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ABSTRACT It has become a fundamental component of the electrical networking system, both in residential
and industrial settings, to adopt advanced power meter architecture. With traditional smart meters, a bi-
channel communication network is established between homes and utility companies, providing consumers
with information regarding their daily power consumption. Manual meter reading, however, may result in
inaccurate meter logging and incorrect billing criteria, which will lead to an increase in overhead costs
associated with deploying meter readers and billing power consumption for each site within metropolitan
and large urban areas.Moreover, the current smartmetering system does not enable consumers to predict their
future energy consumption, only providing insights into their current power consumption and accumulative
costs. In order to address these issues, we propose a novel intelligent Software-Defined Control (SDC)
super cluster with a comprehensive architecture based on SDN routing capabilities, which differs from
conventional commercial smart meters. The developed micro cluster is enhanced to run full availability
and high performance compared to traditional metering system. Moreover it deploys intelligent capabilities
to predict the consumption of power per home, we implemented a polynomial model experimentally.
Furthermore, we propose an intelligent Software-Defined Controller Gateway (SDN-GW) to serve as a
traffic predictor between distributed metering nodes and the cloud data warehouse, eliminating congestion
caused by the large volumes of traffic data generated periodically by the metering nodes. Based on the
experimental results, the software-defined control system was estimated to have 97.75% percent accuracy
in power prediction, and the traffic flow predictor demonstrated 98.79% percent accuracy in network traffic
prediction. Furthermore, the proposed SDN-GW achieved 29.37% power consumption rate compared to
standard routing engine.

INDEX TERMS Software-defined control, neural networks, congestion control, power consumption, smart
meters.

I. INTRODUCTION
Smart power meters have been playing a vital role in
revolutionizing the electrical grid with advanced monitoring
in the past decade. The deployment of distributed smart
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meters allow fine-grained power consumption and fault man-
agement [1], [2]. However, in this paper, we are discussing
a case study for traditional electrical grid that encounter
big challenges such as insufficient grid infrastructure, non-
sufficient generation and non-developed grid components
such as home power meters. Currently, there is a big demand
to transit from existing grid to new grid generation grid to
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allow supervised control and monitoring of power consump-
tion and to notify consumers of their power consumption in
real-time which will make the power grid more efficient and
reliable and reduce power demands overhead [3], [4], [5]. The
limitation of traditional networking architecture cause high
levels of failures that are becoming a normal event in the grid
data center environment. Additionally, a high overhead cost
that is related to processing each device separately in terms of
upgrades and configuration. To solve this dilemma, Software-
Defined Controllers (SDN) is introduced as an emerging
networking paradigm. First, it breaks the vertical dependency
by the separation of the control plane from the data plane.
The separation will provide centralized management overall
under layer nodes [6]. The SDN requires a special protocol
to work with that is OpenFlow (OF) protocol. OpenFlow
allows the forwarding engine to communicate with the SDN
controller via the southbound interface for configuration
policy updates such as installing new forwarding rules or
updating the forwarding table entry. Each OF rule matches
a subset of packets and implements specific actions such
as (dropping, forwarding, redirecting, etc.) on the incoming
traffic [7]. Fig 1 shows an SDNparadigm that is separated into
three major planes: control plane, data plane and application
plane connected through programmable interfaces.

FIGURE 1. SDN control plane schematics [8].

Recently, researchers have been using statistical modeling
in forecasting of power generation. One of the most main
techniques in this approach is using the Artificial Neural
Network (ANN) [9] which is mathematical modeling for
information processing that is based on the human brain
neural function. Typically, neural networks consists of mul-
tiple layers that are the input layer, hidden layer, and output
layer. The hidden layer consists of multiple layers which are
called ‘‘deep layers’’. Currently, ANN is considered as an
alternative approach to classical predication methods [10].
The efficiency of ANN over traditional statistical methods
is that it does not require any assumptions, and it uses
historical data sets to predict by optimizing the non-linearity

of the model. The process of prediction is implemented
by feeding the data into the input layer and each neuron
train the next neuron with regards to weight and activation
values [11]. Moreover, smart grid [12] enables new forms
of power management by modernizing the electric grid with
communication technology to actively monitor and manage
the power grid. An intelligent grid increase the reliability
and real-time control of grid equipment by identifying the
efficient replacement of equipment and identifying the power
distribution faults [13] that may occur in the power lines.
The implementation of smart grid will revolutionize the
traditional electrical grid by allowing homes and businesses
to interact with electricity network and wider energy system.
With all that being said, smart meters functionality are still
limited and not expanded to higher levels [14]. Nonetheless,
we can summarize the potential benefits of the implemen-
tation of smart meters as: a) collection energy consumption
statistic per house hold as this will help grid supplier on
having a total overview of power consumption per zone,
b) provide consumers with real-time power consumption,
c) analysis of power consumption statistics. d) Efficient
forecast of power production. Current traditional smart
metering system uses a bi-channel communication with
the cloud to provide it with real-time power consumption.
Moreover, data collected by smart meters requires a huge
computational volume of power and space in data processing
center and requires high-end servers for data to be processed
for thousands of sites per zone. According to the output
of the intelligent meter that we need to predict the power
consumption based on previous historical data. The overall
system architecture of our proposed intelligent meter system
integrated with the SDN-GW can be expressed in Fig 2.
In our proposed work, we have developed an SDN control
meter that is self-optimized with AI model to predict power
consumption without relying on the core network cloud. This
approach will reduce load traffic on the core network and
eliminate traditional meter readings by adding intelligent and
evolved IoT approach. The proposed meter is different from
the known smart meter as it is fully intelligent and does
not rely on the grid network for configuration management
changes and data warehousing (only minimal).

The main contributions of this paper can be expressed as
follows:
• We propose an intelligent distributed SDC power meter
system that operates autonomously, consisting of a
network of power meters deployed across different
locations within the grid infrastructure.A testbed of RPIs
nodes model to predict the total consumed power. The
decentralization of the intelligent platform in the meter
will provide on-site power prediction and will reduce the
congestion in the grid cloud network by decentralizing
the intelligent agent from themain cloud into eachmeter.
This process will provide direct power optimization to
the consumer even with cloud link failure. Moreover, the
distribution of the artificial computing agent will reduce
overhead on the cloud in terms of power consumption
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FIGURE 2. Proposed intelligent network architecture schematics.

and traffic congestion. The system is built using RPI4
clusters with LAN and WLAN network capabilities.
Moreover, a management orchestrator Kubernetes k8s
is deployed with mininet SDN framework.

• We propose a modified polynomial regression algorithm
to predict the power consumption with minimal cloud
dependency.

• We propose a traffic flow prediction algorithm for the
SDN-GW cloud. The prediction is implemented using
deep neural network to identify incoming traffic and
control traffic routing accordingly. The optimization
approach will reduce power consumption on networking
equipment due to optimized traffic control.

The objective of this project is to reduce power con-
sumption demands by intelligently predicting high power
consumption by using self-optimized SDN meters. This
approach will reduce the dependency on the core network as
primary decisionmaking and will be used as a data warehous-
ing only with minimal processing. This eventually will lead
to stabilize the grid cloud network, identify total demands
and reduce power outages. Moreover, By decentralizing
power prediction capabilities, the distributed SDN power
meter system enhances grid resilience and reliability. In the
event of network disruptions or communication failures,
individual meters can continue to operate autonomously,
ensuring uninterrupted power forecasting. Furthermore, the
distributed nature of the system enables seamless scalability
to accommodate growing grid infrastructures and evolving
energy demands. New power meters can be easily integrated
into the network without disrupting existing operations,
allowing for flexible deployment and expansion. On the other
hand, By minimizing reliance on the main grid network
for data transmission and analysis, the distributed SDN

power meter system reduces network congestion and latency.
Localized data processing and prediction help optimize
resource utilization and improve overall system efficiency.

The manuscript is structured as follows: Section I provides
an introduction to the topic. Section II reviews related work in
the field. Section III covers the presentation of the prediction
model formulation. Section IV delves into the simulation
and experimental results. Finally, Section V outlines the
conclusions drawn from the research.

II. RELATED WORK
In recent years, Software-Defined Networking (SDN) has
emerged as a promising paradigm for enhancing the effi-
ciency and flexibility of smart grid services. This section
critically analyzes ten relevant papers that delve into various
aspects of SDN’s integration with smart grids. Each paper is
discussed in detail, highlighting its contributions, benefits,
and limitations. In [15] The study explores how SDN,
with its centralized control and programmability, affects
the performance and reliability of smart grid operations.
By employing empirical data and simulations, the authors
assess various scenarios to evaluate the effectiveness of SDN
in managing and optimizing smart grid services. Moreover,
The author provides valuable insights into the integration of
SDN with smart grid systems. By empirically studying the
influence of SDN controller interventions, the paper sheds
light on the potential benefits such as improved network
management and enhanced service delivery. However, lim-
itations may arise in scalability and real-time responsiveness,
particularly in large-scale smart grid deployments with
high data volumes and stringent latency requirements.
In [16] The focus of this paper is on revealing end-to-
end delay characteristics in Software-Defined Networking
(SDN) environments. Through experimental measurements
and analysis, the authors investigate the factors contributing
to delay in SDN architectures. They explore the impact of
control plane communication, flow table lookup, and packet
forwarding on overall delay performance. Furthermore, This
research offers valuable insights into understanding the
latency implications of SDN, which is crucial for applications
requiring low-latency communication, such as smart grid
control. However, the study’s scopemay be limited to specific
SDN implementations and network configurations, warrant-
ing further investigation into the generalizability of the
findings across diverse SDN deployments. While, in [17], the
author conducts a comparative performance analysis between
OpenFlow-based networks and traditional legacy switching
networks. By evaluating metrics such as throughput, latency,
and scalability, the authors aim to provide a comprehensive
understanding of the performance trade-offs associated
with transitioning to OpenFlow-based SDN architectures.
The comparative analysis presented in this research offers
valuable insights into the performance differences between
OpenFlow-based SDN and legacy switching networks. How-
ever, the study’s scope may be limited to specific network
topologies and traffic patterns, necessitating further research
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to explore the scalability and robustness of OpenFlow-based
SDN in complex network environments such as smart grids.
In [18], the author investigates the design and implementation
of an SDN network management architecture tailored for
electric power communication systems. The authors pro-
pose novel approaches for orchestrating network resources,
optimizing traffic routing, and ensuring reliability in power
communication networks through SDN-based management
frameworks. The research also addresses a crucial aspect
of integrating SDN into electric power communication
systems, highlighting the potential for enhancing network
management efficiency and service reliability. However,
challenges may arise in the practical deployment of the
proposed architecture, including interoperability issues with
existing infrastructure and the need for robust security mech-
anisms to safeguard critical power grid communications.
In terms of intelligent SDN routing capabilities, the author
in [19] presents a novel routing optimization algorithm for
electric power communication networks using reinforcement
learning techniques within an SDN framework. By leveraging
reinforcement learning, the proposed algorithm dynamically
adapts routing decisions based on network conditions and
performance objectives, aiming to improve efficiency and
reliability in power communication systems. The utilization
of reinforcement learning in SDN routing optimization for
power communication networks demonstrates innovative
approaches to address dynamic network challenges. How-
ever, practical considerations such as the computational
overhead and convergence speed of reinforcement learning
algorithms may impact their scalability and real-time appli-
cability in large-scale power grid deployments. Moreover,
in [20] The author investigates the application of SDN
in facilitating demand response mechanisms within smart
grid infrastructures. By dynamically orchestrating network
resources and communication pathways, SDN enables effi-
cient demand management, load balancing, and integration
of renewable energy sources, thereby enhancing the stability
and sustainability of smart grid operations. Moreover, the
integration of SDN with demand response mechanisms
presents significant opportunities for optimizing energy
consumption and improving grid reliability in smart grid
environments. However, interoperability challenges, cyber-
security risks, and regulatory barriers may pose obstacles
to the widespread adoption of SDN-based demand response
solutions in complex energy ecosystems. Moreover, in [21]
the author proposes a cross-domain resilience framework
for SDN-enabled smart power grids, focusing on enhancing
information sharing and coordination across diverse domains.
By leveraging dataspaces as a unified data management
paradigm, the framework facilitates real-time data exchange,
situational awareness, and collaborative decision-making
to enhance grid resilience and reliability. The proposed
cross-domain resilience framework offers a holistic approach
to addressing the complex challenges of smart power grid
management through SDN-enabled information sharing.

However, practical implementation considerations such as
data privacy, scalability, and interoperability with legacy
systems may require further exploration to ensure the effec-
tiveness and feasibility of the proposed approach. Moreover,
the author in [22] explores the intelligent scheduling of both
business and traffic activities within power communication
networks using SDN technologies. By integrating SDN con-
trol capabilities with intelligent scheduling algorithms, the
authors aim to optimize resource utilization, prioritize critical
communications, and enhance overall network performance
in support of power grid operations. it is worthily to mention
that the integration of SDN with intelligent scheduling
mechanisms offers promising avenues for enhancing the
efficiency and reliability of power communication networks.
However, challenges may arise in balancing the diverse
communication requirements of power grid applications,
necessitating careful design considerations to ensure optimal
resource allocation and prioritization. In [23], the author
comprehensively investigates the current and forthcoming
communication solutions tailored for smart grid applications.
The authors embark on an intricate journey through the
landscape of communication technologies pertinent to smart
grids, providing invaluable insights into the state-of-the-art
and future prospects. Moreover, The paper dives into the
technical intricacies of various communication solutions,
encompassing both wired and wireless technologies. It metic-
ulously dissects the functionalities, strengths, and limitations
of each approach, shedding light on their applicability in
the context of smart grids. For instance, the discussion on
wired communication protocols such as Ethernet and Power
Line Communication (PLC) delves into their robustness in
terms of reliability and data throughput, while also addressing
challenges like susceptibility to interference and scalability
issues. Similarly, the examination of wireless technologies
like WiMAX, LTE, and Zigbee ventures into their suitability
for different smart grid use cases. It meticulously evaluates
parameters such as coverage, latency, and energy efficiency,
offering a nuanced understanding of their performance in
dynamic grid environments. Moreover, the paper elucidates
emerging paradigms such as 5G and IoT, exploring their
potential to revolutionize smart grid communications by
enabling massive device connectivity and ultra-low latency
communication. The author in [24] presents a formal
synthesis model aimed at the resiliency-aware deployment
of Software-Defined Networking (SDN) in Smart Grid
Supervisory Control and Data Acquisition (SCADA) sys-
tems. It delves into the intricacies of leveraging SDN to
enhance the resilience of SCADA networks, offering a formal
framework for synthesizing resilient deployment strategies.
Moreover, The paper navigates through the technical nuances
of SDN deployment in SCADA systems, elucidating the
benefits of decoupling control plane from data plane and
centralizing network management functions. It provides a
rigorous formal model, rooted in mathematical principles
such as formal synthesis, to optimize the deployment of SDN
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controllers in smart grid environments. This model takes
into account various parameters including network topology,
traffic patterns, and criticality of SCADA components to
synthesize deployment strategies that maximize resiliency.
Moreover, the paper explores the intricacies of SCADA
system architecture, dissecting the interplay between legacy
infrastructure and emerging SDN paradigms. It delves into
the challenges of integrating SDN into existing SCADA net-
works, highlighting issues such as backward compatibility,
protocol interoperability, and real-time control constraints.
Furthremore, in [24], the paper delves into the intricacies of
Wide Area Measurement Systems (WAMS) and the critical
role they play in ensuring the stability and efficiency of
smart grid operations. It provides a comprehensive overview
of SDN-enabled architectures for WAMS, elucidating how
centralized control and programmable dataplanes facilitate
dynamic network management and real-time data processing.
Moreover, the paper introduces the concept of fast failover
mechanisms within the SDN dataplane, enabling rapid
rerouting of traffic in the event of link failures or network
disruptions. It discusses various strategies for implementing
fast failover, including backup path computation, packet
redirection, and flow table manipulation, highlighting their
effectiveness in minimizing service disruption and ensuring
continuous data delivery in WAMS environments. The
author also addresses key challenges such as packet loss,
latency, and control overhead associated with failover events,
offering insights into optimization techniques to mitigate
these issues. To the best of our knowledge, none of the
previous research discuses distributed SDN meter system.
Therefore, we propose a distributed SDN powermeter system
operates autonomously within a smart grid environment,
consisting of a network of power meters deployed across
different locations within the grid infrastructure. Unlike
traditional centralized approaches that rely heavily on the
main grid network for data transmission and analysis, the
distributed SDN power meter system operates independently,
leveraging local data processing and prediction capabilities to
forecast power dynamics.

III. PREDICTION MODELS FORMULATION
We have developed an intelligent SDN control power meter
as a distributed IoT system to be implemented as in-home
intelligent power meter that minimum communication with
the core network and can provide power predictions on-site
accordingly. The overall structure consists of three layers:
the power meter layer that consists of IoT hardware with
the intelligent process for power prediction. Second is the
SDN-GW cloud layer that consists of an intelligent gateway
with link optimizer to reduce data congestion of the cloud
due to the high volume of incoming sensor data. The third
layer is the servers and data warehousing layer that is
used to process data and generate billing and notification
information. The neural network model that we propose uses
power consumption historical data for each household. The
historical data will be used to train the network and validate

the prediction model so that a better accuracy can be achieved
with minimum error. Fig 3 represents our proposed deep
neural network systemwith multiple layers. The optimization
algorithms are presented in Pseudo code: Algorithm 1 and
Algorithm 2.

FIGURE 3. Proposed deep neural model schematics.

Algorithm 1 Pseudo Code for Traffic Prediction: SD-GW
1: t ← : time steps from 1 to 2000
2: INPUT: traffic generated from power meters Tin▷ traffic

flow data
3: noiseMagnitude← 0.1 ▷ Adjust traffic noise magnitude
4: noisyTrafficFlow ← trafficFlow + noiseMagnitude×

Gaussian noise
5: trainRatio← 0.7 ▷ Set training and testing split
6: numTrain ← Round(trainRatio×

Length(noisyTrafficFlow))
7: trainData← noisyTrafficFlow[1 : numTrain]
8: testData← noisyTrafficFlow[numTrain+ 1 :End]
9: inputSequenceLength← 10

10: outputSequenceLength← 1
11: XTrain← [],YTrain← []
12: for i = 1 to (numTrain − inputSequenceLength −

outputSequenceLength+ 1) do
13: Append trainData[i : i+ inputSequenceLength− 1]

to XTrain
14: Append trainData[i + inputSequenceLength +

outputSequenceLength− 1] to YTrain
15:

16: end for
17: net ← CreateFeedforwardNet(20)
18: net ← Train(net,XTrain,YTrain)
19: XTest ← []
20: for i = 1 to (length(testData)− inputSequenceLength−

outputSequenceLength+ 1) do
21: Append testData[i : i+ inputSequenceLength−1] to

XTest
22: end for
23: predictedTest ← net(XTest)
24: CalculateMSE(predictedTest, testData)
25: Check overall Accuracy
26: Re–ROUTE traffic abd load balance

The most important factor when implementing a polyno-
mial regression is to reduce the error levels of inaccurate
predictions. The errors can be represented in different forms
such as Mean Square Error (MSE), Root Mean Square Error
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Algorithm 2 Pseudo Code for Power Consumption Predic-
tion
1: INPUT: dataset -: provided by cloud initially
2: Split data into training and testing sets (80% training,

20% testing)
3: Set polynomial degree: degree = 3
4: Create polynomial features for training set: Xtrain =

[1, xtrain, x2train, x
3
train]

5: Calculate coefficients using least squares: β =

(XTtrainXtrain)
−1XTtrainytrain

6: Create polynomial features for test set: Xtest =
[1, xtest, x2test, x

3
test]

7: Predict values for test set: ŷpred = Xtest · β

8: Calculate RMSE: RMSE =
√

1
n

∑n
i=1(ytest,i − ŷpred,i)2

9: Calculate R-squared: R-squared = 1−
∑n

i=1(ytest,i−ŷpred,i)
2∑n

i=1(ytest,i−ȳtest)2

10: Calculate overall accuracy: Overall Accuracy =(
1− RMSE

std(ytest)

)
× 100

(RMSE), Mean Absolute Error (MAE) and confusion matrix.
We intend to reduce the error to a very minimum level so
that the proposed system can be reliable and accurate in
power consumption prediction. The difference between them
is that RMSE is used to optimize outputs with high errors
by implementing large weights; whereas, MAE is used to
compute the average with all weights are provided equally.
It is worthy to mention that there are some major factors that
could effect the operation of the SDN power meter in terms of
storage size denoted as Sstorage, controller processing denoted
as1cprocess. These values are required to be tuned for efficient
performance. Since there is large volume of sensor traffic
that is generated every few seconds, there must be a model
that the system has to reflect on in case of congestion and
overflow storage. Storage requires efficient management as
storage increase within time t . We can express the storage
with regards to time in Eq 1 as follows:

dSstorage
dt

= αSstorage (1)

where α is the storage management constant. Solving Eq 1
using the separation of variables rule method, we can express
Eq 1 in the following form of Eq 2 as follows:

Sstorage(t) = Sin expαt (2)

where Sin is the initial storage value. The sensor value
samples are feed into the proposed intelligent model stack.
However, after t iteration, the storage has to be partially
cleared for efficient space utilization. Therefore, the used
samples in prediction after specific time slot are cleared and
replaced with new measurements. Assuming that we clear
the storage when storage reach 1000 samples, then, we can
express the new samples allocations in Eq 3 as follows:

Sc = clearold(
1000∑
p=1

Sp)+
1000∑
n=1

Sn + δ

u∑
r=1

Sr (3)

where Sc represents the current samples, Sp represents the
old samples used in the prediction, Sn represents the new
current samples plus the remaining samples represented with
Sr with size factor of δ. Moreover, the controller processing
has to accommodate the sensor traffic. We can express the
correlation of processing with time in Eq 4 as follows:

d1cprocess

dt
= η1cprocess (4)

where η is the initial constant. Solving Eq 4 using the
separation of rule method, we get Eq 5 as follows:

1cprocess(t) = 1int expηt (5)

where 1int is the initial processing utilization of the
controller. Respectively, we can express the total power
consumed in the SDN power controller in Eq 6 as follows:

PSDNtotal =
g∑

a=1

Pgprocess +
∑

Pswitch +
4∑

b=1

Prpi

+

2∑
c=1

Ppowerhub + PNAS (6)

where g is the processes that run at a specific time and
NAS is the network attache storage. The SDN-GW is used
as an aggregate condensing device to collect power meter
information, statistics profiles and events periodically using
wireless communications such as Zigbee, LoRa or WiFi.
The SDN-GW is mainly used to balancing the traffic on the
southbound interface links using link optimizer algorithm as
shown in Algorithm 2 pseudo code. The link optimizer uses
deep neural network model to predict the incoming traffic
based on data collected from metering nodes. Furthermore,
our proposed hardware components of our smart power meter
system comprise of hardware that is microcontroller, analog
current and voltage sensors. The readings will be based on
specific time slot with measurements of every 5 seconds. All
data will be serially transferred to a higher computational
module that is RPI4 stack. The RPI4 stack will be running
neural prediction model that will be used to predict the power
consumption on consumer site. The data can be displayed on
an LCD screen as a user interface. The data then is transferred
to the SDN-GW. Moreover, we have added an initial storage
unit of 500GB for testing and an additional RPI4 module as
a fail-over controller in case the first one fails. Furthermore,
we have installed amanaged switch to provide interconnected
communications to all running modules in case management
configuration is needed. The link optimization of the cloud
is running on a separate desktop python server. The proposed
SDC power meter hardware cluster is shown in Fig 4. The
system consists of RPI4 cluster with L-2 switch and WLAN
capabilities. The orchestrator is Kubernetes k8s and mininet
is used as the SDN framework.

The deployment of the proposed intelligent power meter
is intended to enhance the electric grid by adding intelligent
components with self-optimization. The proposed architec-
ture will allow consumers to have direct awareness of how
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FIGURE 4. Software Defined Control (SDC) cluster details.
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FIGURE 5. Proposed meter deployment architecture and integration with
the cloud.

much power they are consuming and what are the predictions
of their power usage during the next days. This will help in
reducing power demands, thus fewer outages may occur. The
on-site optimization meter is a novel technique that we are
proposing to reduce dependency on the electric grid network
which will be used as a data warehouse only. Furthermore,
overall prediction requires large computation processing that
is power-hungry, thus, decentralizing the power optimizer
in each meter will reduce power consumption of the cloud
core processing and minimize failure in links and network
equipment. The proposed architecture is shown in Fig 5.

IV. EXPERIMENTAL AND SIMULATION RESULTS
Predicting consumer power consumption based on machine
learning is an intelligent approach that constitutes successive
benefits both for consumer and utility management. As we
mentioned earlier that we are focusing on extending this
system as a case study to help simplify measurement and
logging of power usage. In furtherance of building our
proposed intelligent agent in the power meter, we have
used measurements of electrical power consumption for one
household with 1-minute sampling for about 45 months
worth of data to train our neural network platform. The data
consist of many fields such as voltage, current intensity and
active/reactive power that were logged for 3 types of loads
of home appliances. Additionally, the total consumed active

FIGURE 6. Sample power consumption parameters for a home.

and reactive power is noted. Moreover, we used this data
to train our model so that the intelligent SDN meter can
provide an estimate of power consumption prediction. For
the SDN-GW deep neural model, all weights are initialized
randomly at the first stage. The weights are tuned using
a gradient descent approach to reduce the error rate and
provide an efficient preliminary prediction. For the power
prediction, we have implemented polynomial regression to
predict the power consumption levels. Fig 6 shows data set
that we have used for a 1-minute sampling measurement. The
figure represents three types of load with respect to active and
reactive power measurements.

Extensive testing was undertaken on the measured data
to predict the power consumption and to predict the
power consumption levels. After training the network with
1000 rounds of (Epochs), wewere able to achieve an accuracy
of 97.75% using the proposed optimization algorithm. Fig 7
and Fig 8 shows the model prediction versus the actual data.
The trend of the data is polynomial so the best option was
to use polynomial model to fit the data.Moreover, Fig 9
illustrates the error variations and Fig 10 shows the RMS, R2

and the overall accuracy of the model.
Moreover, Fig 11, Fig 12, Fig 13 and Fig 14 provide

different aspects of the neural network’s performance and
behavior, offering insights into its accuracy, generalization
capabilities, and convergence during training. The error
histogram illustrates the distribution of errors across the
dataset. It shows how many data points fall within specific
error ranges. A well-performing network would ideally have
a histogram that’s centered around zero or with most errors
clustered close to zero, indicating accurate predictions.While
RMS provides an overall measure of the model’s prediction
accuracy. Lower RMS values indicate better performance,
implying that the model’s predictions are closer to the actual
values on average. On the other hand, R-squaredmeasures the
proportion of the variance in the dependent variable (output)
that is predictable from the independent variables (inputs).
We can see that form the results that the R2 value is very
near to 100%. Moreover, gradient plot represents the slope
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FIGURE 7. Predicted vs. actual power consumption: training.

FIGURE 8. Predicted vs. actual power consumption: testing.

FIGURE 9. Error: testing phase.

of the error surface and indicates the direction and steepness
of the error function with respect to the network’s weights.
Monitoring the gradient helps in understanding how the
weights are being updated during training. After extensively

FIGURE 10. Accuracy metrics: RMSE, R2, accuracy.

FIGURE 11. Training, testing and validation phases with R score.

training the deep learning model, the model is able to achieve
a 98.79% accuracy in predicting the best the overall inbound
traffic. Predicting the inbound traffic is very important for
the type of cloud that is dynamically changing over time
with continuous physical layer upgrades (heterogeneous).
Moreover, based on prediction analysis, the SDN-GW can
effectively control routing based on load-balancing criteria.
Alternatively, since the distributed SDN power meter reduce
dependency on the cloud and most computation intelligence
is perform on the distributed SDN meters, the servers’
power consumption will reduce significantly and less subject
to failure or reboot. Fig 17 shows a rack server power
consumption with high computation load versus less traffic
when using effective routing control. It is noted that the
server power consumption is less with using our proposed
model as it require less power for computational resources.
The load of computation is distributed along the proposed
meters which result in a significant power reduction in
the main grid cloud network. Edge computing significantly
enhances the functionality and performance of smart meters
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FIGURE 12. RMS.

FIGURE 13. Error histogram for all phases.

embedded with machine learning by enabling real-time data
processing and analysis. By processing data locally at the
meter, latency is reduced compared to sending data to a
centralized cloud, allowing for immediate decision-making
and responses to events. This capability provides instant
insights into energy usage patterns, facilitating quicker
anomaly detection and more efficient energy management.
Additionally, edge computing improves privacy and security
by keeping sensitive data localized, minimizing the risks
associated with transmitting data over networks. Further-
more, it optimizes bandwidth usage by reducing the volume
of data sent to the cloud, resulting in lower communication
costs and improved network efficiency. The combination
of edge computing and machine learning at the smart
meter level supports more intelligent and autonomous energy
systems, leading to enhanced operational efficiency, better
demand response, and more personalized energy services for
consumers.

We can summarize the implications of introducing SDN
in our project is: (a) Decoupling the control plane from the
data plane, allowing centralized control of network devices.

FIGURE 14. Gradient over testing phase.

FIGURE 15. Server vs. SDN-GW power consumption showing the
proposed model effect with 29.37% power consumption rate.

FIGURE 16. Standard routing engine vs. SDN-GW power consumption for
10 hours.

This simplifies network management and configuration per
each site. (b) Dynamically adjust network configurations
and policies to meet changing needs without physically
modifying hardware. (c) We can enable the implementation
of custom policies and protocols through software rather than
hardware, allowing more tailored and innovative network
solutions. (d) Network tasks such as routing, load balancing,
and security can be automated, reducing the potential for
human error and increasing operational efficiency. (e) We
can manage and balance loads dynamically, ensuring optimal
performance and reducing the risk of overloads. Moreover,
by reducing the need for proprietary hardware and allowing
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FIGURE 17. Inbound traffic with best link selection by the SDN-GW.

FIGURE 18. Cluster peak load CPU temperature.

for more efficient use of existing resources, SDN can lower
operational costs in both domains.

V. CONCLUSION
In this paper, we introduce a novel super Software-Defined
Control power prediction system that incorporates an intel-
ligent agent within the meter infrastructure. The model is
developed as an experimental testbed for effective validation
of the research proposal. contrast to traditional power meter
platforms, this prototype effectively addresses the limitations
found in them, enabling seamless integration between power
consumers and grid suppliers. It ensures accurate meter
readings, prevents billing errors, and enables homeowners
to monitor their energy consumption on a regular basis.
In addition, it provides grid suppliers with a comprehensive
view of peak periods, enabling proactive measures during
times of high demand. In addition, our system proposes traffic
control and inbound prediction mechanisms to reduce the
reliance on cloud services and minimize power consumption.
As a result of rigorous experimental and simulation testing,
we were able to demonstrate 97.75% accuracy for our
SDN meter and 98.79% accuracy of for the deep learning
traffic optimizer. Through the effective management of
high power demands and the implementation of precise

power predictions and consumption control, this proposed
system holds the potential to significantly mitigate the
effects of power grid outages. In addition, the intelligent
platform ensures the reliability of the grid communication
core network by decentralizing it from the primary grid
network, resulting inminimal equipment failures and reduced
computational stress.
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