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Abstract 

Air quality research affects global warming, climate change, health effects, and urban 

planning. Predicting air quality status is complex, with increasingly sophisticated monitoring 

devices for various different gases and other components. Air quality measurements 

contribute to broader socio-economic development factors, in addition to direct 

environmental and healthcare impacts. Many methods have been used by researchers to 

present air-quality levels, reflecting different disciplines and different national standards. This 

work aims to develop a model to predict the air-quality index, which measures air pollution 

levels, in order to support healthcare in congested areas.  

This research presents machine learning models and techniques to predict air quality levels 

in cities, and to provide accurate measures to support data driven decision making in various 

sectors aligned with sustainable development, economic growth, and social values. It 

supports air quality policies formulation with a future vision to eliminate global related 

consequences, save the world from the pollution and to close the gap in air quality index 

standardization, with an emphasis on sustainable urban development.  

This study presents the experimental multivariate Deep Neural Network model and Markov 

switching model as part of research to develop a hybrid (DNN and Markov) air quality 

prediction model, with appropriate accuracy attainment, in order to support decisions with 

timely air-quality measurements by representing the output or air quality levels using neuro-

fuzzy logic.  

DNN-Markov modelling techniques are used to predict air quality, with comparative analysis 

of locations in Jordan and the UK. Multivariate time series analysis of Big Data from traffic-

heavy locations was used, based on environmental conditions at peak hours, giving a highly 

accurate prediction of the air-quality index for the next hour at a given location, under 

specific environmental conditions. The air quality index was represented using Neuro Fuzzy 

Logic as a method to contribute in air quality index predictions within blurry (boundary) 

values. The selected DNN-Markov hybrid model could predict air quality with accuracy of 

around (RMSE 7.86) for the location in England, and around (RMSE 15.27) for the one in 

Jordan.  
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Chapter 1 

Introduction 

This chapter introduces about the air quality problem addressed by this research, and 

related issues and impacts addressed by this study. It gives an overview of machine learning 

(ML) prediction approaches in the air quality domain. Furthermore, the research aim and 

objectives are highlighted, in alignment with the identified research contributions and 

impacts.  

1.1 Background 

Air pollution is a universal cause for people to band together to solve and prevent its 

detrimental impacts on human health. As the number of adults increases in the global 

population, increasing standards of living, including automobile and electricity use, entail 

increasing volumes of industrial emissions. Keeping in mind the short- and long-term effects, 

developed and developing countries are directing their environmental efforts for monitoring 

air quality. However, developing countries still focus primarily on conventional economic 

growth, based on fossil fuel combustion and legacy technologies, and there are still many 

leagues to go in order to develop roadmaps to fundamentally improve air quality. As 

discussed in the following chapter, many air quality evaluations focus on air quality in 

relation to certain high-impact gases, particularly carbon monoxide (CO), nitrogen dioxide 

(NO2), ozone (O3), particulate matter (PM), and sulphur dioxide (SO2).  

Existing literature also posits that there can be potential reductions in CO2, SO2, nitrogen 

oxide, and CO emissions by changing energy consumption trends. However, Asia is facing 

particular issues, notably with regard to PM exceeding acceptable limits. Furthermore, 

ground level O3 demonstrates average values but exceeds the limits values in all analysis by 

several factors. In low income countries, economic development is associated with high 

expectations of increased air pollution (Coelho et al., 2021). Many economic analysts 

hypothesize that an initial period of increased air pollution (and other forms of negative 

environmental impacts) during the first phase of socio-economic development is followed by 

a gradual decrease in such impacts, and ultimately a reduction, as populations become 

more affluent an environmentally responsible (Leal and Marques, 2022). However, it is 

clearly preferable for developed and developing countries to seek to minimize negative 

environmental impacts as much as possible.  
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While there are debates in the literature on the most instrumental forms of transportation 

affecting certain aspects of the environment, because of the many diverse factors that have 

direct and indirect impacts on environmental dimensions, there is general agreement that 

road transport predominates as the most egregious contributor, and road and air 

transportation are considered to be the principal contributors to greenhouse gas (GHG) 

emissions from the transport sector perspective (Font et al., 2019). Most countries consider 

energy consumption and the transport sector’s contributions to be the major constituents of 

overall to GHG emissions assessment. However, transportation is a secondary 

phenomenon, reflecting socio-economic activities that require people to move around, 

including for employment, education, leisure, and other uses. The availability of various 

forms of transportation left people with many options and expanded life opportunities in the 

modern world.  

With the availability of various means of travel, demand has increased, and the 

transportation sector is a major macroeconomic component of national economies, as well 

as a source of indicators for measuring the sustainability of cities and quality of life. Travel 

networks have been growing in complexity, and so has commensurate travel-related data. 

However, the majority of transportation is undertaken by road, and road transport remains 

the dominant mode of travelling and the main cause of travel-related pollution, with growing 

emissions. A systematic monitoring of PM10 by Grivas and Chaloulakou (2006) raised 

concerns about many areas exceeding EU-legalized limit values. The reason for severity of 

issue was highlighted due to large and rapidly growing size of vehicles vehicle fleet, diesel 

exhaust emissions, and the topography of some cities. More recent studies have reiterated 

that most developing and developed countries do not meet recommended air quality 

standards for NO2 near roads, and the decline in near-road NO2 has been much less than 

expected, which is largely related to more usage of diesel vehicles in many areas (Font et 

al., 2019).  

The transportation sector plays a major part in air quality indicators worldwide, and 

accordingly affects the overall global Air Quality Index (AQI), as well as the local index for 

each country. Therefore, there are regional and worldwide efforts to study the bottom line of 

the transportation layer and try to come up with solutions to improve air quality by reducing 

traffic. Air quality is a trending issue which varies in complexity at national and international 

levels. There are numerous standards with which to measure air quality, the most widely 

used of which are the US Environmental Protection Agency’s (EPA) Pollutant Standards 

Index (PSI), and the subsequently evolved version, the AQI  (Cheng et al., 2007). The 

Revised AQI (RAQI) was also developed as an alternative to both the previously mentioned 
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standards (van den Elshout, Léger and Nussio, 2008; Tealab, 2018). Air quality indices have 

many disadvantages (such as a lack of standardization), which can make it difficult to 

compare air quality at the national level, because different countries and institutions use 

different methods of measuring air quality, while varying factors affect the hourly pollution 

concentration (Monteiro et al., 2017).  

As explained in Chapter 2, the ‘AQI’ standard has become so pervasive that ‘AQI’ is 

commonly used as the default description to express the level of pollutants’ concentration 

over a period of time, and this is the common way in which researchers refer to work on air 

quality indicators (Plaia and Ruggieri, 2011). There is still a gap in the AQI system, even 

though it has been extensively implemented in the US and elsewhere since 1999. Many 

countries are unable to adopt it, due to the high cost of PM2.5 and other necessary 

monitoring systems, which can entail a severe financial burden for some countries. Due to 

such instrumental costs, Cheng et al. (2007) claimed that full AQI implementation would not 

be likely in the near future, and noted the need for a reliable and comparable air-quality 

index standard to understand the situation in different countries. More recently, Tripathi and 

Pathak (2021) noted that it will not be possible to develop a universal air-quality index which 

covers all situations and types of pollution, and argued that the focus should instead be on 

particularly vulnerable (i.e., highly polluted) zones.  

A universal technique needs to be developed, as we lack a reliable methodology with which 

to respond to human exposure to pollution. This is needed to ensure quality of life, especially 

given the differences between air pollutants in different locations. No universal air-quality 

index exists, in particular for vulnerable (highly polluted) areas, and a method for identifying 

zones with high air pollution is also needed, as there is no international air-quality index 

(Tripathi and Pathak, 2021). The current air-quality index methodologies are limited, as they 

do not consider pollutant numbers and variations, and do not measure the health 

implications of exposure to pollutants in the environment. While the EPA’s (2023) AQI 

standards are used in several countries, and currently comprise the closest thing to a 

universal tool, the existing literature has shown that it manifests many gaps and shortfalls as 

an international standard, and the prevailing milieu is one of international incoherence in 

standards and measurements (van den Elshout, Léger and Nussio, 2008; Bishoi, Prakash 

and Jain, 2009; Monteiro et al., 2017).  

RAQI does not consider pollutants with maximum concentrations, unlike the original AQI, 

and instead calculates the concentrations of other pollutants. This could produce a more 

accurate assessment of air quality than the AQI, as it also considers the contribution of other 

gases to pollution. Furthermore, one pollution air-quality index mentioned in the literature 
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provides a simple method of calculating the weighted mean values of sub-indices of the 

most critical pollutants (Sowlat et al., 2011). Because of these fundamental differences 

between tools, there is a common consensus that necessary global standards are not 

currently in place. It is also understood that a more dynamic system is required which can 

accommodate a mixture of different pollutants and which is sufficiently sensitive to boundary-

level pollutant predictions. Consequently, researchers have been evaluating various 

methods of producing a universal tool to measure the health implications of pollution 

(Mandal and Gorai, 2014).  

Some algorithms have been applied to solve issues with current domain systems. Fuzzy 

logic, a decision-based model representing uncertainties, is substituted for other available 

methods when a blurry or otherwise boundary air-quality level is presented (Baatarchuluun, 

Sung and Lee, 2020). Fuzzy-logic air-quality index has been used to produce a logical, 

reliable and dynamic way to present the health effects of pollutants to the public (Niharika 

and Rao, 2014). Fuzzy logic has the ability to map different categories with uncertain values, 

which can be described as ‘fuzziness’ (Sowlat et al., 2011; Kang et al., 2018). This study 

proposes a comprehensive framework to address the gaps observed in the literature 

concerning the prediction of air quality and problems identified with air quality assessment 

using AQI. 

1.2 Research Motivations  

Traditional methods to predict air quality suffer from disadvantages such as their limited 

accuracy (e.g., inability to predict extreme measurement points), not being able to determine 

cut-offs, inefficient approaches for better output prediction, and equal treatment for old and 

new data. The uses of Big Data and ML have been proposed as advancements on the 

traditional methods, and they have been widely used in air quality prediction (AQP). Several 

studies have evaluated air quality using ML algorithms, exploring variations in ML models to 

predict air quality (Rybarczyk and Zalakeviciute, 2018). Big Data has enabled modelling 

more dynamic air quality systems (AQSs), which are behaviourally heterogeneous; such 

models take data from various resources. AQP helps in various ways, directly impacting the 

environment. However, it is still complex due to the processes and the strong coupling 

across many parameters, which affect the modelling process.  

Many techniques have been adopted for air pollution forecasting, including more recently 

available techniques such as ANN, Fuzzy Logic and Genetic Algorithms were used in air 

pollution modelling (Alkasassbeh et al., 2013). Several ML approaches have been used by 
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experts, researchers and others, with different parameters combined for AQP. 

Consequently, it is difficult to understand the reasons for which algorithms are being 

selected to solve the different ranges of world challenges. This is further made difficult due to 

the growing number of studies. The aim of this research is to conduct a literature and 

approach several algorithms and their performance in determining the air quality domain, 

taking into consideration multiple factors for comparison (Rybarczyk and Zalakeviciute, 

2018). 

There are two fundamental paradigms for air pollution modelling: traditional chemistry 

dispersion analysis (of chemically inert species), and ML. Unlike other models, statistical 

techniques do not take physical and chemical aspects into consideration. Moreover, they 

use historical data by training the model and then predicting air pollution concentration 

according to prediction features such as meteorology, land use, time, planetary boundary 

layer, elevation, human activity, pollutant covariates, and so on. The relationship between air 

pollution and other factors instrumental in the complex system of air pollutants and other 

features are highly non-linear. Consequently, the simplest statistical approaches of 

regression analysis and Autoregressive Integrated Moving Average (ARIMA) models would 

not be commensurate with the pertinent complexity. Generally, more advanced statistical ML 

methods such as Support Vector Machine (SVM), ANN, and ensemble learning have a 

higher predictive performance than other traditional approaches. Meteorological conditions/ 

variables such as wind speed, relative humidity and temperature have significant impact on 

the levels of air pollution. Experimental research has concluded that there is a close 

relationship between the concentration of air pollutants and meteorological variables and 

pollution (Zhang and Ding, 2017).  

There are two methods to predict air pollution concentration: deterministic and stochastic. 

The deterministic method models the relationship between the physical and chemical 

transportation process of air pollutants, in terms of the influences of meteorological variables 

with mathematical models to predict the level of air pollution. The statistical approach learns 

from historical data and predicts the future accordingly. Researchers suggest using time 

series to predict the relation between metrological variables and air pollution without the 

necessity of presenting/modelling the physical relation using methods as time series 

analysis, Bayesian filter and Artificial Neural Network (ANN) analysis. Statistical techniques 

do not consider dynamic chemical and physical processes, and instead rely on historical 

data to predict future concentrations of air pollution (Zhang and Ding, 2017). 



 

21 

1.3 Aims and Objectives 

The fundamental aim of this research is to build an innovative prediction model, define 

measurable (quantifiable) data, and use them to measure air quality in selected cities. This 

study presents a multivariate hybrid Markov-switching dynamic model using a multi-state 

transition method for multiple outputs and a Deep Neural Network (DNN) through a niche 

experimental framework. The experiment is part of applied Big Data Artificial Intelligence (AI) 

research, which aims to predict air quality and present a reliable system which will provide 

an air-quality index using hybrid model. This will become a tool for decision-makers 

concerned with related air-quality issues. This research presents a multi-input multi-output 

hybrid model with reliable accuracy of hourly time-series data, and provides the large 

dataset in this study. This aims to cover the gap in high Big Data prediction accuracy for the 

domain ‘hourly frequency’, and to form a more standardized air-quality index by comparing 

results in two selected national contexts: England and Jordan. 

The following are the main objectives necessary to achieve the stated aim: 

• Reduce data complexity processing through selecting best ML methods to support air 

quality domain  

• Produce a reliable and accurate model to predict air quality  

• Produce an AQI model for policy and regulations supporting health and climate 

change issues  

• Produce a prediction model considering transportation/traffic factor 

The following are the research questions guiding this research: 

• What parameters have been used for air quality modelling? 

• What are the gaps that need to be researched in the air quality field? 

• What are the independent and dependent (input and output) variables to be used 

building air quality model to predict AQI? 

• What are ML models for best accuracy prediction?  

• What data pre-processing techniques can achieve the best results? 

• What air-quality indices are commonly used nowadays? 

• What improvements can be applied to current air-quality indices? 
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1.4 Contributions to Knowledge  

The study conducted several methods in an effort to contribute with a new and efficient 

approach to predict air quality for the next hour. DNN-Markov approach was selected, as 

model validation indicated its promising potential for efficiency, and it enables using a simple 

linear model for backup, given the complexity and losses that could occur with DNN models. 

Its characteristics boost performance. This research represents a set of contributions, 

including but not limited to the following: 

• Proposing a novel hourly prediction model. 

• Testing multivariate input and output models that support the complexity of AQP. 

• Hybrid modelling methods (combining Markov and DNN). 

• Access and analysis for hourly regional data, with added value due to the increased 

accuracy of data results (particularly for Jordan Data). 

• An AQI model generated based on hourly data, to produce better results and 

accuracy.  

• Extending research on transportation factors (pertaining to transportation emissions). 

• Addressing data refinement and model accuracy by generating a model to cover 

such challenges (such as missing data and reducing noise). 

• Proposing the best combination of models to cover complex gases that are currently 

creating challenges in prediction (such as PM). 

• A hybrid model considering static and dynamic variables, for more accurate results. 

• AQI representation. 

Hourly data in this thesis refers to the frequency at which air quality data is collected and 

predictions are made. In this study ‘hourly’ refers to the collection and analysis of air quality 

data at one-hour intervals. Further, predictions are generated for the subsequent hour using 

machine learning models trained on historical data. 

1.5 Research Impact 

While conducting the literature review, it was discovered that there has been a salient shift in 

academic discourse from ‘climate change’ to ‘climate crisis’, and world leaders have 

expressed increased fears that global warming will cross the safety threshold of 2°C. This 

trend is reflected in newspaper headlines such as ‘“Untold human suffering”: 11,000 

scientists from across world unite to declare global climate emergency’. This headline was 

designed to emphasize the level of emergency and danger caused by climate change, as 
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was the comment that ‘despite 40 years of major global negotiations, we conduct business 

as usual and have failed to address this crisis’ (Weston, 2019).  

Most indicators, however, are not very promising for humanity, given the severe increase in 

global CO2 emissions. It has been claimed that up to a third of the reduction in emissions 

needed by 2030 to satisfy the Paris Agreement could be achieved by actions to enhance the 

natural environment, such as protecting ecosystems and promoting sustainable practices. 

Furthermore, reductions in fuel consumption could be implemented using effective policies. 

In terms of the economy and population, we should work on reducing the impact of 

population growth on GHG emissions, and also have active regulatory policies that can 

ensure social integrity and maintain the long-term sustainability of the biosphere (Ripple et 

al., 2020). As a result of pressure from human activity since the presentation of the UN’s 

Sustainable Development Goals (SDGs), bodies including the UN have aimed to reduce 

social, economic, environmental imbalances at several scales. Air quality and climate 

change influence each other and air pollutants also contribute to atmospheric changes 

(Fiore, Naik and Leibensperger, 2015). 

1.6 Overview of Thesis Structure 

This thesis constitutes seven chapters, structured to fulfil the research aims and objectives 

stated in this introductory chapter, and developed around the technical aspects of the 

comparative study between air quality predictive index in UK and Jordan. 

Chapter 2 reviews literature concerning air quality definitions, impacts, and regulation; 

machine learning (ML) approaches to AQP; and related studies and applications. It identifies 

research gaps and the need to develop improved tools for decision makers concerning air 

pollution. Previous work by researchers in air quality domains and different ML approaches 

provide a robust basis upon which this study seeks to extend. The chapter reviews 

optimization methods and hyper-parameter tuning strategies that are crucial in model 

developments. This chapter then summarizes the findings and highlighted the identified gaps 

in current literature. 

Chapter 3 discusses the experiment design framework for modelling and the methodologies 

used in the construction of the proposed models for this study. Data sources, collection, data 

imputation, and pre-processing are explained. The proposed modelling approaches for the 

experiments are discussed, and a summary for the design framework is included as a flow 

chart as illustration for the methodology framework. 
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Chapter 4 covers the stand-alone models implementation and results to predict air quality, 

the approaches and techniques used to build the stand-alone ANN model, DNN model, and 

Markov Model.  

Chapter 5 presents hybrid modelling based on some selection and methodologies to create 

hybrid models from the stand-alone models discussed in previous chapter, with the aim of 

producing a reliable model for air quality modelling with a suitable accuracy, as a proposed 

solution to the identified problem in this research. 

Chapter 6 presents neuro-fuzzy logic representation for the predicted output of the selected 

hybrid model; it introduces the several air quality standards available, especially those which 

are commonly used globally, and then represents the outputs based on AQI. 

Chapter 7 presents critical conclusions of this study and discusses the future work arising 

from this research; it lists the gaps discovered in this research and directions for further 

inquiry. Also, limitations are identified within the scope of this study. 

 



 

25 

Chapter 2 

Literature Review 

2.1 Introduction 

This chapter provides an analysis of background literature pertaining to this research area, 

with a thorough critical literature review on AQP methods. It identifies literature gaps 

addressed by this study, and its contributions unpacked in later chapters. This is a thorough 

literature review which aims at integrative research to build an AQI model using the best 

selection of ML methods in the domain, to support decision makers with more effective tools 

for emissions and pollution regulation. The ultimate rationale for such research is to improve 

air quality, and reduce related negative issues such health and climate change, by reducing 

emissions. The study focuses on data from traffic areas, to evaluate the impacts of 

transportation on air quality and in efforts to translate available data to emissions share from 

transportation in selected areas. 

2.2 Fundamentals of Air Quality 

2.2.1 Definition and Guidelines 

While the term ‘air pollution’ reflects the presence of pollutants in the air, the broader 

concept of ‘air quality’ alludes to the general quality of the air we breathe. Clean air is a very 

basic need for humanity, for health and other life aspects. The ways in which to define and 

measure air quality, and the commensurate data required, are in fact very complex (Plaia 

and Ruggieri, 2011). ‘AQI’ has come to be used over the years to express the level of 

pollutants concentration over a period of time, in a way that is understandable by the public 

and decision makers. 

2.2.2 Health, Environment, Social, and Economic Impacts 

Liu et al. (2023) conducted a bibliometric review of 100 studies published over 20 years in an 

effort to study the economic impacts of air pollution, specifically in terms of a cost-benefit 

analysis. They concluded that air quality, heath, climate, and economic growth in all 

countries’ scales are all interconnected, and would need long-term strategies and 

sustainable policies that support holistic sustainable economic development in order to 

address all pertinent dimensions. Air quality impacts are interconnected, spanning health, 

social, and environmental systems, all of which in turn have reciprocal economic impacts on 

cities. For instance, reduced environmental (i.e., air) quality increases hospital admissions 
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from those affected by pollution, such as asthma, stroke, and respiratory illnesses, which 

entails economic costs of healthcare and reduced labour capacity. The interconnected 

dimensions pertaining to air quality are displayed in Figures 2-1 and 2-2. 

 

Figure 2-1 Intersection of economic, environmental, and social air pollution impacts 

Source: Su et al. (2021) 
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Figure 2-2 Air pollution impacts  

Source: EPA (2023) 

2.2.2.1 Health Impacts 

The health implications of exposure to air pollutants are the most intensively studied, and 

researchers are constantly studying the linkages between many diseases and air pollution 

(see Figure 2-3). The World Health Organization (WHO) refers to air pollution as ‘the silent 

killer’, because of its apparently innocuous short-term effects, but its profound long-term 

impacts, including the ever-increasing number of related deaths every year. Air pollution is 

considered as a risk factor for major diseases relating to changes in lung functions, including 

asthma and cardiovascular illnesses, and it is particularly dangerous in relation to adverse 

pregnancy outcomes (e.g., heart failure, atherosclerosis, cardiac arrest, and arrhythmias), all 

of which could decrease life expectancy and hence leads to death (Méndez, Merayo and 

Núñez, 2023).  

Emerging research suggests correlations between diabetes among women aged under 50 

years old and exposure to O3 air pollutants, while SO2 appears to have a high correlation 

with psychiatric illnesses. Toxic pollutants are known to cause disorders such as Alzheimer’s 

and Parkinson’s disease, and are instrumental in developing psychological distress. Some 

research indicates a correlation between seasons and exposure to air pollution impacts on 
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health, with fluctuations between warm and cold weather being potentially associated with 

many forms of mental illness (Tripathi and Pathak, 2021).  

 

Figure 2-3 Health effects of forms of pollution  

Source: FCCMG (2016) 

2.2.2.2 Environmental Impacts 

Researchers have considered the impact that weather conditions, such as wind direction, 

can affect air quality, depending on neighbourhood areas. Strong wind speeds generally 

promote the rapid travel of pollutants to other places and different distances, while high 

temperatures contribute to photochemical reactions. Conversely, rain generally cleans the 

air, although it can also cause acid rain and soil pollution due to exposure to airborne toxins 

(see Figure 2-4). There is a need for more quantitative studies of air quality to help in climate 

change reduction, based on scientific understanding of air quality and climate change ties, 

specifically with regard to various environmental impacts (Liu et al., 2017). 
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Figure 2-4 Emissions and climate change linkage   

Source: EPA (2023) 

2.2.2.3 Social Impacts 

Cities worldwide are affected by various consequences of air pollution, and in the worst 

cases there may be scenarios where people are unable to undertaken normal activities of 

daily living (ADLs). For instance, if pollution levels are high, especially for gases that are 

classified by WHO as having high and direct impacts on human health, such as PM. The 

consequences of such scenarios are on the rise, as some cities tend to close some areas 

where pollution is at a high level, as it could also reduce or prevent visibility, which causes a 

lack of clarity on the roads, and which could become very dangerous for drivers in the case 

of smog and fine PM. 

2.2.2.4 Economic Impacts 

The link between air pollution or the air quality to health is evident, as discussed previously. 

Elderly people and those with respiratory problems (e.g., lung diseases or asthma) are 

particularly vulnerable to immediate impacts from outdoor exposure to pollutants, and are 

more susceptible to require hospitalization, thereby increasing healthcare and 

macroeconomic costs associated with poor air quality. Improved understanding of air 

pollution throughout the years has led to increasing demand to evaluate the broader socio-
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economic impacts related to pollution-linked health issues. Economic evaluation of air 

pollution impacts consider the most egregious impacts to be premature death in terms of the 

value of statistical life (VSL), but work absenteeism and direct healthcare costs are more 

common and pervasive pollution impacts that can be used to evaluate pollution-related risk 

(Hall, Brajer and Lurmann, 2010). 

2.2.3 Regulatory Framework 

2.2.3.1 Air Quality Standards 

Air pollution and climate change are controlled by several standards, agreements, and 

measures ranging between mandatory, voluntary and integrated initiatives  (Hall, Brajer and 

Lurmann, 2010). The Paris Agreement was signed on Earth Day, 2016, at the UN 

headquarters in New York. Its main objective is to keep the global temperature rise below 

2°C, and ideally to limit the temperature increase even further to 1.5°C. Additionally, the 

Intergovernmental Panel on Climate Change (IPCC) was formed by World Meteorological 

Organization (WMO) and United Nations Environment Programme (UNEP) to provide 

scientific assessment measures on climate change, its implications and potential future risks. 

In 2013, the IPCC provided more clarity about the role of human activities in climate change 

though its fifth assessment report. IPCC GHG guidelines have a detailed method for 

estimating GHG emissions by source and removals by sinks.  

Furthermore, the Kyoto Protocol is an international agreement aimed at reducing CO2 and 

GHG emissions in the atmosphere; it was linked to the UN Framework Convention on 

Climate Change (UNFCCC), adopted in Japan in 1997. As a result of excessive human 

activity and since the presentation of SDGs, related bodies have aimed to reduce social, 

economic, and environmental imbalances at several scales, as per the ‘Our Common Future’ 

policy. The concentrations of air pollutants recorded over a given time period and 

considering the effect of each pollutant on health and environment forms what is called ‘Air 

Quality Standards’. The primary source of standards, criteria and policies is at the local level 

of central organization that monitors and controls AQS and resources.  

The U.S. National Ambient Air Quality Standards (NAAQS) are limits on atmospheric 

pollutions concentrations that impact health and environment by the EPA under authority of 

the Clean Air Act (42 U.S.C. 7401 et seq.), It consist of six criteria pollutants: O3, 

atmospheric PM, lead, CO, SOx and NOx. They are emitted from industry, mining, 

transportation, electricity generation and agriculture (Wang et al., 2023). However, 

combustion of fossil fuels or industrial processes is main contributors. To control air quality 

levels, several guidelines and measures were implemented such as guideline values 
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considered by WHO (Polezer et al., 2023), and the EU’s Limit Values for Air Quality (LVAQ), 

in addition to NAAQS. The latter is chiefly concerned with criteria for the following common 

air pollutants that harm the environment and human health: CO, lead (Pb), NO2, O3, PM, and 

SO2. Outdoor air pollution is mainly created mainly by automobiles and various industries 

which are responsible for the climatic change (Niharika and Rao, 2014). There are two main 

categories of air pollution in terms of their functional source: 

Primary Pollutants: results from combustion of fuel and industrial operations  

Secondary Pollutants: results from the reaction of primary pollutants. 

The AQS is used in assessing air quality contains ambient air pollution data by EPA, state, 

local, meteorological data, descriptive information about each monitoring station (including 

its geographic location and its operator), data quality assurance/quality control information 

and tribal air pollution control agencies from thousands of monitors. The NAAQS contains 

two types of standards, primary and secondary. As different pollutions have different effects, 

the standards are built to accommodate the protection against it (short and long term). AQI 

quantifies air quality in a region, and it is used in government agencies to communicate the 

air pollution status (Kang et al., 2018). 

Tables 2-1, 2-2, and 2-3 present more details on the regulatory framework pertaining to air 

pollution. 
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Table 2-1 Air pollutants and their sources 

Pollutants Sources 

SO2/ oxides of sulphur Power plants, sulphuric acid manufacture, boilers, ore refining, petroleum 
refining. 

Suspended particulate matter (SPM) 
(from sulphates and nitrates) 

Fine particles (synthetic or natural). Automobiles, power plants, boilers. 

Industries requiring crushing and grinding (e.g., quarrying, cement). 

Lead Naturally occurring, produced by lead smelters, contained in old paints 
and plumbing. Also in ore refining, battery manufacturing and 
automobiles. 

Chlorine Chlor-alkali plants, manufacturer of polyvinyl chloride (PVC) resins, 
bleaching powder and many other chemicals. 

Fluorides Fertilizer, aluminium refining, nuclear industry, steel industry, oil 
refineries/ 

Oxides of nitrogen (NO, NO2, NOx) Automobiles, power plants, nitric acid manufacture. 

Peroxyacetyl nitrate (PAN) Secondary pollutant. 

Persistent organic pollutants (POPs) Produced through industrial processes and waste incineration. 

Formaldehyde Secondary pollutant. 

O3 Secondary pollutant, formed from chemical 

reaction during sunlight. 

CO Automobiles, from combustion processes low in oxygen, burning wood, 
coal, fuel (cars). 

Hydrogen sulphide Pulp and paper, petroleum refining. 

Hydrocarbons Automobiles, petroleum refining. 

Ammonia Used to fertilize crops; emitted from agricultural processes and farm 
animals. 

CO2 From volcanic activity and hot springs, combustion processes, cars and 
plants. 

Source: Niharika and Rao (2014) 
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Table 2-2 NAAQS criteria for pollutants and standards 

Pollutant Primary/ 

Secondary 

Averaging 

Time 

Level Form 

CO Primary 8 hours 9 ppm Not to be exceeded more than once per 

Year 1 hour 35 ppm 

Pb Primary and 
secondary 

Rolling 3 

month 
average 

0.15 

g/m3 

Not to be exceeded 

NO2 Primary 1 hour 100ppb 98th percentile of 1-hour daily maximum 
concentrations, averaged over 3 years 

1 year 53 ppb Annual mean 

O3 Primary and 
secondary 

8 hours 0.07 

ppm 

Annual fourth-highest daily maximum 

8-hour concentration, averaged over 3 years 

Source: Kang et al. (2018) 

Table 2-3 AQI classification  

AQI Score Air Pollution Level 

0-50 Excellent 

51-100 Good 

101-150 Lightly Polluted 

151-200 Moderately Polluted 

201-300 Heavily Polluted 

300+ Severely Polluted 

Source: Kang et al. (2018) 

2.2.3.2 Air Quality Systems 

There are discussions in the existing literature about several AQI standards or systems that 

have been used by researches for air quality levels (Bishoi, Prakash and Jain, 2009). Table 

2-4 summarizes gaps identified in existing research, and many works have cited the need for 

further work in this area, to address known deficiencies in some standards (Plaia and 

Ruggieri, 2011; Mandal and Gorai, 2014). Also, some novel researches discovered the 

benefits of applying fuzzy logic for the use in AQI (Sowlat et al., 2011), especially in relation 

to the need of a more comprehensive system to model the complexity of the existence 

several pollutants in the atmosphere in a period of time, which could need careful 

consideration of how some gases could become dominant in certain setups (Lokys, Junk 

and Krein, 2015). 
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Table 2-4 Reviewed AQI systems’ highlights 

Article  Remarks 

Comparison of the Revised Air 
Quality Index with the PSI and 
AQI indices 

(Cheng et al., 2007) 

The Pollution Standards Index (PSI) was established due the increasing 
number of people suffering from respiratory problems, and subsequently 
developed into AQI. 

RAQI was developed as an alternative to PSI and AQI, achieving more 
significant outcomes as it covers a wider range of pollutants and 
concentration levels. 

RAQI gave more accurate results than PSI and AQI, with certain abilities to 
distinguish certain pollutants.  

The cost of establishing a monitoring system covering PM2.5 is particularly 
high for many countries to implement, but this is necessary, especially in 
light of global O3 problems 

Novel, fuzzy-based air quality 
index  (FAQI) for air quality 
assessment 

(Sowlat et al., 2011) 

In this study, FAQI using fuzzy logic was proposed using different 
pollutants, based on different weighting factors. The FAQI was suggested 
as of the limitations provided using AQI, so as FAQI is seen as a more 
sensitive tool. Results of FAQI were compared to AQI USEPA, and the 
authors flagged FAQI as a comprehensive, reliable method for decision 
makers. 

Towards an improved air quality 
index 

(Monteiro et al., 2017) 

The authors claimed that there are no universally significant methods that 
covers for all specifics situations of air quality, and pointed out that methods 
of AQI could differentiate based the number of pollutants, air quality levels 
categories and boundaries points, and sampling period. 

The current AQI has limitations, as it is difficult to compare air quality levels 
across countries using it. The authors suggested adding PM2.5 specific 
standards and indexing for specific sources of pollutants (‘traffic areas’, 
‘industries’, and ‘others’), and adding a ‘natural events’ factor, as well as 
producing data when monitoring is not working.  

The authors acknowledged the complexity of developing more significant 
AQI, and pointed out the need to study long-term factors for air pollutants, 
along with health related descriptions 

A comparative study of air 
quality index based on factor 
analysis and EPA methods for 
an urban environment 

(Bishoi, Prakash and Jain, 2009) 

Factor analysis of the National Air Quality Index (NAQI) was suggested to 
be used to cover the gaps in the EPA’s system. The authors claimed that 
NAQI could be used for comparing daily and seasonal pollution levels in 
different areas, to allow monitoring of seasonal trends. 

Comparing urban air quality in 
Europe in real time: A review of 
existing air quality indices and 
the proposal of a common 
alternative 

(van den Elshout, Léger and 
Nussio, 2008) 

 

The authors proposed a new Common AQI (CAQI), to be able to compare 
air quality levels across Europe. It consists of two indices, one for roadside 
sites and the other for average city background conditions. The structure is 
assumed to bring consistency when comparing parameters. 
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2.3 Machine Learning Approaches to Air Quality Prediction 

2.3.1 ML Background and Theory  

This section explains the ML foundation of this research, including ML theory, and its relation 

to AI as a key future technology. Alzubi, Nayyar and Kumar (2018) outlined the history of the 

formation of the ML and AI fields. They noted that ‘machines’ in the context of ML comprise 

systems or computers, while ‘learning’ refers to the process of acquiring new knowledge, 

skills, behaviours, and techniques The term ‘machine learning’ was defined by Arthur 

Samuel in 1959 as ‘the learning capability of computers that provides learning capability to 

computers without being explicitly programmed’. Mitchelle developed the definition to be 

more applicable to engineering applications: ‘A computer program is said to learn from 

experience E with respect to some task T and some performance measure P, if its 

performance on T, as measured by P, improves with experience E’.  

While the research on ML field has been developing over more than six decades, it has 

always been guided by the ‘Turning Test’, developed by Alan Turning in the 1950s, in 

alignment with which Sameul developed a learning algorithm with high capabilities in 1952. 

Martin Minsky and John McCarty with Claude Shannon and Nathan Rochester popularized 

the term ‘Artificial Intelligence’ in a conference in 1956, and in 1958, Frank Rosenblatt 

initiated the development of ANN through the perceptron concept. After this progress, 

massive work was undertaken in the ML field, and a major highlight was presented in 2006 

with the deep learning presented by Geoffrey Hinton, which has been a tremendous 

improvement in support for the ANN architecture to cover multiple layers of neurons. 

Researchers are expecting more development of the DNN concept, with plenty of 

forthcoming innovative applications  (Alzubi, Nayyar and Kumar, 2018).  

2.3.2 Modelling Review for Air Quality Prediction 

Many factors play a role in the prediction of air quality, as it is not standalone in air per se; 

rather, it is affected by atmospheric conditions, and has time dependencies. Air-quality 

concentrations have dependencies on (and state-fluctuations between) air pollutants and 

impacts such as meteorological events. Moreover, the availability of valid air-quality datasets 

is occasionally a barrier to optimal forecasting in particular domains (Tripathi and Pathak, 

2021). A high level of pollutants and the consequences of this have made it necessary for 

immediate action to be taken to reduce pollution levels. The importance of this action has 

drawn the attention of researchers into air quality investigations. Because of the importance 

of this research, work has been done exploring different perspectives, such as parameters, 
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temporal dimensions, and spatial interactions (Cheng et al., 2007; Alnawaiseh and Hashim, 

2014; Masih, 2019).  

Emissions are a complex mixture of gases and meteorological conditions in the atmosphere. 

This combination of factors presents limitations for forecasting modelling, due to non-linearity 

and a lack of meteorological parameters in some regions. A review by Masih (2019) argued 

that there are two types of ML, forecasting and estimation, and ensemble learning and linear 

regression can be used for modelling estimates. However, the author suggested that 

methods such as NN and SVM may be more useful for forecasting (see Table 2-6). 

A systematic review by Tealab (2018) reported that Neural Networks (NNs), SVMs, and 

ensemble learning algorithm are commonly used, as these are known for their ability to 

capture non-linearity in modelling. A survey of ML algorithms used to forecast air quality by 

Méndez, Merayo and Núñez (2023) concluded that the main algorithms applied for pollutant 

concentration predictions can be classified into three different categories: classical 

regression based algorithms, ML regression based algorithms, and deep learning 

algorithms. A number of algorithms fall within the supervised learning classification 

paradigm, such as decision trees, naïve Bayes, SVM, and regression analysis (the latter of 

which may be linear, logistic, and polynomial). Despite the importance of traditional methods 

of predictive modelling, such as Auto-Regressive Integrated Moving Average (ARIMA), 

Seasonal Auto-Regressive Integrated Moving Average (SARIMA), Autoregressive Integrated 

Moving Average with Explanatory Variable (ARIMAX) and other statistical methods of linear 

modelling, other methods such as deep learning are needed in order to better model the 

non-linearity of data between parameters, and to give reliable performance and accuracy in 

time-series data (Siami-Namini, Tavakoli and Namin, 2019).  

There are also other used methods for air pollution, such as Multiple Linear Regression 

(MLR), which proves efficiency in linear relationships between output and multiple 

independent inputs. Multivariate linear modelling can be particularly suitable for PM 

predictions. Moreover, SVM and Bayesian Maximum Entropy (BME) have been considered 

as emerging methods offering comparable performance to Vector Autoregressive Moving 

Average (VARMA), ARIMA, and MLP.  

The following subsections review literature on relevant ML models that support the accuracy 

of AQPs, given the optimal aim of considering factors such as non-linearity nature of air 

quality components, and multi-dimensional parameters relating to the complexity of 

emissions etc. A comprehensive review of ML models used in air quality studies is given 

below, studying related techniques and analysing their parameters, data frequency, data 
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sizes and type of model used. The subsequent discussion is formed based on the review 

and analysis of the gaps and findings of existing literature. 

2.3.2.1 Artificial Neural Networks 

ML, also known as ‘predictive analytics’, is simply a collection of instructions (algorithms) 

that accumulate data and learn from it, to improve over time. Many applications use ML 

nowadays, such as using of NNs to solve various industrial problems through the use of 

available data. Part of this science is also reliable on statistics, but that is not the case for all 

ML implementations. NNs were originally conceptualized as models of the functionality 

biological brain (Shao and Shen, 2023), and ANNs posit that weights between nodes in data 

systems are analogous to connected neurons in the brain. The neuron is the initial element 

of an NN, in which the input and output values are exchanged. There are number of NN 

types, the more basic of which, such as feed forward networks, have manifest limitations in 

modelling time prediction tasks. ANN is basically a perceptron, as Figure 2-5 shows. It 

consists of multiple input external links, one output, and an internal input (bias) 

(Staudemeyer and Morris, 2019). The perceptron receives a vector of real-values, and the 

output of the perceptron is Boolean (zero or one). A more developed form of ANN is the 

feed-forward neural network, which expands from the most basic type of artificial neuron 

concept to encompass a number of neurons structured in layers, each neuron of which has a 

computed weighted sum of its inputs. A single layer perceptron network is one layer 

consisting of a set of neurons. Sets of neurons structured in several layers can be defined as 

a multilayer feed-forward neural networks (Scabini and Bruno, 2023). 
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Figure 2-5- The structure of the most basic type of artificial neuron, called a perceptron  

Source: Staudemeyer and Morris (2019) 

ANN models had already been widely used for air pollution concentration predictions during 

the early 2000s, as noted by Grivas and Chaloulakou (2006), whose findings confirmed the 

superior performance of ANNs in comparison to traditional statistical methods such as 

multiple regression, classification and regression trees, and autoregressive models. ANN 

models have shown better performance than MLR, incorporating complex nonlinear 

relationships between the concentration of air pollutants and the corresponding 

meteorological variables, and are widely used for the prediction of air pollution concentration. 

However, ANN has a few drawbacks, including a propensity to local minimum and poor 

generalization, lack of analytical model selection approach, being time consuming (in relation 

to finding the best architecture), and its trial-and-error weighting mechanism.  

ANN models have the ability to capture the highly non-linear character of those processes 

serving a wide range of gaseous prediction. An analysis of a range of research into AQP has 

reported that NNs are one of the most reliable, cost-effective machine-learning tools for 

prediction purposes. Based on the training methodology, there can be supervised NN where 

inputs and outputs are given to the network, unsupervised NN this is when no output is given 

and reinforcement NN and reinforcement learning where the NN learns from past decisions 



 

39 

and weights are consequently adjusted, based on related output/response health, which 

produces relatively high accuracy (Grivas and Chaloulakou, 2006). 

Recently, NN models have been used for PM mass concentrations predictions, which is a 

more complex task compared to the forecasting of gaseous pollutants. This is due to the 

complexity of the related processes (the formation, transportation, and removal of aerosol in 

the atmosphere). ANN models have the ability to capture the highly non-linear character of 

those processes, serving a wide range of gaseous prediction purposes. Time series ANN 

research has saturated existing literature in this field (Niska et al., 2004; Shrestha and 

Mahmood, 2019; Baatarchuluun, Sung and Lee, 2020), indicating NNs’ efficiency. 

Nevertheless, the use of ANN to solve problems still depends to a great extent on the skill 

and experience of modellers, and few systematic procedures exist for it (particularly for time 

series which require non-linear forecasting).  

2.3.2.2 Deep Neural Networks 

When the universal approximation theorem slowed the evolution of Deep Neural Networks 

(DNN), the back propagation learning algorithm took over as a leap forward in DNN, in which 

the automation of feature extractors’ added value compared to traditional machine-learning 

techniques. However, given the shortcomings of deep learning algorithms, DNN was shaped 

into different architectures and training techniques, offering revolutionary resolutions for 

deep-learning models. An increase in layers led to greater capacity for network learning, but 

not necessarily an improvement in accuracy. Due to the limitations in achieving high 

accuracy in forecasting model, especially when complex parameters are modelled, many 

researchers directed their efforts towards deep (rather than shallow) learning architectures 

(Zaini et al., 2022). Despite the high potential of deep learning models, their implementation 

for air quality domain would still be seen not fully utilized with many areas for development. 

A review of deep learning NN for time series AQP by Alzubi, Nayyar and Kumar (2018) 

looked at different strategies ways on how deep learning were developed through recent 

studies including features extraction, data decomposition, and other deep learning 

components. The study reviewed different elements of deep learning models, such as the 

model topology, input parameters, output parameters and performance criteria.  

2.3.2.3 Recurrent Neural Networks 

Recurrent Neural Networks (RNNs) are considered to be an extension of conventional feed-

forward NNs, with added ability to process sequential inputs with a memory which is featured 

to handle previous sequential information. However, this memory is limited to only some 

steps back (Siami-Namini, Tavakoli and Namin, 2019). The RNN differs from traditional ANN 
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in having the basic unit of the hidden layer as the memory block which contains memory 

cells with self-connections for memorizing the temporal state and a pair of adaptive 

multiplicative gating units to control information flow in the block and the input and output 

control the activation in the block (Krakovna and Doshi-Velez, 2016). The following is a 

representation of RNN model updates. 

Assuming x represents a sequence of length T: 

x = (x1, x2, x3, x4, x5, x6, x7…..xT)  (2.1) 

ht represents RNN memory at time step t: 

ht = σ (Wx
xt +Wh

ht-1 +bt)  (2.2) 

where Wx and Wh are weight matrices and bt is a constant bias. 

RNNs have various forms, including the following: 

• One input to many outputs  

• Many inputs to one output 

• Many inputs to many outputs 

Some drawbacks for RNNs should be mentioned, such as ‘vanishing gradients’, in which 

case input information passing though many layers vanishes when reaching to the beginning 

or the end layer, or ‘exploding gradients’, whereby input information passes through many 

layers that will end up with a large gradient when reaching to the beginning or the end layer. 

Such issues during the training of RNNs create more problems when long-term 

dependencies occur (see Table 2-6). 

2.3.2.4 Long Short-Term Memory 

Long Short-Term Memory (LSTM) models are a type of RNNs. While traditional RNNs are 

limited to 10-time steps back, LSTM models achieve greater reliability for long-time series 

data models due to their learning capacity encompassing more than 1,000-time steps. The 

LSTM architecture helps to accommodate inputs for long-term dependencies (i.e., it captures 

features and preserves information over a long period) (Ma et al., 2019). LSTM model is 

based on three gates: 

• Forget gate: decisions gate 

• Output gate: output results presented  

• Input gate: information to be added to the memory 
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The structure and functionality of an LSTM cell is displayed in Figure 2-6. 

 

Figure 2-6 Structure of an LSTM cell   

Source: Ma et al. (2019) 

2.3.2.5 Bi-Directional Long Short-Term Memory 

Bi-Directional Long Short-Term Memory (Bi-LSTM) was proposed by Graves and 

Schmidhuber (2005) as a development of the traditional LSTM. The upgrade consisted of a 

modelling adjustment to improve learning, whereby LSTM is applied twice to the input data 

(forward and backward), thereby increasing long-term training dependencies and hence 

increasing prediction accuracy.  

In contrast to legacy LSTM studies, Siami-Namini, Tavakoli and Namin (2019) more recently 

experimented with Bi-LSTM in their research into forecasting time series, discovering that it 

outperformed LSTM and ARIMA. They recommended the use of Bi-LSTM, rather than 

LSTM, for time-series prediction. However, they did not test the validity of the experiment for 

multivariate time series, pointing out that further experiments would be needed to 

demonstrate its efficiency with multivariate time series. It was also stated that LSTM is 

relatively faster in training, because Bi-LSTM trains smaller batches of data, since input data 

is used for training. Furthermore, the training method for Bi-LSTM is eponymously bi-
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directional (i.e., from left to right, and then from right to left), which differentiates it from other 

comparative algorithms.  

Recent forecasting research has compared modern ML with time-series algorithms such as 

LSTM, stacked-LSTM, bidirectional-LSTM networks, XGBoost, and an ensemble of Gradient 

Boosting Regressor, Linear Support Vector Regression, and an Extra-Trees Regressor. As 

complex statistical models have become expensive, time-series algorithms are taking over, 

and stacked LSTM and bidirectional LSTM have been found to perform better than other 

modern machine-learning algorithms (Barrera-Animas et al., 2022) (see Figure 2-7). 

Transferred Bi-Directional Long Short-Term Memory (TL- Bi-LSTM) has also been proposed 

as a model for AQP (Ma et al., 2019). This method uses Bi-directional LSTM to learn from 

long-term dependencies, while also learning from small temporal resolutions and passing 

this learning on to large temporal resolutions. Key researchers into Bi-LSTM encouraged 

more research into such models, to improve prediction performance (Ma et al., 2019; Siami-

Namini, Tavakoli and Namin, 2019). Most of the existing literature in this area reported that 

machine-learning methods were not reliably accurate when dealing with Big Data. This is 

where research is especially required, to provide efficient methods which will allow models to 

produce high accuracy, particularly when dealing with large datasets (Tealab, 2018). 

2.3.2.6 Markov Chains 

‘Markov’ is a linear statistical method has been named after the 20th-century Russian 

mathematician Andrey Markov, who worked on development for the Markov processes after 

the known Poisson process (the process in continuous time) (Chen and Wu, 2020). Markov 

chains were already widely used in time series studies concerning the variability of events 

over time by the late 20th century, as an extension of the generalized linear models. A 

Markov-switching model was presented in 1988-89, as an extension to work on state-space 

representation, and a Markov-switching dynamic regression model was used to model the 

dynamic behaviour of time-series variables, with switching represented by Discrete-Time 

Markov Chain (DTMC) objects (Kim, 1994; MacDonald and Zucchini, 2016).  

Statistical linear methods have previously been used for air-pollution time-series prediction. 

However, over the past decade, research has been carried out into the use of other ML 

methods for AQP, whose complex nature and variations in data sources and parameters 

foments the urgent need for more accurate measurement methods demonstrates, and thus 

further research (Ameer et al., 2019). Time series create several ways of forming models, 

while discrete-valued time series are required in many applications (e.g., to show the 

sequence of events, number of defective items in a particular set-up, or number of cases of 
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a disease in a given area and time). In discrete models, it is important to rely on the discrete 

nature of the data when building the distribution, so that normal distribution should not 

always be chosen (Ameer et al., 2019).  

 

Figure 2-7 LSTM and Bi-LSTM representation  

Source: Siami-Namini, Tavakoli and Namin (2019) 

DTMC has been adopted for the prediction of air quality in several fields, and it offers 

advantages in estimating the probability distribution and analysing probabilistic behaviours 

for some applications. It has been used in many environmental domains and applications. 

While providing a simple linear methodology for predicting, Markov discrete time (or the 

stochastic process) is ‘memory-less’, and depends on the current state only in transitioning 

to future states. It is also less time-consuming in comparison with other ML methods, 

improving its performance value (Chen and Wu, 2020).  

MacDonald and Zucchini (2016) proposed Markov-switching vector autoregressive (MS-

VAR) model as a solution for non-linear time-series models. Finite-state Markov chains form 

a discrete-time stochastic (independent) process transitioning from state to state; the 

prediction depends on the immediate past (i.e., the sequence of previous states) (Kemeny 
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and Snell, 1983). Markov neglects past information but uses the outcome of the most recent 

experiment to predict the future. This is a process described by moving from state to state 

with the transition probability. The Markov switching dynamic method starts with defining 

states or thresholds as the beginning point, then building the transition matrix (state 

transitions and probability). Figures 2-8, 2-9, and 2-10 represent the observed frequencies of 

transitions from one state to another. The Markov-switching model is represented by the 

transition probabilities. 

 

Figure 2-8 Eight (8) states transitions – MATLAB illustration 

The Markov chain is one of the classical statistical (stochastic) models which represent a 

linear method of data analysis and are used in time-series predictions with high 

interpretability (Wang et al., 2019). There is a gap in the existing literature in using Markov 

chain model development for forecasting air quality (Zakaria et al., 2019), notwithstanding 

studies of Markov chains used in several domains to predict long-run behaviour and 

determine efficiency. Markov is very commonly used in stock prediction, but Markov chain 

studies in air quality analysis remain very limited in comparison to the more prolific ANN and 

DNN research on AQP (Zakaria et al., 2019).  

Following the generalized model of Hamilton (1989), introducing the Markov-switching model 

for time series analysis, the Markov-switching model is represented by a general 

autoregressive component. It is a state-dependent model which has received much attention 

in dependent data modelling (Kim, 1994). Markov-Switching Vector Auto Regression (MS-

VAR) is a generalized form of the VAR model, consisting of a serially distribution 
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independent regime. This framework represents the probability of the states (transition 

between the states) based on unobservable regime variable st for the observed vector yt 

(Hamilton, 1994). Lam’s approach as used by Kim (1994)  is an extension that is generalized 

from the Hamilton (1994) model, which proposed estimation using the sum of previous 

states as an additional state variable. 

As an extension of Hamilton’s Markov-switching model and others, different approaches 

have been used to satisfy the different capabilities of Markov chain theory (Kim, 1994). A 

Markov system can be described as a set of N states: S1, S2, S3……SN. A change in state 

(state transition) according to a set of probabilities (a chance that any state can be reached 

from any other states) can be expressed in the equation and illustrations below (Eq. 2.3, Eq. 

2.4) (Rabiner, 1989): 

P[qt=Si| qt-1=Si,qt-2=Sk,…]  (2.3) 

P[qt=Si| qt-1=Si]  (2.4) 

 

Figure 2-9 A Markov chain with 5 states (labeled S, to S,), with selected state transitions   

Source: Rabiner (1989) 
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Figure 2-10 Illustration of observations t, and states i   

Source: Rabiner (1989) 

2.3.2.7 Hybrid Models 

Hybrid models were already subject to intensive research by the 2000s, and subsequent 

innovations in model selection and connections have emerged. The dynamism in hybrid 

model studies reflects the flexibility and ease of developing such models, with great scope 

for enhancements and developing new architectures to support different domains and 

prediction objectives (Liao et al., 2021). So this space of hybrid modelling is very 

revolutionary with forthcoming developments. A review by Rybarczyk and Zalakeviciute 

(2018) highlighted the increasing trend of using machine-learning approaches to monitor air 

quality in the period since 2010, while the use of Big Data and ML have been proposed as 

advances on traditional methods. Big data and ML approaches have been used widely to 

predict air quality. Nevertheless, examples of highly accurate AQP methods for Big Data 

considering temporal resolution are limited in the existing literature (Ma et al., 2019).  
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There are several examples of research into air-quality evaluation which use machine-

learning algorithms with various ML models to predict air quality, as discussed later in this 

chapter (see Tables 2-6, 2-7, 2-8, and 2-9). Big Data has formed a way to model more 

dynamic air-quality systems which are behaviourally heterogeneous, taking data from 

various sources. Many algorithms, methods, and techniques have been used in air-pollution 

modelling (Alkasassbeh et al., 2013). It is noted that prediction methods sometimes do not 

support the aimed accuracy; and there are inefficient approaches to better output prediction. 

Therefore, the existing literature has suggested using hybrid models to overcome several of 

these limitations and taking advantage of using different methods with more than one model 

(Zheng et al., 2015). 

Based on several air quality evaluations and after surveying the existing literature (see Table 

2-7 and Table 2-8), there are significant variations in air pollutants, causing air changes over 

location and time. A generic prediction of the overall air quality in a city is not particularly 

useful for decision making purposes. Moreover, there are some sudden changes which can 

be caused by unusual weather conditions (inflection points). To tackle such challenges and 

shortages that can present in a general statistics model, researchers proposed models to 

stress the need to consider hybrid models to predict air quality and cover some gaps and 

shortages by some modelling methods (Zheng et al., 2015). A review by Liao et al. (2021) 

highlighted that PM, NOx, and O3 have been of particular interest to researchers, and 

pointed out that ANN was the preferred way to study PM and O3, while Land Use 

Regression (LUR) is broadly used in studies of NOx. Furthermore, the study noted the 

emergence of more hybrid techniques as a growing trend, with rising challenges for multiple 

pollution prediction in light of pollution interactions. PM2.5 and PM10 studies are increasing, 

and the growing number of fine PM studies have typically used ANN. 

Moreover, a systematic literature review by Zaini et al. (2022) explained deep learning 

strategies and possible methods for AQP, considering DNN, RNN, convolution NN (CNN); 

hybrid and multiple deep learning methods; and ensemble learning. The review pointed out 

that hybrid models were developed based on different setup of data and other requirements. 

The review reported that most studies using hybrid models appeared to choose CNN-LSTM, 

which supports long-term time series data at the expense of a complex process, due to the 

large datasets required. The study recommended the use of hybrid metaheuristic algorithms 

and deep learning, and more research directed to this field is expected to contribute to 

generating new findings and driving theoretical development.  
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2.3.3 AQP Methods and Techniques 

2.3.3.1 Feature Selection and Data Pre-Processing in Machine Learning 

There are several methods for features selection and data pre-processing used in the 

literature, and numerous associated techniques (see Table 2-7, 2-8, and 2-9). The air quality 

domain has been of interest for many researches across numerous disciplines, and features 

selection for any proposed prediction for the field is of primary concern. The nature of air 

quality and gaseous activity in local and global atmospheres is inherently complex, and 

feature selection should be done in light with the factors that affects emissions concentration 

in air. The most important step is to determine the factors impacting the concentrations that 

influence the prediction process, and such factors should be included in the study of the air 

quality forecasting based on the aims and objectives. Accordingly, pre-processing should be 

done based on the geography, locations, frequency of data and many others. However, few 

studies have been concerned with the identification of effective parameter in the prediction 

based on statistical methods. Baldasano, Valera and Jiménez (2003) performed a study with 

the aim of selecting the best statistical model and refinement method for air pollution and 

metrological data, in order to predict missing data, filter noise, and determine the most 

influencing parameters in air pollution prediction. They compared selected cities in 

developed and developing countries by evaluating air quality values and comparing these to 

air quality guidelines (European and WHO limits), and their analysis showed that there is 

general decrease in the worldwide pollutants concentrations. They claimed that this was 

mainly due to the restrictions applied by governments, and national and international 

organizations. However, they claimed that this is not generally the case for developing 

countries, as pollution remains high, with expected trend of possible increase in ground level 

concentrations. 

The data measured for the two-year period study (2001-2002) by the National Air Pollution 

Monitoring Network randomly divided the dataset into training, validation, and test sets for 

modelling purposes (development, evaluation). The training of the NNs was conducted using 

the bulk of the dataset (3/4) and the remaining cases were equally divided to validation 

(improve generalization ability) and test (statistical comparison of the performance of the 

different models) sets (Grivas and Chaloulakou, 2006). Three NN models were developed 

for each station, the first of which had a full set of input variables; the second used variables 

selected by a genetic algorithm optimization procedure; and the third did not use 

meteorological input variables. The NN architecture used was feed forward, which is able to 

approximate every measurable function. Grivas and Chaloulakou (2006) pointed out that the 

results were satisfactory, and provided superior results compared to multiple linear 
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regression models. They claimed that NN is particularly germane to PM10 predictions, given 

its characteristic of being a complex gas to predict (see Table 2-9). 

Rybarczyk and Zalakeviciute (2018) studied analysed ML prediction models’ parameters, for 

the scenarios adumbrated below. (1) Estimation models using ‘predictive features as 

contaminant covariates, meteorology, etc.’. (2) Forecasting models using ‘historical data to 

predict pollution concentration)’. (3) Different types of ML algorithm used with main 

categories (ANNs, SVM, ensemble learning, regressions, and hybrid versions of these 

algorithms). (4) Methods used by authors/ (5) The nature of the predicted parameters. (6) 

The geographical location where studies were performed. (7) Dataset details (timespan, 

quantity of monitoring stations, and number of instances). (8) Specific information about the 

dataset regarding used predictive attributes such as (pollutant covariates, meteorology, land 

use, time, human activity, and atmospheric phenomena). (9) Evaluation method. (10) Tested 

algorithm’s performance (compared in terms of models’ accuracy and/or prediction of actual 

values). (11) The computational cost of the method (Rybarczyk and Zalakeviciute, 2018). 

2.3.3.2 Air Quality Prediction Architectures and Optimization Techniques 

Hybrid deep learning and algorithms optimization are also advancements in deep learning 

studies, and accuracy improvements are strongly called for (Zaini et al., 2022). Architectures 

for deep learning are varied, with the most commonly used being DNN, RNN, CNN, and 

some others, such as Deep Belief Network (DBN) and Deep Boltzmann Method (DBM), with 

numerous deep learning strategies. Improving accuracy and reducing error for models 

requires significant tuning for hyper-parameters, which plays a vital role in models’ 

performance. This can entail a prolonged process of experimenting tweaks for different 

attributes as required for the model design and architecture. A systematic review of time 

series forecasting by Tealab (2018) was undertaken in order to check the performance of 

NNs, and it was reported that many of the studies measured used hybrid models (adding the 

residuals of the linear model as an input to the ANN model) as a technique. 

Niharika and Rao (2014) noted that Transfer Learning can be used for further improvements, 

in case of in inadequate data faced during learning, as this method was found to yield lower 

error rates across several studies. There are many forms of creating hybrid models for 

forecasting; however, choosing suitable architecture and strategies for building models is 

crucial for optimal forecasting. There are many ways of combining DNN (LSTM) and Markov 

models (hybrid models), for instance to improve predictions. Markov trained on LSTM offers 

a hybrid model in which Markov is trained first to predict states, which are then passed to 

LSTM to predict outputs. In another method, a jointly trained hybrid model combines LSTM 
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outputs with Markov states. The aim of utilizing hybrid models is to use the advantages of 

LSTM but make it more interpretable. 

Rakholia et al. (2023) used different deep learning topologies to assess the possibility of 

accuracies so they could improve predictions. They tested deep learning models using 

different combinations (i.e., GRU + GRU, LSTM + LSTM, RNN + RNN, GRU + LSTM, GRU 

+ RNN, LSTM + RNN, LSTM + GRU, RNN + GRU, and RNN + LSTM), developed and run 

for ten times. They concluded that LSTM+LSTM gave the best results in comparison to other 

explored architectures. Further to the experiment, Rakholia et al. (2023) searched the 

literature for similar work, compared methodologies such as CNN-LSTM and TL-BLSTM for 

PM2.5 predictions, and reported that LSTM-LSTM outperformed these alternatives. A 

multistep multivariate prediction model was developed, which was posited as a global model 

for predicting several gases emissions without the need for multiple models and it is related 

complications. A global forecasting model was suggested; N-BEATS NN based to forecast 

multi pollutant simultaneously. N-BEATS consist of a deep stack fully connected layers with 

backwards and forward residual links, the study developed a multivariate multi-step (multiple 

time series with different covariate features). 

LSTMs can be designed in several forms, and it is very important for implementing 

algorithms with appropriate results to do the configuration exercise. Navares and Aznarte 

(2020) conducted a comprehensive experiment to determine an efficient and accurate LSTM 

model. They noted that the number of hidden nodes to be used in LSTM cannot be specified 

using known techniques, which poses challenges due to designing LSTM models based on 

trial-and-error. The study ran a Fully Connected LSTM (FC-LSTM), which is the most 

common type of LSTM, along with Gaussian Process LSTM (GP-LSTM), whereby LSTMs 

are grouped to link with a specific selected pollutant. Input GP-LSTM (IGP-LSTM) is another 

suggested architecture, using an input assistant for each group in the network. Inputs are 

grouped by pollutants with a fully connected output layer. Furthermore, a simple Shared-

Private LSTM (SP-LSTM) with all inputs to be used to train the network and outputs one 

single variable.  

Figures 2-11, 2-12, 2-13, and 2-14 illustrate each suggested architecture. Navares and 

Aznarte (2020) concluded by assessing different topologies for air quality forecasting in the 

Madrid area, and the statistical results showed that IGP-LSTM and GP-LSTM outperformed 

the other studied algorithms. It was noted that there were differences between pollutants 

behaviours’ in different circumstances, such as locations, and this was considered in the 

study dimensions. 
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Figure 2-11 FC-LSTM architecture  

Source: Navares and Aznarte (2020) 

 

Figure 2-12 GP-LSTM architecture  

Source: Navares and Aznarte (2020) 
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Figure 2-13 IGP-LSTM architecture  

Source: Navares and Aznarte (2020) 

 

Figure 2-14 SP-LSTM architecture  

Source: Navares and Aznarte (2020) 



 

53 

2.3.3.3 Hyper-Parameters Tuning and Optimization Techniques  

Hyper-parameters selection and optimization is one of the appealing topics when discussing 

ML methods. It is necessary to tune hyper-parameters so they optimally fit the data and 

model requirements, to achieve suitable or desired accuracy (see Table 2-5). Hyper-

parameters include batch size, optimizer, loss function, number of hidden layers, number of 

hidden neurons in each layer, learning rate, models used in the layers, dropout rate, epoch, 

batch size, activation function, train size, number of hours, seed, input shape, duration 

(Eren, Aksangür and Erden, 2023). All of these parameters are of great interest in related 

studies to build the architecture of the algorithm and for optimization (Ma et al., 2019; Hu et 

al., 2023).  

In relation to explorative deep learning techniques, Zhou et al. (2019) considered that using 

L2 regularization, dropout neuron, and Mini-Batch Gradient Descent (MBGD) algorithms 

would be useful for overcoming over fitting problems. Optimal processing time and avoiding 

over-fitting is fundamental for model design considerations, and DNN architectures are 

dependent on the number of hidden layers and neurons. However, other factors are also of 

significant importance for performance, including learning rate, activation function, optimizer 

algorithm, and others that can be tuned to optimize model performance and accuracy (Zhou 

et al., 2019).  

Deep residual learning can resolve some of the problems faced when using DNN. Moreover, 

oddball gradient descent proposes a methodology in which the training examples are 

proportional to respective errors for training data: the higher the error, the more occasions 

are needed to train the data. Adaptive learning rates are very important for DNN training: 

adaptive methods such as Delta-bar Algorithm, AdaGrad, RMSProp, and Adam can alter 

learning rates and increase training speed (see Table 2-5). Batch normalization also 

improves the accuracy of DNN, as well as decreasing over-fitting chances. The dropout 

method is increasingly used alongside regularization techniques, to eliminate issues of over-

fitting (Shrestha and Mahmood, 2019).  
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Table 2-5 Hyper-parameters highlights 

Parameter Functions Remarks 

Activation 
Function  

Rectified Linear Units (ReLU)  Activation function, mostly used in deep 
learning models 

ReLU variants: Exponential Linear Unit 
(ELU), Parametric ReLU, LeakyReLU 

 Linear, sigmoid and hyperbolic tangent Other activation functions used for deep 
learning models 

Optimization 
Algorithm 

Gradient descent (GD) 

Adaptive gradient algorithm (AdaGrad) 

Root mean square propagation (RMSProp) 

Adaptive moment estimation (ADAM) 

GD variants: Stochastic Gradient 
Descent (SGD), Mini-Batch Gradient 
Descent (MGD)  

Considering different types of optimizer 
algorithm yields different forecasting 
results 

 

2.4 Model Performance Measures 

There are several methods used in evaluating models performance in AQP domains. A 

considerate number of studies considered regressing as main evaluator for data relations, 

also studies mostly showed RMSE as a main evaluator measure for prediction results as 

error measure.  

Root Mean Squared Error (RMSE) can be represented using the following formula: 

RMSE = √
𝟏

𝒏
 ( ∑ (𝒚𝒊

𝒏
𝒊=𝟏 − �́�𝒊)𝟐)  

 (2.5) 

Other standards methods have been also used by researchers, such as Mean Absolute 

Error (MAE), and Mean Absolute Percentage Error (MAPE) which are represented by the 

below equations: 

MAE = 
𝟏

𝒏
∑ |𝒚𝒊 − �́�𝒊|𝒏

𝒊=𝟏   (2.6) 

MAPE = 
𝟏

𝒏
∑

|𝒚𝒊−�́�𝒊|

𝒚𝒊

𝒏
𝒊=𝟏   (2.7) 

2.5 Literature Review on Air Quality Studies and Applications 

2.5.1 Searching Process 

The literature review was performed over three primary stages. The first round consisted of 

collective results from searching academic databases (Google Scholar, IEEE Xplore, 
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JSTOR, Web of Science, Scopus, and ScienceDirect) to find articles, journals, and 

workshops, etc. concerning the key search words (e.g., ‘Big Data’, ‘machine learning’, ‘air 

quality’, ‘transportation’, ‘air pollution’, and ‘emissions’). Database hits were filtered based on 

progressively screening their titles and abstracts and then reading full-text versions, until 

only studies whose content included real representation of ML prediction models from 

several countries remained. 

In the second stage, systematic review journals/articles for ML and air quality were analysed 

to compare wider ML prediction studies based on several parameters, including accuracy, 

platform used, data size, method/technique, index of quality, and data span (e.g., 

hourly/daily). 

Third stage of refinement restricted the scope to studies published during 2018-2020, to 

include the latest trends, and including the keywords ‘machine learning’ and ‘air quality’ (to 

ensure direct relevance to this research).  

After these three stages, the remaining high-quality, relevant studies pertaining to the 

comparison of ML models and methodologies for air quality analysis were read multiple 

times, and were subsequently reviewed and compared in depth, and the resultant analysis is 

summarised in tables expounded throughout this chapter. Updates to the literature search 

were subsequently conducted, to include more recent years, as the subject was developing 

with time and new publications were checked. Different sets of combinations for keywords 

were considered as well, using high indexed publications. The search strategy included the 

main keywords ‘air quality’, ‘prediction’, ‘forecasting’, ‘air pollution’, ‘air pollutant’, ‘machine 

learning’, ‘deep learning’, ‘neural network’, and ‘modelling’, using different combinations and 

Boolean operators, to case a broad net.  

2.5.2 Discussion  

Rybarczyk and Zalakeviciute (2018) conducted a high quality systematic review that 

systematically compared algorithms using different parameters (see Table 2-9). They 

selected and analysed recent ML studies (journal articles) in pollution research, to identify 

ML algorithms for predicting air quality. The review reported that the most commonly used 

algorithms were (in descending order): ensemble learning methods, ANNs, SVMs, and linear 

regressions. As can be concluded from analysed studies (as displayed in Table 2-9), air 

pollution forecasting has been extensively undertaken using MLR, ARIMA, Support Vector 

Regression (SVR), Random Forest (RF), and K-nearest neighbours (KNN). Different types of 

ANNs contributed to the field of forecasting, including MLP, CNN, RNN, LSTM, Gated 

Recurrent Unit (GRU), and Encoder-Decoder NN (EDNN).  
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CNN was found to improve performance in some AQP studies; for instance, Alzubi, Nayyar 

and Kumar (2018) compared three different RNN architectures to predict hourly PM2.5 

concentrations. Various metrics (MAE, MSE, RMSE, R2, and MAPE) were compared, and 

the experiment showed that CNN offered the best performance, followed by LSTM and then 

GRU. Nevertheless, as deep learning continues to contribute to the field, DNN proved to 

have a competitive edge in performance over some other algorithms used in air quality 

studies, as explained in Table 2-9, especially for complex settings, wherein the DNN 

architecture supports different capacities.  

As explained previously, researchers have cautioned interpretation in relation to the complex 

nature of emissions in the real atmosphere; this has created dilemmas for the best fit 

algorithms to be used to ensure coverage of such complexities. While the received wisdom 

affirms that there is no one ideal solution for accurate AQP, existing literature has 

encouraged continuous research in the field to identify relatively more accurate options, 

specifically in light of the fast growing field in ML and the new methods that could be used in 

the future (see Table 2-9).  

Some gases were found to present particular challenges for researchers, such as O3 and 

PM, due to their nature and behaviour in the atmosphere. For instance, the quick exchange 

of O3 between the upper layer and the surface creates complexities using statistical 

methods. MLP and ANN can be used to solve such challenges related to some gases 

characteristics; however, due to the ANN structure, it could be not always helpful to use it, if 

accurate performance is a priority, and using other additional methods is advisable in order 

to corroborate ANN outputs (Liao et al., 2021). Even with the many applications NNs have 

been used for, and the continuing recommendations to use them as very applicable 

algorithms, consistent negative issues have been discovered with their use, including over-

fitting and generalization. While such issues have not been resolved even after several trials 

and studies, it has also been stated that some of them were solved using some other 

methods (Siami-Namini, Tavakoli and Namin, 2019).  

For instance, a very early work by Grivas and Chaloulakou (2006) screened researches for 

hourly concentration prediction for PM using ANN, and the results showed that ANN models 

outperformed linear regression ones, and that the use of meteorological predictors enhanced 

their performance. However, ANN did not show the same performance in predicting hourly 

NO2 concentrations. The study suggested the implementation of several methods to 

compare results is required; in line with this the current literature (see Table 2-7, 2-8, and 2-

9), there is a need to develop several methods for AQP, due the challenging nature of 



 

57 

gases, and the implementation of mixed methods is encouraged to address the existing 

gaps in AQP. 

As linear modelling is presented as important field in the existing literature, there is limited 

research on such dimension of studies for air quality modelling to solve some challenges in 

predicting some types of gases. The significance of such forms of modelling has been 

highlighted in a forecasting study of off-shore wind power fluctuations, which adopted 

Markov-Switching Autoregressive (MSAR) models, using the regime-switching feature to 

represent the fluctuating nature of wind power data. Although the field has been presented 

with several challenges and limitations, it has been thought that setting parameters for such 

models entails severe gaps, and estimation is fundamentally challenging. However, some 

solutions to the challenges faced can be considered viable Pinson and Madsen (2012).  

In the MSAR model, the coefficient can vary slightly over time, and maximum likelihood 

estimation is used. Unlike stationary MSAR models, where coefficients do not change over 

time, non-stationary MSAR is built by maximizing the likelihood of the dataset observations. 

Chen and Wu (2020) conducted an empirical case study of AQI prediction in Taipei city. 

They presented a dynamic prediction applying DTMC in a process to predict AQI short-term 

value and identify primary pollutants in the area. The authors recommended that the outputs 

of their study be used as a base to form more comprehensive air quality controls, albeit they 

acknowledged that their findings were limited in scope. They encouraged further studies 

from different regions, to compare the inconsistencies of air quality states in urban 

environments in different climate conditions. 

The review (Table 2-8) took into consideration several factors when studied, and it showed 

that air quality research consists of many factors. When building models and choosing 

algorithms, a careful comparison and evaluation of selected factors should be undertaken, 

including the following: 

• Parameters (inputs and outputs) 

• Data size 

• Data frequency  

• Data structure  

• Data relations (linear or non-linear) 

For building models of suitable accuracy for the studied domain, some consideration should 

be mapped such as: 

• Model type 
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• Features selections  

• Model architecture  

• Optimization techniques  

• Hyper-parameters  

• Model integrations  

Observations arising from the analysis of the literature reveal that several approaches can 

be followed for AQP modelling, and in most cases there is no single method that fits all air 

quality domain prediction modelling requirements. There must be a high emphasis on the 

aims and objectives of the research or application when selecting models, and equally the 

data related to the study should be of high consideration when building models. Different 

model topologies should be considered, and more specifically integration methods (hybrid 

modelling), which is of increasing research interest. Hybrid modelling can create extremely 

large numbers of possibilities between different model types, architectures, topologies, and 

the number and ways in which different models can be integrated to offer more effective 

solutions. 

The identified gaps in existing literature arising from the analysis can be summarized as 

follows, which are addressed by the current research: 

• Limited research used hourly data frequency when doing AQP.  

• Limited research explored multi-inputs and multi-outputs when studying air quality 

parameters for AQP, to model the real complexity in the atmosphere. Many factors 

must be present in the prediction, collectively with other gases, as this is more 

realistic for scenario setups.  

• Limited research used Markov chains, specifically the Markov Switching Dynamic 

Regression model type, in light with multi-inputs and multi-outputs parameters  

• Limited research mapped the complexity of the nature of some gases, and there are 

very limited suggestions for addressing this limitation in light of the multiple 

instrumental factors at play (such as the presence of other gases and meteorological 

conditions). 

• Limited comparative studies have compared cities or areas with multi-input and multi-

outputs parameters. 

The conducted literature review has explored several areas in relation to the problem 

identified, and the aims and objectives of this study. This research studies the existing 

literature for the methods that were used by other researchers in air quality domain and the 
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literature review was developed in several parts, to support the contextualization of the 

current study in relation to the findings of existing literature: 

• Prediction methods: 

• Non-linear ML methods for prediction 

• Linear ML methods for prediction  

• ML prediction architecture  

• ML optimization techniques  

The literature review identified several gaps and areas worth covering and discovering. This 

research addresses some identified areas, and formulates pathways for future advancement 

and development. It should be highlighted that there is very limited research addressing 

transportation factors and impacts on air quality (especially in Asia, and specifically for this 

wok where Jordan was studied). It has been reported that processing air quality data is 

complicated for several reasons. First of all, in both developed and developing countries the 

available data are very limited, and only a few countries publish related information (Delavar 

et al., 2019).  

The transportation sector undoubtedly plays a massive part in air quality indicators 

worldwide, and accordingly affects overall global AQI, as well as local indices for each 

country. Therefore, there are regional and worldwide efforts to study the bottom line of 

transportation, to try to come up with solutions in several directions to improve air quality, as 

well as to reduce traffic and related consequences, including GHG emissions. The literature 

has clearly stated the lack of meteorological data, specifically for humidity, for many cities 

worldwide. On the other hand, it has been reported that processing air quality data was not 

easy for several reasons. In Africa, data are very limited, and only a few countries publish 

pertinent and reliable information (Baldasano, Valera and Jiménez, 2003). There is limited 

research using hourly air quality data for prediction, and very few addressing transportations. 
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Table 2-6 ML methods insights from the literature 

Method Advantages Drawbacks 

ANN Complex nonlinear relationships between the 
concentration of air pollutants and the 
corresponding meteorological variables. 

ANN models have the ability to capture the 
highly non-linear character of those processes 
serving wide range of gaseous prediction NN 
models has been used for PM mass 
concentrations predictions (it is known that 
PM concentration modelling is more complex 
compared to the forecasting to gaseous 
pollutants due to the complexity of the 
processes). 

Able to follow both linear and non- linear 
patterns. 

-Local minimum and poor 
generalization, lack of 
analytical model selection 
approach, time consuming 
in finding best architecture 
and its weight by trial and 
error. 

 

-Computationally expensive 

MLR Complex model for prediction. Data noise can affect 
regression based results 
negatively. 

SVM Robust and reliable prediction results, as well 
as handling multidimensional dataset with 
small number of samples for training. 

-Sensitivity to noise 

-Computational complexity  

RNN RNN can process sequential data and it can 
build sequential structure of the historical 
data. 

-Training instabilities 

-Vanishing and exploding 
gradient issues  

 

Table 2-7 Literature review (initial round performed-2019/2020) 

Article and Region Quality Indicator Data Size ML Model Parameters 

PM10 prediction 
using genetic 
programming: A 
case study in Salt, 
Jordan 

(Faris et al., 2014) 

Jordan 

MSE-Training: 
222.85 
MSE-Testing: 
212.76 
MAE-Training: 
11.88 
MAE-Testing: 
10.58 

5 stations 
around Al-
Fuhais Cement 
Plant  

1-year (26 
November 2006 
to 25 November 
2007) 

GP tree model for 
genetic programming 

PM10, 
temperature, 
relative humidity 
and wind speed 
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Table 2-7 Literature review (initial round performed-2019/2020) 

Article and Region Quality Indicator Data Size ML Model Parameters 

A novel method for 
improving air 
pollution prediction 
based on machine 
learning 
approaches: A case 
study applied to the 
capital city of 
Tehran 

(Delavar et al., 
2019) 

Iran 

RMSE 
R2 
NARX gives 
minimum error 
and the best 
determination 
coefficient, 
minimum time 
calculation 

January 2007 to 
January 2011 

SVR, NARX, ANN, and 
GWR 

O3, SO2, NOx, 
CH4, total 
hydrocarbons 
(THC) and 
meteorological 
data (air pressure, 
temperature, wind 
speed and 
direction, and air 
humidity) 

A SVM-based 
regression model to 
study the air quality 
at local scale in 
Oviedo urban area 
(Northern Spain): A 
case study 

(García Nieto et al., 
2013) 

Spain 

Correlation 
coefficient for 
gases 
relationships 

January 2006 to 
December 2008 

SVR CO, NO, NO2, 
SO2,O3, and PM10 

Time series 
forecasting of air 
pollutant 
concentration levels 
using machine 
learning 

(Patra, 2017) 

Italy 

RMSE From March 
2004 to 
February 2005 
(1 year) 

ANN, SVM, ARIMA CO, NO2 plus 
temperature and 
relative humidity 

Urban air quality 
forecasting based 
on multi- 
dimensional 
collaborative 
Support Vector 
Regression (SVR): 
A case study of 
Beijing- Tianjin-
Shijiazhuang 
Bing-Chun 

(Liu et al., 2017) 

China 

MSE 
RMSE 
MAE 
MAPE 

Daily data 
(January 1, 
2014 to April 30, 
2016) 

SVR PM2.5, PM10, SO2, 
NO2, O3,CO  
 
minimum 
temperature, 
maximum 
temperature , 
weather , win 
direction and wind 
power 
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Table 2-7 Literature review (initial round performed-2019/2020) 

Article and Region Quality Indicator Data Size ML Model Parameters 

A deep recurrent 
neural network for 
air quality 
classification 

(Zhao et al., 2018) 

China 

Notations for CP 
and IAQI-
classification 
measures 
(otherwise not 
mentioned in the 
paper) 

Training data 
from January 1, 
2010 to 
December 31, 
2014  
 
Test data from 
January 1, 2015 
to December 31, 
2015 

RNN model, SVM and 
RF 

CO, NO2, O3, SO2, 
PM2.5 and PM10 

Forecasting fine-
grained air quality 
based on Big Data 

(Zheng et al., 2015) 

China 

Mean of the 
predicted 
maximum and 
minimum values 
against the mean 
of the truth AQIs 
during the interval, 
also calculating 
the absolute error 
of each time 
interval  

Hourly data from 
43 cities in 
China  

Hybrid model 
(Regression, ANN) 

 Not specific (air 
quality, 
meteorological 
data and weather 
forecasts) 

Each station 
gases (NO2, SO2, 
O3, CO, PM2.5 and 
PM10)  

Prediction of air 
pollutants 
concentration 
based on an 
extreme learning 
machine: The case 
of Hong Kong 

(Zhang and Ding, 
2017) 

Hong Kong 

R2, root mean 
square error 
(RMSE) 

8 air quality 
parameters in 2 
monitoring 
stations for 6 
years 

ELM Focus on (NO2, 
O3, PM2.5, NOx, 
SO2) 
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Table 2-7 Literature review (initial round performed-2019/2020) 

Article and Region Quality Indicator Data Size ML Model Parameters 

Prediction of PM10 
and TSP air 
pollution 
parameters using 
ANN 
autoregressive, 
external input 
models: A case 
study in Salt, 
Jordan 

(Alkasassbeh et al., 
2013) 

Jordan 

Quite promising; 
capable of 
achieving 
acceptable error 
level after number 
of iterations using 
three neurons in 
the hidden layer 
 
MSE, ED, MD, 
and MMRE 
 
Prediction error 
method based on 
introduction of 
measure of 
closeness, 
specified in terms 
of the Mean 
Square Error 
(MSE) error 
criteria 

8 monitoring 
stations in Salt, 
Jordan, over a 
1-year period 
(25 November 
2006-25 
November 
2007)  

Sampling 
frequency of 24 
hours 

Two ANN-based Auto 
Regressive with 
eXternal (ANNARX) 
input models 

Particulate Matters 
(PM10), Total 
Suspended 
Particles (TSP), 
Temperature 
(Temp), Relative 
Humidity (RH), 
Wind Speed (WS) 

Air-pollution 
prediction in smart 
cities through 
machine learning 
methods: A case of 
study in Murcia, 
Spain 

(Martínez-España 
et al., 2018) 

Spain 

RMSE < 11 µ/m3 4 cities in the 
Murcia region 
(Spain)  

Real data from 4 
stations for air 
quality 
measurement 

RF, Decision Tree, 
Random Committee, 
Bagging and KNN 

Ozone level (O3) 

ANN models for 
prediction of PM10 
hourly 
concentrations in 
the Greater Area of 
Athens, Greece  

(Grivas and 
Chaloulakou, 2006) 

Greece 

MAE, RMSE, and 
some other 
performance 
indicators  

4 sites in Athens 

Hourly date for 
2-year period (1 
January 2001 to 
31 December 
2002) 

For each station, three 
MLP NN models were 
developed. The first 
uses the full set of the 
input variables (MLPf) 
the second uses the 
variables selected by a 
genetic algorithm 
optimization procedure 
(GA-MLP) and the third 
is developed without 
meteorological input 
variables (MLPnomet). 

PM10, 
temperature, 
relative humidity, 
wind speed and 
wind direction  

 



 

64 

Table 2-8 Literature review comparison and highlights  

Study Study Region Model Remarks 

Moscoso-
López et al. 

(2022) 

Spain/Algeciras ANNs, standard 
sequence-to-
sequence LSTMs 
and a new LSTM-
based approach 
(LSTMNA) 

LSTMNA models provide slightly better 
performances than ANNs and standard LSTMs. 

Studied parameters: CO, NO2, O3, PM10 and SO2. 

Performance criteria performed: correlation 
coefficient (R), the MSE, MAE and the index of 
agreement (d). 

Rakholia et 
al. (2023) 

Vietnam N-BEATS 
architecture 

Studied parameters: NO2, CO, O3, and SO. 

Performance criteria performed: MAPE, MAE, 
RMSE. 

Ameer et al. 
(2019) 

Different 
locations 

Regression 
techniques used: 
Decision Tree, RF, 
MLP, Gradient 
Boosting  

Results showed that RF regression overperformed 
other techniques for pollution prediction. The 
experiment showed good performance with different 
sets with different sizes and characteristics and for 
different locations. Processing time for RF 
regression was much less than for gradient boosting 
and MLP algorithms. The error rate was the least for 
RF regression than other techniques. It performed 
well in identifying data peaks. 

Decision tree processing time was lower than for all 
other techniques, but with the highest error rate, and 
no ability to identify data peaks. 

RF regression can be considered as the best 
technique for air quality pollution for this study. 

Gradient boosting regression can be considered as 
the wort technique with high processing time and 
high error rate. 

Tripathi and 
Pathak 
(2021) 

India  CNN-LSTM Authors claimed that CNN-LSTM gave the best 
performance in their study 

Addressed challenges and limitations of the 
research in deep learning field. 

Performance criteria performed: RMSE, MAE, 
MAPE, MSE, Decision Coefficient, Agreement 
Index, Nash-Sutcliffe Efficiency Index, and 
Percentage Bias. 

Siami-
Namini, 
Tavakoli 

and Namin 
(2019) 

Online data from 
Yahoo Finances 

LSTM and Bi-
LSTM 

Studied algorithms: LSTM and Bi-LSTM. 

Bi-LSTM slower in training than LSTM. 

Recommendation to use Bi-LSTM for time series 
forecasting instead of LSTM. 

Forecasting problems for multivariate and seasonal 
time series needs further research 

 

Table 2-9 summarizes the findings of systematic reviews, encompassing a large array of 

papers analysed by researchers grouped under different thematic concepts. It can be 
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concluded from the comprehensive reviews included in the table that hybrid models have 

gained increasing attention in recent years due to superior performance and more accuracy. 

It was thought generally that there would be no intrinsic restrictions on how models could be 

combined; researchers have been innovative in the way to combine models together driven 

by the aims and objectives of the studies. Models as such depend generally on the 

architecture, parameters, or relevant variables, which could increase complexity, thus 

specifying parameters is of extreme importance in building models (see Table 2-7 and Table 

2-8).  

While researchers have alluded to the lack of a systematic process for hybrid models, and 

the possibility of generating an unlimited number of scenarios in combining different models 

to maximize potential, this could scale-up AQP research while potentially precluding practical 

application (Tealab, 2018). Hence, the complexity of selecting one method over another 

entails numerous academic and practical trade-offs, to manage general and particular 

difficulties. It is recommended to carefully study the selection of different variables of studies 

and evaluate existing literature models based on relatively comparable parameters, besides 

evaluating the proposed methods on their fit for the performed study; studying the data 

characteristics in exploratory data analysis can drive the study appropriately.  

Some reviews (Rybarczyk and Zalakeviciute, 2018; Masih, 2019) indicated that there is 

limitation in using estimation ML for non-linear modelling. Furthermore, there is a noticeable 

debate between estimation and forecasting; as estimation methods claimed to give more 

precision, but forecasting is more dynamic, and there is obvious evidence from the literature 

that using more complex models such as DNN can address the disadvantages of simpler 

models, but this generally entails significantly greater computation requirements.  

Existing research has clearly observed the preponderance of certain algorithms in the field of 

AQP, and it is thought that usage and discovery of other algorithms could create more paths 

for more accuracy. Moreover, the existing literature suggested that there are limitations 

associated with including certain pollutants in predictions (see Table 2-9). 
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Table 2-9: Summary of analysed surveys and systematic reviews 

Time series forecasting using artificial neural networks methodologies: A systematic review (Tealab, 2018) 

SYSTEMATIC REVIEW 

Studied new ANN models (2006-2016). 

Presented evidence that hybrid model predictions proved more accurate than traditional ANN models (such as 
back propagation with single hidden layers), despite the lack of a systematic process for hybrid model 
development.  

Explored some new models in terms of architecture, complexity, relevant variable selection, parameters 
estimation, and implementation and evaluation. 

Recommended research addressing literature gaps: 

Specifying criteria for relevant variable selections (on which basis to be selected); methodology development for 
the selection of ANN architectures; creation of evaluating models methodology that tests generalization of 
models 

Machine learning approaches for outdoor air quality modelling: A systematic review (Rybarczyk and 
Zalakeviciute, 2018) 

SURVEY 

46 papers systematically reviewed to determine why some algorithms are selected over others in prediction. 

Addressed the main need for ML-based statistical models to overcome limitations of deterministic techniques, to 
model non-linear relationships between concentrations with required accuracy.  

Provided details about algorithms and how they are applied to enhance accuracy (principles of algorithms). 

Main findings: 

Showed that estimation problems usually apply ensemble learning and regressions. 

Forecasting problems mostly use NNs and SVMs. 

Identified challenges in improving peaks prediction and contaminants (such as nanoparticles). 

Claimed that ML is mainly used in Eurasian and North America continents.  

The review presents two types of studies in ML: 

Estimation: pollutants concentration estimation (using ensemble learning, regression. 

Forecasting problems (using NN and SVM) gives priority to accuracy over interpretability.  

Estimation is more precise than forecasting; hence, forecasting is more variable. More complex methods such 
as deep learning are needed to accommodate the complexity of predicting air pollution ahead of time (days or 
hours), although such complex methods have a drawbacks of being very computationally demanding.  

The study emphasized on the suitability of ML to predict air quality.  

Traditional deterministic methods showed complexity to model fine PM, while ML approaches (estimation and 
forecasting) showed high accuracy relatively to other emission gases (however lower precision is noted for peak 
values). 

Accuracy is higher for medium and small peaks than high concentration of pollutants (high peaks). 

Forecasting for some gases such as CO and NOx is limited in terms of performance.  

Assessed models showed better performance in peak weather conditions. 

The study suggested future directions, developing models that enhance pollution peaks prediction, and models 
that improves critical pollutants such as CO and NOx. 
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Table 2-9: Summary of analysed surveys and systematic reviews 

Machine learning algorithms to forecast air quality: A survey (Méndez, Merayo and Núñez, 2023) 

SYSTEMATIC  REVIEW 

155 publications were studied. 

Direct correlation between the most polluted and the most studied countries. 

Increasing trend in number of ML for pollution studies. 

For the studied pollutant measures, nearly half of studied papers used AQI. 

For air pollutant concentration, total 54 papers showed that PM2.5 is the most predicted. 

Pollutant features are the most used; weather variables are used very often. 

For ML techniques, DL are more used than regression algorithms, and hybrid algorithms include both types. 

The most used algorithms are LSTM and MLP. Algorithms less frequently used include CNN, RNN, GRU, and 
auto-encoders. 

The most used regression algorithms are SVR and RF. Less frequently used ones are DT, ARIMA, KNN, and 
Boosting. 

There is increasing trend for the future use of Deep Transformer Networks. 

Air quality and climate change have been correlated in recent studies, creating a need to develop models for 
early warning of climate change consequences that could be caused by air pollution (for sustainable cities and 
societies). 

There is increasing recent popularity in using Graph NNs for air quality forecasting, which could model dynamic 
interactions (e.g., different cities, neighbourhoods, and streets) with distance-based weights. 

There are recent applications for using Temporal Convolutional Networks (TCNs) specifically for PM2.5. 

There is a recent mention for the use of recent application of Complex Event Processing (CEP) for air quality 
forecasting. 

Statistical approaches for forecasting primary air pollutants: A review (Liao et al., 2021) 

SYSTEMATIC  REVIEW 

Quantitative analysis of research published between 1990 and 2018, identifying trends. 

In this study it was found that most papers mainly focused on air pollution and relation to health diseases, urban 
pollution exposure models and land use regression methods. 

PM, NOx, and O3 are the most studied pollutants. 

A preference on using ANN when studying PM and O3. 

LUR was mostly used in NOx studies. 

Hybrid methods (a combination of models) become the most used methods between 2010 and 2018. 

Future expectations of mixed methods of statistical predictions to predict multiple pollutants at the same time. 

Interactions between pollutants are a challenging part of air pollution prediction future research. 

There is an increasing trend for studying PM and the influence it has on air pollution. 

Research papers studied show that PM is the most studied emission, then NOx and O3. 

The most used methods are ANN, LUR, multiple linear statistical analysis, and multi-method coupling models. 

The work highlighted the high importance of early warning system studies. 

The work pointed out the increase of accuracy for AQP studies over years of efforts in the domain and 
discussed that there still gaps in the domains and work to be done in this regards. 

The work highlighted the necessity to study the interaction or relation between air pollutants, human health and 
the urban environment. 

The interaction between pollutants, in particular PM-NOx relation and PM-O3 (as main combination of interest). 
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Table 2-9: Summary of analysed surveys and systematic reviews 

A systematic literature review of deep learning neural network for time series air quality forecasting (Zaini et al., 
2022) 

SYSTEMATIC  REVIEW 

Reviewed of the recent studies of deep learning applications for time series air quality forecasting. 

Combinations of multiple components that produced hybrid forecasting models were suggested in this paper for 
potential superior performances and improving accuracy. 

Hybrid models may increase the computational complexity and reduce the time efficiency of the models, which 
can be a downside of using hybrid models. 

Studied main components for deep learning (features extraction, data decomposition, spatiotemporal 
dependency). 

Various combinations of deep learning input parameters were presented for different problems requirements 
(different applications studied). 

Machine learning algorithms in air quality modelling (Masih, 2019) 

SYSTEMATIC  REVIEW 

Analysed 38 studies applying ML techniques. 

Studied input predictors and the impact of inputs on prediction accuracy improvements. 

Considered the geographical locations of studies. 

Explored techniques applied for pollutant concentration (forecasting /estimation). 

Analysed algorithms applied (linear regression, NN, SVM, ensemble learning, etc.). 

The study concluded the following. 

ML techniques are usually used and applied in North America and Europe. 

Multicomponent analysis (factorial analysis) showed that estimation for pollutions were done using ensemble 
learning and linear regression, but forecasting commonly used NNs and SVM. 

The study reported that ensemble learning and regression outperformed NN and SVM for the conducted 
studies, noting estimation models’ low variability and standard deviation. 

Forecasting is still very limited with NN and SVM, and other models and pollutants should be considered (NOx 
and SO2; currently there is more focus on PM10 and PM2.5). 

Suggested considering other models (such as ensemble learning or others) to improve model accuracy. 

 

2.5.3 Summary of Findings 

The in-depth review of related AQP literature reveals numerous insights pertinent to this 

research, including the fundamental problem of the limited amount of air quality data 

available for the Middle East region (Baldasano, Valera and Jiménez, 2003). This limits the 

contribution data can make to prediction, and the lack of access to Big Data related to air 

quality is also an issue. Furthermore, there are many air quality monitors errors reported in 

the literature that affect reading accuracy, and accordingly there is a chance of faulty data. It 

appears that there is limited research using Markov chain for AQP, which represents a big 

gap in this area. Markov chain can be used to support the dynamic nature of the air quality, 

and represent a simple linear method for prediction as a backup, and compensate for the 

errors resulting from the complexity of other models such as deep learning when combined 
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in hybrid structure. The use of Markov chain is considered as a major contribution of this 

thesis.  

Moreover, there is an identified literature gap concerning multi-input and multi-output 

prediction for emissions, and specifically concerning hourly data, with the time factor taken 

into consideration. Studies (see Table 2-7) mostly considered one or two outputs to be 

predicted for the air quality (gases) using the same model as multivariate (mostly studies 

built model for one output for instance) in light of some input factors, which commensurately 

affects outputs.  

The literature has been conducted to study the features that are used and the models were 

designed to contribute in a feasible way, considering possible important factors that could 

affect gaseous concentrations within the complexity of the atmosphere components to be 

addressed. Also, the existing literature showed limitation in the presented comparative 

geographical contexts (e.g., comparing countries or cities) in the field of AQP analysis. 

Another point to consider major is the lack of a unified framework to ultimately represent AQI 

across countries, which makes comparison for pollution levels almost impossible; hence, 

there is a need for a methodology to build a global unified AQI framework. 

As it can be concluded from the reviewed literature that identifying features and parameters 

for model is extremely important, as a building block for future model development, and the 

architecture design or topology of such models. Factors that should be considered when 

modelling include data size and frequency (hourly, daily, weekly, and monthly or yearly). 

Further, the number of inputs and outputs is a major consideration in deciding the selecting 

of the suitable algorithms to be used for predictions. Moreover, when studying the literature 

for the models used to predict air quality evaluation, commonly used methods (such as 

RMSE, MSE, and MAE etc.) should be considered to allow feasible comparison across 

models, in light of previously experimented parameters and achieved results. Hyper-

parameters and optimization are of high importance when considering the architecture of the 

algorithms, and can have a massive impact on the results. This literature review studied 

different hyper-parameters from different studies, focusing on issues such as batch size, 

regularization, epoch and other consideration in reference to the importance of the current 

work experiment, which addresses the literature gaps summarized below. 
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2.5.4 Identified Literature Gaps 

2.5.4.1 Limited Transportation Focus 

The research acknowledges a gap in the literature concerning the impact of transportation 

on air quality, especially in Asia, and specifically in the Jordan area. Limited availability of air 

quality data, particularly in developed countries, poses a challenge. 

2.5.4.2 Data Processing Challenges 

Processing air quality data is reported to be difficult, especially in developed countries where 

data are scarce. The literature notes challenges in obtaining comprehensive information, and 

this may affect the accuracy of AQPs. 

2.5.4.3 Input Data Refinement 

The literature points out a lack of published reports regarding input data refinement for 

network learning, with a specific mention of studies aiming to improve accuracy by selecting 

the best methods for air pollution prediction. Effective parameter identification is also noted 

as an area with limited research. 

2.5.4.4 Limited Meteorological Data 

A clear limitation is the scarcity of meteorological data, specifically humidity, for many cities, 

particularly in Africa. This shortage of data (which is analogous for Jordan and the Middle 

East) could impact the precision of AQPs. 

2.5.4.5 Regional and Global Efforts 

The study emphasizes the global importance of the transportation sector in influencing air 

quality indicators. While regional and worldwide efforts are underway to study the impact of 

transportation on air quality, challenges in addressing traffic-related consequences and 

reducing emissions persist (Chapman, 2007). 

2.5.4.6 Incomplete Air Quality Standards Compliance 

The literature indicates that many developing and developed countries do not meet air 

quality standards, particularly for NO2 near roads. Road transport, especially diesel vehicles, 

is identified as a dominant contributor to GHG emissions. 

2.5.4.7 Focus on Specific Pollutants 

The research highlights a predominant focus in the literature on specific pollutants, such as 

CO, NO2, O3, PM, and SO2. The potential for reducing emissions is discussed, but 

challenges remain, especially with PM levels in Asia. 
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2.5.4.8 Air Pollution Concentration Disparities 

It is mentioned that air pollution concentration remains high in poor countries with low 

income, and reversing the impact of air pollution is an on-going challenge, as observed in a 

study analysing trends from 1990 to 2000 (Fenger, 2009). 
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Chapter 3 

Experimental Design Framework for Air Quality Modelling 

3.1 Overview 

This chapter describes the data collection process, including the pre-processing performed 

for collected data. Furthermore, methodologies are discussed to achieve suitable prediction 

accuracy. The stages of performing the experiments are described, along with a flowchart 

that identifies main elements of the design framework for this study.  

3.2 Data Collection  

3.2.1 Overview 

Data was collected after completing the comprehensive review of related literature presented 

in the previous chapter. The literature studied the parameters used by other researchers for 

AQPs to give insights on the needed for the carried study of this research. This informed the 

view of the factors affecting gas concentrations in air, and these were selected as 

parameters for the models in this research. Accordingly, in the light of the aim of undertaking 

a Big Data comparative study, data was selected in order to compare developed and 

developing cities, for which sufficient data fulfilling the aim and objectives of the research 

was available and accessible. The data used in this research was collected from three 

different sources which are described in the following sections of this chapter. 

There were four data phases: collection, processing, modelling and obtaining of outputs. 

While optimal accuracy was the intended aim, challenges were presented by issues, 

including data losses and data sparseness (issues of data collection); noisy and incomplete 

data (issues of data pre-processing); and accuracy and scalability (issues of data modelling). 

Some solutions to these issues were suggested by the literature, including removing noise 

(by filtering data such as null).  

During the data check undertaken before the modelling phase, major data losses were found 

for temperature, wind speed, wind direction and humidity. Accordingly, other data sources 

were provided: emails were sent to representatives of the areas listed above, who suggested 

using similar data from the nearest available area to the one selected (for instance, London 

City Airport was said to be ‘the nearest area to Marylebone Road’). The missing data was 

retrieved using R software, and was replaced (by checking where it was null or zero, and 
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replacing it with the ‘City Airport’ dataset values for the corresponding missing hour, where 

applicable). Table 3-1 displays the monitoring stations, years, and time span for the collected 

data. 

Table 3-1 Main data sources description 

 London Jordan 

Air Quality Station (Data 
Capturing)  

Marylebone Road Greater Amman Municipality 

Years 2014-2018 2016-2018 

Time span Hourly Hourly 

 

It should be mentioned that the hourly data used in this work reflects data points for each 

hour over a 24-hour period. Hourly data enables more accurate modelling, which is essential 

for immediate responses to public health advisories. This high-resolution data is crucial for 

short-term responses, in contrast with daily and monthly data, which is more suitable for 

medium and long-term planning. 

 

3.2.2 Data Sources 

3.2.2.1 [England Data] London Air Quality Data Selection 

Air quality data were accessed from first location London Air quality data repositories (open 

data) (http://www.londonair.org.uk/london/asp/datadownload.asp) as first source of data. The 

accessible repositories include data between 1993 and 2019 (see Table 3-1), spanning 

several sites in London and offering a humongous amount of open source data, with up to 

six species selection of gases. Several air quality open data sources were searched, and the 

selection was based on complete data bases for at least three years of metrological data 

(such as wind speed, humidity and temperature). 

United Kingdom Data Sources Locations: 

- Oxford Street  

- Westminster – Marylebone Road  

- Hillingdon 

United Kingdom Data Sources Parameters:  

- Years (2014-2018) UK (London) Air Quality Data Selection 

- Date  

- Time of the day (hourly data-every hour)  

- Gases (varied between locations) 

http://www.londonair.org.uk/london/asp/datadownload.asp
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- Humidity  

- Wind speed 

- Wind direction  

- Temperature 

3.2.2.2 [Jordan Data] Jordanian Ministry of Environment Air Quality Data Selection 

The second source of data was collected directly from Jordanian Ministry of Environment for 

two traffic locations, air quality hourly data from 2016 till 2018 including meteorological 

related data (temperature, wind speed, wind direction, and humidity) (see Table 3-1). The 

location of King Hussein Gardens (KHG) had concentrations for NO2, O3, PM10, and SO2; 

and the Greater Amman Municipality (GAM) location had concentrations for PM10, NO2, CO, 

and SO2. Further meteorological data from 2016 to 2018 was collected from Jordan 

Meteorological Department to validate humidity values, which showed some odd patterns in 

the original file retrieved from the Jordanian Ministry of Environment. 

Jordan Data Sources Locations:  

- Greater Amman Municipality (GAM) 

- King Hussein Gardens (KHG) 

Jordan Data Sources Parameters: 

- Years: 3 years (2016-2018) Attribute Information for Jordanian Ministry of 

Environment data 

- GAM Location: 

- Date  

- Time of the day (hourly data-every hour) 

- Gases (PM10, NO2, CO, SO2) 

- Humidity 

- Wind speed  

- Wind direction  

- Temperature 

- KHG Location:  

- Date  

- Time of the day (hourly data-every hour)  

- Gases (PM10, O3, NO2, SO2)  

- Humidity  

- Wind speed  

- Wind direction 
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- Temperature 

3.2.2.3 [Italy Data] Attribute Information for UC Irvine (UCI) Machine Learning 

Repository 

The third source of data was accessed from the UCI Machine Learning Repository 

(https://archive.ics.uci.edu/ml/datasets/Air+Quality) (Vito, 2016). The dataset contains 9,358 

instances of hourly averaged responses from an array of five metal oxide chemical sensors 

embedded in an Air Quality Chemical Multisensory Device. The device was located on the 

field in a significantly polluted area, at road level, within an Italian city. Data were recorded 

from March 2004 to February 2005 (one year).  

Italy Data Sources Locations: 

- This data was used to test and validate the models for England and Jordan, with 

different parameters selected (as shown below), depending on the type of test 

performed, and for which model. 

Italy Data Sources Parameters: 

- Date (DD/MM/YYYY) 

- Time (HH.MM.SS)  

- True hourly averaged concentration CO in mg/m3 (reference analyser)  

- PT08.S1 (tin oxide) hourly averaged sensor response (nominally CO targeted)  

- True hourly averaged overall non-metallic hydrocarbons concentration in mg/m3 

(reference analyser) 

- True hourly averaged benzene concentration in mg/m3 (reference analyser)  

- PT08.S2 (titanic) hourly averaged sensor response (nominally NMHC targeted) 

- True hourly averaged NOx concentration in ppb (reference analyser) 

- PT08.S3 (tungsten oxide) hourly averaged sensor response (nominally NOx 

targeted) 

- True hourly averaged NO2 concentration in mg/m3 (reference analyser) 

- PT08.S4 (tungsten oxide) hourly averaged sensor response (nominally NO2 targeted)  

- PT08.S5 (indium oxide) hourly averaged sensor response (nominally O3 targeted) 

- Temperature in °C  

- Relative humidity (%) 

- Absolute humidity (AH) 

https://archive.ics.uci.edu/ml/datasets/Air+Quality
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3.2.3 Data Points 

After studying multiple factors impacting AQPs, and researching data availability and 

completeness in this field, the researcher and supervision team decided on the strategy to 

attain the most satisfactory results. Data used in this experiment were collected from two 

locations (London, UK, and Amman, Jordan) as primary datasets for analysis, with an 

additional third source (Italy) to validate the model, using external completely new data. 

First location: Marylebone Road, data between 2014 and 2018 (hourly data) 

Data points (data size): 43824 data point 

Source: Open Data (United Kingdom): London Air 

https://www.londonair.org.uk/LondonAir/Default.aspx 

Inputs: day, month, year, hour, humidity, temperature, wind speed, wind direction 

Outputs: CO, NO, NO2, NOx, O3, PM10, SO2 

Second location: GAM (Greater Amman Municipality), data between 2014 and 2018 (hourly 

data) 

Data points (data size): 26268 data point 

Data (from traffic locations) was collected from the Jordanian Ministry of Environment. 

Source: Closed data (Jordan) - collected from Jordanian Ministry of Environment-traffic 

locations. 

Inputs: day, month, year, hour, humidity, temperature, wind speed, wind direction 

Outputs: PM10, NO2, CO, SO2 

Third location: Italian city 

As explained previously, the Italy Data is used for testing and validating England and Jordan 

models, with inputs and outputs selected depending on the scenario test performed for the 

data 

Source: Open data (Italy): UCI ML Repository: Air Quality Dataset 

https://archive.ics.uci.edu/ml/datasets/Air+quality  

https://www.londonair.org.uk/LondonAir/Default.aspx
https://archive.ics.uci.edu/ml/datasets/Air+quality
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Variables were selected based on several factors. Firstly, a literature review was conducted 

to understand previous research in the air quality index domain. Additionally, this research 

focuses on traffic areas and related pollution at the selected locations, which were provided 

by the Ministry of Environment for Jordan data and pulled from open-source data for 

England. Data were selected based on completeness and hourly frequency as needed for 

the experiment. 

3.2.4 Parameters Selection  

A thorough literature review was done for input and output selection for studies of how AQP 

has been undertaken by previous researchers and it was found that a significant number 

used wind speed, wind direction, humidity, and temperature in different combinations, based 

on the studies’ setups. In several studies conducted in the literature to study the inputs and 

outputs to be included in this research, the impact of weather conditions; temperature, 

humidity, wind direction and wind speeds, which generally promote the rapid movement of 

pollutants to other places and different distances has been considered. Furthermore, this 

study collected available data from the parameters available for selected locations in Jordan 

and England (hereinafter referred to as the ‘Jordan Data’ and ‘England Data’), as explained 

below. The selection of input and output was then performed based on the aims and 

objectives of this study. Most related studies performed prediction in isolation of the other 

gaseous factors (as explained in detail in Tables 2-7 and 2-8), and this research aims to 

provide multivariate output predictions by having multiple outputs. 

3.2.5 Data Units  

The following units were used for the England Data and Jordan Data from the raw data of 

the source locations. This is a good reference for when the data units needs conversion (as 

in Chapter 6), to be able to do the air quality levels representations based on USEPA 

standards. 

England Data: CO (µg/ m3) NO (µg/ m3), NO2 (µg/ m3), NOx (µg/ m3), O3 (µg/ m3), PM10 (µg/ 

m3), SO2 (µg/ m3) 

Jordan Data: PM10 (µg/m3), NO2 (ppb), CO (ppb), SO2 (ppb) 

3.2.6 Data Correlations  

Data correlations for data were performed for some datasets to gather the relations between 

parameters before performing any modelling (see Figure 3-1 and Table 3-2). 
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Figure 3-1 England Data correlation 

Table 3-2 P-values table (correlation England Data) 

  CO NO NO2 NOx O3 PM10 

CO 1 
     

NO 0.531676 1 
    

NO2 0.463115 0.838613 1 
   

NOx 0.53226 0.994263 0.89206 1 
  

O3 -0.30008 -0.57249 -0.50454 -0.57405 1 
 

PM10 0.487672 0.602425 0.550681 0.608147 -0.41223 1 

 

3.2.7 Data Pre-Processing 

The retrieved data required pre-processing for missing values and normalization of selected 

columns, such as humidity. London City Airport data was used to fill in some parts to 

complete missing meteorological data. Filling data in Marylebone Road (London) was based 

on the most complete dataset from nearest location, as London City Airport is the nearest 

location with the most complete dataset. Only empty rows were filled by City Airport data, to 

represent meteorological data for the studied area. Furthermore, other empty rows from 

gases were filled with movemean and then with previous values within the same column, as 

it is assumed this is the nearest reading for the next hour’s missing data. In addition, 

normalization was applied to data. 

First location: Marylebone Road, data between 2014 and 2018 (hourly data) 

Data pre-processing: 43824 points 
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Data preparation was done using multiple methods, as described below: 

Input Data: Day, Month, Year, Hour columns were created by splitting the date time from 

original raw data (from monitors) to separated columns as in the sample below (see Figure 

3-2). The year column was transformed to year 1, 2, 3, etc. (instead of 2014, 2015, 2016 

etc.) 

 

Figure 3-2 Data example accessed using Excel sheet, showing reading date time and split 

(Day, Month, Year, Hour) 

As can be seen from Figure 3-2, column 5. TMP, 6. WDIR, 7. WSPD, 8. RH are empty and 

9. ws_C, 10. wd_C, 11. air_temp_C, 12. RH_C are the values of replacement from London 

City Airport (see Figure 3-3). 

 

Figure 3-3 Wind speed, wind direction, temperature, humidity data accessed from Excel 

sheet 
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Parts of the data, in particular the Marylebone Road (London) meteorological data, were not 

complete, so data from the nearest location with complete data-sets were selected to 

complete empty rows within the same column. Other empty rows from columns concerning 

gases were completed using ‘fill missing command’ with movemean values.  

Following the above data manipulation, a further ‘fill missing command’ was used, up to the 

length of the data, to replace any remaining missing data using previous value as the 

nearest reading for the next hour of missing data. Furthermore, normalization was then 

applied to data as explained below. 

3.2.8 Data Normalization 

3.2.8.1 Min-Max Scaling 

Data were analysed, and there was a need to normalize some parts of the data, such as the 

humidity column, which was normalized as per the following equation: 

Xnormalized =
𝑿−𝑿𝒎𝒊𝒏

 𝑿𝒎𝒂𝒙−𝑿𝒎𝒊𝒏
  (3.1) 

3.2.8.2 Data Partitioning  

The model initially pulls data from the identified source, and for this research experiment, 

Excel sheet data source was primarily provided (as per the procedures for data sources and 

manipulation discussed previously). The data are divided into training, test, and validation 

sets, with ratios of 0.8, 0.1, and 0.1 (respectively), and these were further subject to random 

partitions from the matrix of inputs and outputs. 

3.2.9 Data Characteristics and Features Selection  

England Data repositories include data from 1993–2019, as explained previously, 

encompassing several sites in London, with up to six species of gases selection. Several air 

quality open data sources have been searched and the selection was based on complete 

data bases for at least three years with concentrations (CO, NO, NO2, NOx, O3, PM10, SO2) 

and meteorological data, such as wind speed, humidity and temperature.  

The secondary source of data was the Jordanian Ministry of Environment for traffic locations, 

air quality hourly data from 2016 till 2018, including meteorological related (temperature, 

wind speed, wind direction, and humidity) for the GAM location, with concentrations for PM10, 

NO2, CO, and SO2. Further meteorological data from 2016 to 2018 was collected from the 

Jordan Meteorological Department, to validate humidity values, as some odd patterns were 

detected in the original file retrieved from Jordanian Ministry of Environment, after 

consultation with experts in the field from the Department of Statistics in Jordan. 

http://dosweb.dos.gov.jo/
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The experiments in this research were conducted for multivariate output prediction for 

several gases in two cities: 

• London, UK Output: CO, NO, NO2, NOx, O3, PM10, SO2 

• Amman, Jordan Output: PM10, NO2, CO, SO2 

3.3 Modelling Approaches Proposed 

In this study several modelling approaches were conducted to fulfil the aim and objectives of 

this study, and to present a comprehensive modelling approach. Two different datasets were 

used from two locations (England and Jordan) for the main comparative study, with another 

dataset from Italy. The modelling was done following several gradual steps, as explained 

below. 

This research purpose is to build prediction model and defining measurable (quantifiable) 

data and set them to measurable index (AQI). Several ML methods were used to compare 

results and model results using MATLAB R2020a software in the initial stage, using ANN 

methods, as listed below: 

• Fitting tool app (MATLAB) 

• Time series App (MATLAB) 

• ANN –nntool (MATLAB) 

Results were compared and time series app has proved better results in all tested cases and 

scenarios for the same dataset. After checking with several ANN models, the DNN model 

was developed first, based on the Jordanian data. Hyper-parameters tuning was performed 

to the model until a suitable accuracy is achieved. The model was then used for England 

Data, and gradual modifications were applied to achieve suitable accuracy. A Markov model 

was then developed independently for Jordan Data and England Data, and it was built to 

fulfil data structure and the objectives of the experiment and after approaching sensible 

accuracy. Developing the hybrid model took a huge part of the experiment, to have better 

accuracy than both developed models independently. In the next stage, wider experiments 

performed using MATLAB R2020a, conducted at several levels, as listed below: 

• Developing stand-alone DNN model 

- Working on hyper-parameters to optimize the model 

• Developing stand-alone Markov Chain model 
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- The Markov-switching regression model provides a prediction method using MS-

VAR 

- Working on parameters setup to optimize model 

• Developing hybrid model connecting the two model (DNN and Markov chain) using 

multiple methods, as discussed below. 

Several experiments conducted for the hybrid model, to test the best possible scenario for 

the hybrid model accuracy, to achieve superior accuracy to stand-alone models. It is worth 

mentioning that other methods were used in experiments, in an attempt to increase 

accuracy. However, Method 5 (described in Figure 3-8) was selected as the most accurate, 

compared to the other methods mentioned below. Some of these methods scenarios are: 

- Method (Scenario 1): Calculation for error was performed for DNN and added to the 

Markov outputs, then a Markov run was performed with new outputs. Alternatively, 

the Markov error was calculated and added to the DNN results, then a DNN run was 

performed with new outputs, in an attempt to check for appropriate levels of 

accuracy. 

- Method (Scenario 2): The mean was checked for both results (mean DNN and 

mean Markov). The mean was used as a hybrid method of predicting outputs using 

Markov, and then outputs were predicted using DNN. The mean of both predictions 

was then taken. 

- Method (Scenario 3): Simulated Markov results (input and output) were used as 

input and output data for DNN. A run was then performed using the new simulated 

states and the predicted output from Markov (Figure 3-4) 

 

Figure 3-4 Proposed hybrid modelling (Markov Chain and DNN)  
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The modelling stage required combining the data from various sources, in order to achieve 

an appropriate level of accuracy. Taking into consideration the data used and the domain 

(air quality), following these steps to obtain the final results. Deep learning and Markov 

models were combined in multiple ways (methods), as adumbrated below.  

3.3.1 Method 1 

In first experiment, calculation for error was performed for DNN and added to Markov 

outputs and then Markov run was performed with new outputs. In another way, Markov error 

was calculated and added to DNN results and then DNN run was performed with new 

outputs in efforts to check suitable accuracy (see Figure 3-5). 

 

Figure 3-5 Example of prediction error consideration for hybrid model 

3.3.2 Method 2 

In the second experiment, the mean was checked for both results (mean DNN and mean 

Markov). Mean values were used as a hybrid method, predicting output using Markov, and 

then predicting output using DNN, and taking the mean of both predictions. 

3.3.3 Method 3 

In another trial, DNN and Markov were combined at first using HMM outputs after running 

the algorithm with outputs for DNN (as new outputs), or using HMM simulated states as 

inputs for DNN (as new inputs). DNN was run with the new input and original outputs. This is 

a way to make RNNs more interpretable, and to achieve better performance (see Figure 3-

6). 
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Figure 3-6 Example of Markov output consideration for hybrid mode 

3.3.4 Method 4 

Furthermore, a trial was performed by having both simulated Markov results (input and 

output) as input and output to DNN, which was then run using the new simulated states and 

predicted output from Markov (see Figure 3-7). 

 

Figure 3-7 Example of simulate input and outputs using Markov as input and output to DNN 

3.3.5 Method 5 

LSTM output is predicted using LSTM, and then output is predicted using Markov.  

The data output (gas concentration only) was used as output data for the Markov model. 

(The missing data was processed first with a moving mean for each gas and then as a 
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previous value, to back up any missing values for which the data was completed by the 

mean). 

The gas concentration results from the DNN model were used as a feed to the Markov 

model (acting as the output). The inputs (i.e. the original inputs for the DNN model) were: 

day, month, year, hour, wind speed, wind direction, temperature and humidity. The final 

results were the outputs predicted after the running of the Markov model (see Figure 3-8). 

More details explained in Chapter 5 and Chapter 6 (see Figure 6-3) for full process details. 

 

Figure 3-8 Example of LSTM output consideration for hybrid mode 

3.4 Experimental Design Framework 

The purpose of this research is to build a prediction model (next hour forecasting) and define 

measurable (quantifiable) data and compare different models for AQP recommendation. 

Several ML methods were used to compare results and model results using MATLAB 

R2020a software. The study analysed related literature to discover the researched 

algorithms in the domain, and then experimented with the top niche of them in an effort to 

build a novel, more efficient model, to support AQP with improved accuracy. The 

experimental stages are summarized below. 

❖ Experimental Stages 

Stage 1: Data collection  

Stage 2: Data pre-processing 

Sage 3: Data preparation  
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Stage 4: Model development 

Model development phase 1 

• NN (feed forward backdrop). 

• NN fitting. 

• NN time series (NARX). 

Model development phase 2 

• DNN  

• Markov chain 

• Hybrid model (DNN and Markov) 

Stage 5: Model performance evaluation 

3.5 Summary 

As a summary for Chapter 3, the flow of the experiment design stages explains the major 

stages of the experimental work conducted in this thesis (Figure 3-9). As the flow chart 

shows, data were collected from three sources (data collection process), as presented in 

section 3.2 of this chapter. Subsequently, data preparation and pre-processing were 

performed – an important step to ensure data quality. Models were developed based on the 

aim and objectives of this study in phases, as shown in section 3.4. Following the model 

setup, data splitting, and model training, testing, and validation were performed. Details that 

summarize the stages of the experimental design are presented in Figure 3-9. 
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Figure 3-9 Experiment design stages flow chart 
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Chapter 4 

Air Quality Models Using Stand-Alone Models 

4.1 Introduction 

This chapter presents the methodologies for AQP. The focus of this chapter is on ANN and 

deep learning models and their architectures. This chapter highlights major contributions of 

the research concerning ANN and deep learning, and the use of multi-input multi-output. 

Firstly, simple NN’s were conducted with different types (NN-FFB, NN-Fitting, NN-NARX) to 

assess feasibility for the aim and objectives of this research. DNN was then used with 

different architectures, to test multiple possible scenarios and select the topology that 

provides suitable results for the study in terms of accuracy and reliability. This chapter 

presents and discusses a Markov chain model, and proposes a method of applying Markov 

through ARIMA representing multi-input and multi-output for simulation. It analyses the 

Markov chain model and the experiment for which the model was built, to determine if it 

fulfils the accuracy requirements for the stand-alone model. In the following chapter it is 

combined with DNN to make hybrid model. The experimental setup explanation explains the 

data preparation, model testing, validation, and testing the performance of the model with 

selected external data. 

4.2 Theoretical Basis for Architectures  

4.2.1 Artificial Neural Network and Deep Neural Network Evolution 

ANN has obvious footprints in AQP domain, as is clear from its prolific mentions concerning 

NN models in existing literature throughout the years (see Tables 2-6, 2-7, and 2-8). As 

complexity increases in many domains, especially in fields that intersect with various 

disciplines, such as air quality, many factors affect and are affected. Consequently, there 

has been a notable increase and a leap in using more complex setup of layers by 

considering the evolution of DNNs, which offer more capacity to produce more accurate 

results. The systematic literature review summarized in Table 2-8 revealed that great 

attention has been paid to the high potential and already achieved results for DNN in air 

quality studies, but as there is already a rich history of the use of ANN, the research started 

on the basis of simple prediction using ANN types (see Chapter 3 for background on ANN 

methods used in this research). DNN was then used to achieve more reliable and accurate 

results, due to the size and dimensions of data used. This chapter comprehensively 
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discusses the experiments, parameters, implementations, and results of the described 

methods used.  

4.2.2 Markov Chain Insights  

Markov chains are considered as a form of stochastic or statistical modelling; put simply, 

they concern the probability for an event to happen based on the current state of previous 

event (with that a sequence of possible events could be represented). Statistical methods 

which provide estimations provide interpretability and competing performance, unlike ML 

forecasting, which does not provide the same balance between interpretation for data and 

performance for models (Rybarczyk and Zalakeviciute, 2018). Although Markov chains are 

of good use in stock modelling and other domains, they are underused for air pollution 

forecasting, and the current literature revealed very limited research in the field for Markov 

chains, especially for multivariate studies. Hence, this research studied Markov chain due to 

the scale of benefits for interpretability, as it offers a simple linear type of models that could 

be used to backup complex systems, and compensate for errors.  

The theoretical basis for Markov chains used in this study in order to build the Markov chain 

experiment pertains to the hidden Markov model, modelled using time series regression 

model (Markov Switching Dynamic Regression Model). The ‘switching’ term represents the 

mechanism of switching of the regression model coefficients. It has been discovered that this 

type is best suited for the research experiment and the nature of air quality within this study 

framework (i.e., having multi-inputs and multi-outputs). 

The proposed model in this research is adopted from Hamilton (1989), who proposed an 

algorithm for predicting future time series values, and suggested that probabilistic inferences 

should be in place, drawn from the observed time series in which shifts in regime could 

happen. Hamilton (1989) represented shifts in dynamic behaviour explicitly, and noted that 

each regime is defined by parameters which are subject to estimation. 

4.3 DNN Stand-Alone Model Development 

4.3.1 Data Preparation for Training, Testing, and Validation  

X is indexed from Column A to Column H: 'A1:H43824' and the number 43824 (England 

Data) refers to the number of rows in the excel sheet to include the whole dataset. The data 

partitions are then split into three with 80 percent for training data, 10 percent for testing 

data, 10 percent for validation data (all randomly) using dividerand function. Pre-processing 

for partitions of the data is performed as discussed in data preparation and processing 
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methods (see Chapter 3). The method selected and used for filling missing data for this 

study is to be performed on two stages during run time, as the data will be first filled using 

'movmean', as this will calculate mean over specified length and based on the experiment 

performed this helps in raising the performance of the model.  

The second stage is filling any remaining missing values by using fillmissing 'previous' as a 

backup to fill in what is missing with the previous non-missing value. Following this order for 

fillmissing values ensures that the values are filled first with movemean, and when and if 

values need to go to the next stage. If any missing values remain, the window of fill previous 

will be smaller, to give a more realistic filling method, as in first step most of the values are 

filled using movemean this will minimize gaps. The previous value picked in this case will be 

nearer to the hour of the missing value. The data will be in form of matrix partitions in this 

case for the first instance, and to convert the data into the processing form for the DNN 

model, num2cell is used to convert numeric arrays to cell arrays (for all training, testing, and 

validation partition data). 

The network ‘net’ is then trained using trainNetwork to train the network with parameters 

input and output as cell entries. Also, layers and options parameters are used, as previously 

mentioned. After network training prediction is performed for training, testing, and validation 

data. This method produces the forecasting values of chief concern for this study. The 

identified parameters are changed based on experimental needs to fulfil this study aim of 

approaching suitable accuracy for the prediction. The same steps are followed for all of the 

studied datasets. 

4.3.2 DNN Parameters 

The numReponses variable is set to the size of output training data, and this variable is used 

during DNN run time for training purposes as a parameter for the training network for 

fullyConnectedLayer. On the other hand, featureDimension is set to the size of input training 

data, and is used as a parameter for sequenceInputLayer. numHiddenUnits is set to 

represent number of neurons (hidden units) for the lstmLayer, and this parameter has been 

tweaked through several experiments to have number of hidden units to reach satisfactory 

performance for the model in relation to the numReponses and featureDimension.  

Tables 4-1 and 4-2 display the particular characteristics of the England and Jordan Data 

(respectively. Tables 4-3 and 4-4 show the DNN layers architecture and training options 

applied to both datasets (respectively). 



 

91 

Table 4-1 DNN training options – England Data 

England Data 

numHiddenUnits 800 

maxepochs 1000 

miniBatchSize 900 

 

Table 4-2 DNN training options – Jordan Data 

Jordan Data 

numHiddenUnits 300 

maxepochs 500 

miniBatchSize 256 

 

Table 4-3 DNN layers architecture – England Data 

Layer Parameter 

sequenceInputLayer featureDimension 

lstmLayer numHiddenUnits 

dropoutLayer 0.3 

lstmLayer numHiddenUnits 

dropoutLayer 0.3 

fullyConnectedLayer numResponses 

regressionLayer  
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Table 4-4 DNN training options –England Data 

Option/  Parameters Description 

'adam' Optimization algorithm, offering dynamic adjustment for parameters learning 
rates with bias correction. 

'ExecutionEnvironment' 

'auto’ 

Parameter to specify the mode of run for the mode (CPU, GPU, etc.), which 
impacts the computational resources used and training efficiency. 

'MaxEpochs' 

Maxepochs (defined above in 
parameters) 

The maximum number of passes through the whole dataset during training. 

'GradientThreshold' 

1 

A hyper-parameter assessing in the stability of the training by using a 
threshold as a maximum limit. If the gradient of parameters exceeds the 
threshold limit, exploding gradients can be avoided to retain stability. 

'InitialLearnRate' 

1e-2 

A primary hyper-parameter, which initializes the value of the learning rate for 
the model by defining the step size for weight updates during training. This 
hyper-parameter impacts model generalization. 

'LearnRateSchedule' 

piecewise 

A method for learning rate adjustment during training for model performance 
improvement. 

'LearnRateDropPeriod' 

125 

A hyper-parameter to specify training iteration after the learning rate reduction 
(while moving towards a minimum of a loss function), mainly used for better 
model convergence by controlling the reduction of the learning rate. 

'LearnRateDropFactor' 

1 

A hyper-parameter that sets the factor of learning rate drop during training. It 
assists in training stability for the model and convergence. A larger drop factor 
leads to more reduction in the learning rate. 

'L2Regularization' 

1e-10 

A technique used for over fitting control for the model, helps in mode 
generalization. 

'Verbose' 

0 

Specifies the amount of out displayed when training the model. Zero 
determines the level of verbose, which means no information is displayed in 
this case. 

'MiniBatchSize' 

miniBatchSize  

The size of mini batch –number of training data batches (subset) used to 
update model parameters (gradient, weights, etc.) for each iteration. 

'Plots' 

'training-progress', 
'ValidationData', {XVal,YVal} 

The training screen that shows model’s performance and metrics (losses, 
accuracy, etc.) as visualization during run time for the model training. 

'training-progress' This gives the status about training performance metrics during model 
learning from training data, which is essential for monitoring training progress 
and taking necessary actions to improve model data training. 

'ValidationData' 

{XVal,YVal} 

Part of the data to validate the model performance during training. Effectively 
provides performance evaluation metrics such as validation accuracy, loss 
and helps in fine-tuning the model to avoid over-fitting. 
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4.3.3 Hyper-Parameters Tuning and Optimization Techniques  

At first, the experiments for DNN model started with one LSTM layer, to see the behaviour of 

the model. Subsequently, with the same base, parameters were tuned –such as mini batch 

and epoch, and the DNN Jordan model was doing better than the DNN England one. To 

close the gap in performance the number of LSTM layers was increased to two, and the 

performance and reliability increased for both DNN England and DNN Jordan. After this 

tweaking for parameters, the models were finalized as shown in Table 4-5. According to 

Zhou et al. (2019), adding L2 regularization algorithm and dropout layer could increase the 

stability of the model, and this research found this to be impactful for the multivariate models 

in terms of accuracy. After experimenting with L2 regularization there was an immediate 

improvement, which made a consequential difference in results. Also, other considerations 

of hyper-parameters and optimization techniques, as shown in Tables 4-3 and 4-4, 

collectively contributed to form the optimized DNN architecture, after extensive trials to 

provide the combination that worked best for the studied models and data.  

Table 4-5 DNN models comparison England and Jordan Data 

Epoch Mini batch 
size 

L2 Regularization LSTM 
Layers 

Model type 

500 256 1E-10 2 DNN-Jordan Data 

1000 900 1E-10 2 DNN-England Data 

 

4.4 Markov Chain Stand-Alone Model Development 

4.4.1 Markov Chain Parameters: Setup, Inputs, and Outputs 

The Markov-switching dynamic regression model consists of four states (humidity, wind 

speed, wind direction, and temperature). Each state was formed using ARIMA with the 

parameters in Table 4-6. The output model was also formed using ARIMA with the 

parameters presented in Table 4-7. 

Table 4-6 and Table 4-7 presents the set of parameters used to build a Markov-switching 

dynamic system. The Markov model was built using the switching dynamic regression 

method; the states were represented by a set of multiple ARIMA (moving average) models, 

and each model presented one of the states (temperature, humidity, wind direction, and wind 

speed). The parameters (AR, beta, constant, and variance) in Table 4-7 (input model) and 

the inputs were accordingly simulated using MSVAR. The output model consisted of the 

same parameters as the input model but simulated using the output data. Data were 
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simulated using observed outputs based on the transition probability and then random walks 

were performed on the simulated data to obtain predictions using the simulation function. 

Table 4-6 Markov model output parameters for England and Jordan Data 

Parameters Models 

Markov Jordan Markov England 

AR (auto regression 
coefficient) 

Mean (corr(Inputs,Output) Mean (corr(Inputs,Output) 

Beta (regression 
coefficient) 

Set to 1 Set to 1 

Constant (mean) Set to 0 Set to 0 

Variance (standard 
deviation) 

Set to 1 Set to 1 

*Inputs (represent all four inputs) 

*corr (correlation) 

*std (standard deviation) 
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Table 4-7 Markov model input parameters for England and Jordan Data 

Parameters Models 

Markov Jordan Markov England 

AR (auto 
regression 
coefficient) 

Input1: mean (corr(Input,Output)) 

Input2: mean (corr(Input,Output)) 

Input3: mean (corr(Input,Output)) 

Input4: mean (corr(Input,Output)) 

Input1: mean (corr(Input,Output)) 

Input2: mean (corr(Input,Output)) 

Input3: mean (corr(Input,Output)) 

Input4: mean (corr(Input,Output)) 

Beta 
(regression 
coefficient) 

Input1: set to 1 

Input2: set to 1 

Input3: set to 1 

Input4: set to 1 

Input5: set to 1 

Input6: set to 1 

Input7: set to 1 

Input8: set to 1 

Input1: set to 1 

Input2: set to 1 

Input3: set to 1 

Input4: set to 1 

Input5: set to 1 

Input6: set to 1 

Input7: set to 1 

Input8: set to 1 

Constant 
(mean) 

Set to 0 Set to 0 

Variance 
(standard 
deviation) 

Input1: std(Input1) 

Input2: std(Input2) 

Input3: std(Input3) 

Input4: std(Input4) 

Input5: std(Input5) 

Input6: std(Input6) 

Input7: std(Input7) 

Input8: std(Input8) 

Input1: std(Input1) 

Input2: std(Input2) 

Input3: std(Input3) 

Input4: std(Input4) 

Input5: std(Input5) 

Input6: std(Input6) 

Input7: std(Input7) 

Input8: std(Input8) 

*corr (correlation) 

*std (standard deviation) 

 

4.4.2 Markov Model Architecture 

4.4.2.1 Autoregressive Integrated Moving Average Models 

The states of the Markov-switching regression model were identified based on the number of 

Inputs, each of which was converted to the Autoregressive Integrated Moving Average 

(ARIMA) model with the experimental number of parameters. The following inputs were used 

as parameters for the ARIMA model: 

❖ Inputs 

• Hour: The hour of the day (for 24 hours) 

• Day: The day of the month 
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• Month: The month of the year 

• Year: The year  

• Wind speed 

• Wind direction 

• Temperature 

• Humidity  

4.4.2.2 Markov-Switching Vector Autoregressive 

Markov-Switching Vector Autoregressive (MS-VAR) is a type of finite order VAR model of 

pth order and K-dimension time series vector. The assumption of Markov-switching is the 

regime of a discrete time, discrete state. MS-VAR model supports non-linear predictions, 

which provides flexibility for discrete shifts (Krolzig, 1997; Chauvet and Hamilton, 2005). MS-

VAR makes it possible to have regime dependent parameters, or separate regimes for each 

shifting parameter. The formulation of MS-VAR model with a finite number of states st is 

inferred from data (‘observables’) (Hamilton, 1990; Robinson, 2009). 

4.4.2.3 Random Walks 

Random walks are generally based on probabilities, with no trends or patterns from previous 

steps, and in times series. They are generated based on mathematical models to form a 

random process. In the context of Markov switching dynamic modelling, random walk 

evolves according to the parameters associated during each regime. (Kemeny and Snell, 

1983). 

4.4.2.4 Probability 

To create probability matrix, a state vector is initiated with zeros for 8 instances. The first 

instance of the vector is then assigned to one, as well as a blank probability matrix is created 

with zeros. A nested for loop from 1 to 8 used to create Markov probability matrix using 

random function to generate a random number from a uniform distribution in range (0,1). For 

this stochastic random matrix, the sum of all elements along the row should be equal to one. 

𝒑 = [

𝒑𝟏𝟏 ⋯ 𝒑𝟏𝟐

⋮ ⋱ ⋮
𝒑𝟐𝟏 ⋯ 𝒑𝟐𝟐

] 
 

(4.1) 

4.4.2.5 Discrete Time Markov Chain 

Discrete Time Markov Chain (DTMC) or stochastic process, represents the sequence of 

random variables (whereby the next variable value depends only on the value of the current 

variable), and there is no consideration for past variables. The sequence of states is Markov 



 

97 

chain, the sequence of transitions from state to another which can be described as 

stochastic matrix (the probability of states transitioning). 

4.4.2.6 State Transitioning  

State transitioning or the regime-dependent covariance which is represented as described 

below.  

The states are defined using eight variables (MdlX1, MdlX2, MdlX3, MdlX4, MdlX5, MdlX6, 

MdlX7, and MdlX8), each of which represents inputs as states for the Markov model. Each 

variable is assigned to ARIMA model. ARIMA models’ parameters are 'AR', 'beta', 'Constant', 

'Variance'. 

The first state definition is shown below; the other states follow the same logic: 

MdlX1 = arima('AR',ARRR,'beta',1,'Constant',0,'Variance',std(Input1)); 

The ARIMA model consists of AR parameter, beta parameter, constant parameter and 

variance. AR equals to ARRR (a defined variable for this research used to save discussed 

values), a value defined before initiating ARIMA models for the states, by finding the 

correlation between all inputs and outputs using the formula corr(Input,TrainingData). This 

which returns the matrix of correlation coefficient between x and y (in this case, inputs and 

outputs), and then the mean of ARRR is calculated. The resultant value is assigned to the 

ARIMA model’s AR parameter, which describes the response process within the regime-auto 

regression coefficients. The second parameter in the ARIMA model is beta, which is set to 1 

for all states. The third parameter is constant, which is set to 0 for all states, and the 

variance parameter equals the standard deviation for each input. Consequently, there are 

eight difference variances for each ARIMA model. All eight ARIMA models representing the 

eight inputs are then stored in one matrix variable MdlX (see Figure 4-1). 
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Figure 4-1 Probabilistic parameters of hidden Markov model 

(X) represents states, (y) represents possible observations, (a) represents state transition 

probabilities, (b) represents output probabilities  

Source: Tdunning (2012) 

4.4.2.7 Input Simulation 

Input1, Input 2, Input 3, Input 4, Input 5, Input 6, Input 7, and Input 8 were simulated using 

the simulation function based on equal probability for each of the four states (transition 

probability).  

4.4.2.8 Outputs Simulation 

After determining state transitioning, probabilities matrix and the DTMC object mc using 

state transition matrix p and state transition models, outputs were simulated using simulate 

function with Mdl parameter, with number of observations represented by number of rows of 

outputs and the observed output data. Each output is represented by simulate function with 

the specified output parameter.  

Each simulation function represents one of the outputs, to form simulated values for all the 

outputs. All simulated outputs are stored in one defined variable named TrainingDatay. 

4.5 Models’ Implementation Results 

Figures 4-2 and 4-3 show flow charts for the DNN and Markov models. The results are 

discussed below.  
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Figure 4-2 Deep learning model flowchart 

The flowchart (Figure 4-2) presents the process of performing a deep neural network (DNN) 

experiment. First, the data is loaded and then randomly split into training, testing, and 

validation sets. The data is pre-processed at runtime to ensure any remaining missing data 

is filled. Next, the architecture is defined as discussed thoroughly in Section 4.3 (DNN 

parameters and hyper-parameters tuning and optimization techniques). The prediction is 

then performed after training the DNN model. The obtained results are saved and checked 
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for satisfactory performance by calculating the error. If the results are satisfactory, they are 

plotted. 

Figure 4-3 shows the flowchart for the Markov chain experiment. The process starts with 

data preparation to fit the data to the model, given the unique nature of the Markov model. A 

multivariate regression is performed to obtain the parameter setup for the Markov model 

(beta, sigma, etc.) as specified in detail in Section 4.4. Then, statistical calculations are 

performed for input/state representation as they are modeled using the ARIMA model for 

each input/state. A Markov chain simulation for the output is performed to obtain the 

predicted results. The results are evaluated by calculating the error, and if satisfactory 

results are achieved, they are plotted. 
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Figure 4-3 Markov chain model flowchart 

4.5.1 ANN Results 

4.5.1.1 NN-FFB, NN-Fitting, NN-NARX 

As described in Chapter 3 (concerning the experimental design), the first experiment was 

done using ANN (NN-FFB, NN-Fitting, NN-NARX). Table 4-8 shows the comparison results. 

NARX (dynamic NN) model yielded better results than ANN for the tested cases and 

scenarios for the same dataset. This is because the structure of this algorithm provides 

support for time series data. All results/performance are reported based on experiments 

using MATLAB R2020a (see Table 4-8). Figures 4-4 to 4-9 display the results for the models 

described in Table 4-8. 
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Table 4-8 NN results for England and Jordan Data 

Training Function No. Hidden 
Units 

Accuracy Location Model type 

trainlm 20 0.94 Jordan NN -FFB 

trainlm 25 0.89 England NN -FFB 

trainlm 20 0.93 Jordan NN-Fitting 

trainlm 25 0.88 England NN-Fitting 

trainlm 20 0.98 Jordan NN-NARX 

trainlm 25 0.97 England NN-NARX 

 

 

Figure 4-4 Westminster – Marylebone Rd results (Central London) – NARX 
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Figure 4-5 Westminster – Marylebone Rd (Central London) – NARX results/errors 

 

Figure 4-6 Westminster – Marylebone Rd (Central London) – NARX error histogram 

 

Figure 4-4 shows the accuracy of the NARX model for England data, presenting the results 

for the training, validation, and testing data. In addition, Figure 4-5 clarifies the MSE and R 

values, which precisely measure the accuracy of the NARX model. Additionally, the error 

histogram (Figure 4-6) visualizes the prediction errors (the difference between predicted and 

actual values). 
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Figure 4-7 GAM location results (Jordan) – NARX 

 

Figure 4-8 GAM location (Jordan) – NARX results/errors 
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Figure 4-9 GAM location results (Jordan) – NARX error histogram 

 

Figure 4-7 shows the accuracy of the NARX model for Jordan data, presenting the results for 

the training, validation, and testing data. In addition, Figure 4-8 clarifies the MSE and R 

values, which precisely measure the accuracy of the NARX model. Additionally, the error 

histogram (Figure 4-9) visualizes the prediction errors (the difference between predicted and 

actual values). 

In comparison, it can be seen that the NARX model achieved good results. The accuracy is 

higher for the Jordan data (around 0.98) compared to the England data (around 0.97). This 

difference is due to the variation in the number of parameters and the size of the data used. 

This comparison provides valuable insights into the model's behaviour under different 

parameter setups and data sizes. 
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4.5.1.2 DNN LSTM Models 

Table 4-9 and 4-10 present results for DNN England and DNN Jordan  

Table 4-9 DNN (LSTM) results – England Data 

RMSE Value Data Part Model 

51.521 Training Data DNN (LSTM)- England  

53.371 Testing Data DNN (LSTM)- England 

52.121 Validation Data DNN (LSTM)- England 

 

Table 4-10 DNN (LSTM) results – Jordan Data 

RMSE Value Data Part Model 

38.345 Training Data DNN (LSTM)- Jordan  

79.814 Testing Data DNN (LSTM)- Jordan 

74.190 Validation Data DNN (LSTM)- Jordan 

 

4.5.2 Markov Chain Results 

Table 4-11 and 4-12 present results for Markov England and Markov Jordan models. Table 

4-13 compares the Markov and DNN models for both England and Jordan Data. 

Table 4-11 Markov results – England Data 

RMSE Value Model 

11.1347 Markov- England 

 

Table 4-12 Markov results – Jordan Data 

RMSE Value Model 

15.6624 Markov- Jordan 

 

Table 4-13 DNN and Markov comparison table for England and Jordan Data (test data) 

Jordan RMSE England RMSE Model 

77.7665 53.3712 DNN 

15.6624 11.1347 Markov 
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4.6 Discussion of Outcomes 

DNN models were developed for the England Data and Jordan Data, with some variations 

between the parameter values in both models, depending on the needs, data size and 

parameters (as explained in Chapter 3). Two LSTM layers were used for each model, one 

sequence input layer, two drop out layers (0.3), a fully connected layer and a regression 

layer. Training options for the models were execution environment (CPU), L2Regularization, 

Mini Batch Size, and Max Epochs. The details of the structure of the DNN models can be 

found in Table 4-5. Parameters’ values were specified following Zhou et al. (2019), based on 

systematic experiments and observations. Parameters were optimized in iterative reviews 

through several trials. 

4.7 Summary 

Predicting air quality is challenging because of the complexity of its processes and the 

strong coupling across all parameters, which is more complex in some gases than in others, 

such as with PM. Limited data access in some regions is a problem, and missing data from 

monitors is a common occurrence; further methods and validations for data 

replacement/removal accuracy are necessitated by such conditions. Furthermore, 

generating accurate results in light of data factors is inherently more challenging in dynamic 

systems. 

Adding L2 Regularization layer to DNN model improved the model results. Tweaking the 

mini batch value to suitable value depending on the mode (between 32 and 1024) improved 

the model results. Epoch value plays a role in enhancing results, which depends on the 

model as well (Zhou et al., 2019). Hyper-parameters tuning for the models proved increase 

in overall model performance, with consideration to data points, input and output numbers 

(multivariate input and output). Experiments were performed with hyper-parameters tuning, 

with a view to achieving suitable accuracy to fulfil the objectives of this study. The following 

chapter presents the results for hybrid air quality modelling. 
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Chapter 5 

Hybrid Air Quality Modelling 

5.1 Introduction 

This chapter presents the proposed hybrid model, combining the stand-alone models 

discussed in Chapter 4, with further details about the structure. Model selection is presented 

and the results between algorithms are presented and discussed in different ways, with 

introduction of the selection based on the best accuracy. Comparison tables with error and 

regression data are presented. This chapter discusses model selection and lists optimization 

for already developed models using different algorithms, and summarizes tweaking and 

refinements of parameters that can help in improving accuracy. 

5.2 Overview 

Modelling for accurate results needs further identification for hybrid methods, to produce 

suitable results in support of the aims and objective of the study. This chapter presents 

experimental outcomes of using non-conventional hybrid modelling. The model was built 

using DNN and Markov chain model (Markov-switching dynamic). The initial assumption for 

the experiment is on the basis of developing a deep learning model which could provide 

capacity to the complexity of the multivariate inputs and outputs for the AQP model, and then 

simulate results using a simple linear method. Markov chain was selected for this purpose, 

to backup data and compensate for any losses, errors, redundancy and external factors. 

5.3 Model Architecture 

The deep-learning modelling architecture was built using methods and techniques discussed 

in the previous chapter. Due to the advantages of the DNN model in Big Data prediction, 

many trials were performed, using tailored parameters to fit the data requirements, to 

produce appropriate accuracy for the predictions. A DNN model with two LSTM layers was 

used as the first method of predicting air quality for the selected data. A separate experiment 

was performed using Markov-chain modelling, and then hybrid modelling was developed, so 

that the test data was fed to the Markov model. This produced the required outputs and gave 

an indication of appropriate levels of accuracy. 

By its nature, the Markov model requires data to be prepared in a certain way, so the 

Markov-switching regression (Kim, 1994) was tailored to this particular research, and was 
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treated in a special way to fulfil the specific aims of the model. The initial input consisted of 

multiple inputs of eight parameters. When preparing to feed the Markov model with data, the 

dataset was split randomly in a ratio of 0.8:0.1:0.1 – 0.8 for training, 0.1 for testing, and 0.1 

for validation. The data was then filled with move-mean method, and then previous value 

method, to back up any missing values. Indexing for both the input and output data was 

done in such a way as to treat each input and output as separated parameters. This 

procedure was based on previous trials, in which it was attempted to replace missing values 

on the run time using different methods.  

The method described gave good results when it was applied to the England Data and 

Jordan Data. This method of replacing the data was also suitable for hourly data, as the first 

replacement of mean values through the move-mean method was aligned with the data 

frequency. Because of the nature of the data selected, there was a realized pattern of 

values, which were relatively close to each other’s readings on many occasions. This was 

due to the impact of weather conditions as a collective atmospheric effect, and the steep 

increase or decrease in associated values. Move-mean was chosen as the primary method 

of replacing missing cover values, as it can give near-average replacements. It should be 

noted here that the data contains negative temperature values, which were not manipulated, 

as they represent the reality of weather conditions and sub-zero temperatures, particularly in 

winter.  

The Markov model was based on several input models. Each input was represented by an 

ARIMA model, which was built using a number of variables: AR (auto regression coefficient), 

beta (regression coefficient); constant (mean); and variance (standard deviation). The AR 

variable for each input was calculated by using the (corr) function for each input and output, 

and then the mean was taken as the result of the correlation (the value being used for each 

input ARIMA model). The beta was a fixed value of 1, and the constant was a fixed value of 

zero. The standard deviation changed according to each input value. An std function was 

used for each input: std (Input1), std (Input2), std (Input3), std (Input4), std (Input5), std 

(Input6), std (Input7) and std (Input8). 

A DTMC object was used for the switching-technique Markov-switching dynamic regression 

model msVAR object, which stored the parameter values of the model. The DTMC object 

took the P parameter as referred to for the probability of the transition. When the output 

values stored in the Mdl variable were then simulated using the simulation function in 

MATLAB, which took the saved Mdl representing the input side. Subsequently, a number of 

observations (referring to the number of data rows used in the experiment) and the output 

were produced.  
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A simulation object was used for each output, and it should be mentioned here that the 

output was named Training Data in the code, so that TrainingData1 represented the value of 

Output1, TrainingData2 represented Output2, TrainingData3 represented Output3 and 

TrainingData4 represented Output4. The probability transition was created in eight different 

states, based on the eight input values. The assumption for the probability matrix was to 

produce an 8-by-8 matrix between zero and one, by generating a random number from a 

uniform distribution in range (0,1). All new outputs were represented using Training Data, as 

all simulated outputs are stored in this variable. The transition probabilities linked each state 

to the next one; the earlier described model created a Markov-switching dynamic regression 

model, which supported the dynamic behaviour of the time series through the set of state 

transition probabilities. ARIMA and msVAR were used to create the dynamic regression 

model. 

The DNN and Markov model were trained using the methods described above. Trained 

models were saved appropriately, and the resultant output of the DNN was fed to the Markov 

model as a new output, and the values were predicted using the previously trained model 

parameters. The new output represented the predicted values for the hybrid model (both 

DNN and Markov). Data manipulation was performed in order to execute the hybrid model. 

This was done by using the output data of the model as the output for the first (i.e., DNN) 

model. The resulting values were then used as the output of the previously trained Markov 

model, as test data was used alongside other data in this experiment. A third source of data 

was considered to be external to the other data. This was used to predict the output, in order 

to validate the model and show how well it would perform with new data.  

The modelling results are presented in section 5.4. To perform the hybrid modelling, DNN 

model that was presented in Chapter 4’s saved results was called to the workspace using 

the import feature, and the already saved Markov model results were called. The test 

partition of the data that was predicted using DNN model was fed to the Markov model as 

new output for the latter, and the already saved setup for Markov was used to simulate 

outputs. The same methods were used for both the England Data and Jordan Data. 

5.4 Experimental Results 

5.4.1 DNN and Markov 

As Tables 5-1 and 5-2 demonstrate, the accuracy of the hybrid models in the selected 

locations in England and Jordan is better than that of the DNN and Markov models. The 

hybrid models provided good accuracy in both experiments. Moreover, the performance of 
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the models was validated using the new data. Improved accuracy was also noticed when the 

same hybrid models were used. This shows that they are preferable to the standalone 

models, in the light of the multivariate data from both England and Jordan. This study shows 

that combining two models supporting the time-series nature of air quality data has 

enhanced the experimental results. The first experiment was performed to obtain appropriate 

results for each individual model. The hybrid model was then applied to the experiment to 

achieve the required level of prediction accuracy. In comparison, the overall performance 

improved using hybrid modelling. Experiments of this kind are recommended when using Big 

Data for prediction, especially when modelling limitations arise (Zaini et al., 2022).  

Table 5-1 Modelling results: England 

RMSE Model 

53.371 DNN 

11.134 Markov 

9.889 Hybrid (DNN and Markov) 

 

 

Figure 5-1 England air quality index prediction process 
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Table 5-2 Modelling results: Jordan 

RMSE Model 

77.7665 DNN 

15.662 Markov 

14.877 Hybrid (DNN and Markov) 

 

 

Figure 5-2 Jordan air quality index prediction process 

 

Table 5-1 presents the RMSE for the standalone models DNN, Markov, and the hybrid 

model (DNN and Markov) for England data. Table 5-2 presents the RMSE for the standalone 

models DNN, Markov, and the hybrid model (DNN and Markov) for Jordan data. Both tables 

illustrate that the hybrid model outperformed the standalone models, indicating that using the 

hybrid model is recommended due to its superior performance with different datasets. Figure 

5-1 and Figure 5-2 show regression R for England and Jordan data as listed in Table 5-5. 

To validate the performance of the models, new data was selected from a data source that 

was not used in the experiment, in order to validate and evaluate the models, and calculate 

the error for the models, using RMSE. The first stage of the validation was data preparation 
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from the new source. Data was selected with similarities to the original data specifically to 

fulfil the requirements of the study, to ensure that the model would perform well with similar 

studies and data, and show that it was reliable. Data was selected from the Italian Data 

source (as explained in Chapter 3), which resembled the data used to build the models 

mentioned above.  

After preparation of the input data, the data was partitioned to fit the number of rows 

selected for the test data. The new input data was then fed to the DNN model (after the 

previously saved DNN model results were loaded to the MATLAB workspace). A run of the 

prediction was then performed with the current settings, but without retraining the DNN (the 

pre-saved model set-up was used). Finally, the new predicted result was fed to the Markov 

model (after the previously saved Markov model results were loaded to the MATLAB 

workspace), and the results from this run were considered for the validation of the hybrid 

modelling results. 

A new source of data was used to validate the Jordan modelling: KHG location data, 

provided by the Ministry of the Environment. Firstly, the DNN and Markov models were 

trained and each set of results saved separately. The externally sourced test data was 

predicted (fed) first to the DNN and then to the Markov. The results were validated using the 

new Italy Data. The output was used to perform a new DNN run, using this data source.  

The accuracy rates of the hybrid models for both England and Jordan Data were better than 

those of the stand-alone DNN and the stand-alone Markov models. The hybrid model 

showed good accuracy in both experiments. Its performance was validated using new data, 

and it was found to achieve greater accuracy compared to the standalone models (see Table 

5-3 and 5-4). Furthermore, Table 5-5 shows hybrid model performance evaluations (R and 

MAE). 

Table 5-3 Modelling validation (new data source from Italy): Jordan modelling 

RMSE Model 

57.494 DNN  

10.486 Markov 

7.866 Hybrid (DNN and Markov) 
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Table 5-4 Modelling validation (new data source from Italy): England modelling 

RMSE Model 

113.389 DNN 

18.702 Markov 

15.277 Hybrid (DNN and Markov) 

 

Table 5-3 and 5-4 show the model’s generalization ability by achieving good accuracy using 

a completely new source of data (Italy data). The results displayed in Tables 5-3 and 5-4 

demonstrate the efficient use of the DNN–Markov model in larger datasets, as DNN–Markov 

outperformed the standalone models in the case of England and Jordan data. Hence, within 

the scope of this study, the size of the data for a multivariate setup must be considered. 

There must be a good balance of trade-offs (performance, training time, accuracy, etc.) 

when selecting the algorithm for air quality prediction. 

Table 5-5 Hybrid models’ performance evaluation 

MAE R Model 

8.2426 0.9966 Hybrid (DNN and Markov) – Jordan 

14.6901 0.9986 Hybrid (DNN and Markov) – England 

 

Table 5-5 shows a comparison between Jordan and England models using performance 

evaluation metrics R and MAE.  

 

5.4.2 Experimental Scenario Results 

This section highlights some of the experimental results produced throughout the study. 

Several factors were instrumental in obtaining different results, such as the architecture 

(topology) of the model (e.g., the number of DNN model layers and type affected results). 

Furthermore, hyper-parameters tuning is of major impact to the overall model performance. 

In multi-input and multi-output deep learning (Zhou et al., 2019), L2 regularization can be 

used to avoid over-fitting issues by optimizing weight parameters. In line with this, this 

research adopted the implementation of such an algorithm within the DNN architecture, 

which achieved a leap forward in enhancing the results.  

Moreover, mini-batch gradient descent and dropout neurons were of equal importance to the 

developed model in this study. Tweaking the mini batch value to be something in between 

32-1024 is recommended (Zhou et al., 2019), depending on the model architecture and 

number of layers needed based on the datasets to be modelled. Chapter 4 explained the set 
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of parameters selected for this study, based on several experiments, which produced 

different results for the scenarios expounded below. Section 3.3 explained the methods or 

scenarios followed. The results obtained from the experimental of some scenarios are 

discussed below. 

There is obvious evidence from previous studies that there is a need for models that provide 

reliable high accuracy prediction while dealing with large datasets (Tealab, 2018; Ma et al., 

2019; Siami-Namini, Tavakoli and Namin, 2019). Additionally, there is a lack of ML models 

giving reliably accurate forecasting when predicting using Big Data, and put simply there is 

an absence of reliable methods. The use of Bi-LSTM as a method to improve prediction 

accuracy in the presence of Big Data has been suggested (Ma et al., 2019; Siami-Namini, 

Tavakoli and Namin, 2019). However, Siami-Namini, Tavakoli and Namin (2019) claimed 

that there are still gaps in the area of BiLSTM itself, especially for multivariate time series, 

and encouraged further specific research to address this. Following the mapped needs 

claimed in different research studies expounded in Chapter 2, this research conducted 

multivariate series with Big Data, using the Bi-LSTM method to test for the same setup as 

presented previously for DNN (LSTM).  

The results displayed in Table 5-6 and 5-7 show that there might be efficient use for Bi-

LSTM in larger datasets, as Bi-LSTM out performed LSTM in the case of England Data, but 

it appeared that LSTM outperformed Bi-LSTM for Jordan Data. Hence, in the scope of this 

study, there must be consideration for the size of data when using Bi-LSTM for multivariate 

setup, especially as training takes a lot of time for BiLSTM. There must be a good balance 

for trade-offs (performance, training time, accuracy, etc.) between using BiLSTM and LSTM. 

Table 5-6 BiLSTM England Data 

RMSE Value Data Part Model 

51.338 Training Data DNN (BiLSTM)- England  

52.698 Testing Data DNN (BiLSTM)- England 

53.4368 Validation Data DNN (BiLSTM)- England 
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Table 5-7 BiLSTM Jordan Data 

RMSE Value Data Part Model 

39.223 Training Data DNN (BiLSTM)- Jordan  

80.0189 Testing Data DNN (BiLSTM)- Jordan 

75.5875 Validation Data DNN (BiLSTM)- Jordan 

 

As it can be seen from the different experimental scenarios presented in this thesis, after 

several trials, DNN-Markov proved to offer the best results. Even the order of the experiment 

made a difference; for instance, trials for the Markov-DNN model were performed, meaning 

the Markov outputs were used to feed DNN, but in fact DNN-Markov proved performance. 

For example, in other scenarios, the mean of the two models (DNN and Markov) was used, 

and some other trials such as residual error and others (more scenarios are explained in 

section 3.3).  

5.5 Summary 

The results of the Markov model represent the linear part of the hybrid model by simulating 

the data, as discussed in Chapter 3. This model produced good results as a stand-alone. 

However, a hybrid model was used in this chapter, in an attempt to improve accuracy. 

Hybrid (Markov and DNN) model results proved to be satisfactory for the objectives of this 

study. The combination of models provided a solution to the Markov shortage in Big Data 

prediction, and utilized the advantages of both models to produce better results, satisfying 

the aim of this research. There was a marked improvement in the results when using hybrid 

methods (Markov and DNN). This supports the aim of this study by providing the level of 

accuracy required for AQP. 

The study presents satisfactory performance of the hybrid Markov and DNN model. Due to 

the limitations of the Markov Chain in predicting long-term time-series data (Wang et al., 

2019), the direction of this study suggested that the hybrid (Markov-LSTM) model would 

produce improvements, and the experiment demonstrated this. A forward-looking AQI was 

developed further, as presented in Chapter 6, when appropriate levels of accuracy in 

reference to AQP have been achieved. Further methods of implementing the Markov and 

DNN hybrid are explored to fulfil the aims and objectives of this study, while other models 

are also investigated to see if they also improve accuracy. As discussed in the experimental 

summary, some modelling methods outperformed others, especially when Markov and DNN 

were combined. However, not all combinations of methods will give good results. Further 
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validation of the best performing models was conducted using case studies (with data from 

another source) to test the models for further developments. 

The study conducted several methods in an effort to contribute with a new and efficient 

approach to predict AQI for the next hour; DNN-Markov approach was selected as validation 

proved the model’s performance in terms of promising potential for efficiency. It is also 

efficacious to deploy a simple linear model, enabling backup in the fact of complexity and 

potential losses that could occur with the DNN model, which thereby boosts performance. 

Among its main contributions to knowledge, this work proposes an hourly prediction model, 

with multivariate input and output models supporting the complexity of AQP. It proposes a 

hybrid model, combining Markov and DNN models considering static and dynamic variables 

for accurate results and AQI representation.  

The developed solution offers hourly generation of the AQI model, to produce more accurate 

results, and improved access for added value for decision makers for the selected regions 

(especially concerning the data for Jordan). The research considers the transportation factor 

(share of transportation emissions), and addresses data refinement and model accuracy by 

generating a model to cover such challenges (such as missing data and reducing noise). It 

proposes the best combination of tested models to cover complex gases that are currently 

creating challenges in prediction, such as PM.  

The proposed multi-input multi-output hybrid Deep Neural Network Markov (DNNM) model 

achieves reliable accuracy of hourly time-series data, and provides the large dataset in this 

study. This aims to cover the gap in high Big Data prediction accuracy for the domain (hourly 

frequency) and to form a more standardized AQI by comparing results in two selected areas: 

England and Jordan (i.e., London and Amman). The following are the main objectives of the 

proposed solution: 

• Reduced data complexity processing through selecting the best ML methods to 

support air quality analysis. 

• Increased reliability and accurate modelling to predict air quality. 

• An effective AQI model for policy and regulation, supporting health and climate 

change issues. 

• Considering transportation/traffic factors. 
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Chapter 6 

AQI Framework Using Neuro-Fuzzy Logic 

6.1 Introduction  

This chapter builds the AQI levels representations using Adaptive Neuro Fuzzy Logic 

(ANFIS). First, the results of the selected model from hybrid modelling with most suitable 

results (as explained in the previous chapter) are used, and then output of air quality levels 

is represented using Fuzzy Logic, following the air quality standards which discussed in the 

next section. The EPA (2023) criteria were selected as the standard to follow in designing 

the fuzzy logic. 

6.2 EPA Air Quality Standards (2023) 

Air pollution has affected many aspects of life, such as health, where reported respiratory 

irritation issues are increasing (Coelho et al., 2021). The first AQI was developed by the EPA 

as a response to the major economic, health and environmental consequences of this 

(Bishoi, Prakash and Jain, 2009). In comparison to the PSI and AQI, the RAQI has been 

found to give good results. There has been a limitation to existing research, due to the cost 

of developing an AQI system for PM2.5 (which refers to particulates – tiny particles or 

droplets in the air) from the base PSI. This required further developmental research into 

systems to cover other literature gaps in the field. There are many standards available; 

however, this research proposed the development of a neuro-fuzzy-logic to support the 

boundary areas of the AQI as a further enhancement for representing air quality levels 

based on EPA standard as the most suitable one for this study. 

This research has industrial significance, as air pollution has affected many aspects of life, 

the most egregious of which is health, with increased prevalence of respiratory irritation 

issues (Coelho et al., 2021). The first AQI was developed by the EPA as a response to the 

major economic, health, and environmental consequences of industrial activities (Bishoi, 

Prakash and Jain, 2009). The EPA standard is adopted in this study to represent air quality 

levels as it has been thought of as the most standard that could be represented across cities 

from the available standards. 



 

119 

6.3 Fuzzy Logic  

Fuzzy logic can be considered as decision making tool, and it is a subset of the intelligent 

system field; it is used in the simulation of non-linear behaviour using the fuzzy logic 

framework. Despite its name, it is actually more of a precise logic for rational decisions in 

light of uncertainty (Singpurwalla and Booker, 2004). As explained previously, fuzzy logic 

was originally proposed as a solution to handle uncertainty by approximation 

(Baatarchuluun, Sung and Lee, 2020). A fuzzy system includes a membership function, 

which can be in different curve shapes (trapezoidal, triangular, or Gaussian); the curve 

shows the connection between each input point and value between 0 and 1 (Sowlat et al., 

2011). 

This study shows the importance of using fuzzy logic, whereby the latter can give 

approximations, which is an added benefit to the already developed models. This is because 

when data is collected there is a need for data replacement, and data filling following 

different strategies makes data more accurate in terms of values. The subsequent 

deployment of fuzzy logic as the last stage is useful for boundary areas, and also gives 

approximation for the values within the specified rules, which makes the whole system more 

reliable for use in AQI. 

6.4 AQI Experiment  

6.4.1 AQI (England) 

The AQI for England was produced using the following method: 

• Firstly, the most accurate output was selected from the predictive modelling. 

• The units were converted for some gases to comply with the requirements of the 

EPA (see Table 6-1). 

• The maximum value of each gas was determined using loop and max functions 

(showing which gas had the highest value at the specified point in time). 

• The AQI was found for each gas concentration at the specified point of time, 

according to the EPA standards (representing the AQI levels). 
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Table 6-1 Conversion of units for emissions 

Unit of emission EPA Unit Conversion 

CO (mg/m3) mg/m3 24.45 × CO concentration /28.01 

NO (μg/m3) μg/m3 24.45 × NO concentration /30 

NO2 (μg/m3) μg/m3 24.45 × NO2 concentration /46.006 

NOx (μg/m3) μg/m3 24.45 × NOx concentration /46.006 

O3 (μg/m3) μg/m3 24.45 × O3 concentration /48.0 

SO2 (ug/m3) μg/m3 24.45 × SO2 concentration /64.06 

 

6.4.2 AQI (Jordan)  

The air-quality index for Jordan was produced using the following method: 

• Firstly, outputs were selected from the predictive modelling.  

• The units were converted for some gases to comply with the requirements of the 

selected EPA’s AQI standard. 

• CO was the only gas reading in the Jordan Data that needed unit conversion (from 

ppb to ppm, dividing the values by 1000).  

• The maximum value of the gases was found using the loop and max functions (to 

determine which gas had the highest value at that point in time).  

• The AQI could then be found for each gas concentration at the specified point in 

time, following the EPA standards (representing the AQI levels) (EPA, 2023) (see 

Figure 6-1). PM did not require any conversion, as all the units for the collected data 

matched the relevant EPA unit. 
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Figure 6-1 EPA Health AQI  

Source: EPA (2023) 

6.4.3 AQI Calculation Flow for England and Jordan 

After finalizing DNN-Markov models, the final results selected for the models for both 

England and Jordan were saved, and were then loaded as preparation for AQI calculations. 

As the selected AQI standard is EPA, there is a need to convert the units of the results to the 

matching unit in EPA standard, which will make the categorizing the AQI level feasible, 

based on the value range of index (Figure 6-1 shows the EPA standard specification). After 

the correct conversion and based on the needed steps, as detailed in sections 6.4.1 and 

6.4.2 the data was assigned to the relevant category level, marked from 0 to 7 in the 

MATLAB code, as shown in the following flow chart (Figure 6-2) (e.g., 0 when it is less than 

zero, and 7 when it is more than 500). 
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Figure 6-2 AQI – Levels calculations flow chart 

First of all, the outputs were prepared in two parts: one for fuzzy logic (ANFIS) training and 

the other for fuzzy logic model testing. Training data consist of the raw data that were 

collected from monitors after pre-processing and preparation, and then each row was 

assigned to a specific air quality level following the United States Environmental Protection 

Agency (USEPA) standard, using the flow logic shown in Figure 6-2. Testing data consist of 

the predicted outputs explained previously, with the hybrid model and each row then being 

assigned to a specific air quality level following the USEPA standard, using the flow logic in 

Figure 6-2. 

The training data and test data were used to train the fuzzy logic model in iterations, and 

then the fuzzy logic was evaluated using the predicted output data to obtain the resultant 
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levels from the fuzzy logic evaluation. Afterward, the actual (air quality levels based on the 

USEPA assignment) and predicted (air quality level from the fuzzy logic) classification were 

represented using ROC and confusion matrices (as reported in the following section). Figure 

6-3 shows the whole AQI prediction process presented in this paper as part of continuous 

research performed in the air quality prediction field in this work. 

After finalizing the DNN–Markov models, the final results selected for the models for both 

England and Jordan were saved and were then loaded in preparation for AQI calculations. 

As the selected AQI standard is USEPA, it was necessary to convert the units of the results 

to the matching unit in the USEPA standard to make categorizing the AQI level feasible 

based on the value range of the index. After the correct conversion and based on the 

needed steps, the data were assigned to the relevant category level, marked from 1 to 7 in 

the MATLAB code (e.g., 1 when it is less than zero and 7 when it is more than 500). 

The air quality index prediction process (Figure 6-3) summarizes the collective experimental 

framework of this work, consisting of three main parts: the DNN, Markov, and fuzzy logic 

models. The experiment of this framework started by using the selected results from DNN 

standalone model-test data, as described earlier in this section. These data were then used 

as output data for the Markov model, and a run was executed for the already saved results 

for the Markov standalone model using the test output data from DNN. Afterward, the data 

from the hybrid (DNN–Markov) model were fed to the fuzzy logic model, and the model 

results were evaluated. 

6.5 Neuro-Fuzzy Logic AQI Prediction Framework  

This section summarizes the collective experimental framework of this thesis, which consists 

of three main parts: the DNN, Markov, and fuzzy logic models (see Figure 6-3). The 

experiment of this framework starts by using the selected results from DNN standalone 

model-test data (see Chapter 4). This data is then used as output data for Markov model, 

and a run is executed for the already saved results for Markov standalone model (see 

Chapter 4), but using the test output data from DNN. Afterwards, the data from the hybrid 

(DNN-Markov) model (presented in Chapter 5) is fed to the fuzzy logic model, as described 

in this chapter (see section 6.4.3) and the model results are evaluated. Figure 6-3 presents a 

comprehensive overview of the whole framework of this study. 
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Figure 6-3 AQI prediction process  

6.5.1 Neuro-Fuzzy Logic Representation  

Neuro-fuzzy logic was used in this study to represent the AQI for the predicted 

measurements. The data inputs (for fuzzy logic) for England were: Input1 (CO), Input2 (NO), 

Input3 (NO2), Input4 (NOx), Input5 (O3), Input6 (PM10) and Input7 (SO2). The data inputs (for 

fuzzy logic) for Jordan were: Input1 (PM10), Input2 (NO2), Input3 (CO), and Input4 (SO2). 

In this neuro-fuzzy logic model the outputs were considered to be inputs for the model. 

Firstly, for the training data, the initial outputs represented the inputs, while the outputs 

represented the AQI assigned to each value, based on the EPA levels. Secondly, for the 

testing data, the predicted outputs represented the inputs, while the outputs represented the 
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AQI assigned to each value, based on the EPA levels. For the model setup, a Gaussian 

(gaussmf) was used as the input MF (membership function) type, and a linear function was 

selected for the output MF (membership function) type.  

For the purposes of illustration, CO was selected to check the AQI representation against all 

other inputs. The control surface in Figure 6-4 (representing England Data) shows the 

overall mapping between Inputs and Outputs. It can be seen that the output in this case 

(CO) is at highest value relatively when Input4 (NOx) and Input5 (O3) are high, which is 

almost AQI (4) on a scale from 1 to 7 for the AQI. In addition, it is clear that Input6 (PM10) 

and Input7 (SO2) are influencing the AQI levels. It can be concluded that different gases with 

different concentrations affect the output level of gases in light of weather conditions such as 

wind speed, wind direction, temperature, and humidity. 

As can be seen from Figure 6-5 (representing Jordan Data), Input4 (SO2) is greatly 

impacting the pollution level, with the highest value for AQI (5) on a scale from 1 to 7. Input 2 

(NO2) has a moderate influence on the AQI levels. Figure 6-8 represents neuro-fuzzy rules 

for the Jordan Data as an example, and it is used to evaluate the created rules to validate 

the fuzzy model. Two membership functions were used for each variable (see Figures 6-6 

and 6-7). 
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Figure 6-4 Neuro-fuzzy logic representing England AQI data  

128 rules (sample representation of the first input (CO) and all other inputs) 
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Figure 6-5 Neuro-fuzzy logic representing Jordan AQI data  

16 rules (sample representation of the first input3 (CO) and all other inputs) 

Neuro Fuzzy Designer (Fuzzy Logic Toolbox 2.7) (ANFIS) was used from MATLAB R2020a 

to model AQI. Data were split into AQI training data and AQI testing data. The training data 

consisted of the initial/raw data that was collected and processed, and then a new column 

created for the calculated AQI index using EPA USA standard method. AQI testing data 

consists of the predicted output from the hybrid models (as discussed in Chapter 5), and a 

new column created for the calculated AQI index using EPA standard method. 

The first step to build the Neuro-Fuzzy logic for AQI is to load the training data (as per the 

above description for training data) and then to choose the above mentioned parameters 

(membership function, epochs, etc.). Data was trained using the loaded training data, and 

then test data was loaded (as per the above description for testing data), and the model was 

tested. Figure 6-6 shows the screen of the Neuro-Fuzzy Designer. Using the Jordan Data as 
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an example, the Neuro-Fuzzy logic structure is shown in Figure 6-7, and the Neuro-Fuzzy 

logic rules representation is shown in Figure 6-8. 

 

Figure 6-6 Neuro-Fuzzy Logic Designer Tool 
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Figure 6-7 Representation of neuro-fuzzy logic structure (data from Jordan) 

 

Figure 6-8 Representation of neuro-fuzzy logic rules (data from Jordan) 
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6.5.2 ANFIS Jordan Model  

Figures 6-9 to 6-12 show the fuzzy logic results (ROC and confusion matrices) for the 

Jordan model, subject to the following data: 

• Number of nodes: 193 

• Number of linear parameters: 405 

• Number of nonlinear parameters: 24 

• Total number of parameters: 429 

• Number of training data pairs: 2627 

• Number of checking data pairs: 0 

• Number of fuzzy rules: 81 

 

Figure 6-9 ROC curve for AQI – Jordan test data 
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Figure 6-10 Confusion matrix for AQI – Jordan test data 

 

Figure 6-11 ROC curve for AQI – Jordan training data 
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Figure 6-12 Confusion matrix for AQI – Jordan training data 

6.5.3 ANFIS England Model  

Figures 6-13 to 6-16 show the fuzzy logic results (ROC and confusion matrices) for the 

England model, subject to the following data: 

• Number of nodes: 294 

• Number of linear parameters: 1024 

• Number of nonlinear parameters: 28 

• Total number of parameters: 1052 

• Number of training data pairs: 4382 

• Number of checking data pairs: 0 

• Number of fuzzy rules: 128 
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Figure 6-13 ROC curve for AQI – England training data 

 

Figure 6-14 Confusion matrix for AQI – England training data 
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Figure 6-15 ROC curve for AQI – England test data 

 

Figure 6-16 Confusion matrix for AQI – England test data 
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6.5.4 ANFIS Italy Model 

Figures 6-17 and 6-18 show the fuzzy logic results (ROC and confusion matrices) for the 

Italy model as validation step. 

 

Figure 6-17 ROC curve for AQI – Italy test data 
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Figure 6-18 Confusion matrix for AQI – Italy test data 

6.6 Summary 

This chapter discussed AQI representation using fuzzy logic as a framework to be used to 

cover the blurry areas of AQI where indices are in between range of values. After studying 

several standards for AQP, this research suggested the use of fuzzy logic as an extended 

method to cover some limitations found in several standards, in which the fuzzy logic 

represent a more dynamic way to support cross countries comparisons as well. This 

research developed the EPA standards to address their acknowledged limitations by 

constructing a Fuzzy Air Quality Levels Prediction (FAQLP). The novel solution categorizes 

air quality to corresponding ranges (actual levels), and classifies new fuzzy levels (predicted 

levels), using a fuzzy logic model to enforce more realistic predictions. This model can solve 

the issue of values at or near boundaries, when there is uncertainty about air quality levels. 
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Chapter 7 

Conclusions and Future Work 

7.1 Main Outcomes 

This concluding chapter revisits the identified research gaps in existing literature addressed 

by this research. It reiterates the covered topics, and highlights the contributions made to 

this research area. It acknowledges the limitations of this study, and identifies future 

research directions.  

It should be highlighted from the outset that there is very limited research that focuses on 

transportation and its impacts on air quality, especially in Asia. There is limited research 

using hourly air quality data for prediction, and which specifically addresses transportation. 

Furthermore, processing air quality data is not easy, for several reasons, and there have 

been few studies that focused on the identification of effective parameters (check chapter 2). 

The experimental investigations presented in this thesis used statistical methods for 

prediction, seeking to select the best statistical model and the best refinement method for air 

pollution and meteorological data modelling, in order to predict and categorize to air quality 

levels. This study is part of emerging research to design and model the AQI, seeking to 

discover the best ML methods to monitor the air quality domain. After completing the 

prediction models using DNN, hybrid models were found to achieve improved accuracy. The 

generated models are able to cover missing data problems and complex gases predictions 

and accuracy issues. In the future, this study recommends building a comprehensive AQI 

model that allows better comparisons across cities; however, this would entail a massive 

research effort, as many factors needs to be studied that affect air quality in different 

geographical locations. It should be mentioned that other prediction methods can be 

considered to support the identified directions for future research. 

After completing both the Markov Chain and DNN modelling, the results were assessed and 

reported. As the aim of this research was to increase accuracy and obtain more reliable 

results, a hybrid model was proposed by the researchers, to ensure better interpretation of 

the data and more appropriate results. Many experimental trials were conducted in order to 

achieve the best scenario possible with the data available for this study. The DNN-Markov 

model was determined to be the best hybrid model, for data from both England and Jordan. 
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This research argues that the predictive framework for air quality indices presented in this 

study offers an effective method of measuring healthy levels of the air we breathe every day. 

At times of high toxic pollutant exposure, the researcher has introduced methods of 

predicting hourly emissions concentrations and producing related AQI levels as a control 

system for vulnerable areas. 

Chapter 2 reviewed existing literature, mapping the gaps found in AQP domain and the 

methods that were developed by researchers. Modelling techniques and optimization were 

discovered from the current literature, along with studies and applications from researches in 

the domain to support the argument. The findings of existing literature were summarized, to 

set the scene for the subsequent chapters, seeking to contribute to air quality research and 

address the gaps identified from reviewed studies. 

Chapter 3 explained the setup framework underlying the experimental work presented in 

subsequent chapters, from the data to experimental design stages. The chapter presented 

the data collection process, parameters, pre-processing, and modelling stages, and the 

experimental design framework that summarizes the flow from data to modelling. 

Chapter 4 presented all viable proposed modelling solutions and scenarios for the identified 

scope of this research, with a detailed description of the algorithm used, discussing the 

architectures and parameters of the stand-alone models. The results for each selected 

model of the study and other experimented scenarios were also presented in this chapter. 

ANN, DNN (LSTM) and Markov chain models were included, along with some other studied 

scenarios, such as DNN (Bi-LSTM). 

Chapter 5 concluded the experimental scenarios of the studied methodologies, 

architectures, and optimization of standalone models, and then hybridization was performed. 

The chapter presented the best reached scenario of the hybrid model and the selection 

along with results and performance of models. It concluded that the DNN-Markov model 

yielded the best performance, with the greatest improvement as indicated by data validation 

(using new data). The proposed solution to the identified problem presented a new and 

niche methodology to predict air quality, and covered relevant listed gaps in previous 

studies, which adds to the contributions of this research.  

Chapter 6 presented the AQI framework using neuro-fuzzy logic. It built on the discussion 

expounded in Chapter 5 to discuss the conversions needed for the results, and connected 

the dots in proposing neuro-fuzzy logic to illustrate the refined outputs. 
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7.2 Challenges and Limitations 

7.2.1 Data Challenges 

The issue of data posed primary and fundamental challenges to this research, as this is the 

building block for all other elements. Challenges faced during this study pertained to data 

availability and quality. The models consist of multivariate data (i.e., with multi-inputs and 

multi-outputs), which made data pre-processing and training time more challenging. In 

particular, the DNN model took approximately three days to run for each trial for England 

Data, and two days for Jordan Data). 

7.2.1.1 Incomplete or Sparse Data 

Air pollutant concentrations are measured using monitors in several locations, and related 

devices, as with any other system, can have some downtimes during which data recording is 

suspended. Consequently, missing data renders datasets incomplete and inconsistent. 

There was a large portion of missing data in the collected datasets due to downtime issues, 

which created challenges in the efforts to find reasonable solutions for the problem (data 

could appear as zeros, NANs, or even empty records). 

7.2.1.2 Data Quality Issues 

In some cases data may appear to be complete, while measures are not accurate, which 

can be explored at the beginning by auditing and analysing data, and undertaking 

exploratory analysis pertinent to the domain. For instance, in this research, exploring the 

data revealed rows which showed humidity as 100 for Jordan Data, which could not be 

possible in the real scenario, so there was an immediate need to normalize, replace, or 

delete such data. 

7.2.2 Model Challenges (Complexity) 

Challenges were faced in selecting suitable algorithms for study, requiring a thorough 

literature review, studying many elements and factors. Besides the overhead of DNN and the 

computational resources required, hyper-tuning models is a significant part of the research 

for optimization, which takes quite a long time for trials to run and find the optimal 

combination of suitable parameters for the study. Integrating two models to create hybrid 

model consisted of several steps, scenarios, and configurations to attain suitable results, 

which are also effectively aligned with the aims and objectives of the study. 
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7.2.3 Temporal and Spatial Variability 

There can be differences in pollutant concentrations across time and location; for instance, 

based on seasonal fluctuations or traffic areas patterns, or due to differences between cities 

or regions. Such variability creates difficulties in analysing data patterns to ensure data 

quality and imputation strategies needed to deal with missing data. 

7.3 Future Improvements and Research Directions 

This research presented several contributions to the field of AQP through studying the 

literature, identifying gaps and proposing solutions to existential challenges. This work 

discussed several methods to cover the gaps in accuracy and reliability when predicting with 

Big Data and further identified a method for AQI interpretation from the predicted data. It 

discussed the representation of pollution levels, noting the gap identified from the reviewed 

literature in terms of the need for a global framework for a unified method to measure air 

quality indicators in the presence of varied standards in countries and regions with no 

availability of any supportive global standards for pollution level comparisons.  

Therefore, the researcher suggests building a global AQI framework as a future 

improvement for the work presented in this thesis. As the presented literature reviewed in 

Chapter 2 indicates the lack of availability of a global universal AQI system that could 

compare air pollution levels between countries, there is clearly an existential standardization 

issue. Future research is needed to drive progress towards a more global unified framework 

for AQI prediction, which would create rich potential for project funding as an extension to 

this research. This can be adopted in universities or research institutions with real 

implementation projects to help produce a unified global AQI prediction system. 

7.4 Developments in AQP field 

Looking further beyond the outcomes of the current study, recent literature indicates the 

emergence and evolution of new methods of air quality assessment that can be used in 

experiments to test the suggested unified framework for AQI. Deep Transformer Networks 

(DTNs) are a possible future use in the area of air quality forecasting, besides the increasing 

popularity of Graph Neural Networks (GNNs) to model dynamic interactions, whereby air 

quality factors can be studied, and relational factors can be mapped. Furthermore, Temporal 

Convolutional Networks (TCNs) could be considered, specifically for complex gases such 

PM2.5, to cover the complexity in modelling such gases. Moreover, Complex Event 

Processing (CEP) has recently been used in some applications, as evident from the 
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literature. It worth mentioning there has been clear identification in the literature for the need 

to find the relation and linkage between air quality and climate change, and developing 

models for early warning climate change systems will be needed to support sustainable 

cities and societies. 

This is a rich research area where there could be many areas that could be identified as 

holding potential for future directions extending beyond this work. 
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