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Integrated Aerodynamic and
Structural Blade Shape
Optimization of Axial Turbines
Operating With Supercritical
Carbon Dioxide Blended With
Dopants

Within this study, the blade shape of a large-scale axial turbine operating with sCO,
blended with dopants is optimized using an integrated aerodynamic-structural three-
dimensional (3D) numerical model, whereby the optimization aims at maximizing the aer-
odynamic efficiency whilst meeting a set of stress constraints to ensure safe operation.
Specifically, three candidate mixtures are considered, namely, CO, blended with titanium
tetrachloride (TiCly), hexafluorobenzene (CgsFg), or sulfur dioxide (SO,), where the
selected blends and boundary conditions are defined by the EU project, SCARABEUS. A
single passage axial turbine numerical model is setup and applied to the first stage of a
large-scale multistage axial turbine design. The aerodynamic performance is simulated
using a 3D steady-state viscous computational fluid dynamic (CFD) model while the
blade stress distribution is obtained from a static structural finite element analysis simu-
lation (FEA). A genetic algorithm is used to optimize parameters defining the blade angle
and thickness distributions along the chord line while a surrogate model is used to pro-
vide fast and reliable model predictions during optimization using a genetic aggregation
response surface. The uncertainty of the surrogate model, represented by the difference
between the surrogate model results and the CFD/FEA model results, is evaluated using
a set of verification points and is found to be less than 0.3% for aerodynamic efficiency
and 1% for both the mass-flow rate and the maximum equivalent stresses. The compari-
son between the final optimized blade cross section has shown some common trends in
optimizing the blade design by decreasing the stator and rotor trailing edge thickness,
increasing the stator thickness near the trailing edge, and decreasing the rotor thickness
near the trailing edge and decreasing the rotor outlet angle. Further investigations of the
loss breakdown of the optimized and reference blade designs are presented to highlight
the role of the optimization process in reducing aerodynamic losses. It has been noted
that the performance improvement achieved through shape optimization is mainly due to
decreasing the endwall losses with both the stator and rotor passages.
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1 Introduction

Introducing new working fluids like supercritical carbon diox-
ide (sCO,) and sCO, blended with dopants in power generation
cycles has a high potential to increase thermal efficiency and
decrease the associated capital and operational costs [1,2]. Numer-
ous studies have focused on analyzing the performance of pure
sCO, power plants as well as sCO, mixtures [3] where the results
have proven that introducing blends to the cycle potentially
increases the efficiency and ensures feasible operation of transcrit-
ical power cycles, especially in hot weather. As part of the EU
project, SCARABEUS, three candidate blends, namely, titanium
tetrachloride (TiCly), hexafluorobenzene (CgFg¢), and sulfur diox-
ide (SO,), have been proposed to raise the critical temperature of
the mixture beyond that of pure CO, and allow condensation in
transcritical power cycles. Crespi et al. [4] investigated the power
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cycle thermal efficiency gain by blending carbon dioxide with
CgFg and TiCly. The results of cycle analyses have shown that
sCO, blends, with blend molar fractions of 10-25%, have thermal
efficiency gains of 4-5 percentage points over the pure sCO, cycle
due to the deleterious effect of high ambient temperatures on the
compression process in the latter cycles. The use of CO, blended
with SO, has also been considered through an economic and ther-
modynamic assessment which revealed an increase in cycle ther-
mal efficiency of 2.33% relative to the pure sCO, cycle and a
reduction of the power block capital expenses of 160 $/kW,, for a
100 MW, power cycle [5].

The turbomachinery components operating with sCO, and
sCO, mixtures have been previously introduced [6,7]. The per-
formance of different blends and the effect of blend fraction have
also been investigated [8] with much focus on predicting the ther-
modynamic properties of mixtures, including the selection of
equation of state and the optimum binary interaction parameters
[9].

The design process of turbines operating with sCO, mixtures
introduces some technical challenges related to the availability of
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loss models used for preliminary design. Specifically, the avail-
able performance estimation tools and correlations are calibrated
for traditional working fluids like steam and air, whilst novel
methodologies are required to simulate newly developed working
fluids [10]. The design process of a turbine first requires a mean-
line flow path design, from which a one-dimensional geometry is
generated that can be used as the base to create the three-
dimensional (3D) blade and run computational fluid dynamics
(CFD) simulations. Blade shape optimization is then one of the
promising techniques to optimize the turbine design by refining
the flow path geometry to obtain the highest possible aerodynamic
performance while maintaining certain structural limits to ensure
a safe and reliable design.

Blade shape optimization has been widely investigated through-
out the literature using different approaches, tools, and methodol-
ogies. Sathish et al. [11] conducted the blade shape optimization
of a 10MW sCO, axial turbine stage aiming at minimizing the
blade profile losses while maintaining certain limits to the geome-
try. The selected geometric modeling platform was cAeses while
the numerical flow solver was mises. Many authors have used the
commercial flow solver anNsys crx to simulate the aerodynamic
performance in their optimization models [12—-16] while the
optimization solver is commonly a genetic algorithm or a multi-
objective genetic algorithm [17-19]. Various optimization
objectives have been presented through the published studies,
however, the common target is achieving higher aerodynamic per-
formance. Berchiolli et al. [13], Klonowicz et al. [14], Asgar-
shamsi et al. [17], and Kawatsu et al. [19] have defined the
optimization objectives explicitly to maximize the overall turbine
efficiency while Cho et al. [20] and Ennil et al. [16] have mini-
mized the total pressure loss coefficient.

Decision variables selected for the blade shape optimization
models are usually linked to geometrical parameters defining the
airfoil shape in two-dimensional models [18] and 3D angles in 3D
models [14]. The geometrical representation of the blade is critical
to defining the number of decision variables that need to be
included. Ennil et al. [16] introduced 11 parameters including flow
angles, axial blade chord, turning angle, leading-edge radius, and
trailing edge thickness to represent the airfoil shape of the blade. A
similar approach is followed by Ref. [20], in which the authors
defined the blade using 13 parameters. In more sophisticated stud-
ies, a larger number of variables are used to parametrize the pres-
sure and suction sides of the blade using control point coordinates.
Berchiolli et al. [13] introduced 48 decision variables and Klono-
wicz et al. [14] introduced 50 decision variables in their model
including 3D aspects such as rotor blade twist angle, circumferen-
tial lean, and axial sweep angles. In some specific applications,
decision variables are limited to certain parameters that define a
part of the blade to minimize a specific source of loss; e.g., optimiz-
ing the blade tip to minimize tip leakage characteristics [12].

Due to the large number of decision variables required to repre-
sent a complete blade shape, a common optimization approach is
based on replacing the physical CFD model with a surrogate model
to give faster response during the optimization process. Surrogate
models are created using a number of physical CFD simulations
while the model response is extended by creating a relation between
inputs and outputs using machine learning techniques. A set of case
studies are first designed using a design of experiments algorithm
(DoE) that creates a map of trial cases from which a relation
between the inputs and outputs can be constructed. The response
surface is then created using one of the various techniques including
Kriging [19], artificial neural network [12,21], extreme learning
machine, and support vector machine [12].

The optimization constraints are introduced to the model to ver-
ify the feasibility of the different candidate designs generated
using combinations of decision variables. Berchiolli et al. [13]
constrained the power output, the global maximum Mach number,
and the stator and rotor factor of safety while other studies were
only concerned with geometric constraints to ensure that the opti-
mized profile meets all engineering constraints [11,20]. The
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structural analysis is important to ensure a safe blade design and
has been introduced in many studies [22,23], although with added
complexity to the model. Common materials in structural simula-
tions of axial turbines are Inconel 718 [22], Inconel 738 [13] and
12% Chromium steel [11]. The loading in structural analysis is
defined using either mechanical loading due to aerodynamic pres-
sure distribution [22] or thermal loading due to temperature distri-
bution, especially for cooled blades [23].

The performance of the reference and optimized blades can be
further investigated by obtaining the loss breakdown structure
using one of the loss audit techniques published in the literature
[24-26]. The loss audit helps to highlight the dominant sources of
aerodynamic losses so that the most significant improvements are
revealed. Common types of aerodynamic losses in a subsonic
axial turbine stage operating under design conditions are endwall,
profile, trailing edge, and tip clearance losses.

In this paper, three working fluids have been considered for the
design of a large-scale multistage axial flow turbine, namely, CO,
blended with TiCly, hexafluorobenzene (CgF¢), or sulfur dioxide
(SO,). The design process is based on numerical simulations
rather than using existing mean-line design correlations since the
latter are not calibrated for these working fluids. The design is fur-
ther refined using a blade shape optimization model that aims at
maximizing the performance of the turbine given certain struc-
tural constraints. A comparison between the reference and opti-
mized blade profiles is presented and discussed to reveal different
design aspects associated with different sCO, blends. The loss
breakdown is illustrated for different working fluids compared to
the reference design to show the link between turbine efficiency
and different sources of aerodynamic loss.

2 Numerical Model

The blade shape optimization process is reported in Fig. 1 and
is constructed from a numerical model composed of an aerody-
namic solver (CFD), a mechanical solver (finite element analysis
(FEA)), a design of experiments (DoE) algorithm, a surrogate
model, and an optimization solver. The baseline blade geometry is
created using a mean-line design model [27] that is developed for
the SCARABEUS project [28] to design a large-scale blended
sCO, turbine using the Aungier [29] loss model. Geometrical
parameters including the number of stages, hub diameter, blade
height, blade inlet/outlet angles, stagger angle, chord length, num-
ber of blades, and trailing edge (TE) thickness are used to create
the 3D blade along with assumptions defining the inlet/outlet
wedge angles, leading-edge thickness, and control points defining
thickness distribution of the airfoil. In order to assess the blades
stresses, simplified shroud and hub geometries are used for the
stator and rotor blade geometries, respectively, whereby a fillet is
applied at the base of each blade to make the mechanical analysis
more realistic. The results of aerodynamic solver are transferred
back to the mechanical solver so that the pressure load on the
blade surface can be evaluated. A set of design points are then cre-
ated using the DoE algorithm and solved to create a response sur-
face surrogate model which replaces the physical CFD/FEA
model to simplify the optimization process and allow for more
optimization runs in a reasonable time frame.

2.1 Computational Fluid Dynamic Model. To investigate
and compare the effect of different sCO, blends on the blade
shape design, and further investigate the performance of the opti-
mized blades against the reference designs, a 3D steady-state CFD
model of the first stage of each blend design is setup. Although
the proposed turbine designs are multistage, the CFD model is
setup for the first stage of each design to minimize the number of
decision variables for the optimization and limit the computa-
tional power needed for this study to a reasonable time frame.
Similar flow conditions defined by equal enthalpy drop per stage,
equal rotational speed, and equal hub diameter are preserved for
each case to ensure a fair comparison between the different
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blends. To achieve that, the number of stages for each blend is
adjusted to give almost the same enthalpy drop per stage, thus the
velocity triangles of the first stage of the three turbines, according
to the mean-line calculations, are identical.

The operating conditions for the proposed case studies are part
of the work conducted within the SCARABEUS project [28]
where the cycle analysis generates the boundary conditions at the
turbine inlet and outlet as well as the optimum blend molar frac-
tion. The model definition of each turbine is further investigated
using a mean-line design tool developed based on the Aungier
loss model [29] to generate a preliminary design of the turbines.
The model definition of the proposed blends is presented in Table
1. The model uses shear stress transport (k—w SST) turbulence
model as it has been found that this is the most suitable model for
turbomachinery applications [30]. The interface between the sta-
tor and rotor domains is treated as a mixing plane which has pro-
ven to give high-quality results with the least numerical
instabilities compared to the frozen rotor approach [31]. The rotor
layout is considered to be unshrouded with a tip clearance of
0.07% of the tip diameter for each case.

The mesh quality has been controlled by adjusting the mesh
size near the walls while maintaining y* ~ 50 where standard
wall functions are best suited [32]. The number of grid points
within the rest of the domain is obtained as the minimum number
of grid points required for a mesh independent solution. The con-
vergence criteria of the mesh study have been selected as the
total-to-total efficiency (1,) where the tolerance is set to 0.5%
compared to the finest mesh. The mesh independence study results
are presented in Fig. 2 for the sCO,—C¢Fg case study as a sample
case, where the number of grid points reported is the summation
of stator and rotor domains.
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Fig.1 Overview of the optimization model
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The thermophysical properties of the sCO, mixtures are eval-
uated using the “simuLis” software package. The selected equation
of state is PengRobinson, and the binary interaction parameters
for each blend are set according to a sensitivity study carried out
by our project partners [5,9]. These parameters are the same as the
values defined in the cycle analysis and mean-line design stages.
However, it is worth noting that the mixture modeling is most crit-
ical when modeling the thermodynamic cycle, and there is not a
large sensitivity when considering the turbine in isolation because
the turbine operates quite far from the critical point of the fluid
where non-ideal effects are most significant [9].

The properties are introduced to the CFD models using look-up
tables that cover the expected pressure and temperature ranges
with the size of 500 x 500 points. The selected pressure range is
set to 10 and 300bar since the turbine inlet total pressures are
250 bar and the outlet static pressure varies between 56 and
97 bar. This range covers any local regions with pressures higher
than the inlet pressure or lower than the outlet pressures. Simi-
larly, the temperature range is set between 400 and 1200 K. The
CFD model results have been checked to ensure that the property
tables can safely cover the global minimum and maximum proper-
ties where the table limits are found to be sufficiently far away
from the obtained limits. Different sizes of the lookup tables have
been tested ranging between 200 x 200 and 700 x 700 points
while the variations in the model results are found to be negligible
above 500 x 500.

2.2 Finite Element Analysis Model. The FEA model is setup
using the same blade geometry defined for the CFD model. How-
ever, the blade geometry is modified by adding a solid base with a
minimum thickness of 5 mm at the shroud of the stator and at the
hub for the rotor with fillets applied between the blade and the
supporting base to represent the physical turbine geometry after
manufacturing. Adding the fillets also avoids numerically induced
peak stresses, as indicated in Fig. 3.

The mesh in this model is setup with a large global element
size to simplify the optimization process and reduce the overall
model complexity while local refinement is applied at the base fil-
let where the peak stress point is expected to exist. With a growth
rate of 1.1, which defines the ratio between the large elements at
the tip and the small elements at the base, the overall mesh struc-
ture produces satisfactory results for a low number of elements. A
mesh study is summarized in Fig. 4 where the different curves
represent the global element size, and the callouts report the local
element size at the base of the fillet in mm. It can be noted from
the figure that decreasing the global mesh size affects the total
number of nodes significantly while its effect on the stress values
is negligible. However, the local mesh size has a large impact on
the peak stresses. For that reason, a large global size of 3 mm is
selected along with a local mesh size of 0.3 mm to achieve results
of satisfactory quality with a low number of nodes. The stress
results in this case showed a deviation within 2% of the most
accurate value where the number of elements is around 90,000
and 120,000 for the stator and rotor blades, respectively.

Table 1 Design conditions for the three CO, blends

Working fluid —  8CO,-SO, sCO,—C¢Fg sCO,-TiCly
Blend molar fraction % 30 14.5 17
Inlet total pressure bar 238.9 238.9 242.6
Inlet total temperature K 973.15 973.15 973.15
Turbine outlet static pressure bar 68.3 59.1 95.5
Mass flow rate kg/s 780.84 877.3 1241.2
Stage 1 outlet static pressure  bar 207.5 199.5 200.1
Stage actual enthalpy drop  kJ/kg 18.8 18.8 18.8
Hub radius mm 420 420 420
Rotational speed RPM 3000 3000 3000
Number of stages — 9 8 5
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Fig.2 Mesh independence study for the C¢F¢ case

The aerodynamic loads (i.e., pressure distribution over the
blade surfaces) predicted within the CFD simulations are used as
input boundary conditions for the FEA, along with the centrifugal
load on the rotor blades due to rotation. The preliminary material
selection process has considered Udimet 720, which is a nickel-
based alloy commonly used with gas turbine blades that can oper-
ate at temperatures up to 1000 °C whilst maintaining a high yield
strength and is suitable for the proposed operating conditions [33].

2.3 Surrogate Model. The surrogate model replaces the
physical CFD/FEA model so that the objectives and constraints
can be assessed rapidly. This can be achieved by building a rela-
tion between input geometrical parameters and output aerody-
namic and structural performance parameters using machine
learning techniques. In this study, the central composite design of
the experiment algorithm is used to create a set of learning points
according to a prespecified range for each input optimization vari-
able [34]. In this method, the design points are selected to form
the shape of a sphere with a center point in the middle surrounded
by points on the axis and diagonal points; this process for two var-
iables would create the shape in Fig. 5 [35].

The number of design points (Npp) is linked to the number of
input variables through the following equation:

Npp = 1 + 2k 4 2% (1)

where k is the number of input variables and f is a factor designed
to limit the excessive increase in the number of design points for a
large number of input variables. In Eq. (1), the first term is the
center of the design points, the second term represents the points
on the axis and the third term represents the diagonal points. The
limiting factor is added to the diagonal points to decrease the
number of diagonal points while maintaining the shape of the cen-
tral composite design. The factor used by the solver (ansys work-
bench) for 11 input variables is 4 so the number of design points
is 151. The disadvantage of this methodology is the uncertainty in
the input/output relation. However, this can be assessed and
improved using response surface verification and by definining
additional refinement points, respectively.

Genetic aggregation response surface is selected for this study
to develop the surrogate model as genetic aggregation response
surface with autorefinement gives the best fit possible for each
output parameter among the different types of response surface
available (full second-order polynomial, non-parametric regres-
sion, Kriging, neural network, and sparse grid) [36]. Compared to
the classical response of polynomial, non-parametric regression,
or Kriging genetic aggregation, genetic aggregation takes more
time because it solves the response surface for each output vari-
able individually and the cross-validation process [37]. The initial
number of learning points are generated using the design of
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experiments model while a set of refinement points are created to
improve the accuracy of the response surface. The target uncer-
tainty in total-to-total efficiency is selected to be =0.1 pp and the
maximum equivalent stress is =5MPa. The response surface
results are verified against the results of the physical CFD/FEA
model for a set of verification points to assess the uncertainty of
the surrogate.

2.4 Optimization Model. To obtain the best blade shape, the
optimization model is setup based on a set of geometrical parame-
ters defining the blade shape while objectives and constraints are
introduced to maintain efficient operation and a safe design. The
blade geometry is represented by a uniform airfoil section along
the blade radial direction because the blades are relatively short
where the blade height to hub diameter is around 8%. The angle
and thickness distributions along the chord line of the airfoil are
defined from leading edge to trailing edge with four points on
each curve, as reported in Fig. 6. The points are connected using a
third-order polynomial rather than Bezier curves since polyno-
mials give better control of the curvature with a lower number of
points. As long as the axial location of the first and last points are
fixed at the leading and trailing edge, respectively, the number of
variables is six variables for each curve and 24 variables for the
entire stage. However, based on trials assessing the sensitivity of
the results to the number of decision variables, it has been found
that achieving the desired uncertainty of the output parameters is
not possible using reasonable computational power, and thus the
surrogate model is unable to accurately represent the physical
model. This is due to the large population size and the limited
number of learning and refinement points. Moreover, it was found
that solving more refinement points did not allow any significant
improvement in the model’s accuracy. Thus, to create a surrogate
model within the acceptable output tolerance, a decision was
made to reduce the number of decision variables. This was done
by eliminating the less dominant variables.

The procedure followed to reduce the number of decision varia-
bles can be summarized in three steps. First, the streamwise divi-
sion of the points is fixed for each curve so the x-values of the two
midpoints are removed, such that each curve has four variables
instead of six with a total number of variables of 16. Second, the
inlet angle of the stator blade is considered fixed as the inlet flow
velocity to the stage is always axial, which removes an additional
variable. Finally, a preliminary sensitivity study has been con-
ducted by creating a surrogate model using the 15 variables, as
reported in Fig. 7. In this figure, Sa2 is the stator angle at point 2,
Sa3 is the stator angle at point 3, Sa4 is the stator angle at point 4,
Stl is the stator thickness at point 1, St2 is the stator thickness at
point 2, St3 is the stator thickness at point 3, St4 is the stator
thickness at point 4, Ral is the rotor angle at point 1, Ra2 is the
rotor angle at point 2, Ra3 is the rotor angle at point 3, Ra4 is the
rotor angle at point 4, Rt1 is the rotor thickness at point 1, Rt2 is
the rotor thickness at point 2, Rt3 is the rotor thickness at point 3
and Rt4 is the rotor thickness at point 4. The points are labeled
according to Fig. 6. The results reported in Fig. 7 show that the
optimization is less sensitivite to the first and second thickness
points for both rotor and stator blades, and hence these are omit-
ted, and the total number of decision variables is reduced to 11.

The search space is defined by setting the upper and lower lim-
its of each decision variable as summarized in Table 2. The upper
and lower limits are selected around the reference values based on
manual iterations that aimed at preserving a reasonable shape for
the blade cross section.

The objective of this optimization run is to maximize the total-
to-total efficiency, whilst targeting the mass-flow rate defined by
the cycle analysis. The target mass-flow rates for the TiCly, CgFg,
and SO, cases are 1241, 877, and 781 kg/s, respectively, while the
target tolerance is set to £2%. The structural constraints for both
rotor and stator blades are set to not exceed a stress limit of
400 MPa, calculated by dividing the yield strength of the working

Transactions of the ASME

¥20z AIne 20 uo 1senb Aq Jpd 910101~ 0L Pl di6/2855169/9L0L0L/0L/vrL/spd-soie/iemodsauiqiniseb/Bio swse uonos|jooleybipswse)/:dpy wol pspeojumoq



Fig. 3 Effect of base fillet on FEA results: (a) without fillet and (b) with fillet

material at 650 °C, which is around 1042 MPa [38], by a safety
factor of 2.5.

The selected optimization solver is a genetic algorithm applied
through ANsys workbench and linked to the surrogate model. The
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initial population size and number of samples per iteration is 100.
The convergence criteria are set to either achieve a stability per-
centage of 2% or reach a maximum number of iterations of 50.
Once the optimization run is complete, five candidate points are
calculated and verified against the physical model. The deviation
between the physical model and response surface optimization
results are then assessed to check the accuracy of the surrogate
model. If the measured deviations are high, the response surface is
further refined using the candidate points and the optimization
process is repeated. Among the five candidate points, the design
showing the best performance, as well as a good agreement with
the verified results are selected.

3 Computational Fluid Dynamic/Finite Element
Analysis Model Verification

Due to the fact that supercritical carbon dioxide is a recent tech-
nology and the experimental work in the literature is limited to
small-scale radial turbomachines there is no suitable experimental
data against which to validate the current CFD/FEA model for
sCO, applications. However, the aerodynamic and structural
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Axial location (mm) (LE to TE)

S = N Wk o

Normal Layer Thickness
(mm)

0 5 10 15 20 25 30
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Fig. 6 Blade profile representation using angle and thickness
distribution
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solvers used in this study have been widely deployed in the analy-
sis of other large-scale turbines, for example, Refs. [31] and [32].
A numerical model analyzing the conjugate aerodynamic-
structural interaction of a 15 MW sCO, single-stage axial turbine
is selected to verify the physical CFD/FEA model presented in
this paper [7]. The case definition and the operating conditions are
presented in Table 3.

A comparison of the main performance metrics as well as the
structural simulation is summarized in Table 4. A good agreement
is observed between the two models in terms of mass-flow rate,
total-to-static efficiency, and maximum von mises stress with
deviations of 4.5%, 0.2%, and 1.7%, respectively. However,
larger deviations are observed for the power output and degree of
reaction. This could be the result of an inaccurate replication of
the geometry due to uncertainties in extracting precise shape data
from published figures rather than explicit tables; although, the
main geometric parameters like hub/shroud diameters, inlet/outlet
blade angles, inlet/outlet fillet radii, stagger angle, and chord size
are identical.

4 Results and Discussion

The blade shape of the first stage of a turbine designed for each
of the three proposed working fluids is optimized and compared to
the reference geometry obtained using a preliminary mean-line
design tool. The performance of the optimized blades is further
investigated by calculating the loss breakdown structure and com-
paring the results to the reference geometries to realize how the
optimization process has controlled the performance and
enhanced the total-to-total efficiency. The computer used to run
these cases contains a 3 GHz processor with 36 cores, 48 MB cash
memory, 128 GB of RAM and 2 TB solid state drive hard drive.

4.1 Optimized Blades Using Different Blends. Numerous
design points are created using the high fidelity CFD/FEA model
to create a response surface where 151 model are created using
the design of experiments algorithm and an additional 250 design
points are created by the response surface solver as refinement
points to improve the accuracy of the surrogate model. For each
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Fig. 7 Preliminary sensitivity study solving 15 decision varia-
bles, sCO,-S0, model
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Table2 Decision variables

Value
Parameter Unit Reference Minimum Maximum
St3 mm 5.7 4 7
St4 mm 0.7 0.2 1
Sa2 deg 5 =5 15
Sa3 deg 45 35 55
Sa4 deg 66.3 55 80
Rt3 mm 5.6 4 7
Rt4 mm 0.7 0.2 1
Ral deg 0 -10 10
Ra2 deg =5 -15 5
Ra3 deg —45 =55 =35
Ra4 deg -64.93 =75 =55

design point, 11 geometric parameters are defined as inputs while
the main objectives and constraints are evaluated to form the
learning points of the surrogate model. Verification points are
introduced to evaluate the performance of the surrogate model
and its uncertainty. The uncertainty of the optimized candidate
design points is found to be less than 0.3% for the total-to-total
efficiency and 1% for the mass-flow rate, stator maximum stress,
and rotor maximum stress in all the proposed cases.

The response for different working fluids following the prespe-
cified ranges of decision variables are evaluated and the results
ranges are recorded in Table 5 where, 7, is the total-to-total effi-
ciency percentage, m is the mass-flow rate in kg/s, oy is the stator
maximum equivalent stress in MPa and oy, is the rotor maximum
equivalent stress in MPa. These results include the size of the
search space covered within this study. It can be noted that
changes to the blade profile can lead to significant deviations in
key parameters like mass-flow rate and stress levels, as well as the
total-to-total efficiency. The sensitivity of the output parameters
to the inputs is evaluated and further discussed in Sec. 4.4, which
can inform the elimination of less important input variables to
reduce computational power and decrease the uncertainty of the
surrogate model. This can be expected to speed up the design pro-
cess when the optimization is applied to all the stages of the final
SCARABEUS turbine.

The optimized blades for different sCO, blends are introduced
in Fig. 8 and compared to the reference geometries for both the
rotor and stator blades. The optimized blade geometry of the first
stage of the sSCO,—SO, case study is shown in Fig. 8(a) where it
can be seen that the stator blade curvature is relaxed near the trail-
ing edge to decrease the stator outlet angle. Subsequently, the
rotor leading edge angle is decreased in response to the changes
made to the stator, and decreased near the trailing edge, while the
trailing edge thickness is decreased by almost 60% to decrease
trailing edge losses. These changes improve the aerodynamic per-
formance by decreasing the deviation angle between the flow
stream and the blade.

By investigating the optimized blade geometry of the
sCO,—Cg¢Fg case study (Fig. 8(b)), similar trends to the SO, blades
are observed where the stator angle distribution near the trailing
edge is decreased while the thickness of the stator blade near the
trailing edge is increased. The rotor thickness is decreased near

Table 3 Definition of the verification case study

Parameter Unit Value
Turbine inlet pressure bar 130
Turbine inlet temperature K 773
Turbine outlet pressure bar 80
Mean blade diameter mm 389
Rotational speed RPM 10,000
Mass flow rate kg/s 250
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Table 4 Results of the verification case study

Reference Numerical Deviation

Parameter Unit [7] model (%)

Mass flow rate kg/s 250 238.81 —4.5%
Power MW 15 13.75 -8.3%
Degree of reaction — 0.28 0.3 7.1%
Flow coefficient — 0.55 0.569 3.5%
Total to static efficiency % 83.96 83.782  -0.2%
Rotor maximum deflection mm 0.061 0.056 -8.2%
Rotor maximum Von Mises stress MPa  646.8 636 -1.7%

Table 5 Calculated ranges of output parameters

SO, CeFe TiCly
Minimum Maximum Minimum Maximum Minimum Maximum
My 69.8 93.9 60.5 93.7 76.5 94.8
m 270.1 1449.6 385 1520 238 2182
as 60 1380 90 827 69.6 3608
OR 45.2 490 57 563 36 728

the second half of the blade and at the trailing edge while the
angle distribution along the rotor chord line has been slightly
modified by decreasing the blade angle within the first half of the
airfoil and increasing the blade angle within the second half. The
optimized blade geometry of the sCO,-TiCl, case study

(Fig. 8(c)) shows similar trends to the other two blends in decreas-
ing the rotor outlet angle and decreasing the trailing edge thick-
ness of both rotor and stator; however, the blade angle within the
first part of the rotor is significantly decreased.

A comparison of the reference and optimized blade thickness
and angle distributions is provided for each blend in Fig. 9. The
results correspond to the changes reported in Fig. 8 and provide
the optimized distributions explicitly. The performance improve-
ment for the three proposed working fluids is reported in Table 6.
It could be seen from the table that the optimization has succeeded
in increasing the total-to-total efficiency for the three blends,
whilst achieving a design with a feasible mass-flow rate, as pre-
scribed by the cycle requirements, and that ensures safe operation
with a peak equivalent stress less than 400 MPa. It should be noted
that the reference values mentioned in the table are calculated
using the physical model, and report some deviations compared to
the mean-line design model. Some deviations between the mean-
line design and CFD model results are expected due to the inher-
ent simplicity of the mean-line approach, and the limitations of
the mean-line model in evaluating aerodynamic losses by using
loss correlations developed for traditional working fluids. How-
ever, these have been investigated and quantified by the authors
[30]. Absolute efficiency increase of 2.54 pp, 2.06 pp, and 1.76 pp
is achieved for the sCO,—SO,, sCO,—CgFg, and sCO,-TiCly
designs, respectively. By comparing achieved efficiencies for the
different blends, it can be seen that the highest efficiency is
obtained for the TiCly design which is 0.12 pp larger than the
CgFg design and 0.13 pp larger than the SO, design, while the effi-
ciencies obtained for the C¢F¢ and SO, designs are almost the
same.
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Fig. 8 Comparison between reference and optimized blades of the first stage for (a) sCO,—S0,, (b) sCO,—CeFe, and
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The mass-flow rate decreased in all the designs to bring the
design within the feasible range of operation defined by *2% of
the target mass-flow rate defined in Table 1 because the mean-line
design has been found to underestimate the mass-flow rate at the
reference design point. The reduction in mass-flow rate is
reflected by a reduction in power output although the efficiency is
increased. The results in Table 6 show that the best performance
is obtained for the three blends at a slightly larger degree of reac-
tion, typically around 0.63, compared to the value of 0.5 assumed
during the preliminary calculations. The flow coefficient is very
close to the preliminary design value of 0.5 and the loading coeffi-
cient is around 10% larger than the preliminary design value. For
the stress limits, the reference design points of the SO, stator and
the TiCly stator are unsafe with maximum stress values over the
limit of 400 MPa; however, the optimized design points succeed
at maintaining peak stresses under the limits for all the design
case studies.

To further understand the differences between the blade shapes
of the three blends, the optimized airfoils are reported in Fig. 10.
It is expected that the differences between the three cases are not
only due to the differences in properties, but also due to the differ-
ent boundary conditions generated from the thermodynamic cycle
optimization for each three blends. Thus, the influence of these
effects on the resulting blade shape and aecrodynamic performance
is combined and they cannot be easily separated. However, the
larger chord size of the TiCly case can be clearly noted, which
results from the higher stresses that are estimated during the pre-
liminary mean-line design phase which drives the design to a
lower number of blades per stage. Subsequently, the pitch and
chord size are both increased to maintain a fixed pitch to chord

101016-8 / Vol. 144, OCTOBER 2022

ratio. The similarity between SO, and CgFg designs reflects the
similarity of the properties of the mixtures, the cycle layout, and
the boundary conditions reported in Table 1. The blade shape dif-
ferences can also be linked to the mixtures properties by compar-
ing the hydraulic properties of the three mixtures reported in
Table 7. It can also be seen that the blade thickness is higher near
the leading edge for the TiCly case, followed by CgFg and SO,
reflecting the density variations as the higher the density, the

003 Optimised blade of the three blends
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Fig. 10 Comparison between optimized blade shapes for the
three blends
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Table 6 Results of optimizing blade shapes

Parameter Unit SO, reference SO, optimum C¢Fg reference CgFg optimum TiCly reference TiCl, optimum
Total-to-total efficiency % 88.82 91.36 89.31 91.37 89.69 91.45
Mass flow rate kg/s 814.4 790.65 989.4 879.1 1426.3 1252.5
Power MW 15.05 14.69 18.24 16.59 25.35 23.54
Degree of reaction — 0.32 0.65 0.44 0.62 0.45 0.62
Flow coefficient — 0.51 0.53 0.56 0.51 0.56 0.53
Loading coefficient — 0.89 1.12 091 1.09 0.86 1.14
Stator maximum stress MPa 447.42 347.42 393.30 346.55 509.12 401.44
Rotor maximum stress MPa 188.76 246.67 210.98 244.00 250.67 392.06

lower the flow path cross section and the thicker the blade. The
difference between inlet and outlet blade angles reflects the varia-
tion in the dynamic viscosity to reduce secondary flows, where
the higher the viscosity the lower the difference in the blade
angles. This is clear from Fig. 10, as the highest blade angle varia-
tion appears in the SO, case, followed by the CgFs and TiCly
cases.

4.2 Loss Breakdown Analysis. The performance of the pro-
posed designs is further investigated by analyzing the aerody-
namic loss structure of the reference and optimized geometries to
compare the weight of different sources of loss. The expected aer-
odynamic losses of a subsonic axial turbine stage running at the
design operating conditions are the endwall losses, profile losses,
trailing edge losses and tip clearance losses [39]. An overview of
the loss structure is shown in Fig. 11 where the entropy distribu-
tion along the axial direction from inlet to outlet is presented. The
stator domain is represented along the axial direction from O to 1,
while the rotor domain is represented between 1 and 2. The calcu-
lated entropy values are massflow averaged quantities evaluated
at different axial locations along the streamwise direction. The
dominating loss regions can be directly identified from the figure
given the axial locations of the stator/rotor blades, inlet/outlet
domains, and the stator/rotor axial gap.

The reference cases lead to a larger entropy increase at the stage
outlet in all the designs reflecting the achieved performance
improvement by optimizing the blade geometries for the three
proposed blends. The curves for the SO, and CgFg designs are
close to each other while the TiCly design reports less entropy
generation with a higher total-to-total efficiency. This is in agree-
ment with the efficiency results mentioned in Table 6. A signifi-
cant reduction in entropy generation in both the rotor and stator
blades can be observed in the figure and can be further clarified by
carrying out a loss audit of the reference and optimized designs.

The loss breakdown is obtained following the approach
described by De Servi et al. [25] where the sources of loss are
evaluated by setting up three CFD models for each design point
according to the structure mentioned in Table 8. The difference
between the entropy generation from model one and two accounts
for the tip leakage loss while the total entropy rise in the second
model is due to end wall, profile, and trailing edge losses in the
rotor and stator. To quantify each source individually, the third
model eliminates end wall effects by setting free slip boundary
conditions near the end walls so that the remaining losses are pro-
file and trailing edge losses. The difference between entropy from
inlet to a plane at the trailing edge accounts for the profile losses
while the difference between the plane at the trailing edge and the
outlet plane is due to the trailing edge losses. By subtracting the
values obtained from model two and model three, endwall losses
can be evaluated.

A complete loss breakdown structure of the reference and opti-
mized blades for the three blends are summarized in Fig. 12 where
the losses due to stator endwall, stator profile, stator trailing edge
(STE), rotor endwall, rotor profile, rotor trailing edge (RTE), and
tip clearance are presented. The reference points show a high
entropy increase relative to the optimized blades for all the

Journal of Engineering for Gas Turbines and Power

Table 7 Properties of the three mixtures at the inlet conditions

SO, CeFe TiCly
Molar fraction (%) 30 14.5 17
Density (p) (kg/m?) 146.6 185.4 200.5
Dynamic viscosity (1) (Pa-s)  4.70 x 10°  5.05%x107°  511x107°

Table 8 Loss breakdown approach by De Servi et al.

Model Description

Model 1: standard model Total entropy increase (inlet to outlet)

Model 2: no tip clearance Entropy increase across stator
and rotor individually from inlet to outlet

Model 3: no tip
clearance/endwall

Entropy increases from inlet to location
at the trailing edge and from trailing edge to an
outlet for stator and rotor blades

working fluids with the highest value for the SO, design followed
by C¢Fg and the TiCly, respectively. By looking at the SO, design
it could be seen that both stator and rotor loss components are
reduced with a dominant reduction in the stator endwall, stator
trailing edge, and rotor endwall losses. Similar findings are
recorded for the Cg¢Fg design, however, the reduction in the tip
clearance is substantial. For the TiCl, design, tip clearance losses
are increased, but with a reduction to stator endwall, stator profile,
stator trailing edge, rotor endwall, and rotor trailing edge losses.
The differences between reference and optimized loss break-
down components for the three blends have shown that the blade
profile generated using the mean-line design is not ideal and
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Fig. 11 Entropy distribution along the normalized axial direc-
tion for the first stage from inlet to outlet for different blends
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generates large secondary flows and vortices compared to the opti-
mized profiles as noted from the reduction in secondary flows and
profile losses. The trailing edge losses also show a reduction in
both the stator and rotor blades indicating an over estimation of
trailing edge blade thickness within the mean-line design model;
however, trailing edge losses are not overly dominant. The tip
clearance shows minor changes due to design optimization which
means that it cannot be improved using profile modifications; this
is expected as tip clearance losses are mainly due to the tip gap
thickness and the stage pressure ratio [40].

The contribution of each source of loss to the total acrodynamic
performance is summarized in Table 9 where it is observed that
the largest portion is due to tip leakage and the smallest portion is
due to trailing edge loss. The endwall and profile losses are similar
in most of the designs, although the endwall losses are higher than
the profile losses in the reference design point. However, the opti-
mized designs show less endwall losses indicating that the end-
wall losses are more affected by the optimization process.

4.3 Sensitivity of Output Components. The number of deci-
sion variables needed to represent a single blade profile is rela-
tively large, and this does not account for the blade shape radial
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Fig. 13 Local sensitivity of objectives and constraints: (a) total-to-total efficiency, (b) mass flow rate, (c) stator
maximum equivalent stress, and (d) rotor maximum equivalent stress
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Table 9 Relative loss breakdown by component

SO, reference SO, optimum CgFg reference CgFg optimum TiCly reference TiCl, optimum
Endwall 27.9% 22.2% 31.2% 20.5% 29.7% 17.6%
Profile 21.9% 23.8% 20.2% 23.9% 21.5% 20.1%
Trailing edge 15.4% 10.5% 13.5% 11.8% 13.7% 9.0%
Tip clearance 34.8% 43.5% 35.1% 43.8% 35.0% 53.3%

variation which could imply increasing the number of decision
variables by a factor of two or three to obtain a full representation
of a single blade. Thus, to make the optimization process more
effective and accurate, particularly considering an extension to
multiple stages, the number of decision variables should be lim-
ited to the most dominant variables. To this end, a sensitivity anal-
ysis has been performed to assess the importance of each input
variable so that dominating parameters are established. The sensi-
tivity of the output objectives and constraints to the 11 input varia-
bles used in this study is given in Fig. 13. The sensitivity of total-
to-total efficiency is shown in Fig. 13(a) where the most dominant
parameters are the stator and rotor blade angles near the trailing
edge and the second midpoint on the angle distribution curve
(point 3), as well as the outlet angles. Less dominant parameters
affecting the efficiency, but non-negligible are the thickness
points at the second half of the airfoil near the trailing edge
(points 3 and 4). The other parameters also affect the efficiency;
however, these are not significant. This indicates that the selected
decision variables in this study are of reasonable importance, as
anticipated during the initial selection process of variables. The
local sensitivity of the mass-flow rate is shown in Fig. 13(b) where
the dominant variables are mainly the blade angles within the sec-
ond half of the airfoil (points 3 and 4). The stator and rotor blade
angles at points 3 and 4 are also found to be important in deter-
mining the stator and rotor peak stresses. In addition, the local
sensitivity of stator peak stress shown, as shown in Fig. 13(c), is
affected by the thickness distribution parameters of the stator (St3
and St4) while the rotor peak stress, as shown in Fig. 13(d), is
affected by the thickness distribution parameters of the rotor (Rt3
and Rt4).

5 Conclusion

The blade shape optimization of three turbine designs operating
with CO, blended with TiCly, C¢Fg, or SO, has been presented.
Comparing the reference and optimized blade geometries has
revealed guidelines for improving the efficiency of the stage by
reducing aerodynamic losses. The common adjustments are
decreasing stator and rotor trailing edge thickness, increasing sta-
tor thickness near the trailing edge, decreasing rotor thickness
near the trailing edge, and decreasing the rotor outlet angle.

The accuracy of the surrogate model has been improved by
defining a number of refinement points alongside the initial learn-
ing points created using the design of experiments to improve the
model accuracy. The optimized designs generated using the surro-
gate model have shown a deviation from the physical model in
total-to-total efficiency of less than 0.3%, and a deviation in mass-
flow rate and peak stresses of less than 1% in all the design cases.

The optimization results have shown an improvement in the
aerodynamic performance of the three designs with efficiency
increases of 2.54 pp, 2.06 pp, and 1.76 pp for the sCO,—SO,,
sCO,—CgFg, and sCO,-TiCl, designs, respectively, while the
mass-flow rate is kept within 2% of the design value and peak
stresses are limited to 400 MPa. The results have shown that the
optimized blades are achieved at a degree of reaction, flow coeffi-
cient, and loading coefficient around 0.63, 0.52, and 1.1, respec-
tively, compared to design values of 0.5, 0.5, and 1.0,
respectively. Assessing the loss breakdown reveals that the
improved performance is mainly due to minimizing the endwall
and profile losses for both the rotor and stator blades. However,
the reduction in endwall losses is the most dominant.

Journal of Engineering for Gas Turbines and Power

Additionally, a sensitivity analysis has revealed that the design
variables with the most significant impact on the total-to-total effi-
ciency are the stator and rotor blade angles within the second part
of the airfoil, which have also shown a significant effect on the
mass-flow rate and peak stresses. The airfoil thickness near the
trailing edge of the stator and the rotor dominate the stator and
rotor peak stresses, respectively.

Ultimately, the results from this study have shown the validity
of the approach taken by the authors in designing this type of tur-
bine with novel working fluids, for which the available loss mod-
els are not tested or calibrated. In addition, it is found that the
sensitivity of the aerodynamic and structural performance parame-
ters to the blade thickness at and near the leading edge of both
rotor and stator blades are low, and hence variables controlling
these aspects could be omitted in future studies. The number of
decision variables applied using the proposed methodology is rec-
ommended to be kept less than 11 in order for the surrogate model
to accurately represent the physical CFD/FEA model, without
requiring excessing computational power.
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