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Abstract
Structural health monitoring of impact location and severity using Lamb waves has been proven to be a reliable method
under laboratory conditions. However, real-life operational and environmental conditions (vibration noise, temperature
changes, different impact scenarios, etc.) and measurement errors are known to generate variation in Lamb wave fea-
tures which may significantly affect the accuracy of these estimates. Therefore, these uncertainties should be considered,
as a deterministic approach may lead to erroneous decisions. In this article, a novel data-driven stochastic Kriging-based
method for impact location and maximum force estimation, that is able to reliably quantify the output uncertainty is pre-
sented. The method utilises a novel modification of the kriging technique (normally used for spatial interpolation of geos-
tatistical data) for statistical pattern matching and uncertainty quantification using Lamb wave features to estimate the
location and maximum force of impacts. The data was experimentally obtained from a composite panel equipped with
piezoelectric sensors. Comparison with a deterministic benchmark method developed in prior studies shows that the
proposed method gives a more reliable estimate for experimental impacts under various simulated environmental and
operational conditions by estimating the uncertainty. The developed method highlights the suitability of data-driven
methods for uncertainty quantification, by taking advantage of the relationship between data points in the reference data-
base that is a mandatory component of these methods (and is often seen as a disadvantage). By quantifying the uncer-
tainty, there is more information for operators to reliably locate impacts and estimate the severity, leading to robust
maintenance decisions.
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Introduction

Composite structures are susceptible to barely visual
impact damage (BVID) which may result in a signifi-
cant reduction in residual strength and necessitates
either more complex (e.g. non-visual) routine inspec-
tion methods or increased design safety margins, all of
which lead to increased operational costs.1 Thus, there
is interest in developing impact damage monitoring sys-
tems which can reliably inform operators of the occur-
rence and location of impact damage, allowing a
condition-based maintenance and thus reduction in
costs.1

In thin-walled structures (as is usually found in com-
posite airframe), impact events generate Lamb waves
which propagate across the structure and can be
recorded using optimally positioned (to provide best
coverage and information with minimum sensors2,3)

strain sensors or accelerometers.1,4–7 Features of these
recorded Lamb wave signals (such as time of arrival
(ToA) and amplitude) contain information that can be
used to estimate the location1,5,6,8–12 and severity of
impacts,7,13–15 and many methods have been developed
for this purpose. However, these features are subject to
variation arising from measurement uncer-
tainty10,12,14,15 and changes in environmental and
operational conditions.5,6,13 The uncertainty of
extracted features, coupled with the inherent limit of
accuracy in impact location and force estimation
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algorithms (as no algorithm is ever exact),5–8,13,14,16

results in uncertainty in the final estimations.
So far, most methods developed for impact location

and severity estimation are deterministic.1,6,9,13,16–19

This poses a problem for operators, as an estimate with
an unknown degree of uncertainty is not reliable infor-
mation for assessing the condition of a structure or
locating damage that needs to be repaired. Thus, it is
necessary to develop impact location and severity esti-
mation algorithms with quantified uncertainty.7,10,12,14

For this purpose, uncertainty estimates must be reliable
(e.g. wide enough), such that the actual value reliably
falls within the predicted range. However, the predicted
range must be as narrow as possible to not be vague
and give enough certainty for assessing the impact loca-
tion and severity.

For impact location estimation, the most basic form
of uncertainty quantification can be seen in imaging
methods.20–22 These methods generate contour maps
that highlight regions with the highest likelihood of the
impact to be located. Other methods involve strategies
for multiple sampling (e.g. Monte Carlo simulations) to
approximate the distribution of uncertainty within
measurements of signal features and estimation algo-
rithms.7,12,14,23 Morse et al.8 trained multiple localisa-
tion neural networks on the same dataset to capture the
uncertainty of neural network estimates. This is then
followed by the use of Kalman filters or Bayesian
updating to combine the estimates of these neural net-
works and form the final uncertainty distribution of the
impact location coordinates. Niri et al.10 and Sarego
et al.12 captured measurement uncertainties of impact
localisation features which were then propagated
through localisation algorithms (through Monte Carlo
simulations or Kalman filters) to obtain multiple loca-
tion estimations that form the final uncertainty distri-
bution of the estimated impact location coordinates.

Similarly, for impact severity estimation, previous
studies have propagated measurement uncertainties
through impact force estimation algorithms (e.g. with
Monte Carlo simulations)15,23 or iterative sampling to
generate multiple estimations which are combined using
Bayesian updating.7,14 These studies, however, have
focused on the reconstruction of the complete impact
force history7,14,15,23 which is not completely necessary
for impact damage monitoring as the main parameter
for force-based damage assessment is the maximum/
peak impact force which is evaluated against the thresh-
old force of damage formation.13,24

In previous studies, authors have developed data-
driven deterministic impact location5,6,16 and maximum
impact force13 estimation algorithms that are accurate
and robust for various simulated environmental and
operational conditions (temperature, vibration noise,
and different impact configurations). Here, these

methods are extended to include uncertainty quantifi-
cation/estimation with a novel application of the kri-
ging technique.25 The proposed method takes
advantage of the relationship between the data points25

used in the reference database of the data-driven meth-
ods to quantify the uncertainty without the need for
expensive Monte Carlo simulations.

In this article, the robustness and accuracy of the
estimates on a simple (flat panel) and a complex (stif-
fened panel) composite panel under simulated environ-
mental and operational conditions are investigated.
For benchmarking, a comparison is made with the pre-
viously developed methods for impact location and
force estimation with the proposed modified methods
to assess the improvement in accuracy and robustness.

Experimental setup and signal features for
impact location and maximum force
estimation

Experimental impact data were collected using a hand-
held instrumented impact hammer (PCB Piezotronics
086C03) that is able to record impact forces (Figure 1(a)).
The hammer has two tips, steel and plastic, to simulate
impacts from different stiffness objects. The back of the
hammer head also has space for a 100 g weight attach-
ment to generate impacts with differing weight.

Handheld impacts (with random angle and energy,
ranging from 50 to 250 N maximum force) were
imparted on two sensorised composite specimens, a
simple flat (M21 T800s, (0/+ 45/245/90/0/+ 45/245/
90)s layup) panel and a more complex stiffened (M21
T800s, (45/245/0/0/90/0)s layup) panel, following the
layout shown in Figures 1 and 2. The flat panel has a
silicone heating mat underneath and a temperature
control system to simulate increased temperatures
(Figure 1). To simulate vibration noise, artificial 1 kHz
random noise at 20% of the maximum recorded signal
amplitude was generated through band filtering of
white noise5,13 and superimposed to the impact signals
of the reference case (Figure 1(c)).

Impact-induced Lamb wave signals were recorded
through the attached PZT sensors on each plate
(Figures 1 and 2), which are connected to an 8-channel
PXI-5105 oscilloscope through 10x attenuation probes.
Signals were recorded at 2 MS/s with a length of
100,000 sample points. As the force measurement from
the impact hammer requires one oscilloscope channel,
thus not all eight PZT sensors are used on each panel.
For the flat panel, six sensors were used as shown in
Figure 1, while only five sensors were used (Figure 2)
on the stiffened panel due to damaged sensors from
previous testing campaigns. All data processing was
done using MathWorks MATLAB.

2 Structural Health Monitoring 00(0)
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In total, data from six impact cases (F1–F6) repre-
senting parametric variations (reflecting simulated envi-
ronmental and operational conditions) from a reference

case (F1) were collected from the flat panel, while one
case (S1) was collected from the stiffened panel as listed
in Table 1. For each case, impacts were conducted at

Figure 1. Flat panel experimental impact setup: (a) flat panel and impact hammer, (b) layout of flat panel and (c) example of impact
signals.

Figure 2. (a) Stiffened panel experimental impact setup. (b) Layout, stiffened panel bottom where the sensors are located. (c) Top
side where the impacts are conducted.

Seno and Aliabadi 3
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each location as shown in Figures 1 and 2 with four
repetitions each, resulting in the total number of
impacts shown in Table 1. None of the impacts gener-
ated damage on the panels. For the reference case of
each panel (F1 and S1), an impact from each location
(35 impacts) was used to build the reference database5

of each plate for the impact location and force estima-
tion algorithms, while the rest of the impact data was
used as test data.

For the purpose of impact localisation, the ToA dif-
ference of the Lamb wave signals from each sensor
towards the earliest signal from the sensor set (as the
actual impact event time is unknown) was chosen as
the input feature. To mitigate the effect of the simu-
lated vibration noise (case F5) in masking the start of
the signal (Figure 1(c)), all signals were highpass fil-
tered with a 2 kHz Butterworth IIR filter prior to ToA
extraction. The ToA was then extracted using the nor-
malised smoothed envelope threshold (NSET) method
developed in Seno et al.6 First, the signal was converted
into its absolute values, then it was lowpass filtered
with a 250 Hz IIR Butterworth filter. Afterwards, the
amplitude of the signals from each sensor is normalised
with respect to the largest amplitude in the set of sen-
sors. The ToA was then taken when the resulting envel-
ope passes a predetermined threshold (0.05 used here).

For maximum impact force estimation, the maximum
absolute (MA) signal amplitude was used as the input
feature. No highpass filtering was done beforehand even
in the presence of simulated random vibration noise (case
F5), as the maximum impact force estimation method
developed in Seno and Aliabadi13 has been shown to be
robust towards the change in amplitude. The maximum
measured impact force together with the MA signal
amplitude at the reference database points (cases F1 and
S1, Table 1) were used to calculate the force gradient for
the maximum impact force estimation as will be
explained in section ‘Force gradient method for determi-
nistic maximum impact force estimation’.

To estimate impact location and maximum force,
the features ToA and Gma are extracted from an

impact on each location (35 3 1 impacts, Table 1) of
the reference cases (F1 for the flat panel and S1 for the
stiffened panel, Table 1) and used as the reference data-
base of the algorithms (each panel has its own specific
database). The features ToA and Ama from the other
impacts of the reference cases (F1 and S1, 35 3 3, see
Table 1) and the other cases (F2–F6, see Table 1) were
used as inputs for testing.

Benchmark impact location and
maximum force estimation methods

The benchmark data-driven impact location method
(reference database method5) and maximum impact
force estimation method (force gradient method13) were
taken from previous studies which have proven to be
accurate and robust for simple structures under simu-
lated environmental and operational conditions using
minimum initial data.

Reference database method for deterministic impact
location estimation

The reference database method is essentially a pattern
matching method where the impact location estimate is
obtained based on the similarity of features (ToA dif-
ferences used in this study) of the incoming signal to
that of signal features known for specific locations in a
reference database (obtained from the reference impact
cases F1 and S1).5,9 To do so, first, the absolute differ-
ence (Dfi) between the incoming signal’s features (fin)
and the known features in the reference database (fref)
is calculated, as shown in equation (1), for all sensors
(Ns) and all reference database points (Nr). The loca-
tion estimate is then taken as the location of the data-
base point with minimum difference (Df)

Dfi =
XNs
j = 1

jf inj � f
ref
j, i j, i= 1, 2, . . .Nr, j= 1, 2, . . .Ns ð1Þ

Table 1. Experimental impact cases collected on flat and stiffened panel.

ID Case Parameters No. of impacts

Flat panel
F1 Reference case Tip: steel, Temp.: 24�C, mass: hammer only 140 (35 loc. 3 4 rep.)
F2 Increased mass Tip: steel, Temp.: 24�C, mass: added 100 g 140 (35 loc. 3 4 rep.)
F3 Increased temp. Tip: steel, Temp.: 70�C, mass: hammer only 140 (35 loc. 3 4 rep.)
F4 Plastic tip Tip: plastic, Temp.: 24�C, mass: hammer only 140 (35 loc. 3 4 rep.)
F5 Reference + noise Tip: steel, Temp.: 24�C, mass: hammer only 140 (35 loc. 3 4 rep.)
F6 Intermediate locs. Tip: steel, Temp.: 24�C, mass: hammer only 24 (6 loc. 3 4 rep.)
Stiffened panel
S1 Reference case Tip: steel, Temp.: 24�C, mass: hammer only 140 (35 loc. 3 4 rep.)
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Using the above definition, the location estimation
is limited to points that exist in the reference database.
To achieve a more thorough coverage of locations
without requiring too many initial data points to build
the reference database, cubic spline interpolation is
used (selected from MATLAB library of interpolation
functions that can handle non-uniform grids as used in
the stiffened panel) to approximate the features at loca-
tions between the reference database points (two points
between reference points are interpolated in this study).

To increase the robustness of the final estimate,
rather than calculating a single difference value for
each reference point (Dfi), all the features available are
used at once. Multiple values are generated by creating
different combinations of features used, for example, if
there are six sensors, then using combinations of five
yields 12345, 12346, 12456, and so on, resulting in six
feature sets and location estimates in the end. The loca-
tion estimates are subsequently averaged to obtain the
final estimate. Here, combinations of five (out of six)
ToA difference values for the flat panel and four (out
of five) for the stiffened panel were used.

Force gradient method for deterministic maximum
impact force estimation

The force gradient method is based on the linear rela-
tion between the maximum impact force (Fmax) and the
MA signal amplitude (Ama), as shown in equation (2),
which is a faster and simpler way of estimating the
maximum impact force than reconstructing the whole
impact force history.13 Once the gradient (Gma) is
known (i.e. calculated from the pair of Fmax and Ama

from the impact location of the reference cases, F1 and
S1, Table 1), it is possible to estimate the maximum
impact force from signals with varying amplitude. The
gradient of this linear relation has been found to be
constant for most simulated environmental and opera-
tional conditions (except very soft impactor materials,
e.g. silicone) and low (non-damaging impacts) or high
(damaging) energy impacts, but it is location (x, y) and
temperature (T) dependent13

Fmax x, yð Þ =GMA x, yð ÞAMA x, yð Þ(1� a½T � Tref �) ð2Þ

Lamb wave amplitude is known to have an inverse
linear relation with temperature (T),13,26 thus it is nec-
essary to apply a compensation factor (a) relative to a
certain reference temperature (Tref). For the panel used
in this study, the linear relation has been determined in
a previous study (a = 20.0026, Tref = 24�C13) and
the results were used here, mostly for the increased tem-
perature case (case F3). As the gradient also depends
on location, for the reference database, the measured
maximum impact force and MA signal amplitude from

the reference case (F1 and S1) were used to obtain the
gradient value at each location. As each sensor can give
an estimate, the final force estimate was taken from the
average from all sensors.

Similar to the localisation method described in sec-
tion ‘Reference database method for deterministic
impact location estimation’, cubic spline interpolation
is used to approximate the gradient values at locations
outside of the original reference points. The gradient
values are location-dependent; therefore, to obtain the
appropriate value, the impact location must be known
beforehand. Here, the location estimate results from the
localisation algorithm described in section ‘Reference
database method for deterministic impact location esti-
mation’ were used. This approach has a disadvantage,
as the error of the location estimation is carried over to
the estimated maximum force gradient values. Figure 3
illustrates how the deterministic localisation and force
estimation methods are combined.

Uncertainty quantification method for
impact location and maximum force
estimation

To allow for estimates of the uncertainties obtained
using the benchmark location and maximum force esti-
mation algorithms be incorporated in the analysis, a
novel application of the kriging technique25 is presented
in this section. Originally, kriging was used for spatial
interpolation of geostatistical data; however, here we
propose to modify it for statistical pattern matching
between the incoming impact features and the features
of the reference database points to estimate the location
and maximum force of impacts. Using the proposed
method, it is possible to not only obtain an estimate
but also the uncertainty of the estimate based on the
relationship between data points used in the reference
database.25

Kriging method for spatial interpolation

Kriging was originally developed for spatial interpola-
tion of geostatistical data, using the spatial correlation
between existing reference data points to determine
weights for use in a linear combination of the available
data points to determine the interpolated value.25 The
spatial correlation between data points may be
expressed in many forms,25 but one of the most widely
used is the semivariance (g(href)) between data points,
as shown in equation (3). Semivariance values (g(href))
for a certain distance (href) are calculated for each data
point pair combination that is separated by that dis-
tance (zi

ref, h, zj
ref, h) and are averaged based on the

number of data pairs that share the same distance (Nh).

Seno and Aliabadi 5
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This is done for all the reference data points (Nr) in
their possible pair combinations. It quantifies how the
variance between data points changes (usually increas-
ing) as their respective distance (href) increases (or how
the correlation is higher between closer data points). As
the distance (href) between data pairs may not always
be exactly the same, they are usually grouped into bins
(20 bins used in this study) to allow averaging.25

Afterwards, a semivariance function (gfc(h)) is fitted to
the discreet empirical semivariance values (g(href)) to
allow approximation of the semivariance at a continu-
ous distance range (h)25

g href
� �

=
1

2Nh

XNr
i

XNr
j

(zref , hi � z
ref , h
j )2 ð3Þ

To estimate the value of an interpolated point, first,
the distance between the point and the existing refer-
ence data points (hin) is calculated. Afterwards, using
the previously obtained semivariance function (gfc(h)),
the approximate semivariance values for the reference
(gfc(href)) and interpolated (gfc(hin)) data point pairs are
calculated based on their respective distances (href and
hin). Equation (4) is then solved (Ij is a column vector of
1’s with j number of rows) to obtain the kriging weights
(wi) and the Lagrange parameter (m)

g
fc
ij href
� �

Ii

ITj 0

" #
wi

m

� �
= g

fc
i hinð Þ
1

� �
i, j= 1, 2, 3 . . . :Nr ð4Þ

With the obtained values, the interpolated value
(zest) and uncertainty (in the form of a standard devia-
tion, sest, from the interpolated value) can be calculated
from equation (5). As the semivariance values are
always positive, to ensure that the estimated uncertainty
is real-valued, the kriging weights and Lagrange para-
meter need to be positive-valued. Thus, a non-negative
constrained linear least square solver (MATLAB
lsqnonneg) is used to solve equation (4)

zest =
XNr
i= 1

wiz
ref
i ,sest =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m+

XNr
i= 1

wig
in
i hinð Þ

vuut ð5Þ

Kriging application for impact location and maximum
force estimation

In section ‘Benchmark impact location and maximum
force estimation methods’, it was shown that the
impact location is determined by simply choosing the
point in the reference database that has the minimum
difference in features compared to the incoming impact
signal.5 In turn, the maximum impact force gradient is

Figure 3. Diagram of benchmark deterministic impact location and maximum force estimation algorithm.
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then taken as the value known for the said reference
point. This way, there is a significant amount of infor-
mation discarded as only the information from a single
database point is used at the end. Here, we propose to
substitute this criterion with the kriging technique
which can interpolate the location and also the maxi-
mum impact force gradient using the information from
all of the reference database points while also estimat-
ing the uncertainty.

Contrary to the original application of kriging as
shown in section ‘Kriging method for spatial interpola-
tion’, in our case, the value at the point of interest (in
the form of the incoming impact signal features) is
already known, and what is to be estimated instead is
the location of the point. Here, we propose to substi-
tute the actual spatial distance between data points,
(which is the difference in spatial coordinates) with the
difference in feature values (calculated by the L2 norm
of the difference vector). Thus, here data points are
grouped not based on spatial closeness but by the simi-
larity of their features. The values to be interpolated
are then the actual spatial coordinates (x, y) of the data
point locations and the respective maximum impact
force gradients (Gma(x, y)). Thus, using the features of
the incoming impact signal, it is possible to estimate
the location of the impact event and the maximum
impact force.

Here, the L2 norm of the vector of ToA difference
between the reference and interpolated data points was
used to calculate their respective ‘distances’ (between
reference data points, href, and also between reference
and input points, hin). The semivariance (g(href)) of the
reference database points was calculated for the esti-
mated variables (z: x, y, Gma(x, y)) of each sensor using

equation (3) as shown in Figure 4. A linear function
(gfc(h) = Gg h) was then fit for all estimated variables
to obtain the approximate semivariance values for
equation (4). Then, equation (4) was solved to obtain
the kriging weights and Lagrange parameter to calcu-
late the final estimate and uncertainty of the impact
location coordinates and maximum impact force gradi-
ents for each sensor using equation (5). A normal prob-
ability distribution function (P) was then formed using
the estimate (zest, as mean) and standard deviation
(sest) for all estimated variables.

Following the benchmark localisation method in sec-
tion ‘Reference database method for deterministic
impact location estimation’, the ToA difference values
were also used in combinations rather than all at once,
resulting in multiple estimate distributions of the impact
location coordinates and the maximum impact force
gradients. For each of these combinations, there is a
further set of maximum impact force gradients from
each sensor. The maximum impact force estimate distri-
butions are obtained by multiplying the obtained gradi-
ent distributions with the signal amplitude for each
sensor, following equation (2).

It must be noted that using this approach, the maxi-
mum impact force gradients (Gma(x, y)) are determined
independently from the estimated location unlike in the
benchmark method (section ‘Benchmark impact loca-
tion and maximum force estimation methods’,
Figure 3), thus the localisation error is not imposed on
the maximum impact force estimation. In addition, the
kriging method is able to interpolate values between
the reference data points due to the fitted semivariance
functions, thus there is no need for the cubic interpola-
tion done in the benchmark method.

Figure 4. Semivariance of Sensor 5 maximum impact force gradient versus L2 norm of ToA difference from Sensors 2–6
(combination 5) for the stiffened panel.
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Fusion of impact location and maximum force
distributions

As the kriging method given in section ‘Kriging appli-
cation for impact location and maximum force estima-
tion’ results in multiple estimate distributions for each
output variable, here methods to fuse them together
are outlined. The first alternative is to simply take the
mean of the estimates (as is done with the benchmark
method) to obtain a wider and more conservative final
estimate distribution as shown in Figure 5. To ensure
that the total probability of the distribution is unity, it
is divided by the area under the mean probability den-
sity function.

Another method is to apply Bayesian updating,8

treating multiple estimates as new information that can
update prior estimates. It starts with an initial/prior
assumption of the estimated variables (P(O)), which in
this study was taken as a uniform distribution as there
was no initial knowledge of their values.8 The estimates
from kriging were then used to ‘update’ (P(N|O)) our
prior assumption to obtain a more ‘informed’ estimate
(P(O|N)) as shown in equation (6). Here P(N) is a nor-
malising factor (obtained from the area under the dis-
tribution of P(N|O) P(O) to ensure that the total
probability of P(O|N) is unity. The informed estimate
(P(O|N)) then becomes the new prior (P(O)) and is
updated with the next available estimate (P(N|O)). This
goes on until all of the available estimate distributions
(Ne) have been used to obtain the final estimate distri-
bution. This method results in a more narrow final esti-
mate distribution compared to the original data

(Figure 5) as the confidence of the estimation increases
when updated with new information

Pi OjNð Þ= Pi(N jO)Pi Oð Þ
Pi(N )

Pi N jOð Þ=Pi�1 OjNð Þi= 1, 2, 3 . . . :Ne
ð6Þ

As stated in section ‘Introduction’, the estimated
range must be wide enough to ensure that the actual
value reliably lies within the bounds of the distribution
while at the same time must be narrow enough to give
an estimate that is as precise as possible. Both the mean
and Bayesian approaches have different characteristics
and are thus both tested to compare their performance
with the test data. For the maximum impact force, as
there are multiple estimates not only from multiple sen-
sors but also from the multiple feature combinations,
there are two stages of fusion. Here both the mean and
Bayesian approach were tested for both stages, and a
third combination where the estimates from all sensors
are first fused using the mean approach and the result-
ing estimates is finally fused using the Bayesian
approach. Figure 6 shows the outline of the proposed
kriging method accompanied by uncertainty fusion for
both impact location and maximum force estimation.

Once the final distribution has been obtained, the
upper and lower bound of the estimate range is deter-
mined within the 95% confidence interval of the distri-
bution. For the impact location, an oval area is drawn
around the estimated coordinates (xest, yest) using the
estimate range of the x and y coordinates as the semi-

Figure 5. Estimate distributions for Y coordinate from sensor combinations 1–5 (left) and fused final estimates using mean and
Bayesian updating (right).
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major axes to mark the area at which there is 95% con-
fidence that the impact location is located within.

Performance evaluation and comparison
of benchmark and proposed methods

To evaluate and compare the performance of the pro-
posed methods against the benchmark methods, the
metrics used to measure the accuracy of the estimates
are defined here. To compare the deterministic accu-
racy of both methods directly, the error of the esti-
mated values from the benchmark and proposed
methods towards the actual values for each test impact
in Table 1 were compared.

For maximum impact force, the error in estimation
(Fmax.error) is the difference between the estimate (Fmax,

est) from either algorithm towards the actual value
(Fmax,act). As the maximum impact force is random
(ranging from 50 to 250 N), the error was taken as per-
centage towards the actual value as shown in equation
(7). To summarise the error for a whole impact case,

the mean (Fmax, mean) and standard deviation (Fmax,std)
of the maximum force error for all impacts in the said
case were calculated13

Fmax, error =
(Fmax, est � Fmax, act)

Fmax, act
100% ð7Þ

For impact location, the error of the estimated loca-
tion (xest,yest) towards the actual location (xact,yact) was
calculated from the root square error (RSE) as shown
in equation (8). To summarise the localisation errors
(RSE) for an impact case (Table 1), a gamma distribu-
tion was then fit on the RSE values and the 90th per-
centile of the cumulative distribution function
(RSE90th) was then taken as the range from the actual
location that encompasses 90% of the localisation
errors5,6

RSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xact � Xestð Þ2 + Yact � Yestð Þ2

q
ð8Þ

Figure 6. Diagram of proposed stochastic impact location and maximum force estimation algorithm.
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To evaluate the reliability of the uncertainty esti-
mates, the error of the estimate range (upper and lower
bounds based on 95% confidence interval) for both the
maximum impact force and location was calculated.
For the maximum impact force range (Fmax, range(2) to
Fmax, range(+ )), the estimate range error (Fmax,Rerror) is
defined to be 0 when the actual force (Fmax,act) is within
the estimated range. However, when the actual force is
outside of the estimated range, then the error is calcu-
lated similar to the deterministic error in equation (7),
but relative to the nearest bound (upper or lower) as
shown in equation (9). To summarise the estimated
range error for a whole impact case, the mean (Fmax,

Rmean) and standard deviation (Fmax,Rstd) for all the
impacts in the said case were calculated as is done with
the deterministic errors

Fmax,Rerror =

(Fmax, range(�)�Fmax, act)
Fmax, act

100%,Fmax, act<Fmax, range(�)

0,Fmax, range(�)<Fmax,Ract<Fmax, range( + )

(Fmax, range( + )�Fmax, act)
Fmax, act

100%,Fmax, range( + )<Fmax,Ract

8>><
>>:

ð9Þ

For impact location, the location estimate range was
defined as an oval area around the estimated location
(xest,yest) with the upper (xrange(+ ), yrange(+ )) and lower
bounds (xrange(2), yrange(2)) of the coordinates as the
semi-major axes (xsm,ysm as the distance from xest,yest to
bounds). The radius of the oval area (RSElim) at any
angle (u) is given by equation (10). The coordinates of
the actual impact location relative to the estimated loca-
tion (in other words the location error, xerr, yerr) can
also be defined in polar coordinates (RSE, u). When the
radius of the location error (RSE) is smaller than the
radius of the oval area limit (RSElim) for a given angle,
the actual location (x, y) is located inside the estimated
oval range and thus the error is 0. When the radius of
the location error is larger than the radius of the oval
area limit, the actual impact location is outside the esti-
mate range and the error of the oval range is calculated

as RSErange = RSE 2 RSElim. To summarise the loca-
lisation error for an impact case, a gamma distribution
is fitted to the range error and the 90th percentile value
(RSER90th) of the cumulative distribution function is
taken as done for the deterministic location error

RSElim uð Þ= xsmysmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ysm cos u½ �ð Þ2 + xsm sin u½ �ð Þ2

q ,

sin uð Þ= yerr

RSE
, cos uð Þ= xerr

RSE

ð10Þ

Results

Table 2 shows the comparison of the deterministic
impact location estimation for both the benchmark and
the proposed kriging method (using mean (K+M) and
Bayesian (K+B) fusion methods). It can be seen that
all three methods are considerably accurate for all cases
tested (F1–F6 and S1) and there is no significant differ-
ence between the accuracy of the deterministic location
estimates between these methods.

Similarly, comparing the deterministic maximum
impact force estimation (Table 3) of the benchmark
and proposed kriging method (with mean–mean
(K+M+M), Bayesian–Bayesian (K+B+B) and
mean–Bayesian (K+M+B) fusion methods), it was
found that all methods were considerably accurate for
all cases tested (case F1–F6) apart from the stiffened
panel (S1). This is due to the stiffened panel having
more spatial variation of the maximum impact force
gradient (and thus higher sensitivity) due to the stiff-
ness difference from each stiffener zone (Figure 2). It is
worth noting that as the benchmark method utilises the
estimate of the impact location, the localisation errors
can introduce inaccuracies in the force estimation. This
is apparent in the lower accuracy of the benchmark
force estimates compared to the proposed kriging
method (which determines the maximum force gradient
independent of localisation) for the stiffened panel
(S1).

Table 2. Benchmark versus proposed kriging method deterministic location estimation.

Impact case BM RSE90th (mm) K + B RSE90th (mm) K + M RSE90th (mm)

Flat panel
F1. steel hammer, ref. case 5.1 5.9 5.9
F2. steel hammer, incr. mass 6.7 6.9 7
F3. steel hammer, incr. temp. 6.3 6.7 6.5
F4. plastic hammer 7.6 8 7.9
F5. steel hammer, + noise 5.2 6 5.9
F6. steel hammer, interm. loc. 8.6 7.3 7.4
Stiffened panel
S1. steel hammer, ref. case 25.3 25.7 26.5

Note: BM: Benchmark Method; K + B: Kriging + Bayesian; K + M: Kriging + Mean.
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Although the deterministic estimates for both impact
location and maximum force are mostly accurate, some
level of error exists from the various sources of uncer-
tainty that cannot be captured deterministically, espe-
cially as shown by the maximum impact force estimates
of the stiffened panel (S1, Table 3). Tables 4 and 5 show
the estimated accuracy for the stochastic approach

using the proposed kriging method to define estimates
in terms of a range (instead of a deterministic point)
encompassing the estimated degree of uncertainty. For
impact location (Table 4), it can be seen that both kri-
ging methods (with mean (K+M) and Bayesian (K+B)
fusion methods) have very high reliability, with all
actual impact locations being situated within the

Table 3. Benchmark versus proposed kriging method deterministic impact force estimation.

Impact case BM avg.
Fmax, error (%)

K+B+B avg.
Fmax, error (%)

K+M+M avg.
Fmax, error (%)

K+M+ B avg.
Fmax, error (%)

Flat panel
F1. steel hammer, ref. case 0.263.8 064 20.364 20.364
F2. steel hammer, incr. mass 24.564.5 26.864.5 27.364.3 27.364.3
F3. steel hammer, incr. temp. 9.364.4 9.765.1 865.1 8.165.2
F4. plastic hammer 1264.4 10.764.5 1065 1065
F5. steel hammer, + noise 0.964.7 0.565.1 0.265.5 0.265.4
F6. steel hammer, interm. loc. 7.168 4.464.3 3.864.2 3.864.2
Stiffened panel
S1. steel hammer, ref. case 8617.5 5.5615.9 3.7616.3 4.2616.6

Note: BM: Benchmark Method; K+ B+B: Kriging+Bayesian+ Bayesian; K+M+M: Kriging+Mean+Mean; K+M+ B: Kriging+Mean+Bayesian.

Table 4. Evaluation of proposed kriging method location uncertainty estimation.

Impact case K+ B RSER90th
(mm)

K+M RSER90th
(mm)

K+B avg.
x unc. (mm)

K+B avg.
y unc. (mm)

K+M avg.
x unc. (mm)

K+M avg.
y unc. (mm)

Flat panel
F1 steel hammer, ref. case 0 0 22.465.1 14.563.3 50.6611.4 32.967.4
F2 steel hammer, incr. mass 0 0 24.164.7 15.763 54.6610.2 35.666.7
F3 steel hammer, incr. temp. 0 0 28.967.1 18.764.6 65.6616.5 42.6610.5
F4 plastic hammer 0 0 25.866.1 16.864 58.5613.9 38.269
F5 steel hammer,+ noise 0 0 22.365.1 14.563.3 50.6611.5 3367.4
F6 steel hammer, interm. loc. 0 0 3163.6 2062.3 69.267.9 45.165.1
Stiffened panel
S1 steel hammer, ref. case 1.3 0 74.2618.4 29.567.3 159.5640.4 64.7616.5

Note: K+B: Kriging+Bayesian; K+M: Kriging+Mean; unc.: uncertainty range (upper–lower bound).

Table 5. Evaluation of proposed kriging method impact force uncertainty estimation.

Impact case K+ B+ B
Fmax, Rerror

(%)

K+M+M
Fmax, Rerror

(%)

K+M+B
Fmax, Rerror

(%)

K+B+B avg.
Fmax unc.
(N)

K+M+M avg.
Fmax unc. (N)

K+M+ B avg.
Fmax unc. (N)

Flat Panel
F1 steel hammer, ref. case 20.361.7 060 060.2 12.163.8 82.1631.2 2868.2
F2 steel hammer, incr. mass 24.163.7 060 21.362 12.563 102.6639.7 33.469.5
F3 steel hammer, incr. temp. 5.563.9 060 0.861.7 18.966 153.6666.7 47613.9
F4 plastic hammer 6.863.7 060 1.962.5 16.465.7 125.5651.3 40.8611.7
F5 steel hammer,+ noise 0.162.7 060 060.6 12.263.8 89.8630.7 32.269.2
F6 steel hammer, interm. loc. 1.662.4 060 0.160.3 17.362.6 119.9616.9 43.766
Stiffened panel
S1 steel hammer, ref. case 2.4610.3 20.160.7 0.765.3 20.668.5 142.6668.9 51.6629.6

Note: K+M+M: Kriging+Mean+Mean; K+B+B: Kriging+Bayesian+Bayesian; K+M+B: Kriging+Mean+ Bayesian; unc.: uncertainty range (upper–

lower bound).
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estimated uncertainty range (cases F1–F6) or being
only slightly outside (case S1). Looking at the uncer-
tainty range, it can be seen that using the Bayesian
updating method, the estimated location coordinates
(x, y) had significantly smaller uncertainty ranges (more
than 2x) compared to the mean fusion method, with
only a small trade-off in accuracy. Thus, the Bayesian
method is the better fusion method for location

estimation as it allows for reliable and precise location
estimation.

For maximum impact force estimation, Table 5
shows the estimation accuracy using the proposed kri-
ging method accompanied by three different fusion
methods (Bayesian–Bayesian (K+B+B), mean–mean
(K+M+M) and mean–Bayesian (K+M+B)). Using
the Bayesian–Bayesian fusion method, the estimated

Figure 7. Example of location and maximum impact force estimation for plastic hammer tip (case F4) impacts on the flat panel
using the benchmark deterministic method (top) and the proposed kriging stochastic method (bottom).
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uncertainty range is very narrow up to the level where
it becomes inaccurate as some of the actual maximum
force values are not encompassed in the estimated
range. This is similar to what was encountered by
Morse et al.8 when using successive Bayesian updating
or Kalman filters for estimating impact location. This
is due to the fact that what is fused are estimates and
not actual measurements, thus it will not necessarily
converge to the actual measurement (location or
force).

However, using the mean–mean fusion method
results in a very reliable (most actual values encom-
passed in estimated range) but very wide (up to 6x
wider than the Bayesian–Bayesian method) and

imprecise uncertainty range which may not be useful
for impact severity assessment. This is similar to what
is found from other ‘conservative’ methods, such as the
bounded uncertainty approach, where the uncertainty
distribution is reduced to a bounded range.15 Using a
combined mean–Bayesian method, a balance of good
reliability and uncertainty range precision is achieved,
making it more reliable than the Bayesian–Bayesian
approach and more precise than the mean–mean
approach. The proposed stochastic approach gives a
much higher reliability of maximum impact force esti-
mation compared to the deterministic method, espe-
cially for cases, such as the stiffened panel (S1) which is
sensitive and difficult to estimate deterministically.

Figure 8. Example of location and maximum impact force estimation for impacts (case S1) on the stiffened panel using the
benchmark deterministic method (top) and the proposed kriging stochastic method (bottom).
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Figures 7 and 8 illustrate an example of the impact
location and maximum force estimation using the
benchmark and proposed kriging method (K+B for
location and K+M+B for impact force). It can be seen
that although the deterministic method is quite accu-
rate, there is some degree of inaccuracy stemming from
various sources of uncertainty, more so in some cases
(such as in location 7 (Figure 8), bottom left of the stif-
fened panel (S1)) than others. However, the proposed
kriging method is able to reliably estimate the uncer-
tainty of the impact location and maximum force esti-
mation (all actual locations and maximum impact force
encompassed in estimated range), giving a more robust
output for users to locate and assess the severity of an
impact event.

As mentioned in section ‘Introduction’, there are
two main sources of uncertainty: measurement errors
and algorithm inaccuracy.7,14 The measurement errors
are encoded in the reference database points, while the
algorithm inaccuracy is represented in the multiple out-
puts given by feature combinations (section
‘Uncertainty quantification method for impact location
and maximum force estimation’) which are merged
with the proposed fusion methods. Because of this, the
uncertainty range can be accurate and reliable, even
though it is estimated only from the reference database
points and not based on actual error measurements of
the output. This also allows data-driven uncertainty
quantification with a very low amount of reference
database points (35) compared to other data-driven
methods. An example is location uncertainty estima-
tion with neural networks, as demonstrated by Sarego
et al.,12 which used 404 data points that were perturbed
into 10,000 using the known uncertainty parameters
(Monte Carlo approach). This highlights the suitability
of the proposed data-driven method for uncertainty
quantification by taking advantage of the information
contained in their reference database without the need
for expensive methods often used for this purpose (e.g.
Monte Carlo simulations).10,12

Conclusion

A novel data-driven stochastic kriging-based method
for impact location and maximum force estimation was
developed. Comparison with a deterministic bench-
mark method developed in prior studies5,6,13 indicates
that the proposed method gives more reliable estimates
for experimental impacts under various simulated envi-
ronmental and operational conditions by estimating
the uncertainty. The developed method highlights the
suitability of data-driven methods for uncertainty
quantification by taking advantage of the relationship
between data points in the reference database that is a

mandatory component of these methods (and is often
seen as a disadvantage). By quantifying the uncertainty,
it gives more information for operators to reliably
locate impacts and estimate the severity for making
maintenance decisions.
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