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ABSTRACT It has become a fundamental component of the electrical networking system, both in
residential and industrial settings, to adopt advanced power meter architecture. With traditional smart
meters, a bi-channel communication network is established between homes and utility companies, providing
consumers with information regarding their daily power consumption. Manual meter reading, however,
may result in inaccurate meter logging and incorrect billing criteria, which will lead to an increase in
overhead costs associated with deploying meter readers and billing power consumption for each site within
metropolitan and large urban areas. Moreover, the current smart metering system does not enable consumers
to predict their future energy consumption, only providing insights into their current power consumption and
accumulative costs. In order to address these issues, we propose a novel intelligent Software-Defined Control
(SDC) super cluster with a comprehensive architecture based on SDN routing capabilities, which differs
from conventional commercial smart meters. The developed micro cluster is enhanced to run full availability
and high performance compared to traditional metering system. Moreover it deploys intelligent capabilities
to predict the consumption of power per home, we implemented a polynomial model experimentally.
Furthermore, we propose an intelligent Software-Defined Controller Gateway (SDN-GW) to serve as a
traffic predictor between distributed metering nodes and the cloud data warehouse, eliminating congestion
caused by the large volumes of traffic data generated periodically by the metering nodes. Based on the
experimental results, the software-defined control system was estimated to have 97.75% percent accuracy
in power prediction, and the traffic flow predictor demonstrated 98.79% percent accuracy in network traffic
prediction. Furthermore, the proposed SDN-GW achieved 29.37% power consumption rate compared to
standard routing engine.

INDEX TERMS software-defined control, neural networks, congestion control, power consumption, smart

meters.

l. INTRODUCTION

MART power meters have been playing a vital role in
S revolutionizing the electrical grid with advanced mon-
itoring in the past decade. The deployment of distributed
smart meters allow fine-grained power consumption and
fault management [1] [2]. However, in this paper, we are
discussing a case study for traditional electrical grid that
encounter big challenges such as insufficient grid infras-
tructure, non-sufficient generation and non-developed grid
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components such as home power meters. Currently, there
is a big demand to transit from existing grid to new grid
generation grid to allow supervised control and monitoring
of power consumption and to notify consumers of their
power consumption in real-time which will make the power
grid more efficient and reliable and reduce power demands
overhead [3] [4] [5]. The limitation of traditional networking
architecture cause high levels of failures that are becoming
a normal event in the grid data center environment. Addi-
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tionally, a high overhead cost that is related to processing
each device separately in terms of upgrades and configura-
tion. To solve this dilemma, Software-Defined Controllers
(SDN) is introduced as an emerging networking paradigm.
First, it breaks the vertical dependency by the separation of
the control plane from the data plane. The separation will
provide centralized management overall under layer nodes
[6]. The SDN requires a special protocol to work with that is
OpenFlow (OF) protocol. OpenFlow allows the forwarding
engine to communicate with the SDN controller via the
southbound interface for configuration policy updates such
as installing new forwarding rules or updating the forwarding
table entry. Each OF rule matches a subset of packets and
implements specific actions such as (dropping, forwarding,
redirecting, etc.) on the incoming traffic [7]. Fig 1 shows
an SDN paradigm that is separated into three major planes:
control plane, data plane and application plane connected
through programmable interfaces.

Services
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m SDN Controller

Control Layer

Infrastructure Layer ‘

e T
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FIGURE 1: SDN control plane schematics [8]

Recently, researchers have been using statistical modeling
in forecasting of power generation. One of the most main
techniques in this approach is using the Artificial Neural
Network (ANN) [9] which is mathematical modeling for
information processing that is based on the human brain
neural function. Typically, neural networks consists of mul-
tiple layers that are the input layer, hidden layer, and output
layer. The hidden layer consists of multiple layers which are
called "deep layers". Currently, ANN is considered as an
alternative approach to classical predication methods [10].
The efficiency of ANN over traditional statistical methods
is that it does not require any assumptions, and it uses
historical data sets to predict by optimizing the non-linearity
of the model. The process of prediction is implemented
by feeding the data into the input layer and each neuron
train the next neuron with regards to weight and activation
values [11]. Moreover, smart grid [12] enables new forms
of power management by modernizing the electric grid with
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communication technology to actively monitor and manage
the power grid. An intelligent grid increase the reliability
and real-time control of grid equipment by identifying the
efficient replacement of equipment and identifying the power
distribution faults [13] that may occur in the power lines.
The implementation of smart grid will revolutionize the tradi-
tional electrical grid by allowing homes and businesses to in-
teract with electricity network and wider energy system. With
all that being said, smart meters functionality are still limited
and not expanded to higher levels [14] . Nonetheless, we can
summarize the potential benefits of the implementation of
smart meters as: a) collection energy consumption statistic
per house hold as this will help grid supplier on having a
total overview of power consumption per zone, b) provide
consumers with real-time power consumption, c) analysis of
power consumption statistics. d) Efficient forecast of power
production. Current traditional smart metering system uses a
bi-channel communication with the cloud to provide it with
real-time power consumption. Moreover, data collected by
smart meters requires a huge computational volume of power
and space in data processing center and requires high-end
servers for data to be processed for thousands of sites per
zone. According to the output of the intelligent meter that
we need to predict the power consumption based on previ-
ous historical data. The overall system architecture of our
proposed intelligent meter system integrated with the SDN-
GW can be expressed in Fig 2. In our proposed work, we
have developed an SDN control meter that is self-optimized
with Al model to predict power consumption without relying
on the core network cloud. This approach will reduce load
traffic on the core network and eliminate traditional meter
readings by adding intelligent and evolved IoT approach. The
proposed meter is different from the known smart meter as
it is fully intelligent and does not rely on the grid network
for configuration management changes and data warehousing
(only minimal).

The main contributions of this paper can be expressed as
follows:

o We propose an intelligent distributed SDC power me-
ter system that operates autonomously, consisting of
a network of power meters deployed across differ-
ent locations within the grid infrastructure.A testbed
of RPIs nodes model to predict the total consumed
power. The decentralization of the intelligent platform
in the meter will provide on-site power prediction and
will reduce the congestion in the grid cloud network
by decentralizing the intelligent agent from the main
cloud into each meter. This process will provide direct
power optimization to the consumer even with cloud
link failure. Moreover, the distribution of the artificial
computing agent will reduce overhead on the cloud
in terms of power consumption and traffic congestion.
The system is built using RPI4 clusters with LAN and
WLAN network capabilities. Moreover, a management
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FIGURE 2: Proposed intelligent network architecture
schematics

orchestrator Kubernetes k8s is deployed with mininet
SDN framework.

o We propose a modified polynomial regression algorithm
to predict the power consumption with minimal cloud
dependency.

o We propose a traffic flow prediction algorithm for the
SDN-GW cloud. The prediction is implemented using
deep neural network to identify incoming traffic and
control traffic routing accordingly. The optimization
approach will reduce power consumption on networking
equipment due to optimized traffic control.

The objective of this project is to reduce power con-
sumption demands by intelligently predicting high power
consumption by using self-optimized SDN meters. This ap-
proach will reduce the dependency on the core network as
primary decision making and will be used as a data ware-
housing only with minimal processing. This eventually will
lead to stabilize the grid cloud network, identify total de-
mands and reduce power outages. Moreover, By decentraliz-
ing power prediction capabilities, the distributed SDN power
meter system enhances grid resilience and reliability. In
the event of network disruptions or communication failures,
individual meters can continue to operate autonomously,
ensuring uninterrupted power forecasting. Furthermore, the
distributed nature of the system enables seamless scalability
to accommodate growing grid infrastructures and evolving
energy demands. New power meters can be easily integrated
into the network without disrupting existing operations, al-
lowing for flexible deployment and expansion. On the other
hand, By minimizing reliance on the main grid network for
data transmission and analysis, the distributed SDN power
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meter system reduces network congestion and latency. Lo-
calized data processing and prediction help optimize resource
utilization and improve overall system efficiency.

The manuscript is structured as follows: Section I provides an
introduction to the topic. Section II reviews related work in
the field. Section III covers the presentation of the prediction
model formulation. Section IV delves into the simulation
and experimental results. Finally, Section V outlines the
conclusions drawn from the research.

Il. RELATED WORK

In recent years, Software-Defined Networking (SDN) has
emerged as a promising paradigm for enhancing the effi-
ciency and flexibility of smart grid services. This section
critically analyzes ten relevant papers that delve into var-
ious aspects of SDN’s integration with smart grids. Each
paper is discussed in detail, highlighting its contributions,
benefits, and limitations. In [15] The study explores how
SDN, with its centralized control and programmability, af-
fects the performance and reliability of smart grid operations.
By employing empirical data and simulations, the authors
assess various scenarios to evaluate the effectiveness of SDN
in managing and optimizing smart grid services. Moreover,
The author provides valuable insights into the integration of
SDN with smart grid systems. By empirically studying the
influence of SDN controller interventions, the paper sheds
light on the potential benefits such as improved network
management and enhanced service delivery. However, lim-
itations may arise in scalability and real-time responsiveness,
particularly in large-scale smart grid deployments with high
data volumes and stringent latency requirements. In [16]
The focus of this paper is on revealing end-to-end delay
characteristics in Software-Defined Networking (SDN) envi-
ronments. Through experimental measurements and analysis,
the authors investigate the factors contributing to delay in
SDN architectures. They explore the impact of control plane
communication, flow table lookup, and packet forwarding on
overall delay performance. Furthermore, This research offers
valuable insights into understanding the latency implications
of SDN, which is crucial for applications requiring low-
latency communication, such as smart grid control. How-
ever, the study’s scope may be limited to specific SDN
implementations and network configurations, warranting fur-
ther investigation into the generalizability of the findings
across diverse SDN deployments. While, in [17], the au-
thor conducts a comparative performance analysis between
OpenFlow-based networks and traditional legacy switching
networks. By evaluating metrics such as throughput, latency,
and scalability, the authors aim to provide a comprehen-
sive understanding of the performance trade-offs associated
with transitioning to OpenFlow-based SDN architectures.
The comparative analysis presented in this research offers
valuable insights into the performance differences between
OpenFlow-based SDN and legacy switching networks. How-
ever, the study’s scope may be limited to specific network
topologies and traffic patterns, necessitating further research

3



IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

to explore the scalability and robustness of OpenFlow-based
SDN in complex network environments such as smart grids.
In [18], the author investigates the design and implementation
of an SDN network management architecture tailored for
electric power communication systems. The authors propose
novel approaches for orchestrating network resources, op-
timizing traffic routing, and ensuring reliability in power
communication networks through SDN-based management
frameworks. The research also addresses a crucial aspect of
integrating SDN into electric power communication systems,
highlighting the potential for enhancing network manage-
ment efficiency and service reliability. However, challenges
may arise in the practical deployment of the proposed ar-
chitecture, including interoperability issues with existing in-
frastructure and the need for robust security mechanisms
to safeguard critical power grid communications. In terms
of intelligent SDN routing capabilities, the author in [19]
presents a novel routing optimization algorithm for electric
power communication networks using reinforcement learn-
ing techniques within an SDN framework. By leveraging
reinforcement learning, the proposed algorithm dynamically
adapts routing decisions based on network conditions and
performance objectives, aiming to improve efficiency and
reliability in power communication systems. The utilization
of reinforcement learning in SDN routing optimization for
power communication networks demonstrates innovative ap-
proaches to address dynamic network challenges. However,
practical considerations such as the computational overhead
and convergence speed of reinforcement learning algorithms
may impact their scalability and real-time applicability in
large-scale power grid deployments. Moreover, in [20] The
author investigates the application of SDN in facilitating
demand response mechanisms within smart grid infrastruc-
tures. By dynamically orchestrating network resources and
communication pathways, SDN enables efficient demand
management, load balancing, and integration of renewable
energy sources, thereby enhancing the stability and sustain-
ability of smart grid operations. Moreover, the integration of
SDN with demand response mechanisms presents significant
opportunities for optimizing energy consumption and im-
proving grid reliability in smart grid environments. However,
interoperability challenges, cybersecurity risks, and regula-
tory barriers may pose obstacles to the widespread adoption
of SDN-based demand response solutions in complex energy
ecosystems. Moreover, in [21] the author proposes a cross-
domain resilience framework for SDN-enabled smart power
grids, focusing on enhancing information sharing and coor-
dination across diverse domains. By leveraging dataspaces
as a unified data management paradigm, the framework
facilitates real-time data exchange, situational awareness,
and collaborative decision-making to enhance grid resilience
and reliability. The proposed cross-domain resilience frame-
work offers a holistic approach to addressing the complex
challenges of smart power grid management through SDN-
enabled information sharing. However, practical implemen-
tation considerations such as data privacy, scalability, and
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interoperability with legacy systems may require further ex-
ploration to ensure the effectiveness and feasibility of the
proposed approach. Moreover, the author in [22] explores the
intelligent scheduling of both business and traffic activities
within power communication networks using SDN technolo-
gies. By integrating SDN control capabilities with intelligent
scheduling algorithms, the authors aim to optimize resource
utilization, prioritize critical communications, and enhance
overall network performance in support of power grid oper-
ations. it is worthily to mention that the integration of SDN
with intelligent scheduling mechanisms offers promising av-
enues for enhancing the efficiency and reliability of power
communication networks. However, challenges may arise in
balancing the diverse communication requirements of power
grid applications, necessitating careful design considerations
to ensure optimal resource allocation and prioritization. In
[23], the author comprehensively investigates the current and
forthcoming communication solutions tailored for smart grid
applications. The authors embark on an intricate journey
through the landscape of communication technologies per-
tinent to smart grids, providing invaluable insights into the
state-of-the-art and future prospects. Moreover, The paper
dives into the technical intricacies of various communication
solutions, encompassing both wired and wireless technolo-
gies. It meticulously dissects the functionalities, strengths,
and limitations of each approach, shedding light on their
applicability in the context of smart grids. For instance, the
discussion on wired communication protocols such as Ether-
net and Power Line Communication (PLC) delves into their
robustness in terms of reliability and data throughput, while
also addressing challenges like susceptibility to interference
and scalability issues. Similarly, the examination of wireless
technologies like WiMAX, LTE, and Zigbee ventures into
their suitability for different smart grid use cases. It metic-
ulously evaluates parameters such as coverage, latency, and
energy efficiency, offering a nuanced understanding of their
performance in dynamic grid environments. Moreover, the
paper elucidates emerging paradigms such as 5G and IoT,
exploring their potential to revolutionize smart grid commu-
nications by enabling massive device connectivity and ultra-
low latency communication. The author in [24] presents a
formal synthesis model aimed at the resiliency-aware de-
ployment of Software-Defined Networking (SDN) in Smart
Grid Supervisory Control and Data Acquisition (SCADA)
systems. It delves into the intricacies of leveraging SDN to
enhance the resilience of SCADA networks, offering a formal
framework for synthesizing resilient deployment strategies.
Moreover, The paper navigates through the technical nuances
of SDN deployment in SCADA systems, elucidating the ben-
efits of decoupling control plane from data plane and central-
izing network management functions. It provides a rigorous
formal model, rooted in mathematical principles such as for-
mal synthesis, to optimize the deployment of SDN controllers
in smart grid environments. This model takes into account
various parameters including network topology, traffic pat-
terns, and criticality of SCADA components to synthesize
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deployment strategies that maximize resiliency. Moreover,
the paper explores the intricacies of SCADA system archi-
tecture, dissecting the interplay between legacy infrastructure
and emerging SDN paradigms. It delves into the challenges
of integrating SDN into existing SCADA networks, high-
lighting issues such as backward compatibility, protocol in-
teroperability, and real-time control constraints. Furthremore,
in [24], the paper delves into the intricacies of Wide Area
Measurement Systems (WAMS) and the critical role they
play in ensuring the stability and efficiency of smart grid
operations. It provides a comprehensive overview of SDN-
enabled architectures for WAMS, elucidating how central-
ized control and programmable dataplanes facilitate dynamic
network management and real-time data processing. More-
over, the paper introduces the concept of fast failover mech-
anisms within the SDN dataplane, enabling rapid rerouting
of traffic in the event of link failures or network disruptions.
It discusses various strategies for implementing fast failover,
including backup path computation, packet redirection, and
flow table manipulation, highlighting their effectiveness in
minimizing service disruption and ensuring continuous data
delivery in WAMS environments. The author also addresses
key challenges such as packet loss, latency, and control
overhead associated with failover events, offering insights
into optimization techniques to mitigate these issues. To the
best of our knowledge, none of the previous research discuses
distributed SDN meter system. Therefore, we propose a
distributed SDN power meter system operates autonomously
within a smart grid environment, consisting of a network of
power meters deployed across different locations within the
grid infrastructure. Unlike traditional centralized approaches
that rely heavily on the main grid network for data transmis-
sion and analysis, the distributed SDN power meter system
operates independently, leveraging local data processing and
prediction capabilities to forecast power dynamics.

Ill. PREDICTION MODELS FORMULATION

We have developed an intelligent SDN control power meter
as a distributed IoT system to be implemented as in-home
intelligent power meter that minimum communication with
the core network and can provide power predictions on-site
accordingly. The overall structure consists of three layers:
the power meter layer that consists of IoT hardware with
the intelligent process for power prediction. Second is the
SDN-GW cloud layer that consists of an intelligent gate-
way with link optimizer to reduce data congestion of the
cloud due to the high volume of incoming sensor data. The
third layer is the servers and data warehousing layer that is
used to process data and generate billing and notification
information. The neural network model that we propose uses
power consumption historical data for each household. The
historical data will be used to train the network and validate
the prediction model so that a better accuracy can be achieved
with minimum error. Fig 3 represents our proposed deep
neural network system with multiple layers. The optimization
algorithms are presented in Pseudo code : Algorithm 1 and
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Algorithm 1 Pseudo code for traffic prediction: SD-GW

1: t < : time steps from 1 to 2000
2: INPUT: traffic generated from power meters 7}, > traffic

oL

ndino

ndino
ueppIH

flow data

3: noiseMagnitude < 0.1 > Adjust traffic noise
magnitude

4: noisyTraf ficFlow — traf ficFlow +

noise M agnitude x Gaussian noise

5: trainRatio < 0.7 > Set training and testing split

6: numI'rain — Round(train Ratiox
Length(noisyTraf ficFlow))

7: trainData < noisyTraf ficFlow[l : numTrain]

8 testData <+ noisyTraf ficFlow[numTrain +
1 :End]

9: inputSequenceLength < 10

10: outputSequenceLength < 1

11: XTrain + [, YTrain + ||

12: for i = 1 to (numTrain — inputSequenceLength —
outputSequenceLength + 1) do

13: Append trainDatali : i+inputSequence Length—
1] to XTrain

14: Append trainDatali + inputSequenceLength +
outputSequenceLength — 1] to Y Train

15:

16: end for

17: net — CreateFeedforwardNet(20)net —
Train(net, XTrain,Y Train)

18: XTest + ||

20: for i = 1 to (length(testData) —

inputSequenceLength—outputSequenceLength+1)
do
21: Append test Datali : i + inputSequenceLength —
1] to XTest
22: end for
23: predictedTest < net(XTest)
24: CalculateMSE(predictedTest, test Data)
25: Check overall Accuracy
26: Re-ROUTE traffic abd load balance
The most important factor when implementing a polyno-
mial regression is to reduce the error levels of inaccurate
predictions. The errors can be represented in different forms
such as Mean Square Error (MSE), Root Mean Square Error
(RMSE), Mean Absolute Error (MAE) and confusion matrix.

5
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Algorithm 2 Pseudo code for power consumption prediction

1: INPUT: dataset - : provided by cloud initially

2: Split data into training and testing sets (80% training,
20% testing)

3: Set polynomial degree: degree = 3

4. Create polynomial features for training set: Xiin
[1’ Ltrain, xthain’ ‘r?rain]

5. Calculate coefficients using least squares:
(Xg;inXtrain)ing;jnytrain

6: Create polynomial features for test set: Xy =
[1a Ltest xthsta mist]

7: Predict values for test set: Jpred = Xiest - 3

8: Calculate RMSE: RMSE — \/ LS (hesti — Tpreai)?

9: Calculate R-squared: R-squared = 1 -
Z?:l(yteat,m_?]pred‘i)
E:Z:I(ywnj‘*gmy)Z

10: Calculate overall

RMSE
(1 . Std(yw)> % 100

8 =

accuracy: Overall Accuracy =

We intend to reduce the error to a very minimum level so that
the proposed system can be reliable and accurate in power
consumption prediction. The difference between them is that
RMSE is used to optimize outputs with high errors by imple-
menting large weights; whereas, MAE is used to compute the
average with all weights are provided equally. It is worthy to
mention that there are some major factors that could effect
the operation of the SDN power meter in terms of storage
size denoted as Ssiorage, controller processing denoted as
Acprocess- These values are required to be tuned for efficient
performance. Since there is large volume of sensor traffic
that is generated every few seconds, there must be a model
that the system has to reflect on in case of congestion and
overflow storage. Storage requires efficient management as
storage increase within time ¢. We can express the storage
with regards to time in Eq 1 as follows:

dSstorage

dt - asstorage (1)

where « is the storage management constant. Solving Eq 1
using the separation of variables rule method, we can express
Eq 1 in the following form of Eq 2 as follows:

Sstorage (t) = Szn GXPM (2)

where S, is the initial storage value. The sensor value
samples are feed into the proposed intelligent model stack.
However, after ¢ iteration, the storage has to be partially
cleared for efficient space utilization. Therefore, the used
samples in prediction after specific time slot are cleared and
replaced with new measurements. Assuming that we clear
the storage when storage reach 1000 samples, then, we can
express the new samples allocations in Eq 3 as follows:

6

1000 1000 u
Se = clearold(z Sp) + Z Sn+6 Z Sy (3
p=1 n=1 r=1

where S, represents the current samples, S, represents the
old samples used in the prediction, S,, represents the new
current samples plus the remaining samples represented with
S, with size factor of §. Moreover, the controller processing
has to accommodate the sensor traffic. We can express the
correlation of processing with time in Eq 4 as follows:

dAcp'r‘ocess
dt
where 7 is the initial constant. Solving Eq 4 using the
separation of rule method, we get Eq 5 as follows:

= nAcprocess (€]

At:p'r‘ocess (t) = Aint eXPnt (5)

where A;,; is the initial processing utilization of the
controller. Respectively, we can express the total power con-
sumed in the SDN power controller in Eq 6 as follows:

g 4
PSDNtotal = Z Pgrocess + Z Pswitch + Z Prpi+
a=1 b=1
) ©)
Z Ppowerhub + PNAS

c=1

where ¢ is the processes that run at a specific time and
N AS is the network attache storage. The SDN-GW is used
as an aggregate condensing device to collect power meter
information, statistics profiles and events periodically using
wireless communications such as Zigbee, LoRa or WiFi.
The SDN-GW is mainly used to balancing the traffic on the
southbound interface links using link optimizer algorithm as
shown in Algorithm 2 pseudo code. The link optimizer uses
deep neural network model to predict the incoming traffic
based on data collected from metering nodes. Furthermore,
our proposed hardware components of our smart power meter
system comprise of hardware that is microcontroller, analog
current and voltage sensors. The readings will be based on
specific time slot with measurements of every 5 seconds. All
data will be serially transferred to a higher computational
module that is RPI4 stack. The RPI4 stack will be running
neural prediction model that will be used to predict the power
consumption on consumer site. The data can be displayed on
an LCD screen as a user interface. The data then is transferred
to the SDN-GW. Moreover, we have added an initial storage
unit of S00GB for testing and an additional RPI4 module as a
fail-over controller in case the first one fails. Furthermore, we
have installed a managed switch to provide interconnected
communications to all running modules in case management
configuration is needed. The link optimization of the cloud is
running on a separate desktop python server. The proposed
SDC power meter hardware cluster is shown in Fig 4. The
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system consists of RPI4 cluster with L-2 switch and WLAN
capabilities. The orchestrator is Kubernetes k8s and mininet
is used as the SDN framework.

The deployment of the proposed intelligent power meter
is intended to enhance the electric grid by adding intelligent
components with self-optimization . The proposed architec-
ture will allow consumers to have direct awareness of how
much power they are consuming and what are the predictions
of their power usage during the next days. This will help in
reducing power demands, thus fewer outages may occur. The
on-site optimization meter is a novel technique that we are
proposing to reduce dependency on the electric grid network
which will be used as a data warehouse only. Furthermore,
overall prediction requires large computation processing that
is power-hungry, thus, decentralizing the power optimizer
in each meter will reduce power consumption of the cloud
core processing and minimize failure in links and network
equipment. The proposed architecture is shown in Fig 5.

IV. EXPERIMENTAL AND SIMULATION RESULTS

Predicting consumer power consumption based on machine
learning is an intelligent approach that constitutes successive
benefits both for consumer and utility management. As we
mentioned earlier that we are focusing on extending this sys-
tem as a case study to help simplify measurement and logging
of power usage. In furtherance of building our proposed intel-
ligent agent in the power meter, we have used measurements
of electrical power consumption for one household with 1-
minute sampling for about 45 months worth of data to train
our neural network platform. The data consist of many fields
such as voltage, current intensity and active/reactive power
that were logged for 3 types of loads of home appliances.
Additionally, the total consumed active and reactive power
is noted. Moreover, we used this data to train our model so
that the intelligent SDN meter can provide an estimate of
power consumption prediction. For the SDN-GW deep neural
model, all weights are initialized randomly at the first stage.
The weights are tuned using a gradient descent approach to
reduce the error rate and provide an efficient preliminary
prediction. For the power prediction, we have implemented
polynomial regression to predict the power consumption
levels. Fig 6 shows data set that we have used for a 1-minute
sampling measurement. The figure represents three types of
load with respect to active and reactive power measurements.

Extensive testing was undertaken on the measured data
to predict the power consumption and to predict the power
consumption levels. After training the network with 1000
rounds of (Epochs), we were able to achieve an accuracy of
97.75% using the proposed optimization algorithm. Fig 7 and
Fig 8 shows the model prediction versus the actual data. The
trend of the data is polynomial so the best option was to use
polynomial model to fit the data.Moreover, Fig 9 illustrates
the error variations and Fig 10 shows the RMS, R? and the
overall accuracy of the model.
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Moreover, Fig 11, Fig 12, Fig 13 and Fig 14 provide
different aspects of the neural network’s performance and
behavior, offering insights into its accuracy, generalization
capabilities, and convergence during training. The error his-
togram illustrates the distribution of errors across the dataset.
It shows how many data points fall within specific error
ranges. A well-performing network would ideally have a
histogram that’s centered around zero or with most errors
clustered close to zero, indicating accurate predictions. While
RMS provides an overall measure of the model’s prediction
accuracy. Lower RMS values indicate better performance,
implying that the model’s predictions are closer to the actual
values on average. On the other hand, R-squared measures
the proportion of the variance in the dependent variable
(output) that is predictable from the independent variables
(inputs). We can see that form the results that the R? value
is very near to 100%. Moreover, gradient plot represents the
slope of the error surface and indicates the direction and
steepness of the error function with respect to the network’s
weights. Monitoring the gradient helps in understanding
how the weights are being updated during training. After
extensively training the deep learning model, the model is
able to achieve a 98.79% accuracy in predicting the best
the overall inbound traffic. Predicting the inbound traffic is
very important for the type of cloud that is dynamically
changing over time with continuous physical layer upgrades
(heterogeneous). Moreover, based on prediction analysis, the
SDN-GW can effectively control routing based on load-
balancing criteria. Alternatively, since the distributed SDN
power meter reduce dependency on the cloud and most com-
putation intelligence is perform on the distributed SDN me-
ters, the servers’ power consumption will reduce significantly
and less subject to failure or reboot. Fig 17 shows a rack
server power consumption with high computation load versus
less traffic when using effective routing control. It is noted
that the server power consumption is less with using our
proposed model as it require less power for computational
resources. The load of computation is distributed along the
proposed meters which result in a significant power reduction
in the main grid cloud network. Edge computing significantly
enhances the functionality and performance of smart meters
embedded with machine learning by enabling real-time data
processing and analysis. By processing data locally at the
meter, latency is reduced compared to sending data to a cen-
tralized cloud, allowing for immediate decision-making and
responses to events. This capability provides instant insights
into energy usage patterns, facilitating quicker anomaly de-
tection and more efficient energy management. Additionally,
edge computing improves privacy and security by keeping
sensitive data localized, minimizing the risks associated with
transmitting data over networks. Furthermore, it optimizes
bandwidth usage by reducing the volume of data sent to the
cloud, resulting in lower communication costs and improved
network efficiency. The combination of edge computing and
machine learning at the smart meter level supports more
intelligent and autonomous energy systems, leading to en-
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Software Defined Control (SDC) cluster details

FIGURE 4
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FIGURE 5: Proposed meter deployment architecture and
integration with the cloud
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FIGURE 6: Sample power consumption parameters for a
home

hanced operational efficiency, better demand response, and
more personalized energy services for consumers.

We can summarize the implications of introducing SDN in
our project is: (a) Decoupling the control plane from the data
plane, allowing centralized control of network devices. This
simplifies network management and configuration per each
site. (b) Dynamically adjust network configurations and poli-
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FIGURE 7: Predicted vs. actual power consumption: training
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FIGURE 8: Predicted vs. actual power consumption: testing
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FIGURE 9: Error: testing phase

cies to meet changing needs without physically modifying
hardware. (c) We can enable the implementation of custom
policies and protocols through software rather than hardware,
allowing more tailored and innovative network solutions. (d)
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Network tasks such as routing, load balancing, and security
can be automated, reducing the potential for human error
and increasing operational efficiency. (¢) We can manage and
balance loads dynamically, ensuring optimal performance
and reducing the risk of overloads. Moreover, by reducing the
need for proprietary hardware and allowing for more efficient
use of existing resources, SDN can lower operational costs in
both domains.

V. CONCLUSION

In this paper, we introduce a novel super Software-Defined
Control power prediction system that incorporates an intel-
ligent agent within the meter infrastructure. The model is
developed as an experimental testbed for effective validation
of the research proposal. contrast to traditional power meter
platforms, this prototype effectively addresses the limitations
found in them, enabling seamless integration between power
consumers and grid suppliers. It ensures accurate meter
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FIGURE 14: Gradient over testing phase

readings, prevents billing errors, and enables homeowners
to monitor their energy consumption on a regular basis. In
addition, it provides grid suppliers with a comprehensive
view of peak periods, enabling proactive measures during
times of high demand. In addition, our system proposes traf-
fic control and inbound prediction mechanisms to reduce the
reliance on cloud services and minimize power consumption.
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FIGURE 18: Cluster peak load CPU temperature

As a result of rigorous experimental and simulation testing,
we were able to demonstrate 97.75% accuracy for our SDN
meter and 98.79% accuracy of for the deep learning traffic
optimizer. Through the effective management of high power
demands and the implementation of precise power predic-
tions and consumption control, this proposed system holds
the potential to significantly mitigate the effects of power
grid outages. In addition, the intelligent platform ensures
the reliability of the grid communication core network by
decentralizing it from the primary grid network, resulting
in minimal equipment failures and reduced computational
stress.
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