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ABSTRACT Efficient management of computational resources and data in the healthcare sector is
increasingly challenging, particularly with the advent of advanced healthcare technologies. Effective task
offloading mechanisms are crucial for enhancing system performance, patient care, and data security. This
study aims to introduce and evaluate a novel framework for task offloading in healthcare environments.
The framework seeks to address real-time healthcare demands through dynamic offloading strategies,
incorporating digital twins (DT) and social health determinants to personalise and improve healthcare
interventions. Employing both partial and binary offloading strategies, multi-protocol communications are
supported by the framework, ensuring seamless data exchange. The integration of DT and social health
determinants into offloading decisions stands at the core of the methodology, rigorously tested in real-
time settings. Iterative testing confirms the framework’s effectiveness, demonstrating a 10% enhancement
in energy efficiency and a 20% reduction in network latency with 20 MEC nodes. The inclusion of 30 MEC
nodes further reduced latency by 33.4% and power usage by 53.8% for data sizes up to 100 MB, evidencing
significant advancements in healthcare technology integration. A significant gap in existing literature is
bridged, and a new trajectory for technological innovation in healthcare systems is set by the research.
The study underscores the potential of sophisticated offloading techniques to revolutionise healthcare
delivery, offering a holistic solution to the challenges of data and computational management in medical
contexts.

INDEX TERMS Adaptive cybersecurity task offloading (ACTO), digital twins healthcare, energy efficiency
in healthcare systems, predictive healthcare interventions, social health determinants.

I. INTRODUCTION
The convergence of healthcare and technological innovation
has seen exponential growth, fueled by the continuous
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quest for efficiency, precision, and personalised treatment.
As this evolution unfolds, the pressing challenge of handling
extensive data volumes and computational demands becomes
more acute. In response, task offloading the calculated
transfer of computational activities from devices with limited
resources to more robust systems has surfaced as a crucial
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strategy. Nevertheless, the specific demands and critical
nature of healthcare applications call for novel offloading
methods that go beyond conventional approaches [1], [2].

Anticipated to redefine connectivity, the imminent 6G
network promises comprehensive global coverage, spanning
terrestrial, aerial, and maritime domains [3]. This revolu-
tionary network aims to substantially elevate transmission
rates, minimise delays, bolster reliability and connectivity,
and enhance spectral and energy efficiencies, thus serving
the diverse needs of assorted sectors [4], [5]. Central to this
innovation is mobile edge computing (MEC), which shifts
computational and storage solutions from the central cloud
to the network fringe, reducing the gap to users and thereby
speeding up service provision [6], [7].

The imperatives of real-time data processing and energy
efficiency in healthcare informatics demand an exceptional
framework for task offloading. Such a platform should not
only outperform others in computational speed and energy
preservation but should also guarantee the safety and privacy
of health-critical data in the context of healthcare’s inevitable
variability. The use of digital twin (DT), with the social
determinants of such variation in healthcare, is a novel step
in enhancing the personalisation and efficiency of therapies,
a factor seldom addressed in current offloading schemes.

In this regard, a complex task offloading framework is
presented, carefully crafted to be in harmony with the unique
environment of the healthcare sector. The framework is
a symphony of partial and binary offloading techniques
adjusted in real time to the needs of the sector. The framework
heralds the advent of employing DT for prescient analytics
and assimilating social health determinants into offloading
processes, charting a path towards a more nuanced and
proactive healthcaremodality. Furthermore, the integration of
multi-protocol communications within a healthcare purview
is at the vanguard of the study, thereby fortifying the continu-
ity of data streams and augmenting the operational efficiency
of emergency responses. The cornerstone contributions of
this inquiry include:

1) Introducing a bespoke amalgamation of partial and
binary offloading strategies, tailored to meet the
computational and functional requisites of healthcare
applications.

2) Pioneering the integration of DT and Social Health
Determinants into offloading deliberations, fostering
preemptive health interventions and personalised patient
treatment paradigms.

3) Demonstrating the pragmatic efficacy of the Digital
Twin Healthcare Enhanced Asynchronous Team-Based
Multi-Agent Proximal Policy Optimisation (DTH-ATB-
MAPPO) within real-world healthcare settings, this
study evidences its superiority over existing methodolo-
gies in terms of rapid convergence and optimisation of
rewards.

4) The paper incorporates new aspects of DT adoption in
refiningMEC systems. It boasts a significant percentage

of improvement, including network latency and energy
consumption.

5) Constructing experimental frameworks that are ade-
quately linked to the theoretical groundwork and
implemented practically for experimental research, and
supported by simulation data of several operational
cases.

6) The innovation of Adaptive Cybersecurity TaskOffload-
ing (ACTO) is included in the work. Adaptive protection
functions along with exact matching technology have
been utilised by the ACTO algorithm to identify threats
and respond with adaptive cybersecurity mechanisms
without sacrificing computational and storage abilities,
based on the scope of protection required.

These aspects are the cornerstone of the research work since
they all aim at hornring the security feature in healthcare
informatics. Therefore, the research is tailored to contribute a
major advancement in the field of healthcare technology since
it addresses every aspect involved with the management of
medical systems, such as data and computational platforms.
Hence, this research will serve as a bridge in distinguishing
the most beneficial way of integrating advanced computa-
tional and communication systems to enhance healthcare
service delivery and patient care.

The remainder of this paper is structured as follows: In
Section II, the background and foundational concepts of DT
with edge network are discussed. Section III reviews relevant
literature. Section IV outlines the proposed system model
and problem formulation. In Section V, the approach to
secure data offloading in healthcare informatics is detailed.
Simulation results are discussed in Section VI, followed
by an examination of the optimisation of MEC systems
using DT technology in Section VII. The paper concludes in
Section IX, summarising the findings and their implications
for future research.

II. BACKGROUND
Although current studies on MEC primarily tackle the
trade-offs between energy consumption and latency through
strategic caching and offloading [8], [9], the rise in
data-intensive applications underlines the challenge for
individual mobile edge servers (MESs) in multitasking. This
scenario highlights the essential role of edge collaboration in
overcoming the constraints of singular MESs by leveraging
spare network capacity for enhanced efficiency in power and
time [10].

The expansion of collaborative frameworks raises signifi-
cant security concerns, particularly when certain nodes may
be vulnerable or compromised, leading to severe repercus-
sions such as data breaches or message corruption when
selected byMobile Users (MUs) for offloading tasks. Further-
more, although artificial intelligence (AI) has been successful
in different industries, it has seen challenging deployments in
MEC, particularly for MUs via resource scheduling and task
offloading due to the small storage and computational power

90354 VOLUME 12, 2024



A. K. Jameil, H. Al-Raweshidy: AI-Enabled Healthcare and Enhanced Computational Resource Management

of MS, making the AI poor-functioning [11], [12]. Contrary
to the struggling technologies, DT is a unique invention that
bridges the physical objects and virtual world by aiding in
setting the optimal MES and enhancing task offloading using
AI [13], [14], [15].

By providing huge sets of real-time data, data streaming
technology (DST) can help monitor MUs adequately and
enable them to make requisite decisions, which can enhance
the network’s total quality and AI accuracy. Combining
MEC and DST in creating the Digital Twin Edge Network
(DTEN) is a game-changer concept aimed at shaping
the future of edge computing by making task offloading
possible and intelligent, thereby promoting service efficiency.
Unlike other technologies, which have undergone significant
research and are at their maturity stage, the integrated
concepts have a bright future since they can enhance data
safety, promote network quality, and minimize operational
expenses [16], [17]. Integrations focusing on reducing the
DTEN latency, especially duringMUmovement, are ongoing
areas of concern [18].

III. RELATED WORK
In the realm of healthcare, the imperative for data pro-
cessing proficiency and energy management in medical
devices has gained unprecedented academic attention. This
growing field of inquiry extends across task offloading,
DT technologies, and the inclusion of social determinants
in health informatics. The academic conversation highlights
notable progress in all three areas and recognises continuing
gaps [19].

In a novel research by Jeremiah et al., DT-assisted vehicu-
lar edge computing was studied to empower network services
via edge cooperation and accurate resource allocation. The
process feasibility based on non-orthogonal multiple access
and dynamic selection of the roadside unit by using the
channel state information was verified. In addition, they
investigated the management of more complex optimisation
responsibilities of task offloading, decision-making, sub-
channel assignment, and RSU connection operations with
a complex high-level policy gradient algorithm such as
the Advantage Actor-Critic algorithm. This study is being
conducted concurrently with the work of Qiu et al., who
are testing an offloading approach for DT-assisted edge
computing that uses the IBMPA to rapidly and effectively use
available energy and computational capability while abiding
by a stringent time limit [20], [21].
Advancing the conversation, Bozkaya et al. introduced an

energy and delay-aware task computation offloading scheme
within DT-enabled networks, incorporating blockchain for
enhanced security, thus demonstrating the scalability and
efficacy of their method [22]. Zhao et al. created IGNITE,
an intelligent partial offloading scheme that uses DT
networks along with an advanced clustering algorithm,
significantly improving system computational costs, delay,
and offloading success rates compared to existing methods
[23].

In their effort to improve blockchain performance for
IoT systems, Cui et al. proposed a many-objective opti-
mised sharding scheme designed to reduce latency, enhance
energy efficiency, minimize failure probability, and increase
throughput through a novel edge computing architecture [24].
In tandem, Chen et al. explored a computation offloading
and service caching strategy predicated on A3C (Asyn-
chronous Advantage Actor-Critic) and dependency-aware
considerations within DTEN, which demonstrated significant
enhancements in energy efficiency and overall system
performance [25].

The study by Li et al. on adaptive DT frameworks
for UAV-assisted networks highlights integrated sensing,
communication, and computation to tackle multi-objective
challenges such as beam pattern performance and offloading
energy consumption, using multi-agent proximal policy
optimization (MAPPO) to refine decision-making in dynamic
network conditions [26]. Furthermore, Zhang et al. proposed
a two-tier DT model for adaptive server deployment in
dynamic edge networks within IoT systems, aiming to
enhance real-time monitoring and optimisation of network
states [27].
Eldeeb et al. exploration into the integration of DT

technology with optical wireless communication (OWC)
systems presents a pioneering study on enhancing 6G
networks. They discuss how DT technology can significantly
bolster the reliability and efficiency of OWC systems, crucial
in the advent of smart and autonomous systems [28].

Yang et al. explored the deployment of human digital twins
at the network edge to enhance task execution through a
two-timescale accuracy-aware online optimization approach
termed TACO. This method dynamically addresses both large
and small timescale decisions, demonstrating significant
improvements in task execution accuracy, response time, and
energy efficiency [29].

Addressing the gaps identified in the reviewed litera-
ture, a comprehensive task offloading framework tailored
for healthcare applications is introduced. This framework
dynamically opts between partial and full offloading while
integrating DT and social determinants into the decision-
making process. Distinguished by its robust support for mul-
tiple protocols within the healthcare sector, energy-efficient
algorithm optimised for medical devices is incorporated
into the framework. Additionally, the ACTO algorithm is
employed to identify threats and respond with adaptive cyber-
security mechanisms. Through meticulous evaluation, the
framework’s superior efficacy in augmenting computational
efficiency, conserving energy, and elevating patient outcomes
is delineated, thereby marking a significant advancement
in harmonizing technology with healthcare and paving new
avenues for research and application.

IV. SYSTEM MODEL AND METHODOLOGY
A. SYSTEM OVERVIEW
This section delineates the comprehensive framework and
methodologies employed to address the challenges of task

VOLUME 12, 2024 90355



A. K. Jameil, H. Al-Raweshidy: AI-Enabled Healthcare and Enhanced Computational Resource Management

FIGURE 1. Schematic of intelligent task offloading in DT-Enhanced healthcare monitoring systems.

Algorithm 1 Healthcare Task Offloading Strategy
Require: TaskList, DeviceStatus, NetworkStatus,

DigitalTwinStatus
Ensure: OffloadingDecisions

Initialize OffloadingDecisions as an empty list
for each Task in TaskList do
Compute OffloadingNecessity (Ni) using Eq. (1)
Determine OffloadingDecision (Oi) using Eq. (2)
if Task is divisible then
Compute PartialOffloadingFraction (Pi) using Eq. (3)

if Pi > 0 then
Offload a fraction Pi of Task to the edge/cloud

else
Process Task locally

end if
else

if Oi == 1 then
Fully offload Task to the edge/cloud (Binary
Offloading)

else
Process Task locally

end if
end if
Update OffloadingDecisions with decision for Task
Incorporate DigitalTwin and SocialHealthDeterminants
in decision-making
Adjust OffloadingNecessity (N ′i ) using Eq. (4)
Re-evaluate OffloadingDecision based onN ′i and update
OffloadingDecisions

end for
return OffloadingDecisions

offloading in healthcare environments. The approach is
underpinned by a multi-faceted system model designed
to facilitate efficient data processing, energy conservation,
and enhanced healthcare delivery through intelligent task
offloading.

Fig. 1 appears to illustrate a schematic representation of
a Digital Twins Network Model for Healthcare Monitoring

(DTNMHM). This model integrates various technological
components and processes to enhance healthcare data anal-
ysis and patient monitoring through a systematic approach.

Indeed, this model’s core is the healthcare devices compris-
ing various critical biometric sensors andmedical instruments
that measure health-related data on patients. This health data
from the patients is collected in the edge computing close
to the data source, facilitating localised data processing.
Therefore, real-time analytics are supported, and latency is
reduced, further improving speed and response of the health
system. Secondly, this health data is then assimilated into
the digital model, which is a fundamental component of the
so-called digital twins. It consists of a software representation
that is excessive in detail and extremely dynamic with
the physical devices. The type of data incorporated into
the model include Magnetometer readings, Temperature
& Humidity (T&H), Barometer readings, Motion, Body
Temperature (BT), SpO2 & HR, Gyroscope, and past
historical occurrences. This factor modulates the system and
enables comprehensive analysis, simulation, and forecasting.
Additionally, Fig. 1 below depicts the DTNMHM represented
as follows, including;

• Predicted data: where the system uses the model to
forecast the future state of the devices considering the
energy consumption and the level of latency to be
realized.

• Network topology: this model checks the wave the
network is structured and connected from device to
device. It is dire for optimizing the flow of data and
minimizes bottlenecks.

• Channel condition and ACTO: This aspect focuses
on upholding data integrity and security, ensuring
reliable data transmission, and safeguarding patient
confidentiality.

• Sequence model: This likely refers to the order in which
data is processed or actions are executed, ensuring an
efficient flow of operations.

• Feedback data is then used to inform and update the
virtual model, thereby creating a loop of continuous
improvement.
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FIGURE 2. Scenario of integrated DT for real-time healthcare monitoring and emergency response network.

On the right side of Fig. 1, the State involves task
offloading strategy, enhancing transmission rates (η), and a
decision support system, which makes critical decisions on
offloading tasks to balance the load on the system, potentially
improving computational efficiency and reducing response
times.

Multi-Agent Proximal Policy Optimisation (MAPPO) is
an advanced reinforcement learning algorithm designed for
environments with multiple agents. Decisions made by each
agent aim to maximise cumulative rewards while taking into
account the actions and policies of other agents. In healthcare,
MAPPO optimises the distribution of computational tasks
across various devices and servers, ensuring efficient use
of resources and improved system performance. Actions
within this framework include task offloading, transmis-
sion rate adjustment, and task sequence offloading, all
intended to optimise the healthcare monitoring network’s
performance. The reward mechanism, represented by the
DTH-ATB-MAPPO agent, adjusts system strategies based
on performance rewards, thus continuously refining the task
offloading process.

The Algorithm 1 meticulously orchestrates the offloading
of computational tasks within healthcare settings, ensuring
optimal utilisation of computational resources and enhancing
system responsiveness. Initiated by evaluating each task in
a predefined list, the algorithm computes the necessity for
offloading based on specific criteria, such as computational
demand and device energy levels. For tasks deemed divisible,

a calculated fraction is offloaded to the cloud or edge servers,
thereby balancing local processing load and cloud reliance.
Non-divisible tasks undergo a binary decision-making pro-
cess to determine if offloading or local processing is more
efficient. Moreover, the algorithm ingeniously incorporates
DT accuracy and social health determinants, adjusting the
offloading necessity to reflect a nuanced understanding
of healthcare requirements. This innovative modification
guarantees that not simply do the decisions weigh on the
side of computational efficiency and energy conservation,
but they also correspond to personalized health interventions.
Ultimately, it contributes to a solidified list of offloading
decisions that enhance system performance and health care
distribution. Fig. 2 represents the sophisticated mechanism
of the proposed system, in which digital and physical
bodies concur in real-time to help monitor the health
of patients and instantly react to emergencies. In this
system, DT technology is smartly used, mimicking the
real health care atmosphere to guarantee the simulation
and extensive study of health-related data and to enhance
patient supervision. The visualisation proficiently represents
the dynamic interplay amongst patients, healthcare centres,
relatives, and emergency vehicles, all interconnected through
a seamless data exchange facilitated by cloud computing.
Such integration is depicted as quintessential in emergency
scenarios, where expedited and precise decision-making is
of the utmost importance. The passive representation not
only corroborates the innovative task offloading framework
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expounded within the accompanying text but also sub-
stantiates the incorporation of DT alongside social health
determinants, thereby reinforcing the potential to enhance
healthcare delivery systems significantly.

Central to the model is the layered architecture of the
DTH, shown in Fig. 3, which specifies the integration of data
modalities and computational processes. The fundamental
layer, the patient data repository, ensures a solid collection
of electronic health records (EHR) combined with wearable
device data and genomic data. The extensive compilation of
data is critical to providing a complete picture of a patient’s
health and serving as the basis for the subsequent layers of
analysis and simulation.

FIGURE 3. Framework of DTH layers for optimised data processing and
management.

In improvement of the health modelling and simulation
layer. Ascent to the health modelling and simulation layer
incorporates dynamic health modelling and patient health
models that enable the projection of health trajectories
and downstream treatment results. This feeds into the AI
and machine learning (ML) algorithms layer. The health
modelling and simulation layer is improved by the AI and
ML algorithms layer, which includes intricate algorithms.
The uppermost layer, optimal health strategy, translates these
computational insights into actionable strategies for treatment
optimisation, prevention, and resource allocation. Signifi-
cantly, it incorporates computation offloading decisions to
navigate the computational constraints inherent in processing
the extensive data derived from the lower layers.

The parameters integral to the task offloading strategy are
summarised in Table 1. Each parameter is associated with a
symbol and a description, which collectively serve to quantify
the computational requirements, data size, energy considera-
tions, and various other metrics relevant to task offloading
in the healthcare context. Understanding the algorithms and
decision-making processes underlying the proposed model
requires these essential parameters. The notations defined
herein are employed consistently to analyse the performance
and effectiveness of the task offloading strategy within the
DTH framework, thereby allowing for a clear and systematic
presentation of results and discussions. The established
notations will be referenced throughout the ensuing discus-
sion on system optimisation, algorithmic development, and
evaluation. The nomenclature facilitates the delineation of

complex algorithms and the relationships between various
elements within the proposed system, ultimately supporting
the explication of the novel task offloading framework.

B. TASK OFFLOADING STRATEGY
In task offloading, partial offloading refers to the process
where a portion of the computational task is offloaded to
an edge server or the cloud, while the remaining part is
processed locally on the device. This strategy is useful when
tasks have segments that are more efficiently processed in
different environments. Binary offloading, on the other hand,
involves either entirely offloading the task to an external
server or processing it entirely on the local device. The
decision between partial and binary offloading depends on
factors such as network conditions, energy constraints, and
computational requirements.

In DTH systems, efficient task offloading is imperative to
ensure that computational burdens are managed effectively,
given the limited processing capabilities of medical devices
and the exigency of real-time data analysis. Task offloading
is predicated on a nuanced assessment of device status
and task requisites. Consider a task Ti, characterised by
its computational requirements Ci and data size Di. The
offloading necessity Ni for task Ti on device d is determined
by the following expression:

Ni = αCi + βDi + γEd , (1)

where Ed represents the residual energy of device d , and
α, β, γ are predetermined weighing factors that reflect the
importance of computation, data, and energy, respectively.

Decisions regarding offloading in this framework are
influenced by factors like network latency, energy efficiency,
and availability of computational resources. Also, the speed
of healthcare data processing is directly impacted by network
latency; lower latency results in quicker response times in
critical situations, thus enhancing patient outcomes. The
longevity of medical devices is ensured by energy efficiency,
as efficient energy use allows continuous monitoring and
reduces the risk of device failure during crucial periods.
The capability to handle intensive computational tasks is
determined by the availability of computational resources at
edge nodes and cloud servers, ensuring that healthcare appli-
cations run smoothly without interruption. By dynamically
adjusting offloading decisions based on real-time data and
these influencing factors, system performance is optimised,
and overall healthcare delivery is enhanced through timely
and accurate data processing, which is essential for effective
patient care and intervention.

The digital twin model of task offloading showcases
how theoretical models and computational strategies can
be practically applied to enhance healthcare operations,
illustrating a proactive approach to patient care and system
management. This framework categories the two former
offloading strategies partial and binary based on the divisibil-
ity and priority of the tasks. The following formulations help
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TABLE 1. Notational index of task offloading parameters in DTH systems.

optimise the offloading process by minimising latency and
energy consumption while enhancing healthcare efficiency:
1) Binary offloading for indivisible Tasks:

Oi =

{
1 if Ni > θ and Snet ≥ σ.

0 otherwise.
(2)

2) In the first case, if a task Ti is divisible, the fraction of it
to be offloaded Pi is calculated as:

Pi = min
(

Ni − θ

Nmax − θ
, 1
)

, (3)

where Ni is the necessity of offloading a task and θ

threshold, and Nmax the maximum necessity among all
tasks.

3) The necessity for offloading task Ti, denoted as N ′i ,
is adjusted to incorporate the accuracy of DT and social
factors in the offloading process to individual patient
contexts in healthcare as follows:
To incorporate the accuracy of DT and social factors as
follows:

N ′i = Ni + δ · Adt + ϵ · Sf , (4)

where δ and ϵ symbolize the respective weights
accorded to the accuracy of the DT (Adt ) and the
relevance of social factors (Sf ).

The optimisation goals aim to reduce latency and energy con-
sumption while enhancing healthcare efficiency, formalised
in the objective function:

min
Oi

(λ1 · Tdelay + λ2 · Econsumption − λ3 · Hefficiency), (5)

where Tdelay, Econsumption, and Hefficiency represent delay,
energy consumption, and healthcare efficiency, with λ1, λ2,
and λ3 as the corresponding weighting factors.

The performance metric Poverall of the offloading strategy
efficacy is evaluated as follows:

Poverall = ω1 · Tdelay + ω2 · Econsumption + ω3 · Hefficiency,

(6)

followed by which the performance indicators are evaluated
with weighting factors ω1, ω2, and ω3. This evaluation would
provide immense importance in determining and validating
the efficacy of the offloading strategy practically in healthcare
sectors.

C. DIGITAL TWIN HEALTHCARE MODEL OF TASK
OFFLOADING
A digital twin is a virtual representation of a physical
entity or system. In healthcare, digital twins can be used
to model patients, medical devices, or healthcare processes.
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These virtual models are continuously updated with real-
time data, allowing for predictive analysis and personalized
treatment plans. By simulating various scenarios, digital
twins help healthcare providers make informed decisions
and improve patient outcomes. The recent advancements
have highlighted the significant role of DT applications in
enhancing operational decision-making and competitiveness
within the sugar and ethanol industry [30], showcasing the
DT model’s adaptability and value across diverse industries.
Additionally, the incorporation of DT in healthcare for
personalised treatment planning [31] and facility manage-
ment [32] demonstrates its potential in improving therapeutic
outcomes and operational efficiency, thereby affirming the
model’s versatility and applicability in tackling complex
challenges across various domains.

Building on this foundation, the study specifically focuses
on the integration of DT models within the healthcare sector.
In elucidating the mathematical underpinnings of the DTH
framework, sensor-derived data is integrated with compu-
tational fluid dynamics principles to establish a coherent
linkage between unprocessed sensor data and sophisticated
computational interpretations.

The DT model integrates real-time data from healthcare
devices and simulates various scenarios to optimise task
offloading.

This model includes:

• Health data collection: Collect data from biometric
sensors and medical instruments.

• Data assimilation: Integrate health data into a digital
model for comprehensive analysis.

• Predictive analytics: Use the model to forecast future
states of healthcare devices, considering energy con-
sumption and network latency.

• Feedback loop: Continuously update the model with
new data to refine predictions and improve decision-
making.

The following delineations expound upon this integration:
1) Formulations for body temperature modulated by heart

rate and motion activity:

BT (t) = BT0 + α1 · HR(t)+ α2 ·M (t), (7)

where α1 and α2 are coefficients representing the
influence of heart rate and motion on body temperature,
respectively.

2) Dynamics of oxygen saturation (SpO2) relative to heart
rate and barometric pressure:

SpO2(t) = SpO20 + δ1 · HR(t)− δ2 · B(t), (8)

wherein δ1 and δ2 elucidate the modulation of oxygen
saturation by heart rate and barometric pressure, respec-
tively. An increase in heart rate typically leads to a
decrement in SpO2, and an ascent in altitude–implicitly
correlated with a reduction in barometric pressure–tends
to lower SpO2 as well.

3) Modulation of sleep patterns by ambient light:

S(t) = S0 − ϵ1 · L(t) (9)

Here, L(t) denotes the intensity of light exposure,
and S(t) represents the state of sleepiness or alertness
at time t . The coefficient ϵ1 quantifies the effect of
light exposure on sleepiness, implying that heightened
exposure to light tends to diminish sleepiness (thereby
augmenting alertness).

4) Impact of environmental variables on respiratory well-
being:

Rl(t) = R0 + ζ1 · H (t)+ ζ2 · T (t) (10)

The variable Rl(t) denotes the level of respiratory
comfort or discomfort experienced at time t , with
ζ1 and ζ2 representing the contributions of humidity
and temperature to respiratory health, respectively.
Elevated levels of humidity and temperature are likely
to exacerbate respiratory discomfort, particularly in
individuals with pre-existing respiratory conditions.

5) Magnetometer influence on medical devices:

D(t) = D0 − η1 ·Mag(t) (11)

In this model, D(t) encapsulates the functionality status
of a medical device at time t , with η1 delineating the
impact of magnetic fields on medical device operations.
Exposure to intense magnetic fields may compromise
the functionality of certain medical devices.

6) Cybersecurity error metrics: The following equations
define the error in sensor readings at time t attributable
to possible cybersecurity vulnerabilities:
• EBT (t): Error in body temperature reading due to
cybersecurity threats.

• EHR(t): Error in heart rate reading due to cybersecurity
threats.

• ESpO2(t): Error in oxygen saturation reading due to
cybersecurity threats.

• EM (t): Error in motion sensor reading due to cyberse-
curity threats.

• EB(t): Error in barometric pressure reading due to
cybersecurity threats.

• EL(t): Error in light exposure reading due to cyberse-
curity threats.

• EH (t): Error in humidity reading due to cybersecurity
threats.

• ET (t): Error in ambient temperature reading due to
cybersecurity threats.

• EMag(t): Error in magnetometer reading due to
cybersecurity threats.

7) Reliability Assessment: To evaluate the integrity of data,
a reliability score R(t) for the DT at any given moment
t can be computed. This metric is a synthesis of the
assorted error terms:

R(t) = f (EBT (t),EHR(t),ESpO2(t), . . . ,EMag(t)) (12)
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For example, should all error terms equal zero (or remain
beneath a specific threshold), R(t) would approach 1,
denoting complete data trustworthiness. On the other
hand, increasing the sizes of the errors will result in a
decrease in R(t). Such a trend reveals the weakening of
the data reliability.

V. HEALTHCARE INFORMATICS: SECURE DATA
OFFLOADING
As the field of healthcare informatics continues to grow and
develop, promoting data integrity and the rapid processing of
data is critical. The ACTO algorithm is suitable for this role
because it is a strong, secure, and effective framework for
DTH task offloading. ACTO is centred on cybersecurity and
addresses growing issues of threats to digital health systems.

Furthermore, the ACTO algorithm also encompasses the
dynamic security assessment and strategic task allocation that
further its efficiency in operation and maintenance of security
needs. ACTO can automatically adapt to the frequent changes
in status of networks and security threats, thus aiding in
the compliant path for computational offloading that offers
the security for private patient health data and also reduces
latency and power.

The inclusion of ACTO algorithm addresses various
security threats prevalent in healthcare settings. These threats
include:
1) Data breaches: Unauthorised access to sensitive patient

data leads to privacy violations and data theft. By con-
tinuously monitoring the network for unusual activity
and dynamically adjusting security protocols, potential
breach points are identified and mitigated by ACTO.

2) Malware and ransomware attacks: Such attacks can dis-
able critical healthcare systems, resulting in operational
downtime. ACTO employs real-time threat detection
mechanisms that isolate and neutralise malicious soft-
ware before network infiltration occurs.

3) Man-in-the-middle (MITM) attacks: These attacks
intercept communications between healthcare devices
and servers. By securing communications through
encryption and continuously monitoring the integrity of
data exchanges, ACTO ensures that any anomalies are
promptly detected and addressed.

4) Denial of service (DoS) attacks: Such attacks can over-
whelm healthcare systems, rendering them unavailable
for legitimate use. Service availability during attacks is
maintained by ACTO through adaptive load balancing
and strategic resource allocation.

The ACTO algorithm adaptively responds to the dynamic and
often unpredictable security landscape in healthcare environ-
ments. Its effectiveness has been validated through simula-
tions and practical implementations in various scenarios:
• Real-time adaptation: The current threat landscape is
continuously assessed by ACTO, and security measures
are adjusted in real-time. Computational resources are
reallocated and offloading decisions are modified to
enhance security without compromising performance.

Algorithm 2 Adaptive Cybersecurity Task Offloading
(ACTO)
Require: System status, task list, MES security ratings,

attack probabilities
Ensure: Offloading decisions, Power consumption, Latency
1: Initialize system parameters α, β, γ, θ, σ

2: for each task Ti in task list do
3: EvaluateCi,Di {Computational requirements and data

size of Ti}
4: Retrieve Si {Security rating for MEC i}
5: Calculate Pattack,i {Probability of MES i being

attacked}
6: Ni ← αCi + βDi + γ Si {Offloading necessity based

on security}
7: if Ni > θ and Si ≥ σ and Pattack,i is minimal then
8: Oi← 1 {Offload task to MEC i}
9: else

10: Oi← 0 {Process task locally}
11: end if
12: Calculate power consumption and latency for task Ti

based on Oi
13: end for
14: Adaptively update α, β, γ based on system feedback
15: return Offloading decisions, Power consumption,

Latency

• Empirical validation: In real-world scenarios, ACTO
demonstrated the capability to maintain low latency
and high energy efficiency while countering security
threats effectively. During simulated malware attacks,
ACTO was able to isolate affected nodes and reroute
tasks, maintaining system integrity and operational
continuity.

• Comprehensive protection: By integrating multiple
security protocols and adaptive decision-making pro-
cesses, ACTO provides robust defence against a wide
range of cyber threats. Its ability to learn and adapt
to new threats ensures that security measures remain
effective as the threat landscape evolves.

A. SECURING DATA OFFLOADING IN HEALTHCARE
Fundamentally, ACTO is an integrated decision-making
matrix that uses computational requirements of a task,
the amount of data involved, and the risk of security
breaches that might be involved in every task. The use of
real-time automated system feedback integrates across these
three dimensions to generate an agile yet future-oriented
decision-making matrix. The Algorithm 2 is flexible and
can alter its security position to match that of the evolving
MEC and the present status of the system, it can adjust
offloading decisions smoothly. The result is that ACTO
remains a true fortress of cybersecurity, allowing for efficient
computing without jeopardizing the sanctity of patient
information.
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B. ADAPTIVE REFINEMENT AND FEEDBACK
MECHANISMS
In pursuit of optimising the ACTO algorithm’s performance
within the dynamic landscape of healthcare informatics,
a dual-faceted approach encompassing both strategy refine-
ment and feedback assimilation is employed.The above
guarantees a continuously adapting and resilient nature of
the algorithm towards the arising and fluctuating operational
conditions and threats.

In order to keep ACTO relevant and effective, dynamic
strategy refinement is necessary. This is done by employing
a real-time update mechanism Dupdate, that hones the
decision-making process of the algorithm to reflect the
current state of the network and threat level:

Dupdate = ρ ·

(
1
nT

n∑
i=1

(O′i − Oi)

)
, (13)

nT = number of tasks; O′i and Oi = updated and previous
offloading decisions. The coefficient ρ is a calibration
factor that takes into account the frequency of adjustment
to ensure that the response of the system is prompt and
proportional.

In addition to the described dynamic refinement, a feed-
back loop is established to trace valuable insights originated
from the deployment environment and healthcare stakehold-
ers. The efficacy of the feedback loop Feffect is calculated
numerically as the resultant post hoc changes in performance
metrics and thus quantifies the system’s capacity to integrate
new information:

Feffect = φ ·

(∑p
k=1(Pbefore,k − Pafter,k )

p

)
(14)

where p is the feedback cycle number, and Pbefore,k and
Pafter,k are the performance before and after the feedback (k)
is applied. The φ coefficient reflects how much the algorithm
is affected by iterative feedback and improvement from both
the user and the system.

In general, the above cohesive methodological framework
forms the basis for the operational effectiveness of ACTO,
which enables it to evolve in adaptive congruence with the
dictates and demands of the healthcare space. The subsequent
sections discuss the implementation of this framework and
its empirical substantiation through intensive testing and
simulation.

VI. PERFORMANCE EVALUATION AND ANALYSIS
A. IMPLEMENTATION SETUP
The empirical analysis of the ACTO algorithm and its
deployment within DTH environments is supported by a
robust simulation framework. Utilising advanced program-
ming tools and libraries, dynamic model of a healthcare
facility has been synthesised, integrating mobile healthcare
units for various scenario deliveries.

The simulation environment, crucial for evaluating the task
offloading strategy in a DTH setting, was developed using

Python 3.10.9, leveraging libraries such as numpy,matplotlib,
and pandas. To simulate a sophisticated system capable of
validating transaction data within a DTH framework, the
MSI (GF63 Thin 11SC), a laptop, was employed. Cloud
technology supported real-time transactions. The project
also featured the development of a low-energy sensor node
using the ESP32S2 module [33], categorised as a Class II
IoT device. It runs on the ESP-IDF framework based on
FreeRTOS (real-time operating system). Focusing on task
offloading strategies to improve the efficiency of power
consumption and reduce latency in data storage for IoT
devices, various built-in sensors (InvenSense MPU6050
motion sensor, NXP MAG3110 magnetometer, FBM320
barometer, STMicro HTS221 humidity and temperature
sensor, and ROHMBH1750FVI light sensor) were integrated
within the ESP32-WROVER-B to better represent the
environmental aspects of DTH in real time. Furthermore,
external sensors such as the MAX30102 and MLX90614
were attached to the input port of the ESP32-WROVER-
B. The system’s clock in the ESP32-WROVER-B was
synchronised with internet time to enable real-time data
monitoring.

The Fig. 4 meticulously outlines the data flow and
command exchange within an advanced healthcare mon-
itoring system. This system integrates both physical and
digital entities to enable a comprehensive health monitoring
and management solution. The sequence initiates with the
Physical Twin, in this context, the patient, from whom
data is emitted. This data encompasses a broad spectrum
of physiological and environmental parameters, including
heart rate, body temperature, SpO2 levels, motion, as well
as ambient light, temperature, and humidity, all captured by
sophisticated sensors/edge devices.

From the above, the sensors that were developed to
monitor the patient’s health indicators are connected to the
Multi-Protocol Communications system, which facilitates
the transmission of data across the various communication
protocols to the Infrastructure. This data is then transferred
to the cloud services, where the data is being processed. The
processed data is then discerned by the digital twin healthcare
(DTH), a virtual model of the patient’s health status that
unlocks predictive analysis and personalised healthcare.

Once the data has been analysed, the DT sends the analysis
results back to the cloud, which in turn releases actionable
instructions to the physical twin. Specifically, these will be
an adjustment in medication, a recommendation in lifestyle,
or merely advising the patient to go to a doctor. This way,
the feedback loop is completed. Moreover, this actionable
instruction will also update the sensors to change the set
parameters of monitoring or the threshold at which alerting
is done to ensure that the system is adjusted to the patient’s
deteriorating health. This data flow and the interactive control
rhythm show the continuous synchronisation between the
physical twin and the DTH. This trend indicates that the
system is capable of real-time monitoring and pro-active
healthcare management.
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FIGURE 4. Sequence diagram of DTH task offloading platform.

Communication and task models were meticulously
defined to simulate realistic operational conditions. Band-
width, noise power density, channel gain, and transmission
power. Task sizes and computational requirements were
varied to test the system under diverse workload conditions
as detailed in Table 2.

B. DTH-ATB-MAPPO: METHODOLOGY AND
DECISION-MAKING
The thorough DTH-ATB-MAPPO methodology decision-
making procedure is based on analysing a series of crucial
input parameters containing computational needs and data
volume and useful resource consumption from equipment
to the network status and others. Therefore, the systematic
study enables identifying whether offloading reallocation
is vital, prioritising those activities that improve system
capacities and save energy. The complexities of two inno-
vative algorithms developed to improve DTH through task
offloading are explored: the ATB-MAPPO Algorithm and
the DTH-ATB-MAPPO Algorithm. These algorithms mark
a considerable advance in implementing sophisticated com-
putational techniques within the healthcare sector, aiming
to optimise healthcare outcomes through intelligent task
offloading. Algorithm 3 works on the primary principle of
synthesising system status, a coherent task list, and network
parameters to generate optimised offloading decisions. The
algorithm is initiated by starting the system parameters
and learning rates from the policy network. It provides a
background about how the algorithm is expected to work in
a given epoch instance. The algorithm executes the following
three-phase process for every task Ti read from the task list.
1) Needs computation: It involves assessing the need to

offload the task depending judiciously on the system and
the network parameters. The primary goal is to identify
if the computation requires the offloading to sustain
computational needs under various conditions.

2) Offloading decision: Upon needs computation, the
decision on whether to actually offload the task is
to be based. The algorithm must make this decision

TABLE 2. Parameters and thresholds.

since it is critical for the system’s ability to man-
age its computational burdens in different offloading
scenarios.

3) Offloading execution: If the task is to be offloaded,
the algorithm chooses the task regularity of offloading
depending on the advice given by the policy network.
The following school depicts that the algorithm can
implement its decision in real time.

The Algorithm 3 refines its policy network through feedback
and adjusted learning rates, enhancing its decision-making
accuracy across successive epochs. This iterative learning
and adaptation underpin the ATB-MAPPO Algorithm’s
effectiveness in optimising task offloading decisions within
dynamic healthcare environments. Building on the ground-
work established by Algorithm 3, Algorithm 4 introduces a
higher level of complexity by integrating DT state and envi-
ronmental parameters into its decision-making framework.
This algorithm is tailor-made to align healthcare tasks with
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Algorithm 3 ATB-MAPPO Algorithm
Require: SystemStatus, TaskList, NetworkParameters
Ensure: OptimisedOffloadingDecisions
1: Initialize: SystemParameters, LearningRates, PolicyNet-

work
2: for each epoch do
3: for each task Ti in TaskList do
4: ComputeNecessity(Ti) {Utilising system and net-

work parameters}
5: DetermineOffloading(Ti) {Based on necessity com-

putation}
6: ExecuteOffloading(Ti) {Guided by the policy net-

work}
7: end for
8: UpdatePolicy() {Reflecting on the learning rate and

feedback}
9: end for

10: return PolicyNetwork, OptimisedOffloadingDecisions

Algorithm 4 DTH-ATB-MAPPO Algorithm
Require: HealthcareTasks, DigitalTwinState, Environment-

Parameters
Ensure: OptimisedHealthcareOutcomes,

EfficientResourceUsage
1: Initialize: DigitalTwinModel, ATB-

MAPPOPolicyNetwork, LearningRates
2: for each simulation step do
3: SyncWithDigitalTwin(HealthcareTasks, DigitalTwin-

State) {Synchronize task states with DT}
4: for each healthcare task Hi in HealthcareTasks do
5: AnalyseTask(Hi, DigitalTwinState) {Use DT state

to understand task context}
6: ComputeOffloadingNecessity(Hi) {Based on DT

analysis and system parameters}
7: DetermineOffloadingDecision(Hi) {Invoke ATB-

MAPPO for decision}
8: ExecuteOffloading(Hi) {Apply the decision}
9: end for

10: UpdateDigitalTwinModel(HealthcareTasks, Environ-
mentParameters) {Integrate new data into DT}

11: UpdateATB-MAPPOPolicy(LearningRates) {Train
policy network with new task data}

12: end for
13: EvaluatePerformance(HealthcareTasks) {Assess the out-

comes of offloading decisions}
14: return ATB-MAPPOPolicyNetwork,

DigitalTwinModel, OptimisedHealthcareOutcomes,
EfficientResourceUsage

the DT’s state, ensuring a context-rich foundation for each
offloading decision.

Algorithm 4 progresses through the following stages
within each simulation step:

1) Synchronisation with DT: This step aligns the state of
healthcare tasks with the DT, ensuring that task analyses
are based on the most current digital representation of
the healthcare environment.

2) Task analysis: Each healthcare task is analysed using
the DT state, providing a comprehensive understanding
of the task’s context and enriching the decision-making
process with detailed insights.

3) Offloading decisions: Utilising the DTH-ATB-MAPPO
policy network, the algorithm determines and executes
offloading decisions, efficiently allocating computa-
tional resources according to the tasks’ needs and DT’s
recommendations.

4) DT and strategic policy refinement: The DT framework,
alongside the ATB-MAPPO strategic policy network,
undergoes iterative refinement through the integration
of fresh task-related information and environmental
dynamics. This ensures an ongoing progression and
adaptability of the system, which is expounded upon in
greater detail in subsection VIII-A.

C. INSIGHTS FROM PERFORMANCE METRICS AND
FORWARD-LOOKING IMPLICATIONS
Performance metrics derived from the simulations, as illus-
trated in Fig. 13 and discussed in Subsection VIII-D, along
with those in Fig. 5 presented below, provide profound
insights into the strategic parameters specifically calibrated
for DTH-ATB-MAPPO. Fig. 5 illustrates the performance
of various task offloading strategies across different network
conditions (σ ) and decision thresholds (θ), as indicated by the
average reward. The average reward, serving as an efficacy
metric, is plotted against the cumulative number of training
steps, providing insights into the learning progression of
the offloading algorithms. The strategies are parametrised
by σ , denoting network robustness, and θ , indicative of the
threshold for making offloading decisions. The parameters
range with σ ∈ 0.5, 0.6, 0.7, 0.8 and θ ∈ 0.5, 1.1, 1.3, 1.5.
A higher value of σ suggests favourable network conditions,
whereas a higher value of θ implies a more aggressive
offloading policy.

Initial fluctuations in reward suggest the exploratory phase
of the learning algorithms, converging to stabilisation as
training progresses. It is discernible that configurations with
elevated θ values, especially when aligned with a substantial
σ , yield superior performance, as manifested by higher
average rewards sustained across the learning episodes.
Such outcomes postulate that assertive offloading under
stable network conditions is conducive to enhanced system
performance.

Conversely, strategies characterised by lower θ thresholds,
particularly when coupled with a diminished σ , are linked
to lower rewards, signifying less effective performance. This
could be attributable to overly cautious offloading, which
underutilises the capabilities of edge computing resources,
especially under challenging network conditions.
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The scalability of the proposed DTH-ATB-MAPPO frame-
work beyond 30 nodes has been evaluated conceptually to
ensure its applicability in different healthcare settings. The
framework has been designed with modular and adaptable
components, allowing for seamless scaling. The integration
of digital twins and multi-agent systems facilitates the man-
agement of larger networks by distributing the computational
load and optimising resource utilisation across nodes. This
modular approach ensures that as the number of nodes
increases, the system can maintain high performance and
reliability.

FIGURE 5. Performance of offloading strategies under varying network
conditions and decision thresholds.

Also, the scalability of ACTO’s benefits across differ-
ent system scales and the continuous adaptation of the
ATB-MAPPO policy network are critical for its applica-
bility in diverse deployment scenarios. The integration of
mobile edge computing (MEC) nodes within DT formations
underscores the innovative nature of the approach, fostering
significant improvements in healthcare outcomes as detailed
in Section VII.

The combined evaluation of task offloading strategies
underscores the potential of integrating advanced com-
putational techniques with DT technology in healthcare.
This study sets the groundwork for future research aimed
at exploring more complex algorithms that adapt to the
ever-changing environment of DTH, innovating to improve
healthcare outcomes significantly.

VII. OPTIMISATION OF MEC SYSTEMS VIA DT
TECHNOLOGY
The integrating DT technology with MEC systems is a
giant stride in the development of efficient and sustainable
DTH. Through an elaborate comparative and empirical
analysis, these results above highlight the vast improvement
in task offloading leveraging the dynamism of the DTH-ATB-
MAPPO in a dynamic and complex domain like healthcare.

A. ENHANCING MEC SYSTEMS WITH DT
The study reveals that incorporating MEC nodes within
a DT framework significantly reduces power consumption

and network latency, as shown in Fig. 6. This integration
supports decentralised computations, highlighting the sub-
stantial contributions of MEC nodes to energy efficiency
goals.

FIGURE 6. Comparative analysis of system performance with and without
MEC nodes. Panel (a) Illustrates the impact on power consumption, while
Panel (b) Focuses on network latency, across varying data size volumes.

FIGURE 7. Comparative analysis of (a) Variability in Medical Device
Functionality and (b) Stability of Reliability Score over a 24-Hour
Monitoring Period.

Fig. 7 showcases two key aspects of DTH system’s
performance over a 24-hour simulated period. The Fig. 7 (a)
observed the functionality of medical devices, indicating
robust stability with minimal fluctuation around the 100%
functionality mark, thus reflecting the resilience of device
operations under varying environmental conditions. The
Fig. 7 (b) illustrated the reliability score, which remains
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steadfastly high, consistently surpassing the 0.8 threshold.
This underlines the dependable accuracy of the sensor
readings within the system, a crucial determinant for
ensuring precise monitoring and effective decision-making in
healthcare management. The sustained high reliability score
across the simulation period reassures the fidelity of the
DTH system’s sensor data, signifying a low probability of
erroneous readings that could otherwise lead to suboptimal
patient outcomes.

B. EFFICACY OF DT IN MEC OPTIMISATION
An extensive evaluation of DT’s role in enhancing MEC
system capabilities was conducted, focusing on reducing
network delays and power usage across varying data volumes
(3 MB to 100 MB). The simulation results, depicted in
Fig. 8, confirm that DT assistance notably improves system
performance, particularly in configurations with 20 MEC
nodes.

FIGURE 8. Comparative performance analysis of MEC configurations with
and without DT assistance, showing impacts on (a) Network latency and
(b) Power consumption.

1) NETWORK LATENCY REDUCTION
Fig. 8 (a) shows a marked reduction in network latency with
DT integration, especially evident with an increased number
of MEC nodes, enhancing network responsiveness.

2) POWER CONSUMPTION OPTIMISATION
As illustrated in Fig. 8 (b), integrating DT technology signifi-
cantly conserves energy, particularly in systemswith 20MEC
nodes, underscoring DT’s role in promoting sustainableMEC
system operations.

The findings underscore the transformative potential of
DT in boosting MEC system efficiency, suggesting that
further exploration into DT-assisted MEC setups is war-
ranted to foster improved, eco-friendlier mobile computing
environments.

VIII. RESULTS AND DISCUSSIONS
A. ACTOR-CRITIC METHOD AND TRAINING LOSS
ANALYSIS
Within the ambit of DTH model optimisation, the
Actor-Critic method plays a pivotal role in the reinforcement
learning framework. Fig. 9 illustrates the loss trends for
both the actor and the critic over numerous training epochs.
As observed in Fig. 9, the actor loss, represented by the

FIGURE 9. The values actor loss, and critic loss in the training process of
the DTH-ATB-MAPPO.

blue line, exhibits a marked decline in the initial epochs,
indicating rapid learning and policy improvement. This sharp
descent stabilises, suggesting the actor’s policy is converging
towards an optimal strategy. In contrast, the critic loss,
denoted by the orange line, shows a more gradual decline.
The critic, which estimates the value function, provides a
feedback mechanism that guides the actor’s policy updates.
The convergence of both loss values is indicative of the
stability of the learning process, which is imperative for the
deployment of reliable and efficient task offloading strategies
in healthcare informatics systems.

The implications of these results are profound, demonstrat-
ing the effectiveness of the DTH-ATB-MAPPOmethodology
in decision-making processes. The subsequent sections will
delve into a comparative performance analysis, drawing
strategic inferences from these metrics.
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B. SYSTEM DEPLOYMENT AND PERFORMANCE METRICS
The implementation phase was developed to implement the
offloading strategy in a healthcare setting, framework, and
test its performance in terms of stability and flexibility.
This indicates the methodology of the system deployment
with a possibility of dynamic updates and feedback loops
to ensure its strength and adequacy to the real-time health-
care disruption scenarios. The deployment process begins
with establishing key performance metrics that gauge the
efficiency and adaptability of the system in response to
varying healthcare demands. Efficiency in implementation,
denoted by Ieff, is measured as the normalised sum of
offloading decisions that achieve the desired outcome.
Adaptability, represented by Aadapt, quantifies the system’s
response to scenario modifications. These metrics are defined
by:

Ieff = η ·

(∑n
i=1O

′
i

n

)
(15)

Aadapt = ξ ·

(∑m
j=1 1Poverall,j

m

)
, (16)

where n denotes the number of offloading decisions, m the
count of adjustments within healthcare scenarios, and η and
ξ are normalization coefficients.

Central to the deployment strategy is the implementation
of a robust interface for predictive analytics, exemplified
in Fig. 10. The figure captures a segment of Python code
utilising the Flask framework to construct an API. This
API serves as a conduit for real-time data processing and
subsequent predictive modelling.

FIGURE 10. Code snippet of the flask API in operation.

As illustrated, the application imports requisite libraries
and loads the predictive model, setting the stage for data
reception and response formulation. The script is designed
to handle POST requests containing user data in JSON
format, ensuring that all necessary features are present

before proceeding with the model’s prediction. This endpoint
exemplifies a practical application of the system, where
secure data offloading is followed by instantaneous predictive
analysis.

C. ACTO’S IMPACT ON POWER AND LATENCY DURING
CYBER-ATTACKS
The significant effects of ACTO on both power consumption
and latency under different target probabilities of the cyber-
attacks. The noticed outcomes, which Fig. 11 shows, are
more than quantitative distinctions in power consumption
measures among systems that are in operation using and
lacking ACTO. The clearly noticeable decreased levels in
energy consumption result due to the presence of ACTO,
becoming more extreme as the probability of cyber-attacks
rises. More than demonstrating the aptness of the algorithm
in saving energy in the wake of deteriorating security threats,
the trend hints at the need to explore the statistics of the
difference.

FIGURE 11. Comparison of power consumption with and without the
application of ACTO, across varying probabilities of cyber-attacks.

Specific to system responsiveness, illustrated in Fig. 12,
the latency curve without the use of ACTO shows a crucial
increase when attack probability is increased. Contrastingly,
with ACTO’s deployment, there is a marked attenuation
in latency escalation, indicative of the algorithm’s prowess
in sustaining expedient system responses, even as the
threat landscape intensifies. This facet of performance,
pivotal in real-time applications, denotes ACTO’s potential
in maintaining operational continuity under adversarial
conditions.

The scalability of ACTO’s benefits, which suggests
consistent performance across diverse system scales and
complexities, warrants further investigation. It remains to be
explored whether the improvements in energy and response
efficiency imparted by ACTO are invariant to changes in
system size or network topology, an aspect critical to the
applicability of ACTO across various deployment scenarios.
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TABLE 3. Comparison of task offloading strategies in healthcare environments.

FIGURE 12. Comparison of latency with and without the application of
ACTO, as a function of the probability of being attacked.

D. COMPARATIVE PERFORMANCE AND STRATEGIC
PARAMETERS
The precise focus of this subsection is the holistic compar-
ative perspective of DTH-ATB-MAPPO and its comparison
with other existing methods for responsive task offload-
ing - Beta-MAPPO, Pure-MAPPO, and Multi-Agent Deep
Deterministic Policy Gradient (MADDPG). The DTH-ATB-
MAPPO presented in Algorithm 3 and Algorithm 4 is
evaluated against the studied alternatives based on the
convergence speed and the optimisation of average rewards.
Such an analysis would then not only underscore the superior
nature of the approach in terms of computational loads
and overall responsiveness of the system but would also
emphasise the importance of such an actor in the dynamic
field of data-intensive health services. The core focus of this
study involves the evaluation of DTH-ATB-MAPPO against
other strategies, such as Beta-MAPPO, Pure-MAPPO, and
MADDPG. One such comparison examines the focal param-
eters such as the convergence speed and the optimisation in
terms of average rewards - thus, highlighting, the innovative
nature of DTH-ATB-MAPPO. The performancemetrics from
Fig. 13 make it a primary method, which yields both a higher
average reward and much more stable convergence.

The Table 3 focuses on various task offloading strategies
within healthcare environments. Each strategy integrates
DT technology, highlighting its growing importance in

FIGURE 13. Comparative performance of task offloading strategies.
DTH-ATB-MAPPO outperforms Beta-MAPPO, Pure-MAPPO, and MADDPG
in terms of convergence and average rewards, validating its efficacy for
dynamic DTH settings.

enhancing healthcare operations. The DTH-ATB-MAPPO
strategy from the current study utilises the ACTO Algorithm
for cybersecurity, contrasting with TACO and DTTOS, which
employ blockchain technology, while OWS lacks specific
cybersecurity measures.

Communication flexibility is a strength of DTH-ATB-
MAPPO, supporting multiple protocols, unlike its counter-
parts which are restricted to specific communication types.
This strategy also excels in energy efficiency, showing a
53.8% improvement with 30 MEC nodes, and surpasses
others in network latency reduction by achieving a 33.4%
decrease.

Predictive healthcare interventions are supported by
DTH-ATB-MAPPO and DTTOS, but not TACO, with OWS
only suggesting this feature. Moreover, DTH-ATB-MAPPO
is unique in incorporating social health determinants, offering
a holistic approach to patient care. It has also undergone
extensive real-time testing, underscoring its robustness and
readiness for deployment, unlike TACO, which lacks exten-
sive testing.

IX. CONCLUSION
This exploration bridges the theoretical and practical realms,
examining task offloading strategies within DTH with a spot-
light on the DTH-ATB-MAPPO algorithm’s performance
and the integration of DT technology in MEC systems.
The rigorous analysis confirms the considerable promise of
digital innovations to bolster the efficiency, durability, and
responsiveness of healthcare services.
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The empirical evidence gathered underscores the DTH-
ATB-MAPPO strategy’s superiority, with significant out-
performance in terms of convergence speed and reward
optimisation. Notably, systems implementing this strategy
exhibit a 20% reduction in network latency and a 10%
decrease in power consumption with 20 MEC nodes. This
is complemented by the integration of DT technology
which, when applied to 30 MEC nodes, demonstrated
a 33.4% reduction in latency and a 53.8% decrease in
power usage at the highest evaluated data size of 100 MB.
This study contributes a unique empirical framework that
traverses the gap from theoretical constructs to practical
healthcare applications, marking a substantial addition to the
field.

While the presented results on the task offloading
approaches are remarkable findings of this study, the essential
contributions of the Adaptive Cybersecurity Task Offloading,
devised to underpin select conditions in which the proposed
approach conducted, cannot be overlooked. In-depth analysis
has proved that the addition of ACTO to the health DT
systems notably upgrades security controls whilemaintaining
the system’s functional performance. The utilisation of
ACTO reflected a notable power saving of up to 15% and 27%
lower network latency under different probabilities of cyber-
attacks. The adaptive balancing of computational operations
and security controls have been drawn to ensure the systems’
data confidentiality and integrity - ensuring the principles
of the health DT, suitable for the various conditions defined
by the responsive nature of health affairs and environments.
Such cybersecurity-aware systems define a prospective and
prospective adoption of strong defence mechanisms in the
technological design of healthcare delivery systems. The
inclusion of ACTO, therefore, the operational efficacy of
the proposed offloading strategies is strengthened, and a
benchmark is established for future research dedicated to
the evolution of digital healthcare systems. The prospect
for future studies is extensive and promising. Enhancements
to the offloading framework, particularly through adaptive
parameter adjustment and real-time learning integration,
promise further alignment with the dynamic healthcare envi-
ronment. Expanding the application of DTH-ATB-MAPPO
and DT technology to broader healthcare scenarios such
as telemedicine and patient monitoring heralds a realm of
impactful research. Furthermore, the convergence of emerg-
ing technologies like AI, blockchain, and next-generation
wireless communications holds the promise of novel, secure,
and streamlined healthcare services. A focus on the scalabil-
ity and sustainability of these digital healthcare innovations
remains imperative as the expansion of these models across
broader healthcare systems is pursued.
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