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Distributed Kalman Filtering Under Two-Bitrate
Periodic Coding Strategies

Qinyuan Liu, Zidong Wang, Hongli Dong, and Changjun Jiang

Abstract—This paper is concerned with the problem of dis-
tributed Kalman filtering over sensor networks under two-bitrate
periodic coding strategies. Initially, the optimal estimates for
sensor individuals are acquired using the conventional Kalman
filter. Subsequently, the information pair, consisting of the local
estimate and the corresponding covariance, is exchanged among
their immediate neighbors to achieve cooperative estimation.
Due to the constrained network bandwidth, a vector/matrix
quantization approach is formulated to quantize the information
pair. The output of this quantization establishes a conservative
bound for the actual covariance. A two-bitrate periodic coding
strategy is proposed, where the encoded bits of the quantizer
outputs are divided into two separate parts, namely the most
significant and least significant bits, following a periodic trans-
mission principle. It is demonstrated that the estimation preserves
a consistency property over the sensor networks as the reported
error covariance always serves as an upper bound for the actual
error covariance. It is shown that the mean-square estimation
errors are bounded when certain conditions regarding collective
observability and network connectivity are satisfied. Finally, the
effectiveness of the proposed algorithm is verified through a
numerical example.

Index Terms—Kalman filter, distributed filter, sensor network,
signal quantization, periodic coding strategies, performance anal-
ysis.

I. INTRODUCTION

In recent years, considerable attention has been given to
wireless sensor networks (WSNs) due to their diverse ap-
plications including multiple autonomous robots, industrial
monitoring, battlefield surveillance, intelligent transportation,
islanded microgrids, and so on [1], [23], [37], [47]. WSNs
consist of numerous small-sized sensing devices that are spa-
tially distributed and equipped with wireless radio transceivers,
enabling them to collect various environmental phenomena
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and share information across networks. However, these indi-
vidual sensors are relatively inexpensive and possess limited
capabilities to handle complex sensing tasks in harsh environ-
ments on their own. As a result, the problem of distributed
estimation has emerged as a crucial challenge in both industry
and academia with aim to establish a collaborative information
processing mechanism.

The field of signal processing and control engineering has
a long history of centralized multi-sensor fusion problems
[4], [7], [8], [16], [27], [39]. In contrast to the centralized
approach, where a fusion center is responsible for processing
measurements from all sources, the decentralized framework
distributes the computational burdens among all the sensors
in the network [9], [11], [12], [26]. In this framework, each
sensor independently calculates its estimates using only lo-
cally available information, such as local measurements and
transmitted signals from neighboring sensors. The distributed
Kalman filter has gained significant research interest due to its
robustness, scalability, and energy efficiency. Numerous results
have been reported in this area over the past decades [19],
[20], [28], [31]–[33], [41], [42]. The distributed Kalman filter
typically consists of two stages: a local update stage using the
Kalman filter and an information consensus stage that fuses
the neighboring messages.

In general, research on the distributed Kalman filter can
be categorized into three main areas: consensus on estimates
[22], [35], [36], consensus on measurements [13], [25], [43],
and consensus on information [5], [29], [44]. These categories
are based on the specific types of information shared over
networks using consensus techniques. Consensus on estimates
involves sharing local state estimates among sensors, allowing
for information fusion to improve the performance of the
local Kalman filter [22], [35], [36]. Consensus on measure-
ments, on the other hand, focuses on sharing measurements
or innovations among sensors to achieve consensus [13], [25],
[43]. Consensus on information involves sharing information
vectors and matrices, which includes the correlation infor-
mation between estimates, to enhance the overall estimation
performance [5], [29], [44].

It is important to note that consensus on measurements
and consensus on information have complementary strengths
and weaknesses. The stability of consensus on measurements
depends on the number of consensus steps, while the other
category does not have this requirement. However, consensus
on information tends to have lower performance compared to
consensus on measurements because it discards the correlation
information between estimates. To address these trade-offs, a
hybrid consensus strategy that combines consensus on infor-
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mation and consensus on measurements has been proposed.
This hybrid approach aims to leverage the benefits of both
strategies and mitigate their drawbacks [6], [21].

As mentioned earlier, the interaction of information a-
mong sensor nodes is crucial for implementing the distributed
Kalman filter. The energy/bandwidth constraints of commu-
nication links in sensor networks require a reduction of the
amount of data transmission, which can be achieved through
quantization methods. Some preliminary results have appeared
on the quantized Kalman filters, see e.g. [30], [34], [38]. For
instance, in [38], the innovations from distributed sensors have
been quantized into a single bit, and a recursive distributed
filter has then been established to minimize the mean-square
error. To date, most existing results have primarily focused
on vector quantization, such as quantizing estimates or in-
novations using a scalar quantizer with one quantizer per
component. These methods assume that accurate covariance
matrices are always available at the receiver. However, in order
to implement information fusion in the distributed Kalman
filter, both the estimate vector and the covariance matrix
need to be shared over networks. Therefore, an appropriate
quantization method should be adopted for both the vector
and the matrix to ensure consistent estimation.

In digital communication, the outputs of the quantizer need
to be encoded into a finite binary string before transmission,
where the bitrate refers to the number of bits that can be
reliably transmitted per unit of time via digital networks.
Note that communication processes are inherently constrained
by bitrate due to limited network resources, and such a
constraint could significantly degrade system performance. So
far, extensive research efforts have been devoted to addressing
bitrate constraints for various control and estimation objectives
in both stochastic and deterministic settings, see e.g. [3],
[14], [17], [48]. The critical bitrate for networked stabilization
problems has been investigated in [17], with subsequent work
focusing on robustness considerations in [14]. In [48], a bitrate
allocation mechanism under a total constraint has been devel-
oped for multi-sensor systems to achieve desired performance.
More recently, the period-two coding scheme, which originates
from data compression in the signal processing domain, has
garnered research attention [46]. Unlike previous frameworks
where quantized bits are fully transmitted at each iteration,
period-two coding schemes divide the bit string into two
parts that are transmitted separately, thereby enabling periodic
bitrate assignment and helping manage quantization errors [2].

Based on the preceding discussions, our objective is to
investigate a distributed Kalman filter that consists of a
Kalman filtering stage and an information fusion stage. This
investigation builds upon the findings of the Kalman consensus
filter [6], [29]. It should be noted that in the information fusion
stage, the information pair from sensor nodes, comprising an
estimate vector and covariance matrix, needs to be shared
over the network. To address the resource constraints of
wireless communication, we propose a two-bitrate periodic
coding strategy for efficient transmission. First, we introduce
a vector/matrix quantization approach. For the vector case, the
dither quantizer is employed individually for each component
and, for the matrix case, a diagonal dominant method is

exploited to design the quantization scheme for each entry.
Subsequently, the quantized outputs are encoded into a binary
string, which is further divided into the most significant and
least significant bits for transmission in a period-two manner.

The main contributions of our work can be summarized as
follows:

1) We propose a two-bitrate periodic coding strategy for the
distributed Kalman filter. This strategy involves dividing
the messages into two parts with different bitrates and
transmitting them periodically based on their significance.
By doing so, the amount of communication data ex-
changed among sensor nodes is significantly reduced.

2) The proposed filter ensures an unbiased and consistent
estimate. Specifically, the reported covariance computed
by each sensor based on local information always serves
as an upper bound for the actual error covariance. This
allows for real-time evaluation of the estimation accuracy.

3) We establish the boundedness of mean-square estimation
errors, which explicitly depends on network connectiv-
ity and collective observability. This analysis provides
insights into the factors influencing the estimation per-
formance.

These contributions collectively enhance the efficiency and
accuracy of distributed Kalman filtering over sensor networks,
addressing the challenges posed by limited communication
resources and ensuring reliable estimation results.

The paper is outlined as follows. In Section II, the mathe-
matical description of sensor networks and the convention-
al distributed Kalman filter is introduced. Subsequently, in
Section III, a quantization mechanism for the information
pair is presented, and a novel distributed Kalman filter with
two-bitrate periodic coding strategies is developed. Section
IV undertakes further performance analysis, revealing the
unbiasedness, consistency, and boundedness of the proposed
distributed Kalman filter. In Section V, the simulation ex-
periments are presented to evaluate the performance of the
proposed filter. Finally, Section VI concludes the paper with
remarks.

Notations. Throughout the paper, the notation used is fairly
standard. The matrix inequality A ≥ B (A > B) represents
that A−B is positive semi-definite (definite). Rn and Rn×m

denote the n-dimensional Euclidean space and the set of all
n ×m matrices, respectively. I represents an identity matrix
of appropriate dimensions and 1 ∈ RN is a column vector
with all entries equal to one. Z represents the set of positive
integer numbers, Z+ is the set of positive odd numbers, and
Sn+ represents the set of all real n×n positive definite matrices.

II. PROBLEM FORMULATION

A. System models

In this section, we formulate the distributed filtering prob-
lem over the sensor networks. Firstly, we consider a dynamical
system described by an n-dimensional state-space model at
time k as follows:

xk+1 = Axk + wk, (1)
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where xk ∈ Rn is the state vector of the system, wk ∈ Rn

is the random process noise, and A ∈ R
m×n is the state-

transition matrix.
The dynamical system is monitored by N intelligent sensors

with the local observation model described by

yk,i = Cixk + vk,i (2)

for i = 1, 2, · · · , N , where yk,i ∈ Rm is the i-th sensor’s
observation at instant k, vk,i ∈ Rm is the random observation
noise, and Ci ∈ R

m×n is the local observation matrix of
sensor i.

Assumption 1: The process and observation noises {wk}
∞
k=1

and {vk,i}
∞
k=1 are mutually uncorrelated white Gaussian ran-

dom variables with zero mean values and bounded covariances
Q > 0 and Ri > 0.

Assumption 2: The initial state x1 obeys Gaussian distri-
bution with expectation x̄1 and covariance Σ1 > 0, and is
uncorrelated with the process and observation noises {wk}

∞
k=1

and {vk,i}
∞
k=1.

The communication structure plays a crucial role in sensor
networks as it defines the interaction mechanism among spa-
tially dispersed sensors. In our scenario, the sensor network
topology is described by an undirected graph G = (V,E,S)
with a vertex set V = {v1, v2, · · · , vN}, an edge set E ⊆ V×V,
and a weighted matrix S = [πij ]N×N . In this context, an edge
(vi, vj) ∈ E signifies that the i-th node can receive messages
from the j-th node, and vice versa. The weighted matrix S is
symmetric and doubly-stochastic, meaning that each row and
column sum up to 1, and its nonnegative elements πij satisfy
the property πij > 0 ⇐⇒ (vi, vj) ∈ E. To denote the set of
neighbors of vertex vi, we use Ni , j : (vi, vj) ∈ E.

B. Distributed Kalman filtering

It should be noted that individuals in sensor networks
face inherent hardware constraints, such as limited sensing,
processing, and storage capabilities. As a result, they cannot
accurately reconstruct the system state using only local obser-
vations. Given the communication topology described in the
previous subsection, each node has the ability to combine its
local estimates with information received from neighboring
nodes. This cooperative approach allows sensors to enhance
their local performance and successfully accomplish complex
sensing tasks. Consequently, the two-stage distributed Kalman
filter [6], [29] is formulated which is detailed below.

In the first stage, a conventional Kalman filter is employed
as follows by each sensor to generate a posterior estimation
based on its local observations:

Time-Update:

x̂k|k−1,i = Ax̂k−1,i,

Pk|k−1,i = APk−1,iA
′ +Q

(3)

Measurement-Update:

x̂KF
k,i = x̂k|k−1,i +Kk,i(yk,i − Cix̂k|k−1,i),

PKF
k,i = Pk|k−1 − Kk,iCiPk|k−1,i,

Kk,i = Pk|k−1,iC
′
i(CiPk|k−1,iC

′
i +Ri)

−1

(4)

where Kk,i ∈ Rn×m is the Kalman filtering gain, and x̂k|k−1,i

and x̂KF
k,i are the one-step prediction and the posteriori estimate

of the state vector xk at i-th sensor with the respective
corresponding error covariances Pk|k−1,i and PKF

k,i . x̂k−1,i

and Pk−1,i are the estimate of xk−1 and the corresponding
error covariance. Moreover, We define a shorthand notation

KF(⋆, ⋆) : (Rn, Sn+) → (Rn, Sn+)

to represent state/covariance update via Kalman filter (3)-(4),
i.e.,

(x̂KF
k,i , PKF

k,i ) = KF(x̂k−1,i, Pk−1,i)

where measurement yk,i is omitted in the above notation just
for presentation brevity.

In the second stage, the information fusion strategy based on
covariance intersection is employed, where each sensor node
interacts with its neighboring nodes, exchanging their local
estimates x̂KF

k,i and the corresponding error covariances PKF
k,i .

Such pair of information, (x̂KF
k,i , PKF

k,i ), is referred to as the
information pair. Upon receiving the information pairs from
all neighboring sensors, the i-th sensor utilizes the covariance
intersection methods to generate the fused estimate x̂k,i as
follows:

Pk,i =
(

∑

j∈Ni

πij(P
KF
k,j )−1

)−1

,

x̂k,i = Pk,i

(

∑

j∈Ni

πij(P
KF
k,j )−1x̂KF

k,j

)

.
(5)

Similarly, we also define the following shorthand notation

CIi(⋆, ⋆) :
(

{Rn, ...,Rn}, {Sn+, ...S
n
+}

)

→ (Rn, Sn+)

to represent information fusion via covariance intersection (5)
as follows:.

(x̂k,i, Pk,i) = CIi

(

{

x̂KF
k,j

}

j∈Ni

,
{

PKF
k,j

}

j∈Ni

)

.

The aforementioned distributed Kalman filter is summa-
rized in Algorithm I, which consists of a Kalman iteration
and information exchange steps. The Kalman filter utilizes
the locally sensed measurement information to compute the
locally optimal estimate. In order to minimize communication
and computation overhead among nodes, the cross-correlations
between neighboring sensors are disregarded. Hence, the fu-
sion rule employed in this paper is the covariance intersection
method, which is known for its robustness in handling un-
known correlations among different sources of information.

In this distributed implementation, the sensor nodes do
not possess knowledge about the estimates and covariance
matrices of their neighbors. Therefore, to enable cooperation
among adjacent nodes across the network, all nodes must
broadcast their local information pairs (x̂KF

k,i , P
KF
k,i ) obtained

from the local Kalman iteration, which allows for the exchange
of information and facilitates the collaborative estimation
process.

Due to the power and bandwidth constraints inherent in
sensor networks, it is necessary to quantize the local in-
formation of each sensor before exchanging the data. It is
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Algorithm I: Distributed Kalman Filtering

Consider the state-space model (1)-(2). Initialize x̂1,i = x̄1 and P1,i =
Σ1 for all nodes i ∈ V. At each time k = 2, 3 · · · , repeat
Step 1. With the newly collected measurement yk,i, intelligent sensors
utilize the standard Kalman filter to update the local estimates as follows:

(x̂KF
k,i , PKF

k,i ) = KF(x̂k−1,i, Pk−1,i).

Step 2. Intelligent sensors fuse the local and neighboring information by
utilizing the covariance intersection method as follow

(x̂k,i, Pk,i) = CIi
(

{x̂KF
k,j }j∈Ni

, {PKF
k,j }j∈Ni

)

.

important to note that existing literature on quantized fil-
tering (e.g., [24], [38]) primarily focuses on quantizing the
information vector, such as measurements, innovations, or
estimates. Consequently, these approaches are not applicable
when the covariance matrices of the neighboring sensors are
also available. Therefore, it becomes crucial to develop an
appropriate quantization mechanism specifically tailored for
the information pair. Based on this motivation, the objective
of this paper is to develop a modified distributed Kalman
filtering approach incorporating coding strategies to effectively
reduce resource consumption. Subsequently, a comprehensive
analysis of its performance is conducted, providing insights
into its efficacy and capabilities.

III. DISTRIBUTED KALMAN FILTERING UNDER CODING

STRATEGIES

In this section, we will introduce the quantization approach
for the information pair and propose a distributed filtering with
two-bitrate periodic coding strategies.

A. Quantization for information pairs

To begin with, a subtractive b-bit dithered quantizer, denoted
as Qb(·), is introduced which takes a scalar signal x ∈ R and a
dither signal d ∈ R as input to generate the output as follows:

Qb(x) = Qb(x + d)− d,

where Qb(·) is a standard uniform quantizer. More specifically,
for any scalar input x ∈ R in the interval [−ζ, ζ], we have the
quantizing function:

Qb(x) = k∆b,

(

k −
1

2

)

∆b ≤ x <

(

k +
1

2

)

∆b. (6)

It is easy to see that the quantization level k can be
expressed by a b-bit string and the quantization step ∆b is
given by

∆b =
ζ

2b−1
.

Moreover, we can rewrite the quantized output as follows:

Qb(x) = x+ q(x),

where q(x) ∈ R stands for the quantization error. Based on the
input, we know that q(x) is a deterministic variable satisfying
the following relationship

−
∆b

2
≤ q(x) <

∆b

2
.

For the aforementioned subtractive b-bit dithered quantizer
Qb(·), the following property is true.

Lemma 1 ( [45]): Assume that the dither signal d is a white
random process independent from x with the characteristic
function, denoted as Φ(·), satisfying

Φ

(

π2b

ζ
s

)

= 0, for s = ±1,±2, . . .

Then, the quantization error

ε = Qb(x)− x

is uniformly distributed on [−∆b

2 , ∆b

2 ) and independent of the
input signal x.

Vector Quantization: In the previous discussion, we have
presented the subtractive b-bit dithered quantizer for scalar
input, and this approach can be readily extended to the vector
input case by considering one quantizer per component. Note
that x̂KF

k,i shall be transmitted via the communication channel,
and thus the quantized signals would be Qb(x̂

KF
k,i ). Moreover,

in light of the results in [2], [45], we conclude that the quan-
tization error of the vector quantizer εk,i = Qb(x̂

KF
k,i )− x̂KF

k,i

satisfies

E{εk,i} = 0, Cov(εk,i) =
ζ2

3× 22b
I , Sb.

Matrix Quantization: As the local sensor lacks prior
knowledge of the error covariance matrices PKF

k,i associated
with the neighboring sensors’ x̂KF

k,i , it becomes necessary to
transmit these error covariance matrices in practical applica-
tions. One seemingly viable method for matrix quantization
is to quantize each component of the matrix individually.
However, this component-wise quantization of the matrix fails
to accurately evaluate the uncertainty of the estimate and
often leads to a loss of semi-positive definiteness. To address
these limitations, we propose a matrix quantization approach,
referred to as

Qb(·) : S
n
+ → S

n
+,

for quantizing the positive semi-definite matrices X ∈ Sn+.
In this case, the off-diagonal coefficients of X are quantized
based on the following rules:

[

Qb(X)
]

ij
=

{

Qb(Xij), i < j
[

Qb(X)
]

ji
, i > j

(7)

with the diagonal ones being

[

Qb(X)
]

ii
=









Xii +

n
∑

j=1,j 6=i

∣

∣Qb(Xij)−Xij

∣

∣









, (8)

where
[

Qb(X)
]

ij
and Xij represent the (i, j)-th component

of matrices Qb(X) and X , respectively. Qb(·) is a standard
uniform quantizer defined in (6), and ⌈·⌉ rounds up to nearest
quantization level.
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Based on the findings in [15], it has been established
that the rounding method applied to diagonal coefficients in
(8) ensures a diagonally dominant quantization error matrix.
This condition is sufficient to guarantee the semi-positive
definiteness of the quantization error matrix. Consequently, it
can be asserted that the quantized covariance matrix Qb(X)
obtained through the matrix quantization process described
in (7)-(8) conservatively bounds the error covariance matrix
X , which highlights the effectiveness of the proposed matrix
quantization method in providing a reliable estimation of the
error covariance matrix.

B. Two-bitrate periodic coding

We now propose a two-bitrate periodic coding strategy
within the framework depicted in Fig. 1. Building upon the
vector and matrix quantization approach discussed earlier, we
quantize the information pairs of the sensor nodes using a
component-wise b-bit quantizer. Inspired by data compres-
sion techniques in signal processing [46], we adopt a two-
bitrate periodic transmission mechanism under which the b-
bit quantized scalar signal x is divided into two parts: the
most significant bits (MSB) and the least significant bits
(LSB). These two parts are transmitted separately at odd and
even instants, respectively. The MSB represents the bits in a
multiple-bit binary string with the largest value, while the LSB
represents the bits with the smallest value. For example, in the
binary number 01100110, the MSB is 011 (the first three bits),
and the LSB is 110 (the last three bits). To refer to the most
significant and least significant r bits of an input signal x, we
introduce the notation MSBr(x) and LSBr(x), respectively,
where r ∈ Z.

S����� 2

N���� 1

S����� �

N���� �

N���� 2

S����� �

N���� �

S����� 1

T����	 	����t	��


P��t��� ������

Fig. 1. Distributed Kalman filtering under two-bitrate periodic coding
strategies. The most significant bits of the local information pair is transmitted
at even instants while the least significant bits of the local information pair
is transmitted at odd instants.

For the sake of brevity, we assume that b is an even
number. In the quantized vector and matrix, each component’s
most significant (b/2 + r) bits (r ∈ Z and 0 ≤ r ≤ b/2)
are transmitted at even instants. Specifically, when k = 2t,
given the prior information (x̂2t−1,i, P2t−1,i) and the real-

time measurement y2t,i, the intelligent sensor updates the local
estimates according to the Kalman filter:

(x̂KF
2t,i , P

KF
2t,i ) = KF (x̂2t−1,i, P2t−1,i). (9)

We utilize p2t,i and P2t,i to represent the (b/2 + r)-bit
transmitted messages as follows:

p2t,i = MSBb/2+r

{

Qb

(

x̂KF
2t,i + d2t,i

)}

,

P2t,i = MSBb/2+r

{

Qb

(

PKF
2t,i

)}

,

where the dither d2t,i is a white random process independent
from x̂KF

2t,i with a probability density possessing characteristic
function Φ(·) satisfying

Φ(
π2b

ζ
s) = 0, for s = ±1,±2, . . .

For the i-th node, we denote

m2t,j = D(p2t,j), M2t,j = D(P2t,j),

for j ∈ Ni and j 6= i, where D(·) transfers the binary
strings to decimal. m2t,i and M2t,i represent the reconstructed
channel output. As for j = i, we have that m2t,i = x̂KF

2t,i and
M2t,i = PKF

2t,i because each node could get the accurate local
information pair. After that, the covariance intersection method
is applied with respect to the reconstructed information pair
(m2t,j ,M2t,j) as follows:

(x̂∗
2t,i, P

∗
2t,i) = CIi

(

{m2t,j}j∈Ni
, {M2t,j + Sb,j}j∈Ni

)

where Sb,j is equal to Sb for j 6= i, and 0 otherwise.
Next, consider the scenario that the least significant (b/2−r)

bits (r ∈ Z and 0 ≤ r ≤ b/2) are transmitted at odd instants.
That is, when k = 2t+ 1, we have

p2t+1,i = LSBb/2−r

{

Qb

(

x̂KF
2t,i + d2t,i

)}

,

P2t+1,i = LSBb/2−r

{

Qb

(

PKF
2t,i

)}

.

With both the most significant and least significant bits, the
received information from the neighboring nodes, i.e., j ∈ Ni

and j 6= i, can be reconstructed as follows:

m2t+1,j = D
(

p2t,i + 2−(b/2−r)p2t+1,j

)

− d2t,j ,

M2t+1,j = D
(

P2t,j + 2−(b/2−r)P2t+1,j

)

,
(10)

where s1+2−(b/2−r)s2 concatenates two binary numbers with
the lower (b/2− r) bit as s2. Moreover, we have m2t+1,i =
x̂KF
2t+1,i and M2t+1,i = PKF

2t+1,i. Subsequently, the covariance
intersection method is applied to fuse the updated neighboring
information as follows:

(x̂∗
2t+1,i, P

∗
2t+1,i)

= CIi

(

{m2t+1,j}j∈Ni
, {M2t+1,j + Sb,j}j∈Ni

)

,
(11)

Finally, each node utilizes the newly collected measurement
y2t+1,i to further update the local estimate

(x̂2t+1,i, P2t+1,i) = KF (x̂∗
2t+1,i, P

∗
2t+1,i).

The distributed Kalman filtering under two-bitrate periodic
coding strategies can be summarized in Algorithm II. The
fundamental concept behind these strategies is to effectively
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manage the quantization error by assigning a specific number
of transmission bits in a periodic manner. The most significant
bits, which carry crucial information, are transmitted first
to provide an initial rough state estimate. Subsequently, the
reception of the least significant bits allows for accurate
reconstruction of the quantized signals, leading to improved
estimation quality.

Algorithm II: Distributed Kalman Filtering Under Two-Bitrate
Periodic Coding Strategies

Consider the state-space model (1)-(2). Initialize x̂1,i = x̄1 and P1,i =
Σ1 for all nodes i ∈ V. At each time k = 2, 3 · · · , repeat:

For the even instants k = 2t:
Step 1. The standard Kalman filter is utilized to update the local estimates
as follows::

(x̂KF
2t,i , P

KF
2t,i ) = KF (x̂2t−1,i, P2t−1,i) (12)

Step 2. The covariance intersection method is adopted as follow

(x̂2t,i, P2t,i) = CIi
(

{m2t,j}j∈Ni
, {M2t,j + Sb,j}j∈Ni

)

For the odd instants k = 2t + 1
Step 1. The covariance intersection method is adopted as follow

(x̂∗

2t+1,i, P
∗

2t+1,i) = CIi
(

{m2t+1,j}j∈Ni
, {M2t+1,j + Sb,j}j∈Ni

)

(13)

Step 2. The standard Kalman filter is utilized to update the local estimates
as follows:

(x̂2t+1,i, P2t+1,i) = KF (x̂∗

2t+1,i, P
∗

2t+1,i)

IV. PERFORMANCE ANALYSIS

In this section, we will demonstrate some fundamental
properties of the proposed distributed Kalman filtering under
two-bitrate periodic coding strategies. Specifically, we will
establish that the proposed filter yields an unbiased and con-
sistent estimate. Additionally, we will show that the dynamics
of the estimation error are bounded, ensuring the stability of
the estimation process.

A. Unbiasedness

To begin with, we will demonstrate that the proposed filter,
with the vector/matrix quantization approach and two-bitrate
periodic coding strategies, is unbiased for all sensor nodes.

Theorem 1: Given the dynamical system (1)-(2) and the
proposed distributed filter in Algorithm II, the estimates x̂k,i

are unbiased for each sensor node at instants k ∈ Z+, i.e.,

E{x̂k,i − xk} = 0, i ∈ V (14)

Proof: We will proceed by applying the induction method
on k. For k = 1, the conclusion (14) follows immediately
from the initial condition x̂1,i = x̄1, for i ∈ V. Letting the
estimates of all the sensors be unbiased at instant k = 2t− 1,
i.e., E{x̂2t−1,i − x2t−1} = 0, it remains to show that the
unbiasedness also holds for k = 2t+ 1.

According to (5) and (11), it follows that

P ∗
2t+1,i





∑

j∈Ni

πij (M2t+1,j + Sb,j)
−1



 = 1.

Therefore, one has

x̂∗
2t+1,i − x2t (15)

= P ∗
2t+1,i





∑

j∈Ni

πij (M2t+1,j + Sb,j)
−1

(m2t+1,j − x2t)



 .

Moreover, it has been shown in (10) that, at instant 2t+1, the
most significant and least significant bits of quantized signal
x̂KF
2t,j +d2t,j have been received and the dither subtraction has

also been done. From the properties of the dither quantizer,
we can rewrite m2t+1,j for j ∈ Ni and j 6= i as follows:

m2t+1,j = x̂KF
2t,j + ε2t,j (16)

where ε2t,j ∈ Rn is the quantization error with every compo-
nent i.i.d. uniformly distributed on [−∆b

2 , ∆b

2 ) and independent
of the input sequence x̂KF

2t,j in light of Lemma 1.
According to (9), the individual estimate x̂KF

2t,i can be
rearranged as follows:

x̂KF
2t,i = Ax̂2t−1,i −K2t,i(y2t,i − CiAx̂2t−1,i)

= Ax̂2t−1,i −K2t,iCiA(x2t−1,i − x̂2t−1,i)

−K2t,i(Ciw2t−1 + v2t,i),

where the second equality follows directly from substituting
(1)-(2). Noting the facts that 1) x2t−1,i is an unbiased estimate
of x2t−1 and 2) the process/measurement noises w2t−1 and
v2t,i are of zero mean, we have

E
{

x̂KF
2t,i −Ax̂2t−1,i

}

= 0. (17)

From (16)-(17), it is straightforward to see that

E{m2t+1,j − x2t} = E{x̂KF
2t,j + ε2t,j − x2t}

= E{Ax̂2t−1,i −Ax2t−1} = 0.

Substituting the above equality into (15) yields E{x̂∗
2t+1,i−

x2t} = 0. Furthermore, the relationship E{x̂2t+1,i −
Ax̂∗

2t+1,i} = 0 can be proven by noting that

x̂2t+1,i = Ax̂∗
2t+1,i −K2t+1,i(y2t+1,i − CiAx̂

∗
2t+1,i)

= Ax̂∗
2t+1,i −K2t+1,iCiA(x2t,i − x̂∗

2t+1,i)

−K2t+1,i(Ciw2t + v2t+1,i)

As a consequence, we have

E{x̂2t+1,i − x2t+1} = E{Ax̂∗
2t+1,i −Ax2t} = 0,

which ends the proof.
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B. Consistency

In this subsection, we will investigate the consistency of
the proposed distributed filter. To begin, let us introduce the
definition of consistency.

Definition 1: Let x̂ be an unbiased estimate of the random
vector x and P be an estimate of the corresponding error
covariance. The information pair (x̂, P ) is said to be consistent
if the following relationship holds: E{(x− x̂)(x− x̂)′} ≤ P.

As per the definition stated above, consistency implies that
the estimate is unbiased and the reported error covariance
serves as an upper bound for the actual error covariance.
It is important to note that the distributed networks under
consideration provide suboptimal estimates, as each node
does not rely on cross-covariance matrices, and the received
information pairs inevitably suffer from inaccuracies due to
quantization errors. Therefore, maintaining consistency of the
estimates is crucial for evaluating the system’s performance, as
inconsistency can potentially lead to issues such as divergence.

Before proceeding further, we introduce a useful lemma that
confirms the conservative bounding property of the quantized
covariance matrix with respect to the input covariance matrix.

Lemma 2: ( [15]) For any X ∈ Sn+, the matrix quantizer
Qb(X) defined in (7)-(8) has a positive semidefinite quanti-
zation error matrix Λb(X) , Qb(X) −X ≥ 0 and therefore
provides a conservative upper bound for the input matrix, i.e.,
Qb(X) ≥ X holds for all X ∈ Sn+.

To facilitate the subsequent analysis, we need to introduce
two functions h(·) and g(·): Sn+ → Sn+ as follows:

h(X) , AXA′ +Q

g(X) , X −XC′(CXC′ +R)−1CX

The actual estimate/prediction error covariances of the es-
timate x̂k,i are denoted by

P act
k,i , E{(xk − x̂k,i)(xk − x̂k,i)

′}

P act
k|k−1,i , E{(xk − x̂k|k−1,i)(xk − x̂k|k−1,i)

′}

We are now ready to demonstrate that, at each iteration,
if the prior estimate is consistent, then the updated estimate
obtained using the Kalman filter with the latest collected
measurement will also be consistent.

Lemma 3: For any consistent estimate (x̂k,i, Pk,i) of the
state vector xk, the iterative update via Kalman filter (3)-
(4), i.e., (x̂k+1,i, Pk+1,i) = KF (x̂k,i, Pk,i), also provides a
consistent estimate (x̂k+1,i, Pk+1,i) of the state vector xk+1.

Proof: The i-th sensor updates the local estimate based
on the measurements yk+1,i according to the Kalman filter

(x̂k+1,i, Pk+1,i) = KF (x̂k,i, Pk,i).

Obviously, the dynamics of the actual estimate error can be
calculated as

x̂k+1,i − xk+1

= x̂k+1|k,i − xk+1 +Kk+1,i(yk+1,i − Cix̂k+1|k,i)

= (I −Kk+1,iCi)(x̂k+1|k,i − xk+1) +Kk+1,ivk+1,i,

with the corresponding actual estimation error covariance
given by

P act
k+1,i

= (I −Kk+1,iCi)E{(x̂k+1|k,i − xk+1)(x̂k+1|k,i − xk+1)
′}

× (I −Kk+1,iCi)
′ +Kk+1,iRiK

′
k+1,i

= (I −Kk+1,iCi)P
act
k+1|k,i(I −Kk+1,iCi)

′

+Kk+1,iRiK
′
k+1,i. (18)

Since (x̂k,i, Pk,i) is a consistent estimate of the state vector
xk, one has P act

k,i ≤ Pk,i. Noting that h(·) is monotonically
increasing function, we have

P act
k+1|k,i = h(P act

k,i ) ≤ h(Pk,i) = Pk+1|k,i.

Substituting the above into (18), it is apparent that

P act
k+1,i ≤(I −Kk+1,iCi)Pk+1|k,i(I −Kk+1,iCi)

′.

+Kk+1,iRiK
′
k+1,i

Recalling the definition of Kk+1,i in (4), i.e.,

Kk+1,i = Pk+1|k,iC
′
i(CiPk+1|k,iC

′
i +R−1

i )−1,

we have

P act
k+1,i ≤ g(Pk+1|k,i) = g ◦ h(Pk,i) = PKF

k+1,i

Furthermore, by noting that Kalman filter is an unbiased
estimator, it is easy to see that x̂k+1,i is an unbiased estimate
of xk+1. As a consequence, we can draw the conclusion
that (x̂k+1,i, Pk+1,i) is a consistent estimate of xk+1, which
completes the proof.

The following theorem demonstrates that, regardless of the
cross-covariance between neighboring sensors, the proposed
distributed Kalman filtering under two-bitrate periodic coding
strategies ensures the consistency of the fused estimate.

Theorem 2: Given the dynamical system (1)-(2) and the
proposed distributed filter in Algorithm II, the information pair
(x̂k,i, Pk,i) is a consistent estimate of the state vector xk (for
k ∈ Z+) in that

E{(x̂k,i − xk)(x̂k,i − xk)
′} ≤ Pk,i, ∀i ∈ V, k ∈ Z+. (19)

Proof: The consistency will be proven via the induction
method. The initial conditions x̂1,i = x̄1 and P1,i = Σ1 (for
i ∈ V) guarantee that E{(x̂1,i − x1)(x̂1,i − x1)

′} = P1,i.
Suppose that, at instant k = 2t − 1, the information pair
(x̂2t−1,i, P2t−1,i) is a consistent estimate of the state vector
x2t−1, i.e.,

P act
2t−1,i = E{(x̂2t−1,i − x2t−1)(x̂2t−1,i − x2t−1)

′} ≤ P2t−1,i

(20)

for i ∈ V. Now, we would like to show that (x̂2t+1,i, P2t+1,i)
is a consistent estimate of the state vector x2t+1.

At time instant k = 2t, the sensors first update their
information based on their local measurements y2t,i via the
Kalman filter as follows:

(x̂KF
2t,i , P

KF
2t,i ) = KF (x̂2t−1,i, P2t−1,i).
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Applying the result of Lemma 3, we can easily see that
(x̂KF

2t,i , P
KF
2t,i ) is a consistent estimate of the state vector x2t,

i.e.,

P act
2t,i ≤ PKF

2t,i .

In the subsequent analysis, we will concentrate on the
information interaction and processing at the i-th sensor. By
examining the definition of (10), it is evident that the i-th
sensor has received all the transmitted bits of Q2b(x̂

KF
2t,j+d2t,j)

and subsequently subtracted the dither signals d2t,j at time
instant k = 2t+ 1. As a result, m2t+1,j can be expressed as
follows:

m2t+1,j = x̂KF
2t,j + q2t,j ,

where q2t,j is the quantization error. It is easy to see that
q2t,i = 0 as m2t+1,i = x̂KF

2t,i . As for j ∈ Ni/{i}, based on
Lemma 1, we conclude that each component of q2t,j is i.i.d.
uniformly distributed and independent of the input sequence
x̂KF
2t,j . Therefore, one has

Cov(m2t+1,j) = Cov(x̂KF
2t,j ) + Sb,j ≤ PKF

2t,j + Sb,j . (21)

Moreover, it can be derived from (10) that

M2t+1,j = D
(

P2t,j + 2−(b/2−r)P2t+1,j

)

= Qb

(

PKF
2t,j

)

.

According to Lemma 2, it is ensured that the quantized
covariance matrix Q2b(X) conservatively bounds the error
covariance matrix X , which implies that

PKF
2t,j ≤ Q2b(P

KF
2t,j ) = M2t+1,j.

Therefore, one has

Cov(m2t+1,j) ≤ M2t+1,j + S2b,j , j ∈ Ni/{i},

which further indicates that the received information pair from
j-th sensor (m2t+1,j ,M2t+1,j + Sb,j) is indeed a consistent
estimate of x2t.

Noticing that

m2t+1,i = x̂KF
2t,i , M2t+1,i = PKF

2t,i , Sb,i = 0

holds for j = i, the pair (m2t+1,i,M2t+1,i + S2b,i) is also a
consistent estimate of x2t as P act

2t,j ≤ PKF
2t,j .

According to the covariance intersection method (13), we
can see

P ∗
2t+1,i =





∑

j∈Ni

πij(M2t+1,j + Sb,j)
−1





−1

,

x̂∗
2t+1,i = P ∗

2t+1,i





∑

j∈Ni

πij(M2t+1,j + Sb,j)
−1m2t+1,j



 .

Furthermore, it has been proved in [10] that, if each informa-
tion pair (m2t+1,j ,M2t+1,j+S2b,j) of the state vector x2t for
j = Ni is consistent, then the covariance intersection fusion
method preserves the consistency property, and therefore we
have

E{(x̂∗
2t+1,i − x2t)(x̂

∗
2t+1,i − x2t)

′} ≤ P ∗
2t+1,i,

which means that (x̂∗
2t+1,i, P

∗
2t+1,i) is a consistent estimate of

x2t. To this end, the pair (x̂2t+1,i, P2t+1,i) can be calculated
via the Kalman filter as follows:

(x̂2t+1,i, P2t+1,i) = KF (x̂∗
2t+1,i, P

∗
2t+1,i).

Using Lemma 3 once again, we can see that (x̂2t+1,i, P2t+1,i)
is a consistent estimate of x2t+1, which finally concludes the
proof.

C. Boundedness

In this subsection, we aim to establish sufficient conditions
for the boundedness of the proposed distributed filter. To
accomplish this aim, we introduce some preliminary assump-
tions.

Assumption 3: The system matrix A is invertible.
Assumption 4: The undirected graph G is connected, i.e. for

any pair of vertices vi, vj ∈ V, there exists at least a path from
vi to vj and vice versa.

Assumption 5: The sensor network is collectively observ-
able, i.e., (A,C) is observable, where C = [C′

1, C
′
2, · · · , C

′
N ]′.

The above assumptions, which are also assumed in [5], [6],
are considered to be quite mild for distributed algorithms. The
invertibility of the system matrix A is typically guaranteed by
discretizing the continuous-time system matrix, making this
assumption hold trivially. Assumption 5 imposes a necessary
requirement on the connectivity of the sensor networks, as
the successful implementation of distributed algorithms relies
on the premise that information from every sensor can be
disseminated across the network. Regarding Assumption 5,
collective observability serves as a fundamental condition that
emphasizes the observability of the entire network, regardless
of whether individual sub-systems with local measurements
are observable or not. By satisfying these assumptions, the
distributed filter can operate effectively and achieve reliable
estimation results in the sensor network.

Some useful lemmas are presented as follow.
Lemma 4 (Gershgorin’s Theorem [18]): All the eigenvalues

of the matrix X ∈ Rn×n are located in the union of n discs
as follows:

n
⋃

i=1







z ∈ C : |z −Xii| ≤
∑

j 6=i

|Xij |







,

where Xij is the (i, j)-th entry of X and C represents the set
of the complex numbers.

Lemma 5: Given the matrix quantization function Qb(·), all
the eigenvalues of the quantization error matrix, defined as
Λb(X) , Qb(X)−X, satisfy the following condition

λk(Λb(X)) ≤ n∆b,

for X ∈ Sn+ and k ∈ {1, 2, ..., n}, where λk(X) represents
the k-th eigenvalue of the matrix X .

Proof: According to the matrix quantization approach (7)-
(8), the quantization error matrix Λb(X) is of the non-diagonal
elements

[Λb(X)]ij = Qb(Xij)−Xij ,
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and the diagonal elements

[Λb(X)]ii =









Xii +
∑

j 6=i

∣

∣

∣
Qb(Xij)−Xij

∣

∣

∣









−Xii

=









Xii +
∑

j 6=i

∣

∣

∣[Λb(X)]ij

∣

∣

∣









−Xii,

In light of Gershgorin’s Theorem in Lemma 4, it is clear
that

|λk(Λb(X))− [Λb(X)]ii| ≤
∑

j 6=i

∣

∣

∣[Λb(X)]ij

∣

∣

∣

holds for i, k ∈ {1, 2, ..., n}. Therefore, one has

λk(Λb(X)) ≥ [Λb(X)]ii −
∑

j 6=i

∣

∣

∣[Λb(X)]ij

∣

∣

∣ ≥ 0

and

λk(Λb(X)) ≤
∑

j 6=i

∣

∣

∣[Λb(X)]ij

∣

∣

∣+ [Λb(X)]ii

≤ (n− 1)
∆b

2
+ (n− 1)

∆b

2
+ ∆b = n∆b

where the second inequality follows directly from quantization
rules, i.e.,

|Qb(Xij)−Xij | ≤
∆b

2
.

The proof is now complete.
The boundedness of the distributed filter is presented in the

following theorem.
Theorem 3: Given the dynamical system (1)-(2) and the pro-

posed distributed filter in Algorithm II, under the Assumptions
1-5, there exist bounded positive definite matrices Pi such that

Pk,i < Pi, ∀i ∈ V, k ∈ Z+

Consequently, the mean-square estimation error of the sensor
network is always bounded, i.e.,

sup
k∈Z

E

{

(x̂k,i − xk)
′(x̂k,i − xk)

}

< ∞. (22)

Proof: To establish the boundedness of the estimation
covariance, we will employ the inductive method. First, let
us examine the initial condition, which ensures that P1,i =
Σ1 < ∞ holds for i ∈ V. Suppose that the reported estimation
covariance is bounded at instant k = 2t−1, i.e., P2t−1,i < ∞.
In light of the time-update stage of the Kalman filter (3), one
has

P−1
2t|2t−1,i

= (AP2t−1,iA
′ +Q)−1

= (A−1)′(P2t−1,i +A−1Q(A−1)′)−1A−1.

Since P2t−1,i < ∞, there always exists a positive scalar
β1 > 0 such that

A−1Q(A−1)′ ≤ β1P2t−1,i.

By denoting γ1 = (1+β1)
−1, it is straightforward to derive

that

P−1
2t|2t−1,i ≥ γ1(A

−1)′P−1
2t−1,iA

−1.

According to the measurement-update of the Kalman filter
(4), we have

(

PKF
2t,i

)−1
= P−1

2t−1|t,i + CiR
−1
i C′

i

≥ γ1(A
−1)′P−1

2t−1,iA
−1 + CiR

−1
i C′

i. (23)

At instant k = 2t+ 1, we have from (13) that

P ∗
2t+1,i =

(

∑

j∈Ni

πij(M2t+1,j + Sb,j)
−1

)−1

, (24)

where the received matrix M2t+1,j can be rewritten into the
following form

M2t+1,j = Qb

(

PKF
2t,j

)

= PKF
2t,j + Λb

(

PKF
2t,j

)

.

Based on Lemma 5, it is clear that the quantization error
matrix Λb

(

PKF
2t,j

)

is bounded, and therefore there always
exists a positive scalar β2 > 0 such that

Λb

(

PKF
2t,j

)

+ Sb,j ≤ β2P
KF
2t,j ,

holds, and thus we have

PKF
2t,j + Λb

(

PKF
2t,j

)

+ Sb,j ≤ (1 + β2)P
KF
2t,j .

Denoting γ2 = (1+β2)
−1, we can rearrange (24) as follows:

(

P ∗
2t+1,i

)−1

=
∑

j∈Ni,j 6=i

πij

(

PKF
2t,j + Λb

(

PKF
2t,j

)

+ Sb,j

)−1
+ πii(P

KF
2t,i )

−1

≥ γ2
∑

j∈Ni

πij(P
KF
2t,j )

−1.

Substituting (23) into the above equation yields
(

P ∗
2t+1,i

)−1
≥γ1γ2

∑

j∈Ni

πij(A
−1)′P−1

2t−1,jA
−1

+ γ2
∑

j∈Ni

πijCjR
−1
j C′

j .
(25)

Furthermore, the following inequality is satisfied

(P2t+1,i)
−1

≥ γ3(A
−1)′

(

P ∗
2t+1,i

)−1
(A−1) + Ci(R

−1
i )−1C′

i,
(26)

where γ3 > 0 is a positive scalar. By denoting γ =
min(γ1γ2γ3, γ2γ3) and substituting (25) , one can rewrite (26)
as follows:

(P2t+1,i)
−1

≥ γ
∑

j∈Ni

πij(A
−2)′P−1

2(t−1)+1,jA
−2

+ γ
∑

j∈Ni

πij(A
−1)′CjR

−1
j C′

j(A
−1) + CiR

−1
i C′

i

≥ γ2
N
∑

j=1

N
∑

s=1

πijπjs(A
−4)′P−1

2(t−2)+1,sA
−4
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+ γ2
N
∑

j=1

N
∑

s=1

πijπjs(A
−3)′CsR

−1
s C′

sA
−3

+ γ
∑

j∈Ni

πij(A
−2)′CjR

−1
j C′

jA
−2

+ γ
∑

j∈Ni

πij(A
−1)′CjR

−1
j C′

j(A
−1) + CiR

−1
i C′

i.

For representation convenience, we denote π(κ)
ij as the (i, j)-

th entry of Sκ, which is the successive multiplication of the
weighted matrix S for κ times. Subsequently, via a series of
mathematical manipulations, one has

N
∑

j=1

N
∑

s=1

πijπjs(A
−4)′P−1

2(t−2)+1,sA
−4

=
N
∑

j=1

π
(2)
ij (A−4)′P−1

2(t−2)+1,jA
−4

and therefore

P−1
2t+1,i

≥ γ2
N
∑

j=1

π
(2)
ij (A−4)′P−1

2(t−2)+1,jA
−4

+ γ2
N
∑

j=1

π
(2)
ij (A−3)′CjR

−1
j C′

jA
−3

+ γ
N
∑

j=1

πij(A
−2)′CjR

−1
j C′

jA
−2

+ γ

N
∑

j=1

πij(A
−1)′CjR

−1
j C′

j(A
−1) + CiR

−1
i C′

i

By recursively applying the above inequality κ times, we
arrive at

(P2t+1,i)
−1

≥ γκ
N
∑

j=1

π
(κ)
ij (A−2κ)′P−1

2(t−κ)+1,jA
−2κ

+

2κ
∑

l=1

N
∑

j=1

γκ−⌊ l

2
⌋π

(κ−⌊ l

2
⌋)

ij (A−2κ+l)′CjR
−1
j C′

jA
−2κ+l.

In fact, when the communication topology is connected,
we have that the weighted matrix S is primitive, and all the
entries π(s)

ij are positive for s greater than a certain ǫ ∈ Z [29].
Therefore, by choosing κ > ǫ+ n, it can be verified that

P−1
2t+1,i

≥

2(κ−ǫ−n)
∑

l=1

N
∑

j=1

γκ−⌊ l

2
⌋π

(κ−⌊ l

2
⌋)

ij (A−2κ+l)′CjR
−1
j C′

jA
−2κ+l.

Since γκ−⌊ l

2
⌋ > 0 and π

(κ−⌊ l

2
⌋)

ij > 0, for l ∈
{1, 2, · · · , 2(κ− ǫ− n)}, we can see that, with the collective
observability, the following condition holds

P−1
2t+1,i ≥ P−1

i > 0, for i ∈ V.

where

P−1
i =

2(κ−ǫ−n)
∑

l=1

N
∑

j=1

γκ−⌊ l

2
⌋π

(κ−⌊ l

2
⌋)

ij

× (A−2κ+l)′CjR
−1
j C′

jA
−2κ+l.

As a consequence, according to the consistency property
presented in Theorem 2, we have that

E{(x̂2t+1,i−x2t+1)(x̂2t+1,i−x2t+1)
′} ≤ P2t+1,i ≤ Pi < ∞,

which also indicates that the mean-square estimation error of
the distributed filter (22) is bounded at even times. Moreover,
it can be trivially verified that the estimate at odd time is also
bounded as the error dynamics would not tend to infinity in a
finite step. The proof is now complete.

Remark 1:
It is worth pointing out that β2 is associated with the

quantization error. A larger quantization error result in an
increase in β2, causing a decrease in γ, ultimately leading
to an increase in the upper bound Pi.

Remark 2: In this paper, we have dealt with the problem
of distributed Kalman filtering over sensor networks under
two-bitrate periodic coding strategies. Compared to the rich
literature on communication-protocol-based filter design, our
main results stand out by exhibiting the following distinguish-
ing feature: 1) a novel approach is developed for distributed
Kalman filtering in sensor networks by utilizing two-bitrate
periodic coding strategies which effectively reduce data trans-
mission and resource requirements while preserving estimation
accuracy; 2) our proposed filter consistently provides unbiased
estimates, ensuring that the reported error covariance always
bounds the actual error covariance, which allows for real-time
assessment of estimation accuracy; and 3) conditions are estab-
lished for the boundedness of mean-square estimation errors
by taking into account network connectivity and collective
observability, thereby providing insights into the stability and
reliability of the distributed estimation process. In summary,
our work offers a novel approach to distributed Kalman filter-
ing through addressing the challenges of resource-constrained
sensor networks. By leveraging two-bitrate periodic coding
strategies, we achieve accurate and efficient estimation while
considering the network’s connectivity and observability.

V. SIMULATION EXAMPLE

In this section, we present a numerical example to evaluate
the performance of the proposed information-weighted dis-
tributed filtering approach with low-bitrate coding strategies.

We consider a scenario where a group of heterogeneous
intelligent sensors collaboratively tracks the trajectory of a
moving target plant. The dynamics of the plant are modeled
using a discrete-time constant acceleration model as follows:

xk+1 =









1 dt 0 0
0 1.01 0 0
0 0 1 dt
0 0 0 1.01









xk + wk

where the state xk ∈ R4 consists of position and velocity along
the coordinate axes, dt = 0.01 is the discretization sampling
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interval and wk is a Gaussian disturbance with the covariance
Q = dtI . Assume that the initial state of the moving target
x0 obeys the Gaussian distribution with mean [0 2 0 2]′ and
covariance diag[1 0.13 1 0.13].

In this sensor network, there are a total of 70 nodes. Among
these nodes, 10 nodes are capable of measuring the position
on the x-axis, 10 nodes can measure the position on the y-
axis, 10 nodes can measure the velocity on the x-axis, and 10
nodes can measure the velocity on the y-axis. The remaining
30 nodes have the capability to process and transmit local
information but do not have direct measurement capabilities.
The observation model for the i-th node can be represented as
follows:

yk,i = Cixk + vk,i

where the measurement noise vk obeys the Gaussian dis-
turbance with zero mean and the covariance Ri = 1. The
measurement matrices are chosen to be
Ci =

[

1 0 0 0
]

, for i = 1, · · · , 10, Sensor A

Ci =
[

0 1 0 0
]

, for i = 11, · · · , 20, Sensor B

Ci =
[

0 0 1 0
]

, for i = 21, · · · , 30, Sensor C

Ci =
[

0 0 0 1
]

, for i = 31, · · · , 40, Sensor D

Ci =
[

0 0 0 0
]

, for i = 41, · · · , 70, Non-Sensor Node

The sensor nodes in the network are randomly distribut-
ed within the square region [0, 6] × [0, 6]. Each node can
communicate with its neighboring nodes within a radius of 2
units. The network topology is depicted in Fig. 2, illustrating
the connectivity and collective observability of the sensor
network. The depicted network topology clearly shows that
the sensor nodes are connected, meaning that there is a
communication path between any two nodes in the network.
Additionally, the network is collectively observable, which
implies that the combined information from all nodes can
provide sufficient observability of the underlying system.
Fig. 2 visually confirms that the network topology satisfies
the necessary requirements for effective information exchange
and collaborative estimation in the sensor network.

The weighted matrix S = [πij ]N×N of the network are
selected as follows

πij =

{

1/degi, (i, j) ∈ E

0, otherwise

where degi is the degree of the node i. Throughout the
simulation, we choose the quantization interval ζ = 10, the
quantization bit 2b = 12 and thus the quantization step
∆2b =

ζ
22b−1 = 0.0049. According to [2], the dither signal dk,i

is chosen as a white noise process uniformly distributed on the
interval [−∆2b

2 , ∆2b

2 ], which turn out to satisfy characteristic
function condition in Lemma 1. Furthermore, the bitrate
assignments are carried out with r = 2. Therefore, for each
quantized entries, at even time the b+ r = 8 most significant
bits are transmitted, while at odd time the b − r = 4 least
significant bits are transmitted.

To verify that the quantized covariance matrix conserva-
tively bounds the original matrix, we define the minimum
eigenvalue of the quantization error matrix as

Eig(i) = min
k∈Z/Z+

min eig
(

Qb(P
KF
k,i )− PKF

k,i

)

,

0 1 2 3 4 5 6

x axis

0

1

2

3

4

5

6

y 
ax

is

Sensor A
Sensor B
Sensor C
Sensor D
Non-Sensor
Edge
Trajectory

Fig. 2. Sensor networks. Sensors A and Sensor B measure the position
of the moving target on the x-axis and y-axis, respectively. Sensors C and
Sensor D measure the velocity of the moving target on the x-axis and y-
axis, respectively. Non-Sensor Node can only process and transmit the local
information.

Now, the value of Eig(i) for each node at odd instants is
presented in TABLE V, from which it is clear to see that all
the eigenvalues are larger than zero and therefore Qb(P

KF
k,i ) ≥

PKF
k,i , for k ∈ Z/Z+.

TABLE I
THE MINIMUM EIGENVALUE OF THE QUANTIZATION ERROR MATRIX

i-th sensor 1 2 3 4 · · · 70

Eig(i)(10−3) 0.0766 0.0947 0.1115 0.0598 · · · 0.0735

Furthermore, the empirical mean-square error (EMSE), av-
eraged over all the nodes, of the proposed distributed filter at
per iteration is defined as follow:

EMSE(k) =
1

NTMC

TMC
∑

t=1

N
∑

i=1

‖x
(t)
k − x̂

(t)
k,i‖

2

where the superscript “(t)” represents that the value is obtained
in the t-th trail experiment. Moreover, the analytical mean-
square error (AMSE) of the proposed distributed filter at per
iteration is defined as follow:

AMSE(k) =
1

N

N
∑

i=1

trace(Pk,i)

We conduct 1000 independent simulations of the proposed
filter using Algorithm 2 and present the simulation results in
Fig. 3, which illustrates the behaviors of the EMSE and AMSE
at odd instants. From Fig. 3, it can be observed that, despite the
lack of local observability in the sensor network, the proposed
distributed filter consistently provides accurate estimates with
bounded mean-square estimation errors. Moreover, we can
see that the AMSE, which represents the analytical error
covariance, is always an upper bound of the EMSE, indicating
that the reported error covariance is a reliable estimate of the
true estimation accuracy.
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Fig. 3. The behaviors of the EMSE(k) and AMSE(k) at odd instants.

VI. CONCLUSION

In this paper, a novel distributed Kalman filter has been
presented for estimating linear discrete-time systems in sensor
networks. The proposed filter has combined local Kalman filter
updates with information fusion using the covariance intersec-
tion method. To reduce bandwidth requirements, quantization
methods have been employed for estimates and covariance
matrices prior to transmission. A two-bitrate periodic coding
strategy has been utilized, transmitting the most significant
and least significant bits separately based on a two-periodic
principle. The unbiasedness and consistency of the proposed
filter have been demonstrated, enabling real-time estimation
accuracy evaluation. The boundedness of estimation error
dynamics has been established based on collective observabil-
ity and network topology connectivity. Numerical examples
have confirmed the effectiveness of the proposed distributed
Kalman filter. A future research topic would be the selection
of quantization step to manage the quantization errors for each
sensor based on the different estimation accuracy in order to
balance the global performance and the constrained network
resources.
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