proposition 4 implies that

[ [l
si—1Jo ro

[ee) Bfl
<C/ / %drdﬁ
sd—1Jo re

00 _ 61 || _\B-1 oo _ B—1
<o [Tl o [y, e )
0 r 0 |

[ [
T x| T

One can write
||

L Y o N (o ol (Ja) = r)P
A —————M_A —————m+/ (2l =n)"" 4,

ro re lz| ro

g
2
1-3, 61 %1 o o [ G—1
< PPt [ 7 S 2% [ (el -0 e

0

lz|

<Ol

St 1o a [P (r—a])’
Aﬂ re dT_BA\ = leh _B/\m\ et

whereas

The proof is complete. O

4.2 Taylor-like expansion

In order to prove the main Theorem, we shall make use of the following lemmas.
eae (1,2):
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Lemma 11 Consider o € (1,2). Let X be a d-dimensional random vector with
density function px (r)drv(df) and Y be a d-dimensional random vector, which is
independent of X. For any a > 0 and f is defined as (11), denote

TELYYF(Y)],

o? o

= [EUX. VA(Y +aX)) ~ (X, V()] - -a

then, we have
1

o, a *a
T <C<a/0 T |m—px(r)|dr+/ ) ‘T—a—rpx(r)dro.
a

Proof From Lemma 8, we have

> an aw (r0, V(Y + ar0)) — (r0, V(Y
g—a IR ] =aE] /S L / {r, V/( a:afl {rd, V/( )>drz/(d0)],
and

E{(X, VA +aX)) — (X, Vf(Y))]
:IE[/ / {(ro, V(Y +ard)) — (r0,Vf(Y))) px (r)drv(d@)]
sa-1 Jo
These imply

T gE‘ / /a 0,V (Y + ar) — VF(Y)) [%dw(de) —pX(r)dm/(dﬁ)]‘

—HE‘/Sd 1/ (ro, V(Y +ar) — Vf(Y )>{ T drv(df) — (r)dry(dg)]‘

=11 + Is. (39)
Then, one can write by (17) that

a1
Il S Ca/ /
§d—1

whereas by (16)

oo
ec [, [N mbion < 1 -t
sa-t ! a-1'T

the desired result follows. O

1
a
r)dr|1/(d0) < C'a/o rz‘% —pX(r)‘dr,

ea=1:

Lemma 12 Consider a = 1 and [qu—1 6v(df) = 0. Let X be a d-dimensional random
vector with density function px (r)drv(df) and suppose that px (r) is non-increasing.
Let Y be a d-dimensional random vector, which is independent of X. For any a > 0
and f is defined as (11), denote

Ty i= [BIOX VY +0X) = (X, V£V g, (al X)) — B (V)]

then, we have

—1

T < C(a/oa r2(1 —log(a7"))|7ji2 —pX(r)|dr+aﬂ71 /OO1 tﬂ|d[% —th(t)”).
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Proof By the same argument as the proof of (39), we have
—1
a
1
Ty g]E‘ /d ) / (r6, V(Y +arf) — Vf(Y))] [T—erlj(dﬂ) —px (r)drl/(d@)]’
Se-1.J0

+ E‘ /Sd_l /(:01 (r6,Vf(Y + ar)) {%drl/(d@) — px (r)drv(do)] ’

=5+ Jo. (40)
On the one hand, (2 ) derives that

J1 QE / / [{(r0, V(Y + arf) — || dr —px( )dT‘I/(dG)]
gd—1
<C'a/sd 1/ 1 — log( a?“))‘riQ —px(T)‘dru(dG)

<C’a/0 (1 - log(ar))‘rl — px (r)|dr.

On the other hand, noting that px (r) is non-increasing and fooo px (r)dr < oo, which
imply limr—oc rpx (1) = 0. So we have by integration by parts that

5> =E| /SH /:: (0, F(Y + ard) [ — rpx (r)] dru(d6)|
:E‘/Sd 1/aoiw,w(ywra))dr/rood[%—th(t)}y(de)‘
—E’/Sd /a A3~ tpx (i }/ (0, F(Y + ar0))dru(d)|

1
Lo [ o ey - g0+ 0)al} ~ ool

then we have by (22)

o 1
J» <CaP? " 1/ tﬂ\d——tpx 1|v(d6) < Ca”~ 1/ 1tﬂ‘d[¥—tpx(t)”,

a

(41)
the desired conclusion follows. O
eac (0,1): Forany € R¢, we have
(r, v 1
[ / 0TI 4y (ap) = = [ 0.vi@wa).
which follows that
o 1
L@ = = [ 0.5 w(an)
(ro,V f(x+rf 0,Vf(x)l
/Sdl/ (ro,Vf(x 7“)>rai7“1 f(z) (01()>dry(d9). (42)

According to (42), we have the following Taylor-like expansion.
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Lemma 13 Consider a € (0,1) and when a € (0, %], we further assume h € Fg.
Let X be a d-dimensional random vector with density function px (r)drv(df) and
suppose that px (r) is non-increasing. Let Y be a d-dimensional random vector, which
is independent of X. For any a > 0 and f is defined as (11), denote

T3 := |E[(X, V(Y +aX)) — (X, VF(Y)1(,1)(al X]))]

2
a o1 a,v . da
T B ) - s [ 09w
then, we have
a—l
T3<O(a“/0 g~ px()]dr + a”” 1/7 tPla[ — tox®)]])-

Proof According to (42) by the same argument as the proof of (39), we have
7; <E| / / (10, V(Y +art) = V5 (V) [~y drv(d6) — px (r)dru(d0)]|

+ ]E‘ /S . / (ro, V(Y + ar9)>[ - drv(df) — (r)dm/(dﬁ)”
=1 +71T1.
One can write by (27) that

7 <k /S / [0, £V -+ ar0)) = (1, 9 (V)| g dr = pxc ()| (d0)]

<Ca® /Sd_l/o G—H‘ra-i-l — px (r)|drv(do)

a
. 1
:Caa/o rot ‘TaJrl —px(r )|d7”7

whereas by the same argument as the proof of (41),

IT <CadP7! . 1/ ltﬂ|d — —tpx( )”V(d@):C’aﬂfl/il tﬂ|d[t—a—tpx(t)”

the desired conclusion follows. O

4.3 Truncation for random variable X

In the case « € (0, 1], the random variable X considered here satisfies E| X |* =
oo. Therefore, we need to truncate the random variable X.

Lemma 14 Consider o € (0,1] and when o = 1 we assume [qu_; Ov(df)) = 0. Let
X be a d-dimensional random vector with density function px (r)drv(df) and f be
defined as (11). Then for any 0 < a < 1 and z € R%, we have

1.) when a =1,

-1

x(r)dr + a/oa r(l — log(ar))px(r)dr).

oo

E|LY f(2) — LY f(z + aX)| SC(/

a
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2.) when « € (0,1),

E|L* f(2) — LYY f(z + aX)]| < C(/Oo px(r)dr+a’ % /O“ THT&pX(T)dT)'

Proof Observe
E [‘L’a’”f(z) S LYz 4 aX)‘]
:E[‘L’a’”f(z) — LY f(z 4 aX)|[1(g-1 00) (IX]) + 1((07a_1))(|x|)ﬂ =1+ 1L

When « = 1, one can write by (20)

(o) o)
1< CP(1X] > a_l) = C/ / px (r)drv(df) < C’/ px (r)dr,
gd—1 Jg-1 a—1

whereas by (24)

-1

II < C’aIE[|X|(1 - log(a|X|))1(07a71)(|X|)} < Ca /Oa r(l — log(aT))px(T)dT.

When « € (0,1), one can write by (26)

1< CypP(IX]|>a” 1 C/Sd 1/ px (r)drv(de) C’/ px (r)dr,

whereas by (30) with n = 1+O‘ € (a,1)

-1
14+

1< Ca FE[X| 5 10,0 (X)) = a5 [ 75 pxr)an,
0

the desired conclusion follows. O

4.4 the proof of Theorem 5

Now, we are ready to use the Leave-one-out method to prove our second main
result.

Proof of Theorem 5 By Eq. (9), we have
o[B[1(Sn)] —7(h)| = [BIL™ f(Sn) — (Sn, VF(Sa))]| < N1 +Na + N,

where
= ST RIE N (Sn ) — B[ 1)(Sw)]
=1

If o €(1,2),
Ny = l;% Z ‘E[an Vf(Sn(i) + l;%nn,i»] - E[(Un,m Vf(Sn(Z))H
=1
2 1—a

IR CHON]

n

No =157 3 (B[] ‘E[Vf(sn(i)) — VI (Sui) + o )] \ :
i=1
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Ifa=1
No= ;'S [ (60 V £(Sn(0) + b 10,)] = B[l V(S0 (0)) 10,1, (1,3 )]
=1
1 1,v
- d—lE[(ﬁ H(Sn(@)] |,

N =1 > B[00, (D] [E [T 5 (S (D)) = V(S (@) + b 1) ||
i=1
If € (0,1),

Ny =1 3" [B[(0,6, T FSn )+ 1 )]~ E {5, VFSu @)L 1 (i)
i=1

(G

o? 1=a do

- S Bl D(S00) — o [, 0.V A ) ad)]

Ny =1y Z S ) BIRCA Z{CAONCD)

= E[(m,i, Va1 1 (i)
1) When « € (1,2), we have by (18)

2 & 9
Cly ® > Elnn |~
=1

and Lemma 11 implies that
1

n _2 L 2 o _1 0 o
OZ ln * /0 r ‘Ta+1 — Py (T)|d7'+ln « /lé |7“_O‘ = TPnni (T)d'l"‘ .
i=1 n

For the third term, one can derive from (17) that

n

2
-z 2
N3 < Cly™ > (Blng,l)
i=1
2) When o =1 and [ga—1 0v(df) = 0, we have by Lemma 14
C n _ ln _ oo
M<2Y (lnl/o r(1 = log(ln ' 7)) P, (T)d“r/ pnn.i(r)dr)-

n <
=1 n

By Lemma 12, we have

z—lz(z—l/ (1 —log(ly r))|T1 o

_ 1
+ l'}t B/l tﬂ|d[z — tpnn,i(t)”)'

In addition, noticing that [gu_1 6v(df) = 0, we have N3 = 0.
3) When « € (0,1), we have by Lemma 14,

1
M < C%;(Zﬁ

at1 [l a4 0
= @t [ ).
0 ’V'L
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By Lemma 13, we have

o

g
Ny < Cly, (l;l/o r““lr(fil — Pips () |dr

n

=1

In addition, we have

I
Bl HSHL | x (na)] = [ [ 00,950, (r)arwta0),

(0,11

which implies that

N <l ; B[ [, 0.vssanman)| 2o - [ R

1
_1 n o 1—a 55

<al, @ ‘ QdGH—l“—/ ) d‘.
ity L o] | 2 = [ ar

Combining all of above, the desired conclusion follows. a

5 Example: v—Paretian distribution

In [13], Davydov and Nagaev considered the Pareto distribution &, that is, the
density of the random variable £ is

(43)

au~ @ if u>l,
pe(u) =

0 if u<l.

It is convenient to adhere the following definition.

Definition 2 We call a distribution v—Paretian if it corresponds to a random vector
7 admitting the representation e, where £ and e are independent, £ has the density
(43) while € is a random unit vector satisfying

P(e € E) =v(E), (44)
where E € Bga—1, the Borel sets of si-1,
In [13], the authors assumed that v is symmetric and
my = Min ecgi—134(€,v) > 0,

where ¥, (e, v) = [ca_y |(e,0)|*v(df). That means the v—Paretian distribution
is strictly d-dimensional. Consider a sequence of i.i.d. random vectors such that

d .
T, =" T, 1=1,2,---
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Set
T, =n"/ Z T (45)
i=1

Then, [13] gave the following approximation of multidimensional stable law:

Theorem 15 [18, Theorem 3.2] Let Tn be defined by (45). If the underlying
distribution is v— Paretian then as n — oo
sup |P(T € A) —P(T,, € A)| = O(n™9%),
AEB(RY)

min(a,2—a)
d

where § = and T has the stable distribution determined by the character-

istic function Be"™MT) = exp(—g-[A“Zaler,v)), A € RY d > 1.

According to Theorem 5, here we can consider the more general v (see
the assumptions in Lemma 2) and obtain a better convergence rate in
Wasserstein(-type) distance.

Theorem 16 Keep the same assumptions as in Lemma 2. Set

G = ()
and
Cnl —ECny1 + -+ Cnn — ECnyn, a€(1,2),
Sn =4 GCn1 = EGu110,1)(I¢n1]) + - + Cnn — ECand(0,1)([Cnonl), =1,
G+ G2+ +Cnm, a € (0,1).
Then,

dw (L(Sn),m) <Cn"5, ae(1,2),
and for any B € (0, ),
n~1(logn)?, a=1,

@

w7t | fya 0(d0)[n°S, ae (3,1),

dw, (£(Sn), ) < C{

sup  [Eh(Sn) — pu(h)| < C’(n71 + ‘ / ﬁv(dG)‘n%), a € (0,
heHgNFg Sd-1

Proof By definition 2, we obtain
—& drv(df) r>1
- d d@ — rotl I )
pr; (r)dry(do) { 0 -

Let Cni = ln /%7 and np; = 1/ “Cos = 74, it follows that

g dryv(do), r>=1,
0, r <1

P (7)drv(d) = {
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According to Theorem 5,
i) When « € (1,2), we have
2

_2 2 _2 2 _2 2 _ 2 _2
n” e Elnn | " +n7 o (Elnpl)” =n" o Eln|T Y 407w (Bln])” < Cn” =,

1

2

1 1
—2 2 [0} —2 « o —2
@ _ . — @ = @
n /0 r ‘TaJrl pn,m(r)‘dr n /0 e dr 5—o"

and
_1 [«
n “/l |T—a—rpnny,;(r)dr‘:0.
LY

These inequalities imply dyy (£(Sn),7) < n=.
ii) When a = 1 and [y, Ov(df) = 0, we have

In
n=? / r(1— log(lﬁlr))pnn‘i (r)dr < Cn72(1 + logn + (log n)2),
0

o 1 T 2
B A

n

and
n"2 /ln r2 (2 — log(l;17“))|ri2 — Py (T)]dr < Cn72(1 + logn).
Hence, we have ’
dw, (L£(Sn), 1) < Cn”H(logn)?.
(iii) When o € (0, 1), we have

3a+1 L a1 oo
_ arl —1 —2
W [T ™ [y g (e < O
0 IS
_B [ 1o}
wE [ Pl — (0] =0,
1
l(l
B 1] o _lta
n_ o / Pt |ra+1 —pnnyi(r)‘dr:om o,
0

and
Roi < — Ou(do)|n "=
nai < oG] [, a3
Therefore, one can derive that

sup  |ER(Sn) — p(h)| < C(n_l + ‘ / 6’1/(d9)‘naT_l)7 a € (0, 1]
heHsNFg Sa—1 2

and
dyy (L£(Sn), 1) gc(n*1 +\/Sd_10y(d9)‘na%), ac (%,1).

The proof is complete.

d

Remark 4 Let us compare our result with the known results in literatures. When the
spectral measure v is symmetric, the authors of [13] obtained a rate n™ 4+« for d
dimensional stable law in total variation distance and conjectured that the rate can

2—a

be improved to n™
positive answer to their conjecture for the Wasserstein(-type) distance.

min{1, =52} 40 L1 or total variation distance. Our results gives a
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Appendix A Some auxiliary estimates

A.1 Moment estimate

Lemma 17 Let (Z):»0 be the strictly a-stable Lévy process with characteristic
function 7, which is defined in (1). Suppose that the assumption of Lemma 2 holds.
Then for any § € (0, «), there exists a constant C' > 0 such that

E|Z|? < C.

Proof When d =+, for any 8 € (0,«), (12) implies
B
E|Z ﬂ:/ xﬂ xdmé/ Ldm
| 1| ]Rd| | p( ) ( +|1’|)O‘+d
B =1 B pd—1
/Sdl/ a+ddrd0+/8dl/ a+ddrd0
<C </ rﬁer*ldr—ﬁ—/ rﬂaldr> <C.
0 1

For the general case, since

7“\/1 o< B 1
[ e [T 1

according to [18, Theorem 25.3, Proposition 25.4 (ii) and (iii)], there exists a
constants C' > 0 such that

E(|Z|v1)? <C.

Hence, the desired result follow from the fact |z|® < (|| v 1)? for any z € RY. O

A.2 Heat Kernel Estimates of Rotationally Invariant
a-stable Lévy process

Let p(t,z) be the transition probability density of rotationally invariant a-
stable process Z;, which has characteristic function e **“. It is well known
that

p(t,x) = t*d/ap(l,t*l/o‘x)7 t>0, zeR%

Then, we have the following estimates:

Lemma 18 Let p(x) be the probability density of Z;, we have

14 T(dfa) _ 02°~}sin 9T (d 4 0) /2T (0/2)
T arp)y  PWs 7SR :

V()| < 27[[p(g+2) () (A1)

p(z) <2

and

IV2p(@)llop < 27p(a42) (1, ) + 47°[[* Dy (2), (A2)
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where @ € R4t satisfies || = |z, Pd+2(Z) is the density of the rotationally invariant
a-stable process Z1 in dimension d + 2, & € R4 satisfies |# = || and Pa+4(Z) is
the density of the rotationally invariant a-stable process Z; in dimension d + 4.

Proof By the [18, Proposition 2.3 (XII)], we have

p(z) = (2m) "¢ / e =M% gy — (o) 74 / cos((z, A))e” M dx,
R4 Rd

since |cos({z, A))| < 1, we have

p@) <@ [

oo @
= (27T)7d/ / r=le™ " drdo
si-1 Jo

oo
— (2m) v (T / rd=1e=r" gy
0

—dyed=131 [ d_q
= @)V )—/ yE e vdy
0

a
oy —dy,ed—1yL(d/)
= (2m) v (e Y,
where the last second equality is by taking y = r®. Recall V(S%~1) = %, we have
—d+1_—2 T'(d/a)
<2 2 %
p(@) T T ar(d/2)

Using the Fourier inversion theorem for radial functions [6, (2.1)], we have

_d, _d a4
p(z) = (2m) a5 /0 e tH T g joJl)dt,

where Jp, is the Bessel function of first kind of order m. Then, let » = |z|t in the
above integral term, we have

—d g [ (e d
p(z) = (2m) " %2 /0 D 18 T gy pp(r)dr

From [5, section 7.2.8 (50)], we have %(thm(t)) = t"Jm—1(t). Hence, we use
integration by parts
oo

p(x):a(%r%mrd*a/ e (D g el 1 (r)dr
0

-4, —d—a o 241
< a(2m)” 2|z r2 Jd/Q(r)dr
0

02 sin I((d + @) /2)1(0r/2)
- wd/2+1|g|d+o ’

where the last equality comes from the proof of [6, Theorem 2.1].
Furthermore, from [7, (11)], we have Vp(z) = —272p(44.2)(Z), so
V()| = 2m|z[p(a12)(2),
and by the same argument as the proof of [7, (11)], we can also obtain
2 - 2, 12 .
IV=p()llop < 27p(d12)(£) + 47” || "p(a44)(2),
the desired conclusions follow. O
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Appendix B Proof of Proposition 1

Lemma 19 Let (Qt);>0 be a Markovian semigroup with transition density

q(t,z,y) = plfeft(y—eféx). Then for any h € Lip(1) in the case « > 1 and h € Hg
for some 8 < « in the case a < 1, we have

0:Qih(z) = AV Qih().

Proof Recall that q(t,z,y) = p1_o—¢(y — e_%x) and s(t) =1 — e~ *. Then
—t 9] - -1 —t 0 )
e as(t)pl_e_t(y e ax)+a e xaypl_e_t(y e ox)
C(1 — e Hl=d/e
T (A —emletly —emaa)et
C(1 — e Hl=d/e
(1= ety — e™waf)ot
_t ity (y—
B ci+Le—aya—e f)f7 d>/a7
(A eta gy — e Fa)at
where the first inequality above follows from [8, Theorem 1.2]. Thus, for ¢t > 0, s > 0
small enough such that (1 — e~ %/%)|z| < %(et —1)l/e,
C(1+ Ble=7)(1 — emt)(r=d)/
o
(L= e/t y —emaaf)orr

0

|z] — £

+

«

|q(t+8,x,y) - q(t,a:,y)| <s

In addition, according to (7) and (4), we have
atQ(taxay) = Aa;Vq(t’w’y). (BB)

Hence, since a + v > d, using dominated convergence theorem, (B3) and Fubini’s
theorem, we have

0Qut(e) = 00 [ alt.r.phw)dy = | dualt.z.m)hls)dy

= /Rd A%V q(t,z,y)h(y)dy = A" /Rd q(t, z,y)h(y)dy = A*" Qth(x),
the desired conclusion follows. O

Proof of Proposition 1. From Remark 1 (i), we know that f is well defined.
Observing

Qih(z) = /Rd Pioe—i(y — e T x)h(y)dy = /Rd prh((1— e ™7y + e~ 7 a)dy.

When « € (1, 2), since h € Lip,

(1= eyt e @+ 2) —h((L—e )iy + e ta)| <eh L,
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which immediately implies
Qhlz+2) - Qo) < [ meFlldy = (©9)
R L

Recall A% f(x) = L*f(z) — L(x,V f(x)). By (B5), using the dominated
convergence theorem, we get that

Vi(z) = —/ VOQuh(x) dt
0
Furthermore, we have by (13)

|vacpl—e*’5 (y - 6_%.23)} :}e_ivypl—e*‘,ﬂ(y - e_éx)|
Cle! —1)~Ve(1 —e™)
S et Jy — e el

then for z € R, z € R? such that |z| < (e’ — 1)=,
P1et(y— e (@ +2)) = proe—i(y — e w2
C2tte(et — )7Vl —e™)

<|Z| —t 1/ _t + :
(= et Jy = e wal)®

Hence, one can derive from the dominated convergence theorem and integra-
tion by parts that

IV, Q0 (h(z) — 7(h)) | = / Vopi oo (y—eém(h(y)—w(h))dy'
et [ Vit —%w>(h<y>—w<h>)dy'

—|et [ et TG < 19,

and similarly by (13)

V2@ (ba) — 7)) [ =|e ¥ [ Vup - wy)T)dy'
R L
K(A—et) e & <t wew,
These imply

£ f ()|
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oo poo h 0) — h — 97 VO,h
gda/ / / |Qih(z +10) — Q: (fl) (r0, VQih(z))| dtdru(dB)
gd—1 ro
2 V2 9
d / / / / / il | Qe ai—l—sur )‘dudsdtdru(de)
Sd 1 r

v 0) — VQ:ih
+da/ / / / r|VQih( x+s7"+3 Q1 (x)}dethV(dH) <c
sa=1J1 Jo Jo re

When a € (0,1], since h € Hg

_ Bt
a

(1= ey + e @+ 2) = h((1- e sy + e da)| < e T (2l A L)),

By (B4), we immediately have

Qihta+2) = Q@] < [ e ¥ (2l A1)y = ¥ (21 0P
(B6)

Recall A% f(z) = L f(z) — 2(z,Vf(z)). By (B6), using the dominated
convergence theorem, we get that
—/ VQih(zx)dt
0

Furthermore, if @ = 1, we have

El uf- )
o Qih(z +10) — Qih(z ) <7”9 VQ:ih(2)10,)(r)) -
ol [T vt

:_dl/sd 1/ / / (r6, VQih( x+sr9)) (r6, VQih (x»dsdtdm/(de)

N dl/gdl/ / Q:h( ar+7“0 Qf()dtd V(df),

and by integration by parts,

’thh(J? +z8) — Vch(x)‘
ply—(L—e ) e (z+25)) —ply — (1 - e_t)_le_tx))

<6_t/
R4

. ‘Vh((l - e_t)y) |dy
<Ce '((1—e ") tet|zs| A1) < Ce (¢ zs| A1),
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these imply

/ / / |Q¢h(z +r0) — Qt() <r0 VQih(x)1( (T»‘dtdry(de)
.

m

t_ r A 1 o
<C/ / / dtdrv do) + / / / dtdm/(dﬁ)
gd—1 Sd 1
et 17"/\1 e Erh
o[ [T [
o Jo r 1 0 r

If o € (0,1), we have

£ f(x) = ~do /Sd/ / Qe “‘L:ﬁl—chmdmw(da),

and we have by (B6)

LAl 'Qt”(“:fi: L 0
/S . / / g Rt a ERT dtdru(do)

r A8 s
= —dr adt <C.
[ /0

Therefore, by Fubini’s theorem, we have

LoV f(z) = — /OOO LoV Quh(z)dt

Hence, according to Lemma 19, we can obtain
AXY f = —/ AT Qihdt = —/ 0:Qihdt = Qoh — Quoh,
0 0

here Qs = m, the unique invariant distribution of the semigroup (Q:):>0
associated with A% by [18, Cor. 17.9]. The proof is complete. O
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