
IEEE TRANSACTIONS ON MOBILE COMPUTING 1

Representative Kernels-based CNN for Faster
Transmission in Federated Learning

Wei Li, Zichen Shen, Xiulong Liu*, Mingfeng Wang, Chao Ma, Chuntao Ding*, Jiannong Cao, Fellow, IEEE

Abstract—Federated Learning (FL) has attracted many attentions because of its ability to ensure data privacy and security. In FL, due
to the contradiction between limited bandwidth and huge transmission parameters, it has been an ongoing challenge to reduce the
model parameters that need to be transmitted to the server in the clients for fast transmission. Existing works that attempt to reduce the
amount of transmitted parameters have limitations: 1) the reduced number of parameters is not significant; 2) the performance of the
global model is limited. In this paper, we propose a novel method called Fed-KGF that significantly reduces the amount of model
parameters that need to be transferred while improving the performance of the global model in FL. Since convolution kernels in a
Convolution Neural Network (CNN) account for most parameters, our goal is to reduce the parameter transmission between the clients
and the server by reducing the number of convolution kernels. Specifically, we construct an incomplete model with a few representative
kernels, referred to the convolution kernels, that are solely updated during training. We propose Kernel Generation Function (KGF) to
generate convolution kernels to render the incomplete model to be a complete one, and discard those generated kernels after training
local models. The parameters that need to be transmitted only reside in the representative kernels, which are significantly reduced.
Furthermore, there is a client-drift in the traditional FL because it adopts the averaging method, which hurts the global model
performance. We innovatively select one or few modules (a module indicates a convolution function + several non-convolution
functions) from all client models in a permutation way, and only aggregate the uploaded modules rather than averaging them in server
to reduce client-drift, thereby improving the performance of the global model and further reducing the transmitted parameters.
Experimental results on both non-Independent and Identically Distributed (non-IID) and IID scenarios for image classification and
object detection tasks demonstrate that our Fed-KGF outperforms the SOTA methods. Fed-KGF achieves approximately 11% higher
classification accuracy and roughly 33% fewer parameters than the recent FedCAMS model on CIFAR-10, and gains approximately
3.64% higher detection precision and around 37% fewer parameters than the SOTA SmartIdx model on COCO2017 datasets.

Index Terms—Federated learning, Convolution neural network, Representative kernels, Kernel generation function, Parameter
reduction, Module selection.

✦

1 INTRODUCTION

1.1 Problem Statement and Motivation

F EDERATED Learning (FL) has been demonstrated as a
powerful privacy-preserving distributed machine learn-

ing framework [1] [2] [3] [4] and applied to many real-world
applications [5] [6] [7] [8]. In FL, all clients collaboratively
train a global model under the orchestration of a central
server by intensively transmitting all parameters of local
models, rather than the data [1] [9]. This not only effectively

• Wei Li and Zichen Shen are with the School of Artificial Intelli-
gence and Computer Science & Engineering Research Center of In-
telligent Technology for Healthcare, Ministry of Education & Jiangsu
Key Laboratory of Media Design and Software Technology, Jiangnan
University, Jiangsu, P. R. China. E-mail: cs weili@jiangnan.edu.cn;
6223110033@stu.jiangnan.edu.cn.

• Xiulong Liu* is with the College of Intelligence and Computing,
Tianjin University, P.R.China. Corresponding author. Email: xiu-
long liu@tju.edu.cn.

• Mingfeng Wang is with the Department of Mechanical and Aerospace
Engineering, Brunel University London, UB8 3PH London, U.K. E-mail:
mingfeng.wang@brunel.ac.uk.

• Chao Ma is with the School of Cyber Science and Engineering, Wuhan
University, Wuhan, P.R.China. Email: whmachao@ieee.org.

• Chuntao Ding* is with the School of Computer and Information Technol-
ogy, Beijing Jiaotong University, Beijing, China. Corresponding author.
E-mail: chtding@bjtu.edu.cn.

• Jiannong Cao is with the Department of Computing, The Hong
Kong Polytechnic University, Hong Kong, P.R.China. Email: csj-
cao@comp.polyu.edu.hk.

models the data distributed across different clients, but also
preserves the privacy. Note that training FL heavily relies on
the parameter transmission among all clients and the server.
However, the transmission cost is huge, due to the limited
bandwidth and the enormous transmitted parameters as
shown in Fig. 1. For example, Resnet18 [10] has around 11
million parameters, while YOLOX-L [11] holds 54.2 million
parameters. If we have 10 clients and each client deploys
a YOLOX-L, the total transmitted parameters are 54.2 × 10
= 542 million parameters at each epoch when adopting the
traditional FL method (i.e., Fed-Avg). Assuming one epoch
transmits 542 million parameters that spends one hour, 200
epochs would spend 200 hours. Although researchers attend
to reduce the number of transmitted parameters, there are
two challenges: 1) the reduced number of transmitted pa-
rameters is not significant; 2) the performance of the global
model is limited after reducing the transmitted parameters.
In deep neural network models based on convolution op-
erations, the parameters of the convolution kernel usually
account for a large proportion of the parameters within
a network [12] (e.g., the parameters of kernels

the parameters of network ≈ 98.3% in
Resnet18). This motivates us to reduce the transmitted pa-
rameters between clients and the server by reducing the
number of parameters of these kernels. In this way, we pro-
pose representative kernels-based approach to address the
problem of parameter transmission for faster transmission

Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelinesand- policies/post-publication-policies/

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI10.1109/TMC.2024.3423448,

IEEE TRANSACTIONS ON MOBILE COMPUTING 2

Client 2 Client 3

Server

···

···

Bandwidth

Parameters

Client nClient 1

Fig. 1: The example of contradiction between huge transmit-
ted parameters and the limited bandwidth.

while improving the performance of the global model.

1.2 Limitations of Prior Art

The SOTA works for reducing transmitted parameters in FL
can be categorized into three classes: quantization [13] [14],
sparsification [15] [16] [17], and quantization-sparsification
methods. For the quantization method, it directly quantizes
the model from higher precision to a lower one (e.g., from
double format to integer one) before uploading the local
updates to the server, which helps reduce parameters. How-
ever, the lower, even zero, precision will cause informa-
tion loss, certainly hurting the performance of the global
model, especially for the non-Independent and Identically
Distributed (non-IID) data case [18]. For the sparsification
method, it usually selects the absolute values of top-k of the
gradients from each node, and then transmits these values in
the full precision format [19]. Although it can reduce the pa-
rameters, the value of k is difficult to be determined, because
different values cause various performance. Moreover, the
sparse data require extra cost to calculate the indexes of
top-k and then transmit these indexes, which help locate
the sparse data in networks, so the transmission reduction
is limited. The quantization-sparsification method [18] [19]
tries to combine the two strategies to reduce parameters. It
usually quantizes the top-k values after sparsification. Yet,
the combination brings other challenges, such as difficult
implementation [19] and higher transmission cost [18].

1.3 Our Approach

With the goal of reducing the amount of transmitted pa-
rameters between clients and the server while improving
the global model performance, we propose Fed-KGF in
this paper. First, we construct an incomplete network with
a few base kernels. To take in inputs, we propose the
Kernel Generation Function (KGF) to generate kernels for
extracting the salient features of inputs. Although KGF is a
commonly used concept and appeared in other studies as
well, our function is different from other studies [20] [21]
[22]. More details are discussed in Section 3. KGF consists
of three components: 1) positivity and negativity. Since
the values within kernels hold positivity and negativity
[23], we should still keep the same positive and negative

characteristics of extracted features from both generated and
original base kernels in each layer [24]; 2) generated kernels.
It renders the incomplete network to become a complete
one to take in inputs and then extracts their features as the
standard kernels, and this is achieved by index calculation
with a random tensor [25]; 3) bias tensor. It avoids the
zero case after index calculation. Second, we discard those
generated kernels when transmitting the parameters from
local models to the server, and call the rest kernels as
representative kernels. Note that the generated kernels do
not involve the updating, but the representative ones do,
which means we only transmit the representative kernels
between clients and the server. This significantly reduces
the transmitted parameters. Since most existing FL models
adopt the averaging method to calculate the parameters
of the global model, there is the client-shit [26], causing
the limited global model performance. Given that a CNN
holds multiple stacked modules (a module is assembled
by Conv + Batch Norm + ReLu/Pooling functions) [27]
[28], we innovatively propose a new permutation module
uploading method, which randomly select one or few mod-
ules from a CNN, and then upload the selected modules
across all clients to establish the global model in server.
Because we only upload module to server, it further reduces
the transmitted parameters. Besides, there is no averaging
operation but solely assembles the uploaded modules to
obtain the global model, thus avoiding the client-shift issue
and then improving the global model performance. Last, we
download the parameters from global model to each local
one. After training, the global model generates kernels with
KGF to perform the classification or object detection tasks.

1.4 Contributions and Advantages over Prior Work
Our innovations and contributions are shown as follows:

1) We propose a new transmitted parameter reduction
strategy, which transmits a few of representative ker-
nels between clients and server, in FL. To update the
parameters of representative kernels, we present the
Kernel Generation Function (KGF) to generate kernels
to render an incomplete network being a complete one,
and then train it with back-propagation in clients.

2) We propose a new module uploading method, which
innovatively upload the random selected modules,
rather than all modules as implemented in the tradi-
tional FL, from the network across all clients to the
server in a permutation way, and then aggregate all
uploaded modules to establish the global network. This
further reduces the number of transmitted parameters,
and avoids the issue of client-shift, thereby improving
the performance of the global network.

3) We prove the effectiveness of proposed KGF and the
convergence of Fed-KGF from the theoretical aspect.
The experimental results show that the reduced param-
eters from Fed-KGF are reduced by approximately 36%
on CIFAR10 and 33% on COCO2017 datasets, while
Fed-KGF achieves higher performance than SOTA
baselines from the empirical aspect.

The rest of this paper is organized as follows. Section
2 briefly reviews the FL variants in reducing transmitted
parameters. Our Fed-KGF is introduced in Section 3, and

Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelinesand- policies/post-publication-policies/

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI10.1109/TMC.2024.3423448,

IEEE TRANSACTIONS ON MOBILE COMPUTING 3

the experimental results are presented in Section 4. We
conclude the paper in Section 5.

2 RELATED WORK

In this section, we first introduce the federated learning,
and then discuss the three categories of parameter reduction
studies in FL according to their applied methods.

Federated Learning. Usually, the data in FL are stored
locally in multiple clients [1] (e.g., mobile devices). To make
the global model to learn the features of data, all clients col-
laboratively transmit their parameters to the server, rather
than the stored data, to aggregate the parameters of the
global model. After training, the global model has success-
fully extracted the data features from all clients and then
towards performs different tasks (e.g., classification or object
detection). The object of traditional FL is shown as follows.

min
θ∈Rd

f(θ) where f(θ)
def
=

1

n

n∑
i=1

fi(θ) (1)

where fi(θ) = ℓ(xi, yi, θ) indicates the loss of the prediction
on the sample (xi, yi) with parameters θ of a network in i-th
client. Since the traditional FL adopts Mathematical Average
strategy, it is also called FedAVG.

Quantization. The quantization method usually trans-
forms the format of parameters from float to integer. Since
the integer format requires less storage space than the float
format, researchers utilize quantization to reduce param-
eters for fast transmission in FL. Quantization Stochastic
Gradient Descent (QSGD) [29] focuses on the quantization
of gradients in each layer by normalizing each parameter
and then rounds down each normalized value with |v|

L2
where |v| denotes the absolute parameters and L2 denotes
their normalized results. Obviously, QSGD suffers from
information loss. Although there are other SGD quanti-
zation variants (e.g., Hyper-sphere Quantization [30] and
Adaptive Quantization [31]), they still have the same issue
and then degrades the performance of model. Federated
Periodic Averaging and Quantization (FedPAQ) [13] claims
that the transmission bottleneck is from the huge parameters
of models within clients, so it renders partial clients to
participate in each round of the training after quantizing
their updates. Yet, the directions of gradients in partial locals
might be inconsistent with that of gradients of the global
model, the performance of the global model is unexpected,
especially for the case that the data are distributed over all
clients in the non-IID manner. Federated Averaging with
Compression (FedCOM) [14] proposes the local gradient
tracking scheme to address this issue. It tracks the quantized
results of gradients and then to accumulate these results.
After that, server receives the accumulated results and then
averages them to obtain the estimated global gradients.
FedAQ [32] can accelerate the updates during training, with
an efficient quantization scheme. Nevertheless, they require
the extra resources to store the processed information (e.g.,
accumulated gradients for FedCOM and auxiliary and orig-
inal local parameters for FedAQ) and to calculate the gradi-
ents. Hence, larger bandwidth is required for transmission,
with the lower performance of global model. There are other
quantization methods (e.g., vector quantization [33] [34],

minimization quantization errors [35], and lossy FL [36]).
However, they either have compression distortion [33] [34]
or still hold the non-negligible quantization errors [35].

Sparsification. The sparsification method reduces the
parameters by removing the less important parameters in a
network, because many parameters do not have much con-
tribution to the performance of model [28]. Deep Gradient
Compression (DGC) [37] finds only 0.1% gradients are of top
importance in some cases. It employs momentum correction
and local gradient clipping to make gradients sparse, which
helps relieve the transmission bandwidth. However, DGC
holds a drastic exchange and it requires extra bandwidth, so
the relieved bandwidth is limited in practice. FetchSGD [16]
utilizes the linear count sketch to compress the parameters
of local models with top-k strategy, and then merges the
compressed parameters of clients in server. It introduces the
error accumulation to mitigate the information loss in the
process of compression. Yet, selecting the appropriate pa-
rameters to figure out the range of the smallest quantization
error and to determine the value of k are non-trivial tasks.
The same challenge also exists other studies which adopt
top-k to perform sparsification (e.g., rTop-k [38] and Top-
k SparseSecAgg [39]). Communication-Efficient Adaptive
Federated Learning (FedCAMS) [17] integrates the error
feedback with the adaptive optimization to guarantee the
convergence, in which the error feedback helps reduce com-
pression error when utilizing top-k strategy to estimate the
biased result. Although the adaptive strategy is suitable for
the sparse case, it may suffer zero gradients, still remain-
ing lower performance. Other accumulation-compression
models (e.g., AdaComp [40] and RedSync [41]) also hold
the similar challenges. SmartIdx [42] tries to address the
inefficient transmission on the index of the selected param-
eters in top-k method. It extends the top-k largest variation
selection strategy to the convolution-kernel-based selection,
which helps relieve the overall transmission cost and thus
achieves a higher compression ratio. Yet, such a compression
might bring information loss and thus the lower perfor-
mance. FedPM [43] adopts the stochastic binary mask to
find the optimal sparse random network. Different from
the traditional sparse training strategy, FedPM utilizes the
Sigmoid function to update parameters of the binary mask,
and each client samples a binary mask from the trained
mask with Bernoulli sampling operation. Since Bernoulli
sampling belongs to random sampling, parameters might
be not sparsified, resulting in insignificant parameter reduc-
tion, given that the number of sampled parameters could be
large during training. After uploading the mask to server,
some parameters within global model are assigned by this
mask and others are normalized to zero, thus causing a
limited performance of the global model.

Quantization-Sparsification. This strategy attempts to
combine the above two methods to transmit parameters in
FL [40] [19] [18] [42]. Qsparse-local-SGD [19] provides math-
ematical proofs to analyze both convex and non-convex
objectives for the distributed case with local computations,
and then proposes a quantizer with sparsification and
local computations using error compensation to mitigate
the transmission bottleneck. However, these proofs need
to satisfy rigorous hypotheses, which are often not cases
in practice. Sparse Ternary Compression (STC) [18] casts

Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelinesand- policies/post-publication-policies/

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI10.1109/TMC.2024.3423448,

IEEE TRANSACTIONS ON MOBILE COMPUTING 4

Output

Base Kernels

Input

Step 1: Constructing an Incompelete CNN Step 2: Generating Kernels

Step 3: Discarding Generated Kernels

Train

KGF
...

...

...

...

...

...

...

...

...

... Module 1

Module 1

Module 2 Module 1 Module 1

Module 2

Module n Module n Module n

Module n

··· ··· ···

···

···

Representive Kernels
Non-Conv Functions

Server
Upload

Client 1 Client 2 Client n

Step 4: Transmitting Modules

Generated Kernels

Representive Kernels

Fig. 2: The architecture of our Fed-KGF.

the light on the downstream transmission to reduce the
cost of total transmission. It transmits the distances among
the top-k values for relieving the transmission rather then
transmitting the absolute positions of top-k in network, with
Golomb encoding. Yet, Golomb encoding heavily relies on
the Base-m, where the larger the value of m is, the longer
length the Golomb encoding will be, which results in larger
transmission cost. It is noted that the SOTA studies (e.g.,
SmartIdx [42]) have empirically shown that they outper-
form Quantization-Sparsification methods (e.g., STC [18]
and AdaComp [40]), so this paper only compares the above
two SOTA studies with Fed-KGF.

3 FED-KGF
3.1 Overview
Fig. 2 shows the architecture of our Fed-KGF. In Step 1,
we construct an incomplete network with a few kernels. To
take in the input images, we propose the Kernel Genera-
tion Function (KGF) to generate kernels for extracting data
features in each convolution layer in Step 2. We train this
network in each client, and discard the generated kernels
during back propagation in Step 3. With this, only repre-
sentative kernels remain. To further reduce the parameters
for faster transmission, we propose the permutation module
uploading method, which selects one or few modules from
this network in a permutation way, and then upload the
selected modules across all clients to the server in Step 4.
The server aggregates all uploaded modules to establish the
global network, and then distributes its parameters to the
local network of each client.

3.2 Design of Kernel Generation Function
In general, the traditional FL model deploys n full CNN
models to n clients, and each client holds exactly one CNN
model [1]. Clients transmit the parameters of all models to

the server after updates. However, a full CNN model has a
large number of parameters (e.g., Resnet18 with 11 million
parameters and YOLOX-L with 54.2 million parameters). It
absolutely results in the transmission burden. Since many
parameters are redundant [44] [10] and kernels take most
of parameters [12] [45], an intuitive idea is to reduce the
parameters by limiting the number of kernels. Inspired by
[24] [25], which have proved that kernels can be generated
or decomposed with inexpensive cost, we focus on how to
generate kernels in an incomplete CNN to take in inputs
and to extract their features in this section.

As shown in Step 1 of Fig. 2, we first construct an
incomplete network with a few kernels, and view these
kernels as the base kernels. We denote a certain kernel as w,
and i-th element within a kernel is named as wi. Since the
number of kernels is usually the exponent of 2, we predefine
a ratio (i.e., 2n

2m with n > m in which n indicates the number
of base kernels and m is an integer) to set the number of base
kernels. Then, we propose the Kernel Generation Function
(KGF) to generate kernels defined as bellow.

w′ = KGF (w) = sign(w)(|w|β + α) (2)

where sign(·) operation keeps the positivity and negativity
of extracted features from generated kernels as that from
base kernels. β denotes a tensor, and it renders each entry
within |w| to perform exponential operation (i.e., wβi

i). All
elements of β are from a random range, (e.g., [2, 10]). As
to α, it is a bias tensor, with range from 0.00001 to 0.1. As
can be seen from the above formula, our KGF includes three
components: sign(·), |w|β , and the bias α. The process of
generating kernels is: 1) we “copy” the base kernels and the
number of copied kernels is pre-defined; 2) Eq. (2) is utilized
to render each entry within copied kernels to be different,
then obtaining new kernels. In this way, the generated
kernels are assembled into the incomplete network and then
extract features of inputs as the standard kernels.

Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelinesand- policies/post-publication-policies/

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI10.1109/TMC.2024.3423448,

IEEE TRANSACTIONS ON MOBILE COMPUTING 5

Let w be a tensor with k × k size, it holds positive
and negative values. Given |w|β + α, w′ obviously holds
the characteristic of positivity only. In such a scenario,
the generated kernels cannot effectively extract the salient
features of data, which certainly degrades the performance
of the global network.

Proposition 1. Assuming w is a tensor with k × k size
where it holds positive and negative values, and w′ is also
a tensor with k × k size and positivity only if removing
sign(w). Let x be the input data and k = 2, the performance
of model is not satisfactory if w′ loses the characteristics of
positivity and negativity.

Proof. Under the condition of k = 2 within a certain

layer, we assume w =

[
positive negative
positive positive

]
, we still obtain

the feature matrix which holds the same characteristics as
w after performing sign(wi)(|wi|βi + αi) one by one as
defined in Eq. (2). In such a scenario, the characteristics of
extracted features from generated kernels (i.e., w′) are the
same as that from original base kernels, w. This guarantees
that the extracted features from both generated and original
kernels have the similar characteristics, because the features
extracted by the kernels which are from the same layer
have similar characteristics [24]. If w′ = |w|β + α, then the

matrix could be
[
positive positive
positive positive

]
. In such a scenario,

the characteristics of extracted features from generated ker-
nels (i.e., w′) do not hold negativity. This indicates that w′

can not effectively extract the salient data features, so it
cannot also help improve the model performance. Hence,
the performance of model is not satisfactory if w′ loses the
characteristics of positivity and negativity.

Since the parameters of network are usually initialized
into the range of [-1, 1] in practice [28], the values of |w|β
are different from those of w when β is from the range of

[2, 10]. Considering an extreme scenario, w =

[
0.1 −0.2
0.01 0.2

]
and β =

[
10 8
9 10

]
, each entry in w′ could be as small as

negligible in practice after performing |w|β . In other words,

w′ =

[
0 0
0 0

]
. Such kernels are not able to extract the salient

features from inputs, and certainly hurts the performance of
model. Therefore, it is necessary to avoid such a case.

Proposition 2. Let |w|β be
[
0.0 0.0
0.0 0.0

]
and α be an

random bias tensor, the generated kernels, w′, are not equal
to zero, and can extract the salient features.

Proof. Assuming the algorithm is at k-th iteration, we

have |w|β =

[
0.0 0.0
0.0 0.0

]
and α =

[
0.002 0.0001
0.08 0.00001

]
. Ac-

cording to Eq. (2), we have w′ = sign(w)(|w|β + α) =[
0.002 0.0001
0.08 0.00001

]
̸=

[
0.0 0.0
0.0 0.0

]
. In such a scenario, w′ can

still performs the convolution operation. Therefore, the bias
tensor, α, can help the generated kernels extract the salient
features showed in Step 2 of Fig. 2.

With this in place, w′ extracts input features as the stan-
dard kernels in the forward propagation. Assuming there is
input image x and outputs m feature maps after performing
convolution operation and passing through a or several

non-convolution activation functions (e.g., Batch Norm +
ReLU) in a module, such a process can be shown as follows.

y =
m∑
i=1

g(w′ × x) (3)

where g(·) indicates the non-convolution activation func-
tions. We forward perform Eq. (3) in each layer until all
layers extract the corresponding data features.

After the forward propagation, we utilize cross entropy
[46] to update the parameters of each client’s network. Dif-
ferent from the traditional FL method, we only update the
parameters of base kernels and then discard the generated
kernels during back propagation by viewing the generated
kernels as local variables and regarding the base kernels as
instance variables in Fed-KGF, because the local variables
are automatically released. Here, we call the kernels that the
parameters are updated as representative kernels, which we
target to transmit as shown in Step 3 of Fig. 2.

Although the term Kernel Generation Function is a
commonly used concept and appeared in other studies
as well, we have differences. In our paper, the kernel
generation function indicates that we generate kernels to
render an incomplete network to be a complete one for
taking in inputs and then extracting their features, based
on a few base kernels, with w′ = sign(w)(|w|β + α)
where w denotes the base kernels and both β and α in-
dicate the tensor and bias, respectively. However, in other
studies (e.g., [20] [21]), the “kernel generation function”
is to generate the involution kernels (i.e., inverting the
convolution) from a pixel point of the input feature tensor,
with Hi,j = ϕ(Xi,j) = W1σ(W0Xi,j) where Xi,j is a
pixel point in row i and column j of input feature tensor.
Another example of “kernel generation function” study is
to generate convolution kernels [22]. Yet, this method is
similar to studies [20] [21], and it also utilizes input data
to generate kernels rather than a few base kernels, with
X = σ((α1 ·W1+ . . .+αn ·Wn)∗x) where {α1, α2, · · · , αn}
denote the scalar weights learned through gradient descent
and x indicates the input data. Obviously, we have different
mathematical expressions, kernel generation strategies, and
computation operations.

3.3 Design of Module Uploading Method
Since each client holds different data samples, the training
of each local model could give rise to the client-variance.
This indicates that the local models have difference to
each other after downloading the parameters of the global
model to each client with averaging method [26]. With
the epoch increasing, the value of client-variance becomes
larger, causing the issue of client-drift in the global model
and thus resulting in the low performance for this global
model [26]. Here, we innovatively present the permutation
module uploading method to address this issue.

Usually, a CNN is assembled by multiple modules,
and a module is stacked by multiple functions. For exam-
ple, one convolution function + several non-convolution
functions, which corresponds to Conv + Batch Norm +
ReLu/Pooling functions. In the traditional FL, the total
transmitted parameters of a local network can be expressed
as PCNN =

∑k
i=1 mi where PCNN represents the total

Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelinesand- policies/post-publication-policies/

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI10.1109/TMC.2024.3423448,

IEEE TRANSACTIONS ON MOBILE COMPUTING 6

Algorithm 1: Training procedure of Fed-KGF.
1 Input: Original data x, Original label ytrue
2 Output: Prediction results from the global network.

3 n clients, and an incomplete network has base kernels, w with parameters θ. SGD optimizer and Cross Entropy loss
function and index i (e.g., wi, αi, and βi).

4 for each client i∈ [1, n] do
5 Constructing an incomplete CNN with base kernels, w;
6 end

7 for each epoch t=1, 2,... do
8 Client-side Procedure:
9 for each client i ∈ [1, n] do

10 w′ ←− Generating Kernels(w);
11 ypred ←− forward(x);
12 Updating the parameters of w′ by descending its stochastic gradient;
13 ▽θ

∑m
1 {−ytrue log(ypred)}, m indicates the batch size;

14 discarding the generated kernels, w′;
15 end

16 Modules transmission; ▷ Uploading one or few modules from client networks in a permutation way to the server.

17 Server-side Procedure:
18 Modules Aggregation and distributing global model to all clients; ▷ Receiving uploaded modules from all clients and then

combining them to form the global model. After that, distributing it to each client.
19 end
20 Function : Generating Kernels(w):
21 Initializing w′ by “coping” the first dimension of w;
22 α←− Generating a tensor from the range of [0.00001, 0.1];
23 β ←− Generating a tensor from the range of [2, 10];
24 for wi ∈ w, αi ∈ α, βi ∈ β do
25 w

′
i ←− sign(wi)(|wi|βi + αi); ▷ This process indicates the Eq. (2)

26 end
27 return w′;

28 End Function

parameters of a network. k indicates the number of modules
and mi means a certain module in this network. Obviously,
the performance of the global model is affected by the aver-
aged parameters, because averaging the averages breaks the
fundamental rules of math such that some studies insist that
averaging method is derived by the “wrong math” [47] [48].
In our idea, we consider each module as equally important.
Since each client holds one network and these networks
have the same architecture, we innovatively upload one or

few modules (i.e.,
∑k

′

i=1 mi where 1 ≤ k
′
<< k) from a

client in a permutation way, which is shown in Step 4 of Fig.
2. Specifically, the upload process is described as follows:

1) We count the number of clients, and then generate a set
of random integer values. The number of this set is the
same as that of clients.

2) We select one or few modules from clients, according
to the numbers of clients and modules. Assuming there
are 3 clients and a network holds 3 modules, and a set
of random values is [2,1,3], we select 2nd module, 1st
module, and 3rd module from client 1, client 2, and
client 3. If there are 3 clients and a network holds 5
modules, we split 5 modules into 3 groups (e.g., taking
1st and 2nd modules as the first group, and viewing
3rd and 4th modules as the second group). We select
the three groups as the case of [2,1,3].

3) We upload all selected modules to the server. It aggre-
gates those modules to establish a global network, and
then distributes its parameters to each local network.

Obviously, the transmitted parameters are further re-
duced, because we upload a module or few modules to
server. Moreover, this can reduce the issue of client-drift.
Defining θ as the parameters of a certain local model (i.e.,
f(x; θ)), and θ as the averaged parameters of the global
model, a updated local model is △θ = θ − θ. With this,
we have the client-variance: δ2 = 1

n

∑n
i=1 ||△θi||2. The

larger δ2 is, the more serious the client-drift is, given that
the variance is used to measure the degree of drift. This
demonstrates the influence of the averaging method on
the performance of the final global model, because the
larger the client-drift is, the worse performance the global
model holds [26]. In our Fed-KGF, the global model is
assembled by the uploaded modules and it discards the
averaging. Given that the calculation of averaging is in the
dimension manner, we compare averaging with the our
idea from the dimension aspect. For example, assuming
there are three local models, named A : [0.00,−0.17,−0.05]
and B : [0.01,−0.10, 0.06] and C : [−0.04,−0.09,−0.01]
in which each entry represents a certain module (e.g., Ai

indicates ith module in local model A). We have the mod-
ules (θF : [0.00,−0.10,−0.01]) within the global model for
the Fed-KGF and θ : [−0.01,−0.12, 0.00] for the averaging,
and then calculate △θ in the dimension way. With this, we
have ||B1 − θ1||2 = ||0.01 − (−0.01)||2=0.0004 and ||B1 −
θF1

||2=0.0001 (i.e., 0.0004>0.0001), ||A1 − θ1||2=0.0001 and
||A1 − θF1

||2=0.00 (i.e., 0.0001>0.0000), ||C1 − θ1||2=0.0009
and ||C1− θF1

||2=0.0016 (i.e., 0.0009<0.0016). Obviously, the

Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelinesand- policies/post-publication-policies/

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI10.1109/TMC.2024.3423448,

IEEE TRANSACTIONS ON MOBILE COMPUTING 7

performance of 1st updated module in Fed-KGF is better
than averaging, because the values of △θ for our method is
less than that for averaging in most scenarios. Other mod-
ules have the similar performance as the 1st module. With
such a place, the value of △θ in Fed-KGF is smaller than
that in averaging, thus obtaining smaller variance. Hence,
Fed-KGF reduces the issue client-drift, thus improving the
performance of the global model.

Another advantage of our strategy is to obtain better op-
timization than averaging. Let fglobalAV G

(x; θ) = 1
nf(x; θ)

in the traditional FL where fglobal(x; θ) indicates the pa-
rameters of the global model and f(·)(x; θ) indicates the
parameters of a local model and there is n clients, and let
fglobalFED−KGF

(x; θ) = mk ◦ mk−1 · · ·m1 in the Fed-KGF
where k indicates the number of modules in a model, it is
obviously observed that the parameters of the global model
in Fed-KGF are unchanged as the local models. Note that
there is flocal(x; θ) = fglobal(x; θ) operation in the client-side
after the server downloads its model to each client for FL.
This could result in that a local model is far away from its
optimal status when this model approximates the optimal
status after training, because its parameters is averaged
after performing flocal(x; θ) = fglobal(x; θ). Although the
averaging method can reach to the optimal status, it needs
more training cost (e.g., more epochs). However, Fed-KGF
does not adopt averaging, but solely assembles all uploaded
modules. Therefore, the optimization can be improved. The
pseudo-codes of Fed-KGF is presented in Algorithm 1, and
we state its convergence as below.

Proposition 3. Considering the global model aggregates
all k modules in a permutation way, and let a module within
in the global model be mi and i ∈ [1, k]. If local models get
convergence, then the global model holds the convergence.

Proof. The architecture of the global model is the same
as that of the local model in FL. Let a local model be
fi(x; θi) = mi,k(θi,k) ◦mi,k−1(θi,k−1) ◦ · · ·mi,1(θi,1) where
i denotes ith local model and a network has k modules.
Let the global model be fglobal(x; θglobal) = mk(θk) ◦
mk−1(θk−1) ◦ · · ·m1(θ1) where m modules are from differ-
ent local model. Since FL performs fi = fglobal operation
after distributing the parameters of the global model to
each client, and local models certainly get converged after
training, fglobal in our method also holds convergence. If
not so, assuming local models get converged and the global
model does not hold the convergence and f∗ be the optimal
status, the distance between current status of this model and
optimal status of the same model is ∥fi − f∗∥ → 0 after
training [28] [1]. When the global model does not reach the
optimal status, the local model is also far away from the
optimal status due to fi = fglobal operation, given that the
modules from converged local models are uploaded to the
server and the global model does not update any parame-
ters. This obviously contradicts the assumption. Therefore,
fglobal holds the convergence.

Note that Algorithm 1 performs the classification, so we
utilize the Cross Entropy loss to update the parameters of
networks. One can choose other loss functions to carry out
different tasks (e.g., mean-square error loss or binary cross
entropy for object detection).

3.4 Analysis of FED-KGF

In this sub-section, we provide an in-depth analysis of FED-
KGF by comparing it with other well-known significant FL
variants. Assuming the size of a kernel is k× k, the number
of channels is c and the number of kernels is n in a standard
convolution layer, the number of learnable parameters can
be expressed by c× k× k× n. As to FED-KGF, the number
of learnable parameters is c×k×k×m with m << n, which
means that the number of learnable parameters of FED-
KGF is significantly smaller than the standard CNN. Note
that since non-convolution functions in a certain module
take few, even zero, parameters and they exist both FED-
KGF and the standard CNN, we focus on the convolution
layer to evaluate the parameter reducing ratio, and it is
mathmatically expressed as: PCNN

PFED-KGF
= c×k×k×n

c×k×k×m . For conve-
nient explanation, we evaluate the parameter reducing ratio
in a certain convolution layer, so m indicates the number
of representative kernels in this layer. Take a convolution
layer of Resnet18 with 128 kernels as the example. We set
the number of representative kernels to 16. In this way,
we obtain the parameter reducing ratio in this layer and
its value is 8 128

16 = 8. Nevertheless, Resnet18 includes 4
convolution layers with 128 kernels. Besides, there are ad-
ditional 4 layers with 256 kernels, 4 layers with 512 kernels,
and 5 layers with 64 kernels in this network. Hence, the
total parameter reducing ratio is c×k×k×3904

c×k×k×16 ≈ 244 where
3904 = 128×4+256×4+512×4+64×5. Note that we could
upload more than 1 module to the server from a network
due to the number of clients, the parameter reducing ratio of
FED-KGF still outperforms other FL variants. More detailed
results are shown in experiments.

The parameters of SmartIdx [42] are determined by the
kernels and the number of index, with C = Cip+Ckp+Cpp

where Cip indicates the individual package (i.e., ip) and it is
composed by Wip +G(iip); Ckp denotes the kernel package
(i.e., kp) and it is composed by

∑k
i=1 Sini + G(ikp); Cpp

indicates the pattern package (i.e., pp) and it is composed by∑p
j=0 Sj +G(ipp). In the three terms, G(·) indicates the cost

of Golomb encoding, and Wip means the number of parame-
ters in ip. After sparsification with top-k (here we set k = 1

32
as the original work) and Golomb encoding, the parameter
reducing ratio can be expressed: Wip+

∑k
i=1 Sini+

∑p
j=0 Sj .

Still take Resnet18 as the example, the total parameter
reducing ratio is 25.6.

Since DGC [37] propagates the larger gradients while
stores the smaller gradients to accumulate and update for
later propagation, its parameters heavily relies on the top-
k. After sparsification with top-k, the number of parame-
ters has reduced to 1

32 of the original one when we set
k = 1

32 . Moreover, each parameter needs an index with
24bits. The total parameter reducing ratio is 18.28. Fed-
CAMS [17] utilizes Scaled sign method to quantize parame-
ters, with

∑|x|
i=0 d(sign(xi)) where |x| indicates the number

of parameters of a model, x. d(·) measures the bits of
type of data, and xi denotes i-th parameter within x. The
total parameter reducing ratio is 32. FedCOM [14] requires
the extra bandwidth to track the information of uploaded
gradients and the size of extra bandwidth is the same as the
that of uploaded gradients, so the reduced parameters are
not significant, and its total parameter reducing ratio is 2.0.

Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelinesand- policies/post-publication-policies/

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI10.1109/TMC.2024.3423448,

IEEE TRANSACTIONS ON MOBILE COMPUTING 8

L
o
ss

(a) IID Scenario

4.0

3.0

2.0

1.0

(b) Convergence of IID Scenario

A
cc

u
ra

cy

0.80

0.60

0.40

0.20

0.70

0.60

0.50

0.40

0.30

0.20

0.10

(c) Non-IID Scenario (d) Convergence of Non-IID Scenario

A
cc

u
ra

cy

L
o
ss

(Epochs) (Epochs)

(Epochs) (Epochs)

12.0

10.0

8.0

6.0

4.0

2.0

 Fed-KGF

 FedAVG

 DGC

 FedCOM

 FedCAMS

 SmartIdx

 FedPM

 Fed-KGF

 FedAVG

 DGC

 FedCOM

 FedCAMS

 SmartIdx

 FedPM

 Fed-KGF

 FedAVG

 DGC

 FedCOM

 FedCAMS

 SmartIdx

 FedPM

 Fed-KGF

 FedAVG

 DGC

 FedCOM

 FedCAMS

 SmartIdx

 FedPM

 Fed-KGF

 FedAVG

 DGC

 FedCOM

 FedCAMS

 SmartIdx

 FedPM

 Fed-KGF

 FedAVG

 DGC

 FedCOM

 FedCAMS

 SmartIdx

 FedPM

 Fed-KGF

 FedAVG

 DGC

 FedCOM

 FedCAMS

 SmartIdx

 FedPM

 Fed-KGF

 FedAVG

 DGC

 FedCOM

 FedCAMS

 SmartIdx

 FedPM

Fig. 3: The classification performance on CIFAR10.

4 EXPERIMENTS

4.1 Experimental Setting
For the experiments, three public datasets are studied,
which are CIFAR10, CIFAR100, and COCO2017 datasets.
The first two datasets are used to validate the performance
of classification, and both of them have 50000 training
images and 10000 test images from 10/100 categories (each
category has 5000 images in training set). We utilize top-
1 accuracy (the higher score, the better) as the evaluation
metric. COCO2017 is utilized to validate the performance of
detection, and it includes 118287 training images and 40670
test images, with 80 object categories. The mean average
precision (mAP) and its variants (e.g., AP50, AP75, APM,
and APL) (the higher scores, the better) are adopted as the
evaluation metrics for object detection.

Six SOTA FL methods are employed as baselines, which
are FedAvg [1], DGC [37], FedCOM [14], FedCAMS [17],
SmartIdx [42], and FedPM [43]. These models are rep-
resentative on reducing parameters for fast transmission
between clients and server, and their hyper-parameters are
identical to original works for fair comparison. We compare
our Fed-KGF with baseline models on those datasets in
both IID and non-IID scenarios. For each scenario, the
number of base kernels is set to 16, and all models run
400 epochs. The GPU is Nvidia 3080Ti. As to experimental
settings, we employ 10 clients and 1 server for all cases. One
model is deployed on each node. For example, each node
holds a Resnet18 network for classification on CIFAR10/100
datasets or a YOLOX-S network for object detection on
COCO2017 dataset.

Note that the number of modules within both Resnet18
and YOLOX-S is larger than 10 and we only have 10 clients.

Therefore, we group 18 modules (take Resnet18 as the ex-
ample) into 10 groups. In other words, some groups include
2 modules, and they are randomly selected in a permutation
way at each epoch. Moreover, we transmit one group from
the client into the server at each epoch, and selecting such
a group still relies on the permutation strategy in our Fed-
KGF. The case of YOLOX-S is similar to Resnet18.

4.2 CIFAR10 for Classification
We first validate all models on the CIFAR10 dataset. In this
case, the training samples are divided into 10 sub-sets, and
each sub-set has the same number of images and all 10 cat-
egories for IID scenario. One client solely holds one sub-set.
For non-IID scenario, the training samples are also divided
into 10 sub-sets, with the same quantity. However, each
sub-set has one main category, which takes 80% proportion
of samples in this sub-set. For example, sub-set 1 contains
4000 car images (i.e, 4000

5000), and sub-set 2 has 4000 horse
images. The rest of each sub-set holds other 9 categories. The
experimental results are shown in Fig. 3. Obviously, Fed-
KGF outperforms other FL models in both scenarios (See
Fig. 3 (a) and (c)). Only the accuracy from Fed-KGF is over
80% (i.e., 81%), while others are worse than 80% (FedPM
achieves 79.8% accuracy). Fig. 3 (b) and (d) illustrate that
Fed-KGF can get convergence. Models like FedCOM and
FedCAMS are difficult to get convergence.

We also compare the transmitted parameters and the
consumed times as listed in TABLE 1. Since both scenarios
have the same experimental settings (e.g., the same architec-
tures of Resnet18 and GPU as well as the training epochs),
they have similar transmitted costs. Hence, we only report
one scenario as shown in TABLE 1. In TABLE 1, each entry

Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelinesand- policies/post-publication-policies/

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication. Citation information:
DOI10.1109/TMC.2024.3423448,

IEEE TRANSACTIONS ON MOBILE COMPUTING 9

L
o
ss

(a) IID Scenario

5.0

4.0

3.0

2.0

(b) Convergence of IID Scenario

25.0

20.0

15.0

10.0

5.0

A
cc

u
ra

cy

0.50

0.40

0.30

0.20

0.10

0.00

0.40

0.30

0.20

0.10

0.00

(c) Non-IID Scenario (d) Convergence of Non-IID Scenario

A
cc

u
ra

cy

L
o
ss

(Epochs) (Epochs)

(Epochs) (Epochs)

 Fed-KGF

 FedAVG

 DGC

 FedCOM

 FedCAMS

 SmartIdx

 FedPM

 Fed-KGF

 FedAVG

 DGC

 FedCOM

 FedCAMS

 SmartIdx

 FedPM

 Fed-KGF

 FedAVG

 DGC

 FedCOM

 FedCAMS

 SmartIdx

 FedPM

 Fed-KGF

 FedAVG

 DGC

 FedCOM

 FedCAMS

 SmartIdx

 FedPM

 Fed-KGF

 FedAVG

 DGC

 FedCOM

 FedCAMS

 SmartIdx

 FedPM

 Fed-KGF

 FedAVG

 DGC

 FedCOM

 FedCAMS

 SmartIdx

 FedPM

 Fed-KGF

 FedAVG

 DGC

 FedCOM

 FedCAMS

 SmartIdx

 FedPM

 Fed-KGF

 FedAVG

 DGC

 FedCOM

 FedCAMS

 SmartIdx

 FedPM

Fig. 4: The classification performance on CIFAR100.

(d) FedCOM (e) FedCAMS (f) SmartIdx(c) DGC(b) FedAvg(a) Fed-KGF (g) FedPM

Fig. 5: The object detection performance of all models on COCO2017 in IID scenario.

represents the quantity of transmitted parameters of per
epoch. For example, 10 clients totally transmit 8.46MB pa-
rameters to the server in one epoch, which spends 0.774ms
in Fed-KGF. Here, we view the transmitted cost of Fed-
AVG as the benchmark. ⊤R(↓) denotes the reduction rate of
parameters of models (the smaller, the better), with PM−BM

BM
where PM denotes the number of parameters of current
model and BM means that of the benchmark. The ex-
perimental results show that Fed-KGF achieves the lowest
transmission cost (i.e., the minimum transmitted time and
parameters) among all models, where the number of trans-
mitted parameters are reduced by 32.97% when comparing

to FedCAMS. Besides, we prove the necessity of module
uploading by removing it, and the results are shown at the
row of Fed-KGF without MU in TABLE 1. Obviously, the cost
arises after removing module uploading, which validates
its necessity. The results demonstrate the effectiveness of
Fed-KGF over SOTA FL models in significantly reducing
parameters for faster transmission.

4.3 CIFAR100 for Classification

We then validate all FL models on CIFAR100 dataset. In
this case, we also consider two scenarios: IID and non-IID.

Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelinesand- policies/post-publication-policies/

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI10.1109/TMC.2024.3423448,

IEEE TRANSACTIONS ON MOBILE COMPUTING 10

(d) FedCOM (e) FedCAMS (f) SmartIdx(c) DGC(b) FedAvg(a) Fed-KGF (g) FedPM

Fig. 6: The object detection performance of all models on COCO2017 in non-IID scenario.

TABLE 1: The transmission costs of all models on CIFAR10,
and we view the transmission cost of Fed-AVG as the bench-
mark. The ablation study (i.e., only removing the module
uploading method) is named as Fed-KGF without MU.

Model Time (ms) Parameters (MB) ⊤R(↓)
Fed-KGF 0.774 8.46 -97.08%
Fed-KGF without MU 0.838 13.20 -95.44%
FedCAMS 1.289 13.32 -95.40%
SmartIdx 0.892 20.47 -92.92%
DGC 1.032 36.16 -87.50%
FedPM 0.912 91.55 -68.36%
FedCOM 1.140 144.65 -60.37%
Fed-Avg 1.189 289.31 0.00%

For the first one, images from CIFAR100 are divided into 10
sub-sets, and each sub-set has 100 categories, with the same
quantity as the CIFAR 10 case; for the other scenario, images
are still divided into 10 sub-sets, but each sub-set only has
10 main categories. Different from the CIFAR10 non-IID
scenario, each category takes 8% proportion of images, so
10 main categories take 80% proportion of images in this
sub-set. For example, sub-set 1 has beaver, dolphin, otter,
seal, whale, aquarium fish, flatfish, ray, shark, and trout
categories, and each category has 400 images. The rest is
from the other 90 categories. Each client holds one sub-
set and deploys one Resnet18. The experimental results are
shown in Fig. 4, which shows that Fed-KGF achieves the
best classification performance over baseline models. In IID
scenario, our Fed-KGF obtains 46.9% accuracy, which is the
highest among all models, given that FedPM and FedCAMS
achieve 44.2% and 44.6%, respectively. In the non-IID sce-
nario, our Fed-KGF still holds the highest accuracy among
all models. Besides, we compare the transmitted costs of
baselines with Fed-KGF. Since CIFAR100 has the same
number of training/test images and the deployed model
is Resnet18 as the CIFAR10 case, the transmission cost is
similar to the results reported in TABLE 1.

4.4 COCO2017 for Object Detection

Given the large amounts of training images in COCO2017
dataset and the limited GPU memory, we take YOLOX-S
[11] (8.94MB parameters) as the detector, and deploy 10
YOLOX-S models (89.4MB parameters) to 10 clients and a
YOLOX-S to the server. In IID scenario, the training images
are also divided into 10 sub-sets, and each sub-set has all
categories and holds the same number of images. As to non-
IID scenario, all training images are still divided into 10 sub-
sets. However, each sub-set has 8 different main categories,
and they take 80% proportion of images in each sub-set as
CIFAR10/100 cases. The rest 20% images are from other
categories. The detected results of both IID and non-IID
scenarios are shown in Fig. 5 and Fig. 6, respectively. In
Fig. 5, it can be observed that FedAvg (e.g., [2, 2]), DGC
(e.g., [2, 3] and [4, 3]), FedCOM (e.g., [2, 4] and [4, 4]),
FedCAMS (e.g., [4, 5]), SmartIdx (e.g., [1, 6]), and FedPM
(e.g., [1, 7] and [4, 7]) miss to detect some objects, where
the first number indicates the row and the second number
indicates the column in [,]. Furthermore, FedAvg (e.g., [4,
2]) and SmartIdx (e.g., [4,6]) even fail to detect any objects
in some scenarios. DGC (e.g., [2-4, 3]), FedCOM (e.g., [3, 4]),
FedCAMS (e.g., [1, 5] and [3, 5]), and SmartIdx (e.g., [3, 6])
wrongly identify a car as a boat or view a bird as a person.
Fed-KGF is capable of detecting more objects and holding
the less identification errors than all baseline models. The
performance of all models in non-IID scenario is shown in
Fig. 6. From Fig. 6, it is clearly to observe that FedAvg (e.g.,
[2, 2]), DGC (e.g., [2, 3]), FedCAMS (e.g., [2, 5]), SmartIdx
(e.g., [2, 6]), and FedPM (e.g., [2, 7]) wrongly identify laptop
as the TV. FedCOM (e.g., [3-4, 4]) and FedPM (e.g., [1, 7])
miss to detect objects. Only Fed-KGF is capable of detecting
more objects with less identification errors than baselines.

We also quantitatively measure the performance of all
models, and the quantitative results are reported in TABLE
2 and TABLE 3, respectively. In both tables, AP50 (AP75)
indicates that the value of Intersection over Union (IoU)
≥ 50% (IoU ≥ 75% for AP75). APM indicates AP of objects
with middle sizes (i.e., from 32 × 32 to 96×96), while

Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelinesand- policies/post-publication-policies/

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI10.1109/TMC.2024.3423448,

IEEE TRANSACTIONS ON MOBILE COMPUTING 11

(a) IID Scenario

0.80

0.60

0.40

0.20

0.00

(b) Non-IID Scenario

A
cc

u
ra

cy

0.85

0.80

0.75

0.70

0.65

0.60

A
cc

u
ra

cy

(Epochs) (Epochs)

 32 Kernels

 16 Kernels

 8 Kernels

 4 Kernels

 2 Kernels

 32 Kernels

 16 Kernels

 8 Kernels

 4 Kernels

 2 Kernels

Fig. 7: The performance of different numbers of base kernels on CIFAR10.

A
cc

u
ra

cy

0.80

0.60

0.40

0.20

(Epochs)

 Fed-KGF

 Only Removing ɑ

 Only Removing sign(w)
L

o
ss

2.5

2.0

1.5

1.0

(Epochs)

(a) IID Scenario (b) Convergence of IID Scenario

 Fed-KGF

 Only Removing ɑ

 Only Removing sign(w)

Fig. 8: The ablation studies on CIFAR10.

APL indicates AP of objects with large sizes (i.e., object
size ≥ 96×96). Both tables show that Fed-KGF has better
detection performance than SOTA FL models. Moreover, we
have compared the transmission costs of all baseline models
with Fed-KGF, and the experimental results are reported in
TABLE 4. It is noted that both IID and non-IID scenarios
have the same experimental settings on the same dataset,
their transmission costs are similar to each other, so we only
report one of them as shown in TABLE 4. According to the
results, we can observe that Fed-KGF achieves the lowest
cost among all SOTA FL models. Compared to the recent
SmartIdx and the FedPM models, the numbers of trans-
mitted parameters of Fed-KGF have reduced by 36.49%
and 44.64%, respectively. The experimental results further
demonstrate the effectiveness and high-performance of Fed-
KGF in reducing parameters for faster transmission.

TABLE 2: The quantitative results from all FL models on
COCO2017 in IID scenario.

Model mAP AP50 AP75 APM APL
Fed-KGF 0.384 0.565 0.417 0.428 0.506
Fed-Avg 0.363 0.518 0.392 0.410 0.462
DGC 0.381 0.552 0.399 0.425 0.485
FedCOM 0.318 0.493 0.338 0.374 0.388
FedCAMS 0.353 0.540 0.374 0.405 0.450
SmartIdx 0.355 0.539 0.380 0.401 0.451
FedPM 0.313 0.497 0.343 0.362 0.391

4.5 Ablation Studies
Since our kernel generation function includes three parts:
sign(·) operation (i.e., sign(w)), generated kernels (i.e.,

TABLE 3: The quantitative results in non-IID scenario.

Model mAP AP50 AP75 APM APL
Fed-KGF 0.358 0.543 0.384 0.404 0.457
Fed-Avg 0.346 0.537 0.367 0.392 0.433
DGC 0.325 0.504 0.346 0.372 0.425
FedCOM 0.036 0.058 0.038 0.046 0.388
FedCAMS 0.355 0.540 0.378 0.407 0.444
SmartIdx 0.347 0.533 0.370 0.399 0.441
FedPM 0.301 0.479 0.316 0.294 0.376

TABLE 4: The transmission costs on COCO2017 dataset,
and Fed-AVG is viewed as the benchmark. The ablation
study (i.e., only removing the module uploading method)
is named as Fed-KGF without MU.

Model Time (ms) Parameters (MB) ⊤R(↓)
Fed-KGF 0.554 21.69 -93.68%
Fed-KGF without MU 0.635 30.14 -91.21%
SmartIdx 0.571 32.36 -90.57%
FedPM 0.611 39.18 -88.58%
DGC 0.825 42.87 -87.50%
FedCAMS 0.674 43.08 -87.44%
FedCOM 0.583 171.50 -50.00%
Fed-Avg 0.872 342.99 0.00%

|wβ |), and bias tensor (i.e., α), we conduct a series of ablation
studies to show the necessity of each component by only
removing sign(w) and only removing α from Eq. (2). Con-
sidering removing |wβ | will result in that we cannot take in
input data due to the incomplete network, we do not show
its performance. We validate the necessity of each compo-
nent of Eq. (2) on CIFAR10 in the IID scenario, with Resnet18
model. The experimental results of the classification task

Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelinesand- policies/post-publication-policies/

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI10.1109/TMC.2024.3423448,

IEEE TRANSACTIONS ON MOBILE COMPUTING 12

are shown in the sub-figure (a) of Fig. 8. It is observed
that the classification performance significantly decreases
when removing sign(w) or α. Sub-figure (b) shows the cor-
responding performance of convergence. Clearly, the model
without sign(w) or α is difficult to get convergence. In other
words, removing any component of Eq. (2) will result in
the performance downgrading. However, we can get the
desired results as shown in the curves from Fed-KGF in the
two sub-figures if we reserve those components. As to the
module uploading strategy, its necessity has been proved at
the row of Fed-KGF without MU in TABLEs 1 and 4.

4.6 Discussion
Note that the number of base kernels is empirically eval-
uated on several tests. We set the number of base kernels
to 21 (2), 22 (4), 23 (8), 24 (16), 25 (32) in both IID and
non-IID scenarios on the CIFAR10 dataset, with 10 clients
and 1 server, given that the number of parameters in a
CNN is usually the power of 2 [28]. It is found from Fig.
7 that the larger number of base kernels outperforms the
smaller number of base kernels, and the best performance
is achieved with 24 (i.e., 16) base kernels. Hence, we set the
number of base kernels to 16 for Fed-KGF in this paper.

Given that the FL model is usually benchmarked by
classification [1] and object detection [25], we also follow
the criterion. From the experimental results (See Figs. 3-
6, TABLEs 1-4), we can observe that Fed-KGF not only
holds the least transmitted parameters of models for faster
transmission but also achieves the best performance among
all SOTA FL models. The recent FL variants, like FedCOM
and FedCAMS, are difficult to get convergence. Moreover,
we found a new challenge of FedCAMS, which fails to
classify categories in non-IID scenario as shown in Fig.
3 (c) and Fig. 4 (c). As to FevAvg, DGC, and SmartIdx
models, they show the similar performance in CIFAR10/100
classification cases. In the object detection case, the baseline
models basically hold the same issues (e.g., false detection
and missed detection), in which FedCOM has the worst de-
tection performance among all models in both IID and non-
IID scenarios. As to other baseline models, their detected
quantities and categories are worse than Fed-KGF as shown
in TABLE 2 and TABLE 3.

Since most real-world deep-learning applications (e.g.,
industrial image analysis [49] [50], face identification [51],
and CT detection [52]) focus on classification and detection
[28], this paper adopts Resnet18 and YOLOX-S to validate
our idea. Moreover, our idea can be viewed as a plug-in to
equip other FL variants to improve their performance on
reducing the transmitted parameters.

5 CONCLUSION

In this paper, our approach seeks to significantly reduce
parameters for fast transmission in FL. We present Fed-KGF,
which generates kernels to take in the inputs in clients and
then discards those generated kernels when transmitting
their parameters to the server. With this, we solely transmit
the representative kernels between clients and the server.
The contributions of our Fed-KGF are: 1) utilizing “gen-
eration mechanism” to reduce parameters for faster trans-
mission; 2) proposing a new module transmission method

to further reduce the transmitted parameters; 3) presenting
11% higher classification (3.64% detection performance) and
achieving 33% (37%) lower transmitted parameters com-
pared with the SOTA FL variants; and 4) providing new
insights into the understanding of FL variants.

ACKNOWLEDGMENT

This work was supported by the National Key Research and
Development Program of China (2022YFF1101100).

REFERENCES

[1] H. B. McMahan, E. Moore, D. Ramage, S. Hampson et al.,
“Communication-efficient learning of deep networks from decen-
tralized data,” arXiv preprint arXiv:1602.05629, 2016.

[2] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y.-C. Liang,
Q. Yang, D. Niyato, and C. Miao, “Fl in mobile edge networks: A
comprehensive survey,” IEEE Communications Surveys & Tutorials,
vol. 22, no. 3, pp. 2031–2063, 2020.

[3] Q. Yang, L. Fan, and H. Yu, Federated Learning: Privacy and Incentive.
Springer Nature, 2020, vol. 12500.

[4] Y. Gao, L. Zhang, L. Wang, K.-K. R. Choo, and R. Zhang, “Privacy-
preserving and reliable decentralized federated learning,” IEEE
Transactions on Services Computing, 2023.

[5] K. Wei, J. Li, M. Ding, C. Ma, H. Su, B. Zhang, and H. V. Poor,
“User-level privacy-preserving federated learning: Analysis and
performance optimization,” IEEE Transactions on Mobile Comput-
ing, vol. 21, no. 9, pp. 3388–3401, 2021.

[6] H. Ko, J. Lee, S. Seo, S. Pack, and V. C. Leung, “Joint client selection
and bandwidth allocation algorithm for federated learning,” IEEE
Transactions on Mobile Computing, 2021.

[7] T. Q. Dinh, D. N. Nguyen, D. T. Hoang, T. V. Pham, and
E. Dutkiewicz, “In-network computation for large-scale federated
learning over wireless edge networks,” IEEE Transactions on Mobile
Computing, 2022.

[8] T. Guo, S. Guo, J. Wang, X. Tang, and W. Xu, “Promptfl: Let feder-
ated participants cooperatively learn prompts instead of models-
federated learning in age of foundation model,” IEEE Transactions
on Mobile Computing, 2023.

[9] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learn-
ing: Concept and applications,” ACM Transactions on Intelligent
Systems and Technology, vol. 10, no. 2, pp. 1–19, 2019.

[10] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, 2016, pp. 770–778.

[11] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, “Yolox: Exceeding yolo
series in 2021,” arXiv preprint arXiv:2107.08430, 2021.

[12] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, 2015, pp. 1–9.

[13] A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and
R. Pedarsani, “Fedpaq: A communication-efficient federated learn-
ing method with periodic averaging and quantization,” in Inter-
national Conference on Artificial Intelligence and Statistics, 2020, pp.
2021–2031.

[14] F. Haddadpour, M. M. Kamani, A. Mokhtari, and M. Mahdavi,
“Federated learning with compression: Unified analysis and sharp
guarantees,” in International Conference on Artificial Intelligence and
Statistics, 2021, pp. 2350–2358.

[15] H. Gao, A. Xu, and H. Huang, “On the convergence of
communication-efficient local sgd for federated learning,” in Pro-
ceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 9,
2021, pp. 7510–7518.

[16] D. Rothchild, A. Panda, E. Ullah, N. Ivkin, I. Stoica, V. Braverman,
J. Gonzalez, and R. Arora, “Fetchsgd: Communication-efficient
federated learning with sketching,” in International Conference on
Machine Learning, 2020, pp. 8253–8265.

[17] Y. Wang, L. Lin, and J. Chen, “Communication-efficient adaptive
federated learning,” in International Conference on Machine Learning,
2022, pp. 22 802–22 838.

Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelinesand- policies/post-publication-policies/

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI10.1109/TMC.2024.3423448,

IEEE TRANSACTIONS ON MOBILE COMPUTING 13

[18] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek, “Robust and
communication-efficient federated learning from non-iid data,”
IEEE transactions on neural networks and learning systems, vol. 31,
no. 9, pp. 3400–3413, 2019.

[19] D. Basu, D. Data, C. Karakus, and S. Diggavi, “Qsparse-local-
sgd: Distributed sgd with quantization, sparsification and local
computations,” Neural Information Processing Systems, vol. 32, 2019.

[20] D. Li, J. Hu, C. Wang, X. Li, Q. She, L. Zhu, T. Zhang, and
Q. Chen, “Involution: Inverting the inherence of convolution for
visual recognition,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2021, pp. 12 321–12 330.

[21] X. Xiang, R. Abdein, N. Lv, and A. El Saddik, “Invflow: Involution
and multi-scale interaction for unsupervised learning of optical
flow,” Pattern Recognition, vol. 145, p. 109918, 2024.

[22] B. Yang, G. Bender, Q. V. Le, and J. Ngiam, “Condconv: Condition-
ally parameterized convolutions for efficient inference,” Advances
in neural information processing systems, vol. 32, 2019.

[23] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar,
“signsgd: Compressed optimisation for non-convex problems,” in
International Conference on Machine Learning, 2018, pp. 560–569.

[24] K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu, and C. Xu, “Ghostnet:
More features from cheap operations,” in IEEE/CVF conference on
computer vision and pattern recognition, 2020, pp. 1580–1589.

[25] C. Ding, Z. Lu, F. Juefei-Xu, V. N. Boddeti, Y. Li, and J. Cao,
“Towards transmission-friendly and robust cnn models over cloud
and device,” IEEE Transactions on Mobile Computing, 2022.

[26] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T.
Suresh, “Scaffold: Stochastic controlled averaging for federated
learning,” in International conference on machine learning, 2020, pp.
5132–5143.

[27] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proceedings of the 27th international confer-
ence on machine learning (ICML-10), 2010, pp. 807–814.

[28] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT
press, 2016.

[29] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “Qsgd:
Communication-efficient sgd via gradient quantization and en-
coding,” Neural Information Processing Systems, vol. 30, 2017.

[30] X. Dai, X. Yan, K. Zhou, H. Yang, K. K. Ng, J. Cheng, and
Y. Fan, “Hyper-sphere quantization: Communication-efficient sgd
for federated learning,” arXiv preprint arXiv:1911.04655, 2019.

[31] D. Jhunjhunwala, A. Gadhikar, G. Joshi, and Y. C. Eldar, “Adaptive
quantization of model updates for communication-efficient feder-
ated learning,” in IEEE International Conference on Acoustics, Speech
and Signal Processing. IEEE, 2021, pp. 3110–3114.

[32] Y. Youn, B. Kumar, and J. Abernethy, “Accelerated federated op-
timization with quantization,” in Workshop on Federated Learning:
Recent Advances and New Challenges (with NeurIPS), 2022.

[33] N. Shlezinger, M. Chen, Y. C. Eldar, H. V. Poor, and S. Cui,
“Uveqfed: Universal vector quantization for federated learning,”
IEEE Transactions on Signal Processing, vol. 69, pp. 500–514, 2020.

[34] N. Shlezinger, M. Chen, Y. C. Eldar, H. V. Poor, and S. G. Cui, “Fed-
erated learning with quantization constraints,” ICASSP 2020 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 8851–8855, 2020.

[35] Y. Wang, Y. Xu, Q. Shi, and T.-H. Chang, “Quantized federated
learning under transmission delay and outage constraints,” IEEE
Journal on Selected Areas in Communications, vol. 40, no. 1, pp. 323–
341, 2021.

[36] M. M. Amiri, D. Gunduz, S. R. Kulkarni, and H. V. Poor, “Fed-
erated learning with quantized global model updates,” arXiv
preprint arXiv:2006.10672, 2020.

[37] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep gra-
dient compression: Reducing the communication bandwidth for
distributed training,” arXiv preprint arXiv:1712.01887, 2017.

[38] L. P. Barnes, H. A. Inan, B. Isik, and A. Özgür, “rtop-k: A statistical
estimation approach to distributed sgd,” IEEE Journal on Selected
Areas in Information Theory, vol. 1, no. 3, pp. 897–907, 2020.

[39] S. Lu, R. Li, W. Liu, C. Guan, and X. Yang, “Top-k sparsification
with secure aggregation for privacy-preserving federated learn-
ing,” Computers & Security, vol. 124, p. 102993, 2023.

[40] C.-Y. Chen, J. Choi, D. Brand, A. Agrawal, W. Zhang, and
K. Gopalakrishnan, “Adacomp: Adaptive residual gradient com-
pression for data-parallel distributed training,” in Proceedings of
the AAAI conference on artificial intelligence, vol. 32, no. 1, 2018.

[41] J. Fang, H. Fu, G. Yang, and C.-J. Hsieh, “Redsync: reducing
synchronization bandwidth for distributed deep learning training

system,” Journal of Parallel and Distributed Computing, vol. 133, pp.
30–39, 2019.

[42] D. Wu, X. Zou, S. Zhang, H. Jin, W. Xia, and B. Fang, “Smartidx:
Reducing communication cost in federated learning by exploiting
the cnns structures,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 36, no. 4, 2022, pp. 4254–4262.

[43] B. Isik, F. Pase, D. Gunduz, T. Weissman, and M. Zorzi, “Sparse
random networks for communication-efficient federated learn-
ing,” The eleventh international conference on learning representations,
2023.

[44] F. Juefei-Xu, V. Naresh Boddeti, and M. Savvides, “Local binary
convolutional neural networks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2017, pp. 19–28.

[45] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[46] J. Shore and R. Johnson, “Properties of cross-entropy minimiza-
tion,” IEEE Transactions on Information Theory, vol. 27, no. 4, pp.
472–482, 1981.

[47] S.-P. Hu, “Simple mean, weighted mean, or geometric mean?”
ISPA/SCEA International Conference, San Diego, CA, 2010.

[48] W. Li, J. Chen, Z. Wang, Z. Shen, C. Ma, and X. Cui, “Ifl-gan:
Improved federated learning generative adversarial network with
maximum mean discrepancy model aggregation,” IEEE Transac-
tions on Neural Networks and Learning Systems, 2022.

[49] S. Zhou, D. Van Le, R. Tan, J. Q. Yang, and D. Ho, “Configuration-
adaptive wireless visual sensing system with deep reinforcement
learning,” IEEE Transactions on Mobile Computing, 2022.

[50] L. Xie, Z. Chu, Y. Li, T. Gu, Y. Bu, C. Wang, and S. Lu, “Industrial
vision: Rectifying millimeter-level edge deviation in industrial in-
ternet of things with camera-based edge device,” IEEE Transactions
on Mobile Computing, 2023.

[51] Y. Shen, M. Yang, B. Wei, C. T. Chou, and W. Hu, “Learn to recog-
nise: exploring priors of sparse face recognition on smartphones,”
IEEE Transactions on Mobile Computing, vol. 16, no. 6, pp. 1705–
1717, 2016.

[52] J. Wilson and N. Patwari, “Radio tomographic imaging with
wireless networks,” IEEE Transactions on Mobile Computing, vol. 9,
no. 5, pp. 621–632, 2010.

Dr. Wei Li (Member, IEEE) was undergraduate
from the subject of Information and Comput-
ing Science in 2008, and receives his Master’s
degree in Agricultural Engineering from South
China Agricultural University in 2012, and gets
his Ph.D. degree in Software Engineering from
Wuhan University in 2019. He is an Associate
Professor of School of Artificial Intelligence and
Computer Science at Jiangnan University. He
was the visiting student of University of Mas-
sachusetts Boston and had visited the The Hong

Kong Polytechnic University as Research Assistant. His research inter-
ests include Data Mining, Artificial Intelligence, and Federated Learning.

Mr. Zicheng Shen received the B.S. degree in
Applied Chemistry from Jiangnan University in
2022. Currently, he is working toward the M.S.
degree with the School of Artifcial Intelligence
and Computer Science, Jiangnan University. His
research interests mainly include software engi-
neering and federated learning.

Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelinesand- policies/post-publication-policies/

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI10.1109/TMC.2024.3423448,

IEEE TRANSACTIONS ON MOBILE COMPUTING 14

Dr. Xiulong Liu is currently a professor in Col-
lege of Intelligence and Computing, Tianjin Uni-
versity, China. Before that, he received the B.E.
and Ph.D. degrees from Dalian University of
Technology (China) in 2010 and 2016, respec-
tively. He also worked as a visiting researcher
in Aizu University, Japan; a postdoctoral fellow
in The Hong Kong Polytechnic University, Hong
Kong; and a postdoctoral fellow in the School
of Computing Science, Simon Fraser University,
Canada. His research interests include wireless

sensing and communication, indoor localization, and networking, etc.
His research papers were published in many prestigious journals and
conferences including TON, TMC, TC, TPDS, TCOM, INFOCOM, and
ICNP, etc. He received Best Paper Awards from ICA3PP 2014 and
IEEE System Journal 2017. He is also the recipient of CCF Outstanding
Doctoral Dissertation award 2017.

Dr. Mingfeng Wang (M’16) received his B.Eng.
degree in mechanical design and automation
and M.Eng. degree in mechanical engineering
from Central South University in 2008 and 2012,
respectively, and the Ph.D. degree in mechanical
engineering from the University of Cassino and
South Latium, Italy, in 2016. He is currently a Se-
nior Lecturer in Robotics and Autonomous Sys-
tems at Brunel University London. His research
interests cover novel design & development of
humanoid robots, precision farming robots, con-

tinuum robots and hexapod robots, which including robotic technologies
in terms of mechanical design, kinematic & dynamic analysis, motion
planning, motor control, system design & integration, and fabricating
& debugging. He has published more than 30 papers that have been
presented at peer-reviewed international conferences or journals.

Dr. Chao Ma is currently an Assistant Professor
of School of Cyber Science and Engineering at
Wuhan University, P.R.China. His research inter-
ests include time series analytics, representation
learning, deep learning, explainable AI, and big
data analytics. He has published over 30 aca-
demic papers in major international journals and
conference proceedings. He is now the member
of IEEE and the professional member of CCF.

Dr. Chuntao Ding (Member, IEEE) received
his Ph.D. degree from Beijing University of
Posts and Telecommunications, Beijing, China,
in 2021. He is currently a lecturer at Beijing
Jiaotong University. He also worked as a re-
search assistant with Hong Kong Polytechnic
University and as a visiting scholar at Michigan
State University. His research interests include
service computing, edge computing, and multi-
task learning. He received the Outstanding Ph.D.
Thesis award of IEEE Technical Committee on

Cloud Computing. He has published more than 20 top conference and
journal papers, such as IEEE CVPR, IEEE TPDS, IEEE TMC, etc.

Dr. Jiannong Cao (M’93-SM’05-F’15) received
the M.Sc. and Ph.D. degrees in computer sci-
ence from Washington State University, Pullman,
WA, USA, in 1986 and 1990, respectively. He
is currently the Chair Professor with the De-
partment of Computing, Hong Kong Polytechnic
University, Hong Kong. His research interests
include parallel and distributed computing, mo-
bile computing, and big data analytics. Dr. Cao
has served as a member of the Editorial Boards
of several international journals, a Reviewer for

international journals/conference proceedings, and also as an Organiz-
ing/Program Committee member for many international conferences.

Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelinesand- policies/post-publication-policies/

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI10.1109/TMC.2024.3423448,

	Introduction
	Problem Statement and Motivation
	Limitations of Prior Art
	Our Approach
	Contributions and Advantages over Prior Work

	Related Work
	Fed-KGF
	Overview
	Design of Kernel Generation Function
	Design of Module Uploading Method
	Analysis of FED-KGF

	Experiments
	Experimental Setting
	CIFAR10 for Classification
	CIFAR100 for Classification
	COCO2017 for Object Detection
	Ablation Studies
	Discussion

	Conclusion
	References
	Biographies
	Dr. Wei Li
	Mr. Zicheng Shen
	Dr. Xiulong Liu
	Dr. Mingfeng Wang
	Dr. Chao Ma
	Dr. Chuntao Ding
	Dr. Jiannong Cao

