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A B S T R A C T

Planning the election campaign for leaders of a political party is a complex problem. The party representatives,
running mates, and campaign managers have to design an efficient routing and scheduling plan to visit
multiple locations while respecting time and budget constraints. Given the limited time of election campaigns
in most countries, every minute should be used effectively, and there is very little room for error. In this
paper, we formalize this problem as the multiple Roaming Salesman Problem (mRSP), a new variant of the
recently introduced Roaming Salesman Problem (RSP), where a predefined number of political representatives
visit a set of cities during a planning horizon to maximize collected rewards, subject to budget and time
constraints. Cities can be visited more than once and associated rewards are time-dependent (increasing over
time) according to the day of the visit and the recency of previous visits. We develop a compact Mixed Integer
Linear Programming (MILP) formulation complemented with effective valid inequalities. Since commercial
solvers can obtain optimal solutions only for small-sized instances, we develop a Learning-based Granular
Variable Neighborhood Search and demonstrate its capability of providing high-quality solutions in short CPU
times on real-world instances. The adaptive nature of our algorithm refers to its ability to dynamically adjust
the neighborhood structure based on the progress of the search. Our algorithm generates the best-known results
for many instances.
1. Introduction

Designing an efficient itinerary with an optimal schedule of visits
and minimum routing costs is crucial for many real-world routing and
scheduling problems, including the large gamut of orienteering prob-
lem variants (Gunawan, Lau, & Vansteenwegen, 2016), the tourist trip
planning (da Silva, Morabito, & Pureza, 2018; Schilde, Doerner, Hartl,
& Kiechle, 2009; Vansteenwegen, Souffriau, Berghe, & Oudheusden,
2009a; Wang, Golden, & Wasil, 2008), the election logistics (Shahman-
zari, Aksen, & Salhi, 2020), and the nurse routing (Cinar, Salman, &
Bozkaya, 2021; Gobbi, Manerba, Mansini, & Zanotti, 2023; Manerba
& Mansini, 2016) . While operational constraints may vary, discussed
problems all share similar characteristics: one or more campaigners
seek to visit a set of locations during a limited planning horizon.
Each site is associated with a reward (measured in terms of inter-
est/convenience to visit it) and some cities can remain not served due to
the time limit for each period. The primary challenge among discussed
problems is to determine the schedule of visits over a finite time hori-
zon of several days. In election logistics, for instance, most countries
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(e.g., France, Canada, Australia, Japan, Singapore, and Turkey) limit
the length of the political election campaign periods to less than 40
days.1 In US general elections, campaign intervals range from a few
days to three weeks. According to political experts, the scheduling and
routing of the state primaries seem inefficient as the planning of the
campaign is not operationally beneficial to the party leader (Saltzman
& Bradford, 2022). To be effective, an election campaign must reach as
many people as possible by visiting many cities while minimizing costs.
This increases the likelihood of obtaining financial support and votes
by actively engaging a broader audience. Thus, within a limited budget
and time, party leaders should plan an efficient campaign schedule that
grants them enough time to visit important cities and minimizes their
traveling costs. Upon necessity of press conferences and speeches, party
representatives may decide to visit some cities more than once, whereas
complying with time and budget constraints may prevent them to serve
all the cities.

In this paper, we introduce the multiple Roaming Salesman Problem
(mRSP), a new variant of the recently introduced Roaming Salesman
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Problem (RSP), where a predefined number of political representatives
visit a set of cities during a planning horizon to maximize collected
rewards, subject to budget and time constraints. In contrast to the
discussed problems, where all daily tours should be either closed or
open tours, in the election logistics problem, the daily tours do not have
a predefined structure so that on the same day it is possible for different
travelers to have open and closed tours. While the former tours happen
when starting and ending locations are not the same, the latter tours
refer to the periods where starting and ending cities coincide. Motivated
by real-world requirements, we also allow for no tour periods as well,
indicating that the campaigner does not leave the selected dwelling dur-
ing that period. Additionally, unlike recent extensions of VRP and TSP
models, we do not predetermine the set of depot cities for each period,
but leaving them as decision variables for each political representative
in our model. Therefore, at the beginning of each period, every city
is a potential depot. Visiting a city provides a positive reward to the
campaign. During election seasons, it is extremely crucial for party
leaders and representatives to schedule their speeches and political
meetings in important cities near the election day. For this reason,
the reward associated with cities is time-dependent and increasing as
the campaign approaches its conclusion. This reward mechanism is
informed by a comprehensive examination of political science literature
and insightful consultations with political experts in Turkey. While
there is no universal agreement among political experts on the precise
nature of the reward mechanism, there is a common consensus that
as the campaign progresses towards its final stages, the importance
of political meetings and speeches escalates. Existing political science
literature highlights that people tend to forget a significant portion of
campaign information over time (Box-Steffensmeier & Kimball, 1999;
Lodge, Steenbergen, & Brau, 1995). Recent studies in fundraising in-
dicate that as the campaign nears completion, individuals are more
inclined to contribute (Morvinski, Lupoli, & Amir, 2022; Van Aelst,
Aalberg, et al., 2012). In response to these dynamics, political parties
implement last-minute initiatives to mobilize voters and secure their
support. The intensity of campaign events increases, with candidates
strategically visiting key battleground states and organizing large rallies
to energize their base and attract media attention (Trent & Friedenberg,
2008).

Moreover, a city may accommodate more than one activity through-
out the campaign (debates, public events, media interviews, or rallies).
This implies that the same city may be visited more than once by
the same candidate or by different ones. However, for each political
candidate, there is an explicit limit on the number of activities that
can be realized per day. This is equivalent to assuming that a demand
is specified for each site and a capacity bound is associated with each
traveler. Revisiting a city, although still yielding a positive reward,
results in a reward lower than that one might obtain on a first visit.
The magnitude of this reward is contingent on the time elapsed since
the previous visit, with a more consistent reduction in reward when
less time has passed since the last visit.

Fig. 1 illustrates a feasible mRSP solution with all tour types for
an instance with 3 candidates (blue, green, and black) and 14 cities
in two consecutive days of the planning horizon. Note that mRSP is a
selective routing problem. While some nodes (e.g., o) are not visited,
some are visited but not included in the reward collection (n in day
− 1 and i in day 𝑡). The solution of the first day consists of an open
our route for the green candidate (𝑎 → 𝑗 → 𝑘 → 𝑛), with the reward
ollection only in 𝑗 and 𝑘, a closed tour route for the blue representative
𝑎 → 𝑐 → 𝑓 → ℎ → 𝑎), with reward collection in 𝑎, 𝑐, 𝑓 , ℎ, and a no tour
oute for the last one (the candidate remains in the city 𝑖 with a reward
ollection). On the other hand, the routes of the second day include
wo open tours and one closed tour route. Note that while node ℎ is
isited by the blue candidate on the first day, the black candidate makes
repeated visit there on the second one. In this example, revisiting

s permitted on subsequent days. Also, the same candidate can be
2

ssigned different tour types during the campaign. For instance, the t
lue candidate executes one closed tour and one open tour on the two
ays, respectively.

The complexity of operational requirements puts an immense strain
n campaign planners. Two critical dimensions must be considered: (i)
he timing and frequency of visits to each city, and (ii) the routing
lan for each candidate on each day of the campaign period. From
scheduling perspective, the first dimension is embedded into the

bjective function of the problem by maximizing the collected time-
ependent rewards from the visited cities. This objective is particularly
mportant in election logistics given that the success of political parties
elies on holding meetings in the most crucial cities. According to
olitical experts, in the 2016 US presidential elections, the loss of the
nsuccessful party candidate could be attributed to several factors,
ne of which was not having enough time to visit Michigan state
lose to the end of the election campaign.2 The second dimension
eals with determining optimal routes for campaigners such that all
raveling costs are minimized. Experts estimate the total spending for
he 2020 US presidential election exceeded $14.4 billion, more than
oubling the cost of the record-breaking election in 2016, where a
otable part of this money went for traveling and accommodation
osts (Arbay, Pasha, & Widodo, 2021). Before each election, many party
eaders design a routing and scheduling plan to effectively manage the
lection campaign. During the 2020 presidential election in the US,
t is estimated that each trip taken by the winning party leader has

cost of $55,000, roughly 70% of which was spent on routing and
ccommodation expenses. Therefore, the magnitude of involved costs
n this field implies that even a few percent of improvement results in
aving millions of dollars for stakeholders. Without an optimal itinerary
lan in this multi-billion dollar business, engaged costs can skyrocket
apidly.

The mRSP has promising applications in various real-world routing
nd scheduling problems. Below, we list a few potential applications in
ther contexts than election logistics.

• Humanitarian logistics: mRSP can address logistic challenges faced
by search-and-rescue teams that are dispatched from a campaign
center to serve disaster-affected areas (DAAs) during post-disaster
relief operations. Rewards associated with DAAs are necessarily
time-dependent. For instance, in the event of an earthquake,
the probability of saving lives significantly decreases within the
crucial 72-hour golden time window.

• Tourism and travel planning : In the tourism sector, tour operators
offer multi-city tours for different groups of tourists where there
is no fixed hotel for overnight stays and daily tours can consist
of open, closed, and no tour routes. Moreover, the collected
rewards from points of interest are time-dependent, e.g., it is more
efficient to visit Louvre Museum during weekdays as it is less
crowded. mRSP can be utilized to design itineraries that maximize
the enjoyment of tourists while staying within budgetary and time
limitations.

• Courier and delivery services: In sales and marketing operations,
mRSP can assist in planning the routes of representatives who
need to visit multiple clients by forming various tour types for
each of them within a specific budget and time constraints. The
problem can optimize the sequence of customer visits where
rewards are time-dependent as postponing a visit increases the
associated penalty.

• Healthcare logistics: In healthcare logistics, mRSP can be applied to
optimize the routing of healthcare professionals visiting multiple
patients or clinics. For instance, mRSP can effectively tackle a
variant of the nurse routing problem involving multiple travel-
ers, wherein the rewards for patient visits dynamically change

2 https://www.politico.com/story/2016/12/michigan-hillary-clinton-
rump-232547

https://www.politico.com/story/2016/12/michigan-hillary-clinton-trump-232547
https://www.politico.com/story/2016/12/michigan-hillary-clinton-trump-232547


European Journal of Operational Research xxx (xxxx) xxxM. Shahmanzari and R. Mansini
Fig. 1. Example of mRSP’s solution including all tour types: instance with 3 candidates over 2 days.
over time, e.g., the urgency of visiting certain patients increases
throughout the planning horizon. The flexible features of mRSP
can readily be applied to such scenarios to maximize the collected
reward from these time-sensitive visits.

A close examination of previous election campaign plans in coun-
tries such as the US and Turkey reveals that current optimization mod-
els in the literature (team orienteering problem, multi-period traveling
salesman problem, etc.) are not capable of reflecting the real-world
operational requirements. In this research, we present a new variant
of RSP to capture all practical assumptions. The contributions of this
work are multi-fold:

1. We introduce a new variant of a multi-period multi-vehicle
selective problem incorporating realistic routing and scheduling
assumptions, including (i) time-dependent rewards associated
with locations to visit, (ii) presence of multiple campaigners,
(iii) the possibility of visiting the same location more than once
possibly by different campaigners (multi-visit) over the time
horizon (multi-period) within specified constraints, (iv) the in-
clusion of three tour types (closed, open, and no tour routes),
(v) flexibility of campaigners in returning to any city (e.g., the
absence of a central depot), and (vi) the requirement for all
campaigners of returning to the campaign main center after a
specific amount of time. To the best of our knowledge, none
of the previous research on multi-period orienteering problem
variants has jointly considered all these characteristics together.

2. Time-dependent rewards have a non-additive nature when con-
sidering multi-visits of the same city over time. This aspect along
with the presence of multiple representatives jointly bounded
when visiting the same city more than once over the planning
horizon, strongly differentiates this problem from the single-
vehicle special case. Moreover, time dependency has been in-
cluded in the objective function as a reward multiplicative term
that changes according to the time. This formulation is well-
suited to our problem, where reward function linearly increases
over time, but it can be easily adapted and generalized to ac-
commodate different functions based on the specific application
context, whether rewards can be increasing or decreasing either
linearly or non-linearly.

3. We investigate the application of the mRSP in political cam-
paigns by incorporating realistic routing and scheduling assump-
tions. However, the problem is highly relevant to other real-
world routing problems and can be applied to various practical
contexts.
3

4. We develop a compact MILP formulation for the problem along
with some valid inequalities. The formulation addresses con-
straints associated with modeling open, close, and no tours
concurrently on the same day. It is worth noting that mRSP
is not a mere extension of the single-vehicle case; rather, it
intricately intertwines tour-type choices with time-dependent
rewards and temporal constraints for the vehicles. For example,
the problem allows multiple visits to the same city but it incor-
porates restrictions that prevent a campaigner from revisiting
the same city before a certain number of days has elapsed,
whereas different limitations apply to other representatives. Fur-
thermore, this multi-vehicle formulation serves as an initial
stride towards tackling more interesting and real-world variants,
potentially involving dynamic information or data uncertainty.
In this context, assessing the challenge of solving this static
variant and emphasizing its complexity related to scalability
such as the number of cities, representatives, and especially
the time horizon’s duration, represents an important insight for
future research.

5. To address real-sized instances, we introduce a hyper-heuristic
controlling a sequence of Variable Neighborhood Search (VNS)
methods based on a range of local search operators, some of
which incorporate problem-specific knowledge. Each VNS vis-
its a sequence of nested neighborhoods parametrized by their
size (the neighborhood radius). These operators serve as the
core components and make the method work as an adaptive
granular Variable Neighborhood Search. This approach encom-
passes an initial learning phase that seeks to identify the most
promising neighborhood radius values from among all the se-
quence options. The subsequent phase selects neighborhoods in
a non-systematic manner, favoring VNSs that have shown more
promise. A shaking phase, exploiting collected information, is
called when further improvements for the currently selected VNS
become challenging.

6. We benchmark the performance of the developed solution met-
hod with a state-of-the-art matheuristic duly adapted to the
problem and the commercial solver Gurobi when solving the
model.

7. We perform extensive computational experiments on real-world
instances to attain managerial insights about crucial aspects
of election logistics. These insights revolve around the effects
of time-dependent rewards, the convenience of accommodat-
ing diverse tour structures beyond classical closed tours, and
the significance of multiple visits. A sensitivity analysis is also
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achieved on some parameters such as the maximum number of
visits per day and the maximum daily time enabling an in-depth
exploration of the trade-off between visiting many nearby cities
(which require less travel time but may have lower rewards)
versus a few geographically distant but highly profitable cities.

The paper is structured as follows. We present a review of related
iterature in Section 2. We formally describe mRSP in Section 3. The
eveloped MILP formulation and the valid inequalities are presented
n Section 4. Section 5 and Section 6 describe the proposed algorithms
nd provide the computational results, respectively. We discuss the ad-
itional analysis performed to derive managerial insights in Section 7.
inally, we conclude our paper in Section 8. The online supplementary
aterial includes additional details about our numerical results and a
escription of a state-of-the-art solution method, which is evaluated
gainst our hyper-heuristic approach.

. Literature review

The Multiple Roaming Salesman Problem (mRSP) is an NP-Hard
roblem. It expands upon the Roaming Salesman Problem (RSP) (Shah-
anzari et al., 2020) by removing the assumption of a single vehicle

campaigner) and RSP is well-known to be NP-Hard being a gener-
lization of the Orienteering Problem. In this review of the current
tate of the art, we examine problems closely related to the RSP.
ver the past few decades, the Traveling Salesman Problem (TSP) has
ndergone various modifications to better align with practical routing
cenarios (Feillet, Dejax, & Gendreau, 2005). One notable variant of the
SP is the Orienteering Problem (OP), which falls under the category of
elective routing problems that include profits associated with locations
o visit (Tsiligirides, 1984). The OP is a selective routing problem
ince the traveler holds a list of potential sites each one with an
ssociated reward (profit), but it may not be possible nor desirable to
isit all of them. In practical applications, the traveler is constrained
y a maximum tour duration. The OP, inspired by a hunting game,
aximizes the overall collected reward by determining the order of

isits to a subset of sites.
In the routing literature, a wide range of variants of the OP have

een investigated. These include problems that incorporate time win-
ows (Labadie, Mansini, Melechovskỳ, & Calvo, 2012), where visits are

restricted by specific time intervals (Vansteenwegen, Souffriau, Berghe,
& Van Oudheusden, 2009b), problems that allow for split delivery
options, in which a customer can be serviced multiple times with each
visit satisfying a portion of their demand Wang, Golden, and Gulczynski
(2014), arc routing orienteering problems (Riera-Ledesma & Salazar-
González, 2017), generalizations that include multiple routes or vehi-
cles (Ruiz-Meza, Brito, & Montoya-Torres, 2021; Shahmanzari & Aksen,
2021; Shahmanzari, Aksen, & Salhi, 2022; Tarantilis, Stavropoulou, &
Repoussis, 2013) also with multi visits to the same node and prece-
dence constraints (Hanafi, Mansini, & Zanotti, 2020), and variants that
explore multi-period planning horizons (Kotiloglu, Lappas, Pelechrinis,
& Repoussis, 2017). For a comprehensive survey of recent OP variants,
readers are referred to Gunawan et al. (2016). When in addition to a
length bound the OP also includes node demand and a capacity bound
the generalization is called Capacitated Orienteering Problem (COP)
(interested readers are referred to Bock and Sanità (2015)). A relevant
application of the COP in freight is known as the Capacitated Team
Orienteering Problem (CTOP) where there are multiple vehicles such
that a maximum capacity is imposed on each vehicle and a weight is
assigned to each node (location) (Tarantilis et al., 2013). The CTOP
involves closed tours of a homogeneous fleet of vehicles with capacity
and maximum tour duration constraints. The objective of the CTOP is
to design a route for each vehicle that maximizes the total collected
profit such that the time and capacity constraints are not violated.

The OP variants traditionally assume a fixed travel time and cost be-
4

tween sites (nodes). However, in the context of intra-city logistics, route
planners must take into account congestion-related issues when design-
ing routes for each vehicle. When the travel time between two nodes
is contingent upon the time of traversal, such as traffic during peak
hours, the time-dependent Orienteering Problem (OP) arises (Riera-
Ledesma & Salazar-González, 2017; Verbeeck, Sörensen, Aghezzaf, &
Vansteenwegen, 2014). The time dependency of the OP variant is
not limited to travel times alone. Khodadadian, Divsalar, Verbeeck,
Gunawan, and Vansteenwegen (2022) examine the time-dependent OP
with time-dependent rewards, in which the reward collected at each
node increases linearly with the service time. This variant of the OP is
more realistic as it is applicable to many real-world contexts, such as
reverse logistics, where a longer service time results in a higher reward.
In Barrena, Canca, Coelho, and Laporte (2022), the authors analyze a
generalization of the selective TSP where each site has a time window,
a service time, and a profit that increases over time, and the traveler
can wait along the route if beneficial to collect higher profits.

It is worth noting that our study, which primarily focuses on inter-
city logistics applications, would not be significantly impacted by time-
dependent travel times. Thus, our main focus would be on the time
dependency of rewards that change according to the day of the visit.
It is also noteworthy that our study, differently from multi-vehicle OP
variants, allows multiple visits meaning that each node can be visited
more than once. A famous variant of the TOP is the Team Orienteering
Problem with Time Windows (TOPTW) where visits are constrained by
specific time intervals (Vansteenwegen et al., 2009b). Kotiloglu et al.
(2017) address an interesting multi-period application of the OP in
tourist trip planning by developing a ‘‘filter-first, tour-second’’ approach
to devise tour planning for tourists that consider their preferences.
In a more realistic variant of the TOP, rewards associated with each
location are time-dependent. Moreover, the travel time of an arc al-
ters with respect to the time that arc is traversed (Riera-Ledesma &
Salazar-González, 2017). This problem is known as the Time-Dependent
Team Orienteering Problem (TDTOP). In some variants of the TOP,
customers are not assigned to the nodes of a network. Instead, the
vehicles should traverse some arcs to serve those customers (Riera-
Ledesma & Salazar-González, 2017). This problem is known as the
Team Orienteering Arc Routing Problem (TOARP). The majority of
the existing literature has primarily focused on applications of the
Orienteering Problem (OP) and its variants in vehicle routing (Aksen &
Shahmanzari, 2017; Juan, Freixes, Panadero, Serrat, & Estrada-Moreno,
2020; Panadero, Juan, Bayliss, & Currie, 2020; Souffriau, Vansteenwe-
gen, Vanden Berghe, & Van Oudheusden, 2013) and tourist trip design
problems (Dang, Guibadj, & Moukrim, 2013; Gavalas, Konstantopoulos,
Mastakas, Pantziou, & Vathis, 2015). However, there have been rela-
tively few studies that have examined the implementation of the OP
in other areas, such as designing logistics for political campaigns and
marketing strategies (Shahmanzari et al., 2020). The proposed Multi-
Roaming Salesman Problem (mRSP) can be viewed as a new variant of
the multi-period Capacitated Orienteering Problem (COP) that accounts
for time-dependent rewards, multiple travelers, and various tour types.
Although the problem is analyzed in an election context, it can be easily
applied to other domains as in the organization of social campaigns
(against gender violence, and in favor of human rights just to name a
few) or surveillance routing and scheduling activities in military and
civilian application.

3. Problem description

The Multi-Roaming Salesman Problem (mRSP) is defined over a
directed graph 𝐺 = (𝑉 ,𝐴∪𝐴0). The node set 𝑉 = 𝑁 ∪{0} comprises the
et 𝑁 = {1,… , 𝑛} of 𝑛 − 1 cities plus the campaign center indexed as

1, and a node 0 representing a fictitious node introduced for modeling
purposes. The arc set 𝐴 encompasses connections between nodes within
𝑁 , whereas set 𝐴0 = {(𝑖, 0)|𝑖 ∈ 𝑁} ∪ {(0, 𝑖)|𝑖 ∈ 𝑁} consists of back and
orth arcs connecting the fictitious node 0 with each node 𝑖 ∈ 𝑁 . Let

= {1,… , �̄�} be the set of representatives (election candidates or
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Table 1
Sets.
𝑀 = {1,… , �̄�} Set of political representatives
𝑁 = {1,… , 𝑛} Set of cities possibly holding activities and campaign center (node 1)
𝑉 = 𝑁 ∪ {0} Set of cities 𝑁 plus fictitious node 0
𝐴 = {(𝑖, 𝑗)|𝑖, 𝑗 ∈ 𝑁(𝑖 ≠ 𝑗)} Set of arcs connecting nodes in 𝑁
𝐴0 = {(𝑖, 0)|𝑖 ∈ 𝑁} ∪ {(0, 𝑖)|𝑖 ∈ 𝑁} Set of arcs connecting nodes 𝑖 ∈ 𝑁 with the fictitious node
𝑇 = {1,… , 𝑡max} Set of 𝑡max days comprising the planning horizon duration
campaigners) that have to plan their visits to the set of cities over a
finite time horizon consisting of 𝑡max days. We denote the corresponding
set of days within the planning campaign as 𝑇 = {1,… , 𝑡max}.

Each city 𝑖 ∈ 𝑁 is associated with a time-dependent reward 𝑏𝑖𝑡, 𝑖 ∈
𝑁, 𝑡 ∈ 𝑇 , that increases as days go by and the end of the electoral
campaign approaches. Reward 𝑏𝑖𝑡 depends on a nonnegative base re-
ward 𝑏𝑖 related to the city 𝑖 (and the number of the corresponding
potential voters) and by a time-dependent increasing function 𝛿𝑡, where
𝑡 ∈ 𝑇 is the day of the activity. A city offers a reward only when
a representative holds an activity there. Each city can host at most
one activity per day. However, the same city can arrange multiple
events on different days, contributing to the reward of one or more
representatives. To prevent visiting the same city too frequently by
the same representative, if a representative 𝑚 visits a city on a day
𝑡, that city cannot be visited by the same candidate within the next
𝜉 days. This constraint does not apply to other candidates, different
from 𝑚. However, visiting the same city multiple times consecutively
may not be advantageous in general. Thus, subsequent visits, while still
resulting in a positive reward, apply a penalty function 𝛼𝑠 that reduces
the reward collected at time 𝑡 according to the number of days elapsed
since the previous visit (𝑠) and is more significant when the previous
visit is closer in time. Moreover, a gap of a minimum number of 𝑟 (𝑟 < 𝜉)
consecutive days has to be respected between two visits to the same city
independently of the representative.

A time duration 𝑎𝑖 is required by each activity held in the city
𝑖 ∈ 𝑁 and a cost ℎ𝑖 has to be paid for overnight accommodation. A
representative can remain overnight in a city without accomplishing
any activity. Every arc (𝑖, 𝑗) ∈ 𝐴 is associated with a travel cost
𝑐𝑖𝑗 ∈ R+ and a travel time 𝑑𝑖𝑗 ∈ R+. Traveling times (and costs)
are assumed to satisfy triangular inequality, thus only cities holding
activities will be visited by a political candidate in a tour but for
those representing starting and ending nodes. Each representative is
restricted to a maximum number, 𝑝, of visits per day. Also, the duration
of each daily tour must not exceed the designated daily maximum
tour threshold 𝑞. Political candidates can end their daily tour in any
nodes in set 𝑁 . However, it must be guaranteed that the route of today
originates where the route of yesterday terminates. Moreover, every
traveler must visit the campaign center every 𝑡𝑎𝑤𝑎𝑦 days. Given that
political representatives in real life usually return to central offices
frequently, this assumption makes mRSP more realistic.

The problem looks for a subset of cities to visit and the definition of
a route (open or closed) complying with the defined constraints for each
representative in each day of the planning horizon while maximizing
the difference between global collected rewards (possibly from multiple
visits) and traveling costs. To make these two components of objective
function compatible, we multiply traveling costs with a normalization
coefficient 𝛽. No tour routes are modeled as a back and forth tour
from the current location to the fictitious node indexed by 0, wherein
all associated travel time, travel costs, and rewards are set to zero. In
Tables 1–2 we summarize the main notation used, reporting the main
sets and parameters of the problem.

In mRSP, all representatives are allowed to include open and closed
tours on different days of the planning horizon. We present a toy-size
mRSP instance in Fig. 2 to illustrate how the combination of closed
and open daily tours improves a solution with only closed tours. The
instance consists of 5 nodes and the campaign center. We consider the
tours over a 3-day time horizon of a single representative. Travel time
and travel costs between each pair of nodes are identical in the two
5

Fig. 2. (a) Optimal solution with only closed daily tours, spanning 3 days; (b) mRSP
solution, spanning 2 days.

solutions and the maximum daily tour duration is 8 hours. According
to traditional TSP models where starting node and ending node should
coincide (Fig. 2.a), the traveling time in the optimal solution is 22,
spanning 3 days of the planning horizon and visiting all cities. Com-
pared with the previous solution, the mRSP solution (Fig. 2.b) provides
improved efficiency where all nodes are visited, the total travel time is
14, and one day is saved.

We now highlight the main differences between mRSP and RSP:

(i) mRSP involves 𝑚 homogeneous travelers (political representa-
tives) instead of one.

(ii) The reward mechanism in the objective function of RSP is de-
creasing over time. In mRSP, however, the rewards associated
with cities increase as we get closer to the end of the planning
horizon (election day). Such a reward scheme reflects real-life
assumptions in many contexts.

(iii) The RSP postulates that the campaign planner has access to
an unlimited budget. However, in practical applications, budget
limitations are a crucial consideration in the planning process and
must be taken into account when making routing and scheduling
decisions. To account for this, mRSP also incorporates budget
constraints for overnight stays at terminal nodes.

(iv) Multiple visits to the same city are regulated not only for indi-
vidual representatives but also collectively for all representatives.
This is because a repeated activity cannot occur in the same
city until 𝑟 consecutive days have passed since the previous
occurrence, irrespective of the individual involved.

4. The mathematical formulation

In this section, we present a compact mathematical formulation
for the mRSP. In Tables 3–4, we list and categorize decision variables
into two distinct groups: the routing variables and the reward ones.
Routing variables deal with determining the set of nodes to visit, the
order of visits, and the terminal nodes in any period. Reward variables
determine the amount of reward collected from single or multiple visits
to nodes.

Based on the two groups of variables described above, the objec-
tive function of mRSP consists of two components (total reward and
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Table 2
Parameters.
𝑐𝑖𝑗 Traveling cost from node 𝑖 ∈ 𝑉 to node 𝑗 ∈ 𝑉 (𝑖 ≠ 𝑗); 𝑐𝑖𝑗 = 0 for (𝑖, 𝑗) ∈ 𝐴0
𝑑𝑖𝑗 Traveling time from node 𝑖 ∈ 𝑉 to node 𝑗 ∈ 𝑉 (𝑖 ≠ 𝑗); 𝑑𝑖𝑗 = 0 for (𝑖, 𝑗) ∈ 𝐴0
𝑏𝑖 Base non-negative reward associated with city 𝑖 ∈ 𝑁
𝑏𝑖𝑡 Reward associated with city 𝑖 ∈ 𝑁 when visited at time 𝑡 ∈ 𝑇
𝑎𝑖 Non-negative activity duration associated with city 𝑖 ∈ 𝑁
ℎ𝑖 Cost of a night accommodation in city 𝑖 ∈ 𝑁
𝜙 Total daily cost of overnight stays for each representative
𝑝 Maximum number of daily activities allowed for each representative
𝑞 Maximum daily tour duration
𝑡𝑎𝑤𝑎𝑦 Maximum number of consecutive days a representative can be away from campaign center
𝛽 Reward normalization coefficient to make traveling costs and daily rewards compatible
𝜉 Minimum number of days during which a representative is restricted from making repeat

visits to the same city
𝑟 Minimum gap in terms of consecutive days between any two activities organized in the

same city by any representative, where 𝑟 < 𝜉
Table 3
Routing decision variables.
𝑋𝑚𝑖𝑗𝑡 Binary variable taking value 1 if arc (𝑖, 𝑗) ∈ 𝐴 ∪ 𝐴0 is traversed by traveler 𝑚 ∈ 𝑀

on day 𝑡 ∈ 𝑇 ; 0 otherwise.

𝐿𝑚𝑖𝑡 Binary variable taking value 1 if traveler 𝑚 ∈ 𝑀 does not enter but only leaves
city 𝑖 ∈ 𝑁 on day 𝑡 ∈ 𝑇 ; 0 otherwise.

𝐸𝑚𝑖𝑡 Binary variable taking value 1 if traveler 𝑚 ∈ 𝑀 does not leave, but only enters
city 𝑖 ∈ 𝑁 on day 𝑡 ∈ 𝑇 ; 0 otherwise.

𝑆𝑚𝑖𝑡 Binary variable taking value 1 if traveler 𝑚 ∈ 𝑀 stays overnight (sleeps) in city 𝑖 ∈ 𝑁
at the end of period 𝑡 ∈ 𝑇 ; 0 otherwise.

𝑈𝑚𝑖𝑡 Continuous nonnegative variable determining for traveler 𝑚 ∈ 𝑀 the order of visit of
city 𝑖 ∈ 𝑉 on day 𝑡 ∈ 𝑇 (Modified Miller–Tucker–Zemlin subtour elimination constraints).
Table 4
Reward collection decision variables.
𝑍𝑚𝑖𝑡 Binary variable taking value 1 if traveler 𝑚 ∈ 𝑀 collects reward in city 𝑖 ∈ 𝑁

on day 𝑡 ∈ 𝑇 ; 0 otherwise.

𝐹𝑚𝑖𝑡 Binary variable taking value 1 if the first activity of representative 𝑚 ∈ 𝑀
in city 𝑖 ∈ 𝑁 is performed on day 𝑡 ∈ 𝑇 ; 0 otherwise.

𝑅𝑚𝑖𝑡𝑠 Binary variable taking value 1 if city 𝑖 ∈ 𝑁 accommodates two consecutive activities
by traveler 𝑚 ∈ 𝑀 on days 𝑡 ∈ 𝑇 and 𝑡 − 𝑠 (𝜉 ≤ 𝑠 ≤ 𝑡 − 1); 0 otherwise.
traveling costs) accordingly:

max
∑

𝑚∈𝑀

∑

𝑖∈𝑁

∑

𝑡∈𝑇
𝑏𝑖𝑡𝐹𝑚𝑖𝑡 +

∑

𝑚∈𝑀

∑

𝑖∈𝑁

∑

𝑡∈𝑇

∑

𝜉≤𝑠≤𝑡−1
𝛼𝑠𝑏𝑖𝑡𝑅𝑚𝑖𝑡𝑠 − 𝛽

∑

𝑚∈𝑀

∑

(𝑖,𝑗)∈𝐴

∑

𝑡∈𝑇
𝑐𝑖𝑗𝑋𝑚𝑖𝑗𝑡 (1)

The reward collection part consists of two terms:

(i) ∑

𝑚∈𝑀
∑

𝑖∈𝑁
∑

𝑡∈𝑇 𝑏𝑖𝑡𝐹𝑚𝑖𝑡 expresses the collection of time-depe-
ndent rewards in first visits with 𝑏𝑖𝑡 = 𝛿𝑡𝑏𝑖 being a reward function
depending on the base city reward 𝑏𝑖 and an increasing function
𝛿𝑡 =

𝑡+𝑡max
𝑡max

, where 𝑡 is the day of the visit.

(ii) ∑

𝑚∈𝑀
∑

𝑖∈𝑁
∑

𝑡∈𝑇
∑

𝜉≤𝑠≤𝑡−1 𝛼𝑠𝑏𝑖𝑡𝑅𝑚𝑖𝑡𝑠 represents the collection of
time-dependent rewards in repeated visits. For each repeated
visit, the time-dependent reward 𝑏𝑖𝑡 undergoes a penalty function
𝛼𝑠 = 𝑠

𝛼𝑡max
where 𝑠 represents the number of days elapsed since

the last visit and coefficient 𝛼 > 1. The lower the value of 𝑠, the
lower the value of the adjustment function 𝛼𝑠, and the higher the
penalty on the time-dependent reward 𝑏𝑖𝑡. The inclusion of this
penalty component aims to discourage repeated visits to the same
city within a short time interval by the same representative.

The routing part is the last term in (1). The coefficient 𝛽 is applied
o balance the traveling costs with collected rewards. The objective
unction seeks to maximize the total benefit defined as the difference
etween the collected rewards and the incurred routing costs for all
andidates.

The mRSP can be formulated subject to the following sets of con-
traints:
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(a) Traditional Selective TSP constraints (Laporte & Martello, 1990):
∑

𝑗∈𝑉
𝑋𝑚𝑖𝑗𝑡 ≤ 1 𝑚 ∈ 𝑀, 𝑖 ∈ 𝑉 , 𝑡 ∈ 𝑇 (2)

∑

𝑗∈𝑉
𝑋𝑚𝑗𝑖𝑡 ≤ 1 𝑚 ∈ 𝑀, 𝑖 ∈ 𝑉 , 𝑡 ∈ 𝑇 (3)

These inequalities limit the number of incoming and outgoing
arcs for every representative in each node and each time period.

(b) Constraints on general reward collection:

1 ≤
∑

𝑖∈𝑁
𝑍𝑚𝑖𝑡 ≤ 𝑝 𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇 (4)

∑

𝑚∈𝑀
𝑍𝑚𝑖𝑡 ≤ 1 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 (5)

𝑡+𝜉
∑

𝑘=𝑡+1
𝑍𝑚𝑖𝑘 ≤ 1 −𝑍𝑚𝑖𝑡 𝑚 ∈ 𝑀, 𝑖 ∈ 𝑁, 1 ≤ 𝑡 ≤ 𝑡max − 𝜉 + 1 (6)

Constraints (4) impose both a lower and an upper bound on the
total number of meetings held for each representative in each day
𝑡. Inequalities (5) ensure every node can be visited by at most one
political candidate on any given day 𝑡. According to constraints
(6), if a representative visits a node on the day 𝑡, that node cannot
be visited by the same representative in the upcoming 𝜉 days.

(c) Constraints on reward collection for the first time

𝐹𝑚𝑖𝑡 ≤ 𝑍𝑚𝑖𝑡 𝑚 ∈ 𝑀, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 (7)
𝐹𝑚𝑖𝑡 ≤ 1 −𝑍𝑚𝑖𝑢 𝑚 ∈ 𝑀, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 , 1 ≤ 𝑢 ≤ 𝑡 − 1 (8)
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∑

𝑡∈𝑇
𝐹𝑚𝑖𝑡 ≤ 1 𝑚 ∈ 𝑀, 𝑖 ∈ 𝑁 (9)

𝑍𝑚𝑖𝑡 ≤
∑

𝑗∈𝑁
𝑋𝑚𝑖𝑗𝑡 + 𝐸𝑚𝑖𝑡 𝑚 ∈ 𝑀, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 (10)

𝑍𝑚𝑖𝑡 ≤
∑

𝑗∈𝑁
𝑋𝑚𝑗𝑖𝑡 + 𝐿𝑚𝑖𝑡 𝑚 ∈ 𝑀, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 (11)

Constraints (7) couple variables 𝐹 and 𝑍. Inequalities (8) ensure
that if the first meeting in city 𝑖 was held by representative 𝑚
on the day 𝑡, then there cannot be a meeting on an earlier day
𝑢, 𝑢 ≤ 𝑡 − 1. Constraints (9) guarantee that the first meeting for
each city and each representative can be held at most once during
the planning horizon. The set of constraints (10) and (11) ensure
that in order for a city 𝑖 to hold a meeting for representative 𝑚,
it should be visited that day.

(d) Constraints on repeated reward collection

𝑅𝑚𝑖𝑡𝑠 ≤ 𝑍𝑚𝑖𝑡 𝑚 ∈ 𝑀, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 , 𝜉 ≤ 𝑠 ≤ 𝑡 − 1 (12)
𝑅𝑚𝑖𝑡𝑠 ≤ 𝑍𝑚𝑖(𝑡−𝑠) 𝑚 ∈ 𝑀, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 , 𝜉 ≤ 𝑠 ≤ 𝑡 − 1 (13)

𝑡−1
∑

𝑘=𝑡−𝑠+1
𝑍𝑚𝑖𝑘 ≤ 𝑠(1 − 𝑅𝑚𝑖𝑡𝑠) 𝑚 ∈ 𝑀, 𝑖 ∈ 𝑁, 𝜉 + 1 ≤ 𝑡 ≤ 𝑡𝑚𝑎𝑥 , 𝜉 ≤ 𝑠 ≤ 𝑡 − 1 (14)

𝑅𝑚𝑖𝑢𝑠 ≤ 1 − 𝐹𝑚𝑖𝑡 𝑚 ∈ 𝑀, 𝑖 ∈ 𝑁,

𝑡 ∈ 𝑇 ∖{1}, 𝑡 + 1 ≤ 𝑢 ≤ 𝑡max , 𝑢 − 𝑡 + 1 ≤ 𝑠 ≤ 𝑢 − 1 (15)
∑

𝑚∈𝑀

𝑡+𝑟−1
∑

𝑙=𝑡
𝑍𝑚𝑖𝑙 ≤ 1 𝑖 ∈ 𝑁, 1 ≤ 𝑡 ≤ 𝑡max − 𝑟 + 1 (16)

The disaggregated inequalities (12) and (13) establish the logical
relation between decision variables 𝑅𝑚𝑖𝑡𝑠 and 𝑍𝑚𝑖𝑡. Constraints
(14) assure that if a city host two meetings on days 𝑡 and (𝑡 − 𝑠),
then all corresponding 𝑍𝑚𝑖𝑘 variables in the interval [𝑡−𝑠+1, 𝑡−1]
should be zero. Constraints (15) couple binary decision variables
𝑅 and 𝐹 . Note that the latter constraints are valid inequalities not
necessary to the formulation but added from scratch to strengthen
it. Since the model does not allow for repeated visits to a given
city each day, a representative may visit that city in the upcoming
days although the collected reward for this visit is penalized
with a lower reward in the objective function. To avoid such a
situation, we introduce constraints (16) to impose that at least 𝑟
days should pass between two activities in the same city by any
representatives, where 𝑟 < 𝜉. In our case 𝑟 = 2.

(e) Constraints on maximum daily tour duration
∑

𝑖∈𝑁
𝑎𝑖𝑍𝑚𝑖𝑡+

∑

(𝑖,𝑗)∈𝐴
𝑑𝑖𝑗𝑋𝑚𝑖𝑗𝑡 ≤ 𝑞 𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇 (17)

Constraint (17) requires that for each day 𝑡 ∈ 𝑇 and representative
𝑚 ∈ 𝑀 , the sum of travel time and activity time must not exceed
𝑞.

(f) Constraints on closed tour routes
∑

𝑗∈𝑁
𝑋𝑚𝑖𝑗𝑡 −

∑

𝑗∈𝑁
𝑋𝑚𝑗𝑖𝑡 =𝐿𝑚𝑖𝑡 − 𝐸𝑚𝑖𝑡 𝑚 ∈ 𝑀, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 (18)

𝐿𝑚𝑖𝑡 + 𝐸𝑚𝑖𝑡 ≤ 1 𝑚 ∈ 𝑀, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 (19)
∑

𝑖∈𝑁
(𝐿𝑚𝑖𝑡 + 𝐸𝑚𝑖𝑡) ≤ 2 𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇 (20)

𝑆𝑚𝑖(𝑡−1) ≤ 𝐿𝑚𝑖𝑡 + 𝑆𝑚𝑖𝑡 𝑚 ∈ 𝑀, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 ∖{1} (21)

𝑆𝑚𝑖(𝑡−1) + 𝐸𝑚𝑖𝑡 ≥ 𝑆𝑚𝑖𝑡 𝑚 ∈ 𝑀, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 ∖{1} (22)

Equalities (18) couple variables 𝑋,𝐿, and 𝐸. Inequalities (19)
establish that for each representative 𝑚, city 𝑖 and day 𝑡, variables
𝐿𝑚𝑖𝑡 and 𝐸𝑚𝑖𝑡 are mutually exclusive. Constraints (20) guarantee
that a representative 𝑚 on day 𝑡 can select either an open or a
closed tour. Constraints (21)–(22) determine the depot node for
a representative involved in a closed tour.

(g) Constraints on no tour routes

𝑆 = 0 𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇 (23)
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𝑚0𝑡
𝑆𝑚𝑖𝑡 ≥ 𝑋𝑚𝑖0𝑡 𝑚 ∈ 𝑀, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 (24)
𝑆𝑚𝑖(𝑡−1) ≥ 𝑋𝑚𝑖0𝑡 𝑚 ∈ 𝑀, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 ∖{1} (25)

𝑋𝑚𝑖0𝑡 = 𝑋𝑚0𝑖𝑡 𝑚 ∈ 𝑀, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 (26)

Equalities (23) ensure that fictitious city 0 will never be selected
as a depot node. Constraints (24)–(25) prevent inclusion of the
fictitious node in daily tours for each representative. Constraints
(26) model a no tour route imposing that if representative 𝑚 goes
from city 𝑖 to the fictitious city, they must return from there the
same day.

(h) Constraints on open tour routes

𝐿𝑚𝑖𝑡 ≤ 𝑆𝑚𝑖(𝑡−1) 𝑚 ∈ 𝑀, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 ∖{1} (27)

𝐸𝑚𝑖𝑡 ≤ 𝑆𝑚𝑖𝑡 𝑚 ∈ 𝑀, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 (28)

𝑆𝑚𝑖𝑡 ≤
∑

𝑗∈𝑉
𝑋𝑚𝑖𝑗(𝑡+1) 𝑚 ∈ 𝑀, 𝑖 ∈ 𝑁, 1 ≤ 𝑡 ≤ 𝑡max − 1 (29)

∑

𝑖∈𝑁
𝑆𝑚𝑖𝑡 = 1 𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇 (30)

Constraints (27)–(28) determine the open tours for each repre-
sentative. Inequalities (29) ensure that representative 𝑚 departs
the depot city on the next day. Constraints (30) assure that each
representative stays overnight only in one city.

(i) Constraints forcing each representative to return campaign base at
least every 𝑡𝑎𝑤𝑎𝑦 days
𝑡+𝑡𝑎𝑤𝑎𝑦−1

∑

𝑘=𝑡
𝑆𝑚1𝑘 ≥ 1 𝑚 ∈ 𝑀, 1 ≤ 𝑡 ≤ 𝑡max − 𝑡𝑎𝑤𝑎𝑦+1 (31)

(j) Modified Miller–Tucker–Zemlin constraints for subtour elimination

(𝑝 + 1)(𝑆𝑚𝑗(𝑡−1) + 1 −𝑋𝑚𝑖𝑗𝑡) + 𝑈𝑚𝑗𝑡 ≥ 𝑈𝑚𝑖𝑡 + 1 𝑚 ∈ 𝑀, (𝑖, 𝑗) ∈ 𝐴

𝑡 ∈ 𝑇 ∖{1} (32)
𝑈𝑚𝑖𝑡 ≤ 𝑝 + 1 𝑚 ∈ 𝑀, 𝑖 ∈ 𝑉 , 𝑡 ∈ 𝑇 (33)

𝑈𝑚𝑖𝑡 ≤
∑

𝑗∈𝑁

∑

𝑘∈𝑁
𝑋𝑚𝑗𝑘𝑡 + 1 𝑚 ∈ 𝑀, 𝑖 ∈ 𝑉 , 𝑡 ∈ 𝑇 (34)

𝑈𝑚𝑖𝑡 ≥ 𝑆𝑚𝑖(𝑡−1) 𝑚 ∈ 𝑀, 𝑖 ∈ 𝑁 𝑡 ∈ 𝑇 ∖{1} (35)

(𝑝 + 1)(1 − 𝑆𝑚𝑖(𝑡−1)) + 1 ≥ 𝑈𝑚𝑖𝑡 𝑚 ∈ 𝑀, 𝑖 ∈ 𝑁 𝑡 ∈ 𝑇 ∖{1} (36)

Inequalities (32)–(36) are sub-tour elimination constraints de-
rived from the well-known Miller–Tucker–Zemlin (MTZ) constra-
ints, where variable 𝑈𝑚𝑖𝑡 indicates the rank order in which node
𝑖 is visited on the day 𝑡 by representative 𝑚. Inequalities (32)
represent MTZ conditions. Since the final depot is not known
in advance, the variable 𝑆𝑚𝑗(𝑡−1) is introduced multiplied by a
large constant value implying that if the tour has node 𝑗 as the
final depot (i.e. 𝑆𝑚𝑗(𝑡−1) = 1), the corresponding constraint is not
binding. Inequalities (33)–(34) impose that each 𝑈𝑚𝑖𝑡 variable is
bounded in value by the minimum between the maximum number
of visits 𝑝 plus 1 and the number of edges in the tour plus 1.
The presence of +1 is related to the fact that the variable 𝑈𝑚𝑖𝑡
associated with the starting node of the tour (i.e. when 𝑆𝑚𝑖(𝑡−1) =
1) is forced to 1 by constraints (35)–(36).

(k) Decision variable definition

𝐿𝑚𝑖𝑡, 𝐸𝑚𝑖𝑡, 𝑆𝑚𝑖𝑡, 𝑍𝑚𝑖𝑡, 𝐹𝑚𝑖𝑡 ∈ {0, 1} 𝑚 ∈ 𝑀, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 (37)
𝑋𝑚𝑖𝑗𝑡 ∈ {0, 1} 𝑚 ∈ 𝑀, (𝑖, 𝑗) ∈ 𝐴 ∪ 𝐴0, 𝑡 ∈ 𝑇 (38)

𝑅𝑚𝑖𝑡𝑠 ∈ {0, 1} 𝑚 ∈ 𝑀, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 , 𝜉 ≤ 𝑠 ≤ 𝑡 − 1 (39)
𝑈𝑚𝑖𝑡 ≥ 0 𝑚 ∈ 𝑀, 𝑖 ∈ 𝑉 , 𝑡 ∈ 𝑇 (40)

4.1. Budget constraints for overnight stays

To further increase the real-life applicability of mRSP, we have also

assumed that the representatives have a limited total budget 𝜙 for daily
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w

4

a

a
f

𝑅

overnight accommodations:
∑

𝑚∈𝑀

∑

𝑖∈𝑁
ℎ𝑖𝑆𝑚𝑖𝑡 ≤ 𝜙 𝑡 ∈ 𝑇 (41)

here ℎ𝑖 is the cost of one night stay 3 in the city 𝑖 ∈ 𝑁 .

.2. Valid inequalities and bounds enforcement

We can tighten model (1)–(40) by introducing valid inequalities
nd enforcing the bounds on binary decision variables 𝑍,𝑅,𝐿, and 𝐸.

Since the coefficients of variables 𝑅𝑚𝑖𝑡𝑠 in the objective function are
ll positive, we can increase the model’s solution speed by setting the
ollowing lower bound for these variables:

𝑚𝑖𝑡𝑠 ≥ 𝑍𝑚𝑖(𝑡−𝑠)+𝑍𝑚𝑖𝑡−
𝑡−1
∑

𝑘=𝑡−𝑠+1
𝑍𝑚𝑖𝑘 − 1 𝑚 ∈ 𝑀, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 , 𝜉 ≤ 𝑠 ≤ 𝑡−1

(42)

Variables 𝐿𝑚𝑖𝑡 and 𝐸𝑚𝑖𝑡 take value one if and only if an open tour
occurs on a given day. Thus, for closed tour type their values can be
forced to zero:

𝐿𝑚𝑖𝑡 ≤ 2 − 𝑆𝑚𝑖(𝑡−1) − 𝑆𝑚𝑖𝑡 𝑚 ∈ 𝑀, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 ∖{1} (43)

𝐸𝑚𝑖𝑡 ≤ 2 − 𝑆𝑚𝑖(𝑡−1) − 𝑆𝑚𝑖𝑡 𝑚 ∈ 𝑀, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 ∖{1} (44)

Finally, the following constraints enforce the handling of closed
tours with only two edges:

𝑋𝑚𝑖𝑗𝑡 +𝑋𝑚𝑗𝑖𝑡 ≤ 1 + 𝑆𝑚𝑖𝑡 + 𝑆𝑚𝑗𝑡 𝑚 ∈ 𝑀, 𝑖, 𝑗 ∈ 𝑁, (𝑖 ≠ 𝑗), 𝑡 ∈ 𝑇 (45)

5. Solution methods

Being an extension of the team orienteering problem, the mRSP
also belongs to the class of NP-Hard optimization problems, indicating
that obtaining an optimal solution in a reasonable CPU time is not
guaranteed. We develop a learning-based hyper-heuristic for the mRSP,
based on the popular Variable Neighborhood Search (VNS) introduced
in Mladenović and Hansen (1997). Instead of targeting a specific prob-
lem domain, hyper-heuristics aim to develop a general method able to
control low-level heuristics. Hyper-heuristics recently became popular
in tackling a wide range of routing problems (see, for instance, Ahmed,
Mumford, and Kheiri (2019) and Drake, Kheiri, Özcan, and Burke
(2020)). VNS is a metaheuristic based on a finite set of neighborhood
structures systematically visited during the search. The method starts
with the first (typically small) neighborhood, randomly perturbs the
current solution (shaking phase), and locally searches around this
perturbation. If no solution is found better than the current one, the
search is moved to the next (larger) neighborhood, and the procedure
is repeated. Otherwise, the solution becomes the new incumbent and
the search is restarted with the initial neighborhood. The algorithm
continues to iterate through different neighborhoods until it reaches
a predefined stopping criterion. One of the key benefits of VNS is that
it can escape local optima without staying trapped in a narrow region
of the solution space.

Given the complexity of the mRSP that stems from the number
of periods, cities, and travelers, VNS in its basic form falls short of
finding high-quality solutions in a reasonable amount of CPU time.
Accordingly, we introduce a new hyper-heuristic, named Adaptive
Granular Variable Neighborhood Search (AGVNS), that extends VNS
by exploiting a simple learning feature, granular moves, and a delayed
shaking phase. Let us consider a sequence of neighborhood structures

3 In our implementation, the value of ℎ𝑖 is determined according to the
average cost of accommodation in the top 20 hotels for city 𝑖 identified with
Expedia.com by sorting all the hotels in descending order based on the ’Star
Rating’, with the ’City Center’ option checked.
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𝑘 for 𝑘 ranging from 1 to 𝑘𝑚𝑎𝑥. In turn, each structure 𝑘 consists
of a sequence of nested neighborhoods {𝑁𝑟𝑘1

,… , 𝑁𝑟𝑘𝑚𝑎𝑥
} defined by a

parameter 𝑟𝑘 (the radius) ranging from a minimum 𝑟𝑘1 to a maximum
𝑟𝑘𝑚𝑎𝑥 value and controlling the size of each neighborhood move. AGVNS
is a hyper-heuristic designed to explore the search space of the 𝑘𝑚𝑎𝑥
low-level VNS heuristics, each one constructed over a different neigh-
borhood structure 𝑘. AGVNS primary focus is on pinpointing the most
promising neighborhood structures (learning phase) so to avoid their
pure sequential application. In each iteration of the subsequent main
phase, AGVNS pseudo-randomly selects a structure 𝑘 with a probabil-
ity proportional to the score yielded by that particular neighborhood
structure during the learning phase. It then systematically explores the
different nested neighborhoods of that structure. If the search stagnates,
meaning that a locally optimal solution is reached, AGVNS responds by
choosing a fresh 𝑘 value and thus moving to a different neighborhood
structure. This action, in turn, leads to the identification of a new
appropriate low-level VNS heuristic that possibly allows diversifying
the search to another area of the solution space. AGVNS enhances VNS
by rendering it more versatile. The method is also easily adaptable to
other problems including various multi-traveler multi-period routing
problems. In the following subsections, we describe the initial solution
generation algorithm, the learning and main steps of AGVNS, local
search, shaking, neighborhood operators, and granular moves.

5.1. Initial solution generation

Rather than using simple insertion heuristics to build an initial
feasible solution, we develop a constructive algorithm that generates
good quality routes for each representative by including a promising
sequence of cities. The pseudo-code is given in Algorithm 1.

Assuming that the representative 𝑚 begins her travel in the city
𝑖𝑚0 and considering the time constraints, let 𝜁𝑚𝑡 be the set of all cities
that the representative 𝑚 can feasibly visit on the day 𝑡. A city 𝑗 is
included in 𝜁𝑚𝑡 if visiting 𝑗 does not violate constraints (6), (16), (31),
and 𝑑𝑖𝑚0 𝑗 + 𝑎𝑗 < 𝑞. The net profit of a city 𝑗 ∈ 𝑁 at time 𝑡 for traveler 𝑚
(𝛱𝑚

𝑗𝑡 ) is calculated based on the (i) updated reward of the city 𝑗 on the
day 𝑡, (ii) travel time from city 𝑖𝑚0 to city 𝑗 (𝑑𝑖𝑚0 𝑗), (iii) activity time at city
𝑗 (𝑎𝑗), and (iv) maximum required time to carry out the next activity
(argmax𝑘∈𝜁𝑚𝑡 {𝑑𝑖𝑚0 𝑘 + 𝑎𝑘}). For each node 𝑗 ∈ 𝜁𝑚𝑡 , we first calculate a
balanced sum of the normalized required cost and time to carry out an
activity at node 𝑗, i.e.,

𝑑𝑖𝑚0 𝑗+𝑎𝑗

argmax𝑘∈𝜁𝑚𝑡
{𝑑𝑖𝑚0 𝑘+𝑎𝑘}

; then, the net profit of node 𝑗

at time 𝑡 for traveler 𝑚 is computed as follows::

𝛱𝑚
𝑗𝑡 =

(𝑡+𝑡max)𝑏𝑗
𝑡max

𝑑𝑖𝑚0 𝑗+𝑎𝑗

argmax𝑘∈𝜁𝑚𝑡
{𝑑𝑖𝑚0 𝑘+𝑎𝑘}

(46)

Once the net profit of the nodes in 𝜁𝑚𝑡 is calculated, in Line 8, we sort
the set of cities in the increasing order of their net profit (𝑁𝑚

𝑠𝑜𝑟𝑡𝑒𝑑).
Then, for each day 𝑡, starting from an empty route for traveler 𝑚
(𝑅𝑜𝑢𝑡𝑒𝑚𝑡 ), we assign cities one by one (Line 18 in Algorithm 1), while
ensuring that the chain feasibility is held and cities with high rewards
are evenly distributed among travelers. In every 𝑅𝑜𝑢𝑡𝑒𝑚𝑡 , 𝑖𝑚0 and 𝑖𝑚𝑑𝑒𝑝𝑜𝑡
denote the first and last (depot) node of the daily route, respectively.
The algorithm assigns the cities to days in 𝑇 in such a way that cities
with higher rewards are visited near the end of the campaign. For
those days where the traveler is required to return to the campaign
base, we remove the last node(s) in 𝑅𝑜𝑢𝑡𝑒𝑚𝑡 and add it to 𝑁𝑚

𝑠𝑜𝑟𝑡𝑒𝑑 . Next,
the campaign center is added to the end of that day (Lines 24 and 25
in Algorithm 1). While appending a city to 𝑅𝑜𝑢𝑡𝑒𝑚𝑡 , the feasibility of
the insertion is checked. In case of obtaining a feasible solution, the
insertion is performed.

http://Expedia.com
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Algorithm 1: Pseudo-code of the initial feasible solution
generation algorithm
1: Input: an mRSP instance
2: Output: a feasible mRSP solution ⊳ |𝑀| × 𝑡max routes (chains of nodes)
3: Parameters: 𝑡max, 𝑞 ⊳ number of days and maximum tour duration
4: 𝑅𝑜𝑢𝑡𝑒𝑚 = {} ⊳ set of 𝑡max routes for traveler 𝑚
5: for 𝑡 = 1,… , 𝑡𝑚𝑎𝑥 do
6: for 𝑚 = 1,… , |𝑀| do
7: compute 𝜁𝑚𝑡
8: 𝑁𝑚

𝑠𝑜𝑟𝑡𝑒𝑑 ← sorted list of 𝜁𝑚𝑡
9: 𝑛𝑚1 ← the first element of 𝑁𝑚

𝑠𝑜𝑟𝑡𝑒𝑑
10: 𝑅𝑜𝑢𝑡𝑒𝑚𝑡 = {} ⊳ the route of traveler 𝑚 in day 𝑡
11: if 𝑡 = 1 then
12: 𝑖𝑚0 ← {1}
13: else:
14: 𝑖𝑚0 ← 𝑖𝑚𝑑𝑒𝑝𝑜𝑡 ⊳ denoting the terminal node of the previous day
15: end if
16: 𝑅𝑜𝑢𝑡𝑒𝑚𝑡 ← {𝑖𝑚0 } ⊳ last day’s terminal node is today’s depot
17: while 𝑡𝑖𝑚𝑒(𝑅𝑜𝑢𝑡𝑒𝑚𝑡 ) < 𝑞 do
18: append node 𝑛𝑚1 to 𝑅𝑜𝑢𝑡𝑒𝑚𝑡 if it is feasible wrt to constraints

(4), (6), (16), (17), and (41).
19: remove 𝑛𝑚1 from 𝑁𝑚

𝑠𝑜𝑟𝑡𝑒𝑑
20: 𝑛𝑚1 ← the first element of 𝑁𝑚

𝑠𝑜𝑟𝑡𝑒𝑑
21: end while
22: 𝑖𝑚𝑑𝑒𝑝𝑜𝑡 ← the last element of 𝑅𝑜𝑢𝑡𝑒𝑚𝑡
23: if 𝑡 % 𝑡𝑎𝑤𝑎𝑦 = 0 then ⊳ satisfying constraint (31)
24: remove the last node(s) in 𝑅𝑜𝑢𝑡𝑒𝑚𝑡 and add it to 𝑁𝑚

𝑠𝑜𝑟𝑡𝑒𝑑
25: append node 1 to 𝑅𝑜𝑢𝑡𝑒𝑚𝑡
26: 𝑖𝑚𝑑𝑒𝑝𝑜𝑡 ← {1}
27: end if
28: add 𝑅𝑜𝑢𝑡𝑒𝑚𝑡 to 𝑅𝑜𝑢𝑡𝑒𝑚

29: end for
30: end for

5.2. General structure of AGVNS

AGVNS, as shown in Algorithm 2, consists of two steps: a learning
step and a main one. The objective of the learning step is to acquire
relevant information about the different neighborhood structures 𝑘 =
{𝑁𝑟𝑘1

,… , 𝑁𝑟𝑘𝑚𝑎𝑥
}, 𝑘 = 1,… , 𝑘𝑚𝑎𝑥, by learning the effectiveness of their

nested operators. During the initial search phase, AGVNS monitors the
frequency of solution improvements attributed to each neighborhood
structure 𝑘, 𝑘 = 1,… , 𝑘𝑚𝑎𝑥, and records this information in the set
𝛺 = {𝛺1,… , 𝛺𝑘max}. Subsequently, the second phase uses this informa-
tion to strategically choose more effective operators in each iteration.
The fundamental distinction between AGVNS and a traditional VNS
lies in the former being a hyper-heuristic controlling when and how
different VNSs have to be used.

Learning step: At the beginning of the learning step (Lines 4 and
5 in Algorithm 2), we first define the set of neighborhood structures
𝑘 for 𝑘 = 1,… , 𝑘𝑚𝑎𝑥 and the corresponding nested neighborhoods
{𝑁𝑟𝑘1

,… , 𝑁𝑟𝑘𝑚𝑎𝑥
} controlled by a radius 𝑟𝑘 ranging from 𝑟𝑘1 to 𝑟𝑘𝑚𝑎𝑥.

Then we initialize the value of the score 𝛺𝑘 for each neighborhood
operator in the set 𝛺 to a common value 𝜔. This base value is set
to 20 based on preliminary experiments. AGVNS starts with setting
the initial feasible solution 𝑆0 obtained by Algorithm 1 as the global
best (Line 6 in Algorithm 2). While the number of iterations without
improvement (𝑖𝑡𝑒𝑟) is less than parameter 𝑖𝑡𝑒𝑟𝑀𝑎𝑥𝑙, the main body of
the learning step is repeated iteratively (Lines 9−27 in Algorithm 2).
In this step, if the local search procedure corresponding to one of the
nested neighborhoods associated with structure 𝑘 finds a solution 𝑆′′

better than the incumbent solution 𝑆∗, the score of the neighborhood
operator (𝛺𝑘) is updated accordingly (Line 16 in Algorithm 2) by
adding the current score to the weighted net gain of neighborhood
operator 𝑘 as given in Eq. (47). Here, 𝜑 is the normalizing coefficient we
set equal to 1∕100. Other score-updating techniques for adaptive VNS
9

Algorithm 2: Pseudo-code of AGVNS
1: Input: an initial feasible solution 𝑆0 obtained by Algorithm 1
2: Output: a feasible mRSP solution 𝑆∗

3: Parameters: 𝑘𝑚𝑎𝑥, 𝑟𝑘𝑚𝑎𝑥, 𝑖𝑡𝑒𝑟𝑀𝑎𝑥𝑙, 𝑖𝑡𝑒𝑟𝑀𝑎𝑥, 𝜔, 𝜑
4: Define neighborhood structures 𝑘 = {𝑁𝑟𝑘1

, ..., 𝑁𝑟𝑘𝑚𝑎𝑥
} with 𝑘 = 1, ..., 𝑘𝑚𝑎𝑥

5: Initialize to 𝜔 all the scores of the set 𝛺 = {𝛺1, 𝛺2, ..., 𝛺𝑘𝑚𝑎𝑥}
6: 𝑆∗ ← 𝑆0
7: 𝑘 ← 1
8: 𝑖𝑡𝑒𝑟 ← 0
9: while 𝑖𝑡𝑒𝑟 ≤ 𝑖𝑡𝑒𝑟𝑀𝑎𝑥𝑙 do ⊳ learning step starts

10: for 𝑘 = 1,… , 𝑘𝑚𝑎𝑥 do
11: 𝑟𝑘 ← 𝑟𝑘1
12: while 𝑟𝑘 ≤ 𝑟𝑘𝑚𝑎𝑥 do ⊳ VNS based on 𝑘 neighborhood starts
13: 𝑆 ′

← 𝑆ℎ𝑎𝑘𝑖𝑛𝑔(𝑆∗, 𝑟𝑘)
14: 𝑆 ′′

← 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(𝑆 ′ , 𝑟𝑘)
15: if 𝑍(𝑆 ′′ ) > 𝑍(𝑆∗) then
16: 𝛺𝑘 = 𝛺𝑘 +𝜑𝜔(𝑍(𝑆 ′′ ) −𝑍(𝑆∗)) ⊳ updating scores of operators
17: 𝑆∗ ← 𝑆 ′′

18: 𝑍(𝑆∗) ← 𝑍(𝑆 ′′ )
19: 𝑟𝑘 ← 𝑟𝑘1
20: 𝑖𝑡𝑒𝑟 ← 0
21: else:
22: 𝑖𝑡𝑒𝑟+ = 1
23: update 𝑟𝑘 ⊳ move to an operator with a larger radius
24: end if
25: end while
26: end for
27: end while ⊳ learning step finishes
28: 𝑖𝑡𝑒𝑟 ← 0
29: 𝑆 ← 𝑆∗

30: while 𝑖𝑡𝑒𝑟 ≤ 𝑖𝑡𝑒𝑟𝑀𝑎𝑥 do ⊳ main step starts
31: 𝑘 ← Pseudo-RandomSelection(𝛺)
32: 𝑟𝑘 ← 𝑟𝑘1
33: while 𝑟𝑘 ≤ 𝑟𝑘𝑚𝑎𝑥 do ⊳ VNS on selected 𝑘 structure starts
34: 𝑆 ′

← 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(𝑆, 𝑟𝑘)
35: if 𝑍(𝑆 ′ ) > 𝑍(𝑆∗) then
36: 𝑆∗ ← 𝑆 ′

37: 𝑍(𝑆∗) ← 𝑍(𝑆 ′ )
38: 𝑖𝑡𝑒𝑟 ← 0
39: 𝑟𝑘 ← 𝑟𝑘1
40: else:
41: 𝑖𝑡𝑒𝑟+ = 1
42: update 𝑟𝑘 ⊳ move to an operator with a larger radius
43: end if
44: end while
45: 𝑆 ← 𝑆ℎ𝑎𝑘𝑖𝑛𝑔(𝑆∗)
46: end while ⊳ main step finishes

are introduced in the literature (e.g., Sze, Salhi, and Wassan (2017)).
However, they are usually computationally more expensive than our
method.

𝛺𝑘 = 𝛺𝑘 + 𝜑𝜔(𝑍(𝑆
′′
) −𝑍(𝑆∗)) (47)

When analyzing each neighborhood structure 𝑘, the method works as
a basic VNS with the nested neighborhoods parametrized by their size
𝑟𝑘 (radius). Thus, if the objective of local minimum 𝑆′′ is greater than
the incumbent best solution 𝑆∗, the learning step of AGVNS accepts
the new global best (𝑆∗ ← 𝑆′) and the search reverts to the initial
nested neighborhood 𝑟𝑘1 (Line 19); otherwise the search will explore
the subsequent nested neighborhood (line 23). Once all neighborhood
structures have been explored (Lines 10-26 in Algorithm 2), process
continues until counter 𝑖𝑡𝑒𝑟 reaches the value 𝑖𝑡𝑒𝑟𝑀𝑎𝑥𝑙.

Main step: Hyper-heuristic AGVNS differs from a basic VNS in
two significant ways: (i) rather than exploring neighborhood operators
sequentially, it selects them according to 𝛺𝑘 scores obtained in the
previous step, and for each of them runs a VNS making use of nested
Local Search Operators (but for a few cases where VNS reduces to
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Fig. 3. Improvement of incumbent solutions: GUROBI applied to instance m2c20t10.
a simple local search) (ii) the shaking approach (not depending on
the current neighborhood structure) is performed only when the local
search fails to improve the incumbent solution. The algorithm adjusts
its search strategy by re-applying the local search method around the
incumbent solution to intensify the search, explore that area more thor-
oughly, and potentially find an even better solution. At the beginning
of each iteration of the main step, AGVNS selects an operator using
the cumulative probability. In particular, a pseudo-random selection
is applied on the set 𝛺 where neighborhoods with higher scores have
higher chances of being selected (Line 31 in Algorithm 2). The proba-
bility of a neighborhood structure 𝑘 to be chosen is shown in expression
(48).

𝑝𝑘 =
𝛺𝑘

∑𝑘𝑚𝑎𝑥
𝑘=1 𝛺𝑘

(48)

The algorithm iterates the local search operators within the selected
neighborhood structure 𝑘 as long as it improves the incumbent solution.
Once it fails to improve the solution, a Shaking Procedure is applied
(Line 45 in Algorithm 2), and the search restarts with another pseudo-
random selection of neighborhood operators (Line 31 in Algorithm
2).

Local Search Operators (LSO): The algorithm uses several different
neighborhood structures, each with a different level of exploration
(radius values) representing the number of reachable available moves
and their size. Inside a local search algorithm, the current solution 𝑆 is
improved by exploring the neighborhood using the best improvement
approach. We describe the LSOs hereafter:

1. Neighborhood structure 1: Weighted Swap. This is a simple
neighborhood with 𝑟1𝑚𝑎𝑥 = 1. Since a high-quality solution of
mRSP tends to hold activities in big cities in the last days of the
campaign, due to the increasing reward function, this operator
randomly selects a city with 𝑏𝑗 >

∑

𝑖∈𝑁 𝑏𝑖
|𝑁|

from the period {1, . . . ,
⌊

𝑡max
2 ⌋} in the current solution and replaces it with a randomly

selected city with 𝑏𝑗 ≤
∑

𝑖∈𝑁 𝑏𝑖
|𝑁|

in period {⌊ 𝑡max
2 ⌋ + 1,… , 𝑡max}.

2. Neighborhood structure 2: Chain Removal-Separate Insertion.
A number, ranging from 𝑟21 = 1 to 𝑟2𝑚𝑎𝑥 = 3 (with step 1), of
consecutive cities, are removed from randomly selected routes of
a randomly selected representative. The cities are then split and
inserted into the cheapest positions of other routes separately.

3. Neighborhood structure 3: Shuffle. A number ranging from
𝑟31 = 2 to 𝑟3𝑚𝑎𝑥 = 4 (with step 1) of non-consecutively located cities
are chosen randomly and their visit orders are shuffled randomly.

4. Neighborhood structure 4: 2-1 Swap. A fixed number equal to
𝑟4𝑚𝑎𝑥 = 2 cities are randomly removed from a route and reinserted
in two different routes.

5. Neighborhood structure 5: 1-Add. A single non-visited city
(𝑟5𝑚𝑎𝑥 = 1) is inserted on the last possible day of a randomly
selected representative to possibly improve the objective function
value.

6. Neighborhood structure 6: Swap Unvisited. A number equal
to 𝑟6 ∈ {1, 2, 3, 4} of cities is randomly selected and removed from
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the route of randomly selected travelers. An equivalent number
of previously unvisited cities are then inserted into the cheapest
positions in the routes.

7. Neighborhood structure 7: Block-Exchange. A chain of cities
from the donor route will be replaced by a different chain of cities
from the receiver route. The number of cities in each change will
be randomly chosen between 𝑟71 = 2 to 𝑟7𝑚𝑎𝑥 = 4.

Shaking: AGVNS differs from traditional VNS in that the shaking
process is only employed when the local search fails to improve the
current best solution. This strategy allows for a more intensified search
around the best solution found so far. Our shaking procedure uses
a destroy–repair framework, where randomly selected travelers and
randomly selected cities are removed from the current solution, with
those whose 𝑏𝑗 ≤

∑

𝑖∈𝑁 𝑏𝑖
|𝑁|

have a higher chance of being selected. The
removal process is done on randomly selected days. Next, randomly
selected cities from the pool of unvisited cities are reinserted back into
the solution while respecting feasibility criteria.

Granular neighborhoods: AGVNS consists of large neighborhoods
which makes it computationally expensive to explore all of them. To
address this issue, we suggest a neighborhood reduction scheme based
on granular moves used throughout the main step of the algorithm.
This mechanism significantly speeds up the search process by only
focusing on promising moves and eliminating unpromising ones. Since
when exchanging cities in different routes, it is crucial to evaluate the
exchange’s impact on the cost and time, the reduction strategy works
as follows: for each city 𝑖 ∈ 𝑁 , we first determine a set of potential
neighboring cities that could be inserted next to 𝑖. We then restrict
the search to those cities only. For this purpose, we build a binary 3-
dimensional matrix M, where M[𝑖1, 𝑖2, 𝑖3] = 1 if 𝑚𝑖𝑛{𝑑𝑖1 ,𝑖2 , 𝑑𝑖1 ,𝑖3} ≤ 𝛾
(city 𝑖1 can be inserted between 𝑖2 and 𝑖3), and 0 otherwise. Parameter
𝑑𝑖1 ,𝑖2 shows the symmetric travel time between cities 𝑖1 and 𝑖2, and 𝛾
is the granularity threshold set to 300 min. The use of the M greatly
enhances the efficiency of the neighborhood search by eliminating
unpromising moves.

6. Computational study

In this section, we discuss the computational results of the AGVNS
algorithm on instances obtained from the real world in Turkey. We
compare the solutions of AGVNS against the commercial MILP solver
GUROBI and a variant of the algorithm FDOR adapted from the litera-
ture. We carried out the experiments on an MSI GP66 laptop with 11th
Gen Intel(R) Core(TM) i7 (11800H model), 2.30 GHz, 16 GB RAM and
running a 64-bit Windows 10 Pro. We implemented all algorithms in
Python 3.8. The commercial solver GUROBI 9.5 is employed to solve
the MILP model with a time limit of 3 hours. Apart from enabling
multithreading, the rest of GUROBI’s parameter settings are used as
default. All CPU times are reported in seconds.

6.1. Dataset

This paper is the first to introduce the mRSP. We test the perfor-
mance of the proposed model and developed algorithms by modifying
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Fig. 4. Comparison of lower bounds obtained by GUROBI in 3 hours and 24 hours of CPU time.
a subset of benchmark instances developed for the RSP (Shahmanzari
et al., 2020) with a maximum of 5 travelers, 50 cities, and 10 days.
These instances are generated based on real-world city locations ex-
tracted from Google Maps and travel times calculated based on the
minimum of terrestrial roads and available flight times (or a combina-
tion of both). The selection of cities within each mRSP instance is based
on a subset of cities derived from the largest RSP instance. In contrast
to the original RSP, which involves a single traveler, mRSP involves
the inclusion of multiple travelers. The naming convention of instances
provides full information about them. For example, instance m2c50t7
denotes that it has 2 representatives (m2), 50 cities (c50), and seven
days (t7). The total number of instances is 48. The maximum number
of meetings per day (𝑝) and the maximum tour duration (𝑞) for each
representative are limited to 4 and 14 hours, respectively. The original
RSP instances divide all cities into three categories according to their
importance concerning the political party: big cities, medium cities,
and small cities. In our implementation, we allow up to 3 activities in
big cities, 2 activities in medium cities, and only one activity in small
cities during the campaign period. We set the maximum number of days
out of the campaign center (𝑡𝑎𝑤𝑎𝑦) and the minimum number of days
during which a representative is restricted from making repeat visits to
the same city (𝜉) to 5 and 3 days, respectively. For sensitivity analysis
purposes, we also generated multiple instances where parameters in-
dicating the number of meetings in big cities and medium cities, 𝑡𝑎𝑤𝑎𝑦,
and 𝜉 (being employed in constraints (6)) vary. All developed instances
are publicly available at (https://shahmanzar.ir/mRSP.html)

6.2. Calculation of rewards

We computed the basic reward 𝑏𝑖 for each city 𝑖 ∈ 𝑁 as 𝑏𝑖 =
𝜃𝑖(𝜆 + 𝑃𝑜𝑝𝑖

𝑚𝑖𝑛.𝑃 𝑜𝑝. ) where 𝜆 is a fixed reward, 𝑃𝑜𝑝𝑖 is the population of the
city and 𝑚𝑖𝑛.𝑃 𝑜𝑝. is the minimum population out of all cities. Parameter
𝜃𝑖 is the significance score of city 𝑖, with values ranging from 1 to 4.
To determine it, we simulated the election process in Turkey based
on the recorded vote counts from the 2018 election. Our simulation
successfully replicated the seat distribution for all 85 electoral regions
in Turkey, indicating the accuracy of our methodology. Following this,
we assessed each city’s political standing by adjusting the number of
votes for the political party in that region by both decreasing and
increasing it by 15%. 𝜃𝑖 is set to 1 if ±15% variation in the number
of the votes of the political party does not change the number of the
political party’s seats. If a 15% decrease or increase in the number of
the votes of a political party impacts the number of the political party’s
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seats negatively or positively, then 𝜃𝑖 is set to 2 and 3, respectively.
Finally, when both a 15% increase and a 15% decrease in the number
of votes lead to a corresponding increase and decrease in the number
of party seats, respectively, we set the value of 𝜃𝑖 to 4.

6.3. AGVNS parameter settings

In the learning phase of AGVNS, 𝜑 is a normalizing coefficient used
to determine the amount of updated score of the neighborhood struc-
tures. Parameters 𝑖𝑡𝑒𝑟𝑀𝑎𝑥𝑙 and 𝑖𝑡𝑒𝑟𝑀𝑎𝑥 denote the stopping criteria
each expressed as the number of iterations without improvement in
the learning phase and in the main one, respectively. We have con-
ducted extensive preliminary experiments involving the manipulation
of various combinations of these three parameters on 12 pilot test
instances consisting of 2 and 3 representatives, 30 and 40 cities, and
5, 7, and 10 days. The goal was to identify the robust parameter
configurations that would result in the best trade-off between compu-
tational time and solution quality for AGVNS. The tested values for
all three parameters are as follows: 𝑖𝑡𝑒𝑟𝑀𝑎𝑥𝑙 = {100, 200, 300, 400},
𝑖𝑡𝑒𝑟𝑀𝑎𝑥 = {500, 700, 1000, 1200, 1500}, and 𝜑 = {0.01, 0.1, 0.5}. To
determine the best value for any given parameter, the other parameters
were temporarily set to their initial values (𝑖𝑡𝑒𝑟𝑀𝑎𝑥𝑙 = 100, 𝑖𝑡𝑒𝑟𝑀𝑎𝑥 =
700, and 𝜑 = 0.01) or the values that had previously been identified
as best. We performed ten runs for each instance. We finally select
𝑖𝑡𝑒𝑟𝑀𝑎𝑥𝑙 = 200, 𝑖𝑡𝑒𝑟𝑀𝑎𝑥 = 1000, and 𝜑 = 0.1.

6.4. Computational results using the commercial solver

To evaluate the effectiveness of the developed mathematical model,
we first present the results obtained by GUROBI for all mRSP instances.
The performance of the commercial solver on all instances with 3-hour
runs is reported in the left part of Table 6. Boldface figures indicate
proven optimality attained by the solver. Column LB refers to the lower
bound (best feasible solution). Column Opt Gap% hosts the relative
optimality gap as reported by GUROBI. Finally, t(s) provides the CPU
time in seconds.

Fig. 3 illustrates the progression of the incumbent solution for one
instance. Since the results for other instances exhibit similar patterns,
we make them available in Table E1 in the E-Companion. The image
on the right depicts the values of the incumbent solution obtained after
three hours of CPU time. The figure on the left serves to provide a more
detailed examination of the data in the right figure by magnifying the
regions of the chart that exhibit significant improvement. The results

https://shahmanzar.ir/mRSP.html
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imply that the incumbent solution of the commercial solver barely
improves after three hours. We also let GUROBI run for 24 h and report
the result in Fig. 4. The solver fails to find even a feasible solution
for 16 instances after running for one day. Apart from 3 instances
(m2c30t7, m2c30t10, and m5c30t7), GUROBI was not able to improve
the lower bound of the problem significantly. More specifically, letting
the commercial solver run for 21 hours more results in a 1.84% average
improvement on the 48 instances. Additionally, among 32 instances
for which GUROBI was not able to obtain an optimal solution in 3 h,
7 instances (m2c20t7, m2c40t5, m2c50t5, m4c20t5, m4c30t2, m4c30t5,
m4c50t2) did not improve at all. However, we observe two signifi-
cant improvements in m2c30t10 and m5c30t7 by 15.5% and 13.2%,
respectively.

Finally, we evaluate the impact of valid inequalities (see Sec-
tion 4.2) on tightening mRSP formulation. To this aim, we conduct
a separate computational experiment where all valid inequalities are
turned off (VIs off). In Table 5, we summarize the comparison of the
latter analysis with the case where all valid inequalities are included
from scratch without separation. Figures in boldface signify optimality
obtained by the solver. The results indicate that valid inequalities
are indeed very effective. By including them, the average optimality
gap is reduced from 9.28% to 7.48%. In total, the lower bound for
23 instances has improved. We observed drastic improvements in the
optimality gap of some instances (e.g., m2c20t7, m2c40t7, m4c40t5,
and m5c40t5 with 5.43%, 7.41%, 8.29%, and 6.06% improvements,
respectively). In one instance (m5c30t7), GUROBI was not able to
achieve a feasible solution after running for 3 hours without valid
inequalities but it got it when valid inequalities have been added. The
last part of Table 5, named Improvement, provides the percentage
improvement in terms of LB and time for all instances. The results
show a substantial increase both in terms of solution effectiveness and
efficiency.

6.5. Computational results on AGVNS

Table 6 displays the objective values of the 48 instances for both
GUROBI and AGVNS along with corresponding gaps and CPU times in
seconds. The column header Opt Gap% indicates the relative optimality
gaps reported by GUROBI, whereas Gap%, is calculated as
100× 𝐴𝐺𝑉𝑁𝑆.𝑂𝑏𝑗−𝐿𝐵

𝐴𝐺𝑉 𝑁𝑆.𝑂𝑏𝑗 . Column BKS 𝛥% reports the percentage of improve-
ment conducted by AGVNS for the best-known solutions, which could
be either the optimal solution or the lower bound obtained by GUROBI
within 3 hours of CPU time. The boldface figures under the AGVNS
section signify the best-known solution. When calculating the average
gaps of AGVNS, we omitted those instances for which no solution was
obtained by GUROBI after 3 hours. These results prompt a couple
of observations. AGVNS not only successfully obtained the optimal
solution in all instances where GUROBI got it, but it also improved
upon the best feasible solution reported by GUROBI in 39 instances. In
some instances (e.g., m2c30t10), the best feasible solution is improved
by 14.9% in remarkably shorter CPU time. While the average CPU time
for GUROBI is 9375 s, AGVNS finds either the same or better solutions
in 115.7 s on average, indicating a 98.76% decrease. Taking those 7
instances with optimal solutions into account, the average runtime of
the commercial solver is 1029 s, whereas AGVNS attained the same
solutions in 43.9 s on average.

Fig. 5 displays the best feasible solutions of GUROBI and AGVNS
to showcase the effectiveness of our method. Due to scale issues,
we did not include AGVNS results for two instances m5c50t7 and
m5c50t10 as they were significantly better than GUROBI results. To
ensure a fair comparison, we restricted our analysis to the objective
values of instances where GUROBI can produce a feasible or optimal
solution. The AGVNS method’s superiority is most evident in large-scale
instances with 5 representatives due to their complex nature. While
GUROBI struggles to generate high-quality solutions in these instances,
12
Fig. 5. Solutions value of AGVNS Algorithm and Gurobi solutions on mRSP instances.

AGVNS consistently produces significantly superior solutions, with an
average CPU time of 548 s.

Fig. 6 depicts the solutions for the instance m2c50t7 obtained by
AGVNS (left) and GUROBI (right) with an optimality gap of 14.9%.
The day of each visit, over the one-week planning, is indicated above
the meeting sign. GUROBI managed to schedule 37 meetings, while
AGVNS successfully scheduled 46 meetings. Moreover, GUROBI’s so-
lution included 6 repeat visits, while AGVNS’s campaign involved 5
repeat visits. This can be attributed to the fact that AGVNS allocated
more time exploring other cities, particularly in the eastern region of
the country. Both solutions incorporate closed and open tours, whereas
the ‘‘no-tour’’ type was never selected. Typically, these types of routes
are present in solutions with a small number of cities and a longer
campaign period, such as instance m2c20t10. A noteworthy observation
regarding the AGVNS solution pertains to the itinerary of the two-party
representatives who daily concentrate their efforts on distinct regions of
the country. For example, during the initial phase of the campaign, the
red representative roams the western region of the country, while the
black one explores cities in the eastern region. In contrast, the GUROBI
solution exhibits a different pattern, characterized by multiple jumps
between cities that are situated at considerable distances from each
other.

6.6. Comparison of AGVNS with a state-of-the-art matheuristic

To further evaluate the performance of AGVNS, we also benchmark
it with a modified version of the method Finding Daily Optimal routes
(FDOR), a matheuristic introduced in Shahmanzari et al. (2020) for
a single vehicle problem. FDOR breaks down the original MILP for-
mulation into several subproblems corresponding to the number of
campaign days. It involves two main phases: city selection and route
generation. In the city selection phase, a set of promising cities are
selected pseudo-randomly. In the route generation phase, an integer
program is solved to construct the optimal route from the chosen
cities. The model for each day is solved based on the selected subset
of cities determined in the first phase of the matheuristic. A more
detailed explanation of the modified FDOR (MFDOR) along with a brief
description of the mathematical model used for each day can be found
in E-Companion. Basically, on each day, MFDOR pseudo-randomly
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Table 5
Impact of valid inequalities.

Instance mRSP without VIs mRSP with VIs Improvement

LB Gap% t(s) LB Gap% t(s) LB 𝛥% t 𝛥%

m2c20t2 50719.2 0.00 566 50719.2 0.00 425 0.00 33.06
m2c20t5 61294.4 0.00 5729 61294.4 0.00 4436 0.00 29.15
m2c20t7 68 595.7 7.58 10 800 70 044.3 2.15 10 800 2.11 0.00
m2c20t10 73 383.1 10.67 10 800 74 566.4 6.33 10 800 1.61 0.00
m2c30t2 64055.4 0.00 658 64055.4 0.00 545 0.00 20.86
m2c30t5 83 767.4 7.84 10 800 84 626.4 5.67 10 800 1.03 0.00
m2c30t7 88 267.6 22.5 10 800 91 401.1 17.10 10 800 3.55 0.00
m2c30t10 89 297.2 36.51 10 800 92 837.7 28.8 10 800 3.96 0.00
m2c40t2 93606.7 0.00 198 93606.7 0.00 134 0.00 47.32
m2c40t5 124 585.5 8.25 10 800 125 376.7 6.87 10 800 0.64 0.00
m2c40t7 130 272.2 21.21 10 800 137 865.2 13.80 10 800 5.83 0.00
m2c40t10 – – 10 800 – – 10 800 – –
m2c50t2 93606.7 0.00 328 93606.7 0.00 156 0.00 109.58
m2c50t5 129 112.1 7.03 10 800 129 452.8 6.60 10 800 0.26 0.00
m2c50t7 140 466.8 16.21 10 800 141 311.3 14.90 10 800 0.60 0.00
m2c50t10 – – 10 800 – – 10 800 – –
m4c20t2 61781.4 0.00 1021 61781.4 0.00 548 0.00 86.35
m4c20t5 64 646.3 7.22 10 800 64 723.0 5.47 10 800 0.12 0.00
m4c20t7 77 050.2 17 10 800 77 070.4 13.90 10 800 0.03 0.00
m4c20t10 – – 10 800 – – 10 800 – –
m4c30t2 87 430.7 3.78 10 800 87 430.7 3.61 10 800 0.00 0.00
m4c30t5 98 247.5 6.07 10 800 98 258.7 5.13 10 800 0.01 0.00
m4c30t7 – – 10 800 – – 10 800 – –
m4c30t10 – – 10 800 – – 10 800 – –
m4c40t2 126 011 6.93 10 800 128 057.9 5.20 10 800 1.62 0.00
m4c40t5 142 525.9 15 10 800 152 928.6 6.71 10 800 7.30 0.00
m4c40t7 – – 10 800 – – 10 800 – –
m4c40t10 – – 10 800 – – 10 800 – –
m4c50t2 130 106.6 6.77 10 800 130 504.8 6.19 10 800 0.31 0.00
m4c50t5 151 864.1 17.8 10 800 162 275.3 10.20 10 800 6.86 0.00
m4c50t7 – – 10 800 – – 10 800 – –
m4c50t10 – – 10 800 – – 10 800 – –
m5c20t2 62402.4 0.00 1064 62402.4 0.00 961 0.00 10.75
m5c20t5 61 079.1 12.93 10 800 62 476.8 9.54 10 800 2.29 0.00
m5c20t7 76 045.2 20.98 10 800 76 245.9 17.40 10 800 0.26 0.00
m5c20t10 – – 10 800 – – 10 800 – –
m5c30t2 91 859.8 1.26 10 800 91 914.8 1.02 10 800 0.06 0.00
m5c30t5 94 758 11.35 10 800 98 177.1 7.47 10 800 3.61 0.00
m5c30t7 – – 10 800 103 154.6 28.80 10 800 – –
m5c30t10 – – 10 800 – – 10 800 – –
m5c40t2 138 190.4 6.11 10 800 138 235.8 6.02 10 800 0.03 0.00
m5c40t5 148 848 13.63 10 800 156 392.3 7.57 10 800 5.07 0.00
m5c40t7 – – 10 800 – – 10 800 – –
m5c40t10 – – 10 800 – – 10 800 – –
m5c50t2 146647.28 4.18 10 800 148 886.68 2.78 10 800 1.53 0.00
m5c50t5 – – 10 800 – – 10 800 – –
m5c50t7 – – 10 800 – – 10 800 – –
m5c50t10 – – 10 800 – – 10 800 – –

Average 98 403.9 9.28 9424 100 268.3 7.48 9375 1.57 10.87
Fig. 6. The solutions generated by AGVNS (a) and GUROBI (b) for the instance m2c50t7.
selects a set of promising cities by considering the time-dependent (in-
creasing) nature of their profits. Next, it solves a restricted formulation
of the original MILP only including such selected cities. Fig. 7 depicts
the comparison of results obtained by the two methods, indicating
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that AGVNS outperforms MFDOR in terms of solution effectiveness.
This divergent performance can be partially explained by the myopic
evaluation characterizing MFDOR, where decisions are made locally
over each day without considering the time horizon. On the contrary,
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Table 6
Comparison of results obtained by AGVNS and GUROBI.

Instance GUROBI AGVNS

LB Opt Gap% t(s) Obj Gap% t(s) BKS 𝛥%

m2c20t2 50719.2 0 425 50719.2 0 11.88 0
m2c20t5 61294.4 0 4436 61294.4 0 12.98 0
m2c20t7 70 044.3 2.15 10 800 70044.3 0 18.26 0
m2c20t10 74 566.4 6.33 10 800 74919 0.47 25.08 0.5
m2c30t2 64055.4 0 545 64055.4 0 14.3 0
m2c30t5 84 626.4 5.67 10 800 87029.8 2.84 18.7 2.8
m2c30t7 91 401.1 17.1 10 800 97232.5 6.38 28.38 6
m2c30t10 92 837.7 28.8 10 800 109148.1 17.57 66.66 14.9
m2c40t2 93606.7 0 134 93606.7 0 16.72 0
m2c40t5 125 376.7 6.87 10 800 132523.2 5.7 33.66 5.4
m2c40t7 137 865.2 13.8 10 800 148246.5 7.53 45.76 7
m2c40t10 – – 10 800 155793.6 – 78.76 –
m2c50t2 93606.7 0 156 93606.7 0 24.64 0
m2c50t5 129 452.8 6.6 10 800 132494.9 2.35 28.6 2.3
m2c50t7 141 311.3 14.9 10 800 157251.2 11.28 54.12 10.1
m2c50t10 – – 10 800 186290.7 – 89.54 –
m4c20t2 61781.4 0 548 61781.4 0 38.06 0
m4c20t5 64 723 5.47 10 800 66845.9 3.28 53.24 3.2
m4c20t7 77 070.4 13.9 10 800 81401.7 5.62 82.28 5.3
m4c20t10 – – 10 800 81940.1 – 117.7 –
m4c30t2 87 430.7 3.61 10 800 88025.3 0.68 34.32 0.7
m4c30t5 98 258.7 5.13 10 800 98759.8 0.51 54.34 0.5
m4c30t7 – – 10 800 107495 – 79.42 –
m4c30t10 – – 10 800 139527.3 – 186.56 –
m4c40t2 128 057.9 5.2 10 800 129133.6 0.84 48.4 0.8
m4c40t5 152 928.6 6.71 10 800 160253.9 4.79 87.56 4.6
m4c40t7 – – 10 800 173161 – 196.68 –
m4c40t10 – – 10 800 191206.6 – 228.36 –
m4c50t2 130 504.8 6.19 10 800 135085.5 3.51 93.72 3.4
m4c50t5 162 275.3 10.2 10 800 176782.7 8.94 140.14 8.2
m4c50t7 – – 10 800 185448.2 – 221.98 –
m4c50t10 – – 10 800 225238.1 – 340.34 –
m5c20t2 62402.4 0 961 62402.4 0 186.34 0
m5c20t5 62 476.8 9.54 10 800 63707.6 1.97 303.38 1.9
m5c20t7 76 245.9 17.4 10 800 86691.6 13.7 348.7 12
m5c20t10 – – 10 800 89332 – 623.7 –
m5c30t2 91 914.8 1.02 10 800 91914.8 0 207.24 0
m5c30t5 98 177.1 7.47 10 800 100258.5 2.12 244.64 2.1
m5c30t7 103 154.6 28.8 10 800 111747.4 8.33 476.74 7.7
m5c30t10 – – 10 800 129111.4 – 1045.22 –
m5c40t2 138 235.8 6.02 10 800 139977.5 1.26 247.72 1.2
m5c40t5 156 392.3 7.57 10 800 160098.7 2.37 455.18 2.3
m5c40t7 – – 10 800 201990.4 – 944.46 –
m5c40t10 – – 10 800 217072.4 – 1044.72 –
m5c50t2 148886.68 2.78 10 800 149139.8 0.17 374.44 0.2
m5c50t5 – – 10 800 191170.5 – 490.6 –
m5c50t7 – – 10 800 251618.5 – 962.94 –
m5c50t10 – – 10 800 257170.2 – 1463 –

Average 100 268.3 7.48 9375 127 494.7 3.50 115.7 3.30
Fig. 7. Comparison of the results obtained by AGVNS and MFDOR.
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AGVNS incorporates the features of the reward mechanism for the
whole planning horizon.

7. Managerial insights and real-life implications

The main features of the studied multi-period multi-vehicle problem
are the time dependency of rewards, the presence of different tour
types, and the link among representatives when visiting the same
city multiple times over the planning horizon. The latter character-
istic also strongly differentiates this problem from the single-vehicle
special case. In this section, we provide rules of thumb for decision-
maker managers involved in similar problems. In particular, we revolve
around (i) the type of solution algorithms to use; (ii) the advantages
of allowing different types of tours against the traditional use of only
closed tours; (iii) the impact of time-dependent reward on the number
and frequency of visited cities. In the following analysis, we included
only the 7 instances where GUROBI was able to obtain an optimal
solution (m2c20t2, m2c20t5, m2c30t2, m2c40t2, m2c50t2, m4c20t2, and
m5c20t2).

7.1. Relevance of look-ahead heuristics

One key managerial insight, that comes directly from comparing
AGVNS and MFDOR results, is that traditional routing algorithms for
multi-period problems based on a myopic rolling horizon mechanism
with no lookahead inclusion of future information are not suitable
for addressing problems similar to mRSP. Routing algorithms with a
rolling horizon mechanism as MFDOR (i.e., Faugère, Klibi, White III,
and Montreuil (2022)) are typically designed to address problems in
which the rewards, costs, or service times associated with nodes remain
constant over time. These algorithms plan routes in a myopic manner
based on the current state of the problem and available informa-
tion often missing the potential benefits of optimizing routes over a
longer planning horizon. In mRSP, however, we introduce a level of
complexity that algorithms such as MFDOR may struggle to handle
effectively given that rewards for visiting cities change over time and
also depend on previous visits by other representatives. Some cities
may become more attractive as the campaign progresses, while others
may lose their appeal. Such algorithms are not inherently equipped
to adapt to such dynamic landscapes. In contrast, problems similar
to mRSP benefit from methods based on a global perspective that
considers the entire campaign duration as AGVNS that can identify
strategic patterns, such as the optimal schedule of city visits over the
planning horizon, which may not be evident within the narrow scope
of a rolling horizon. Additionally, most of the time, the rolling horizon
algorithms may lead to inefficient resource utilization, as they may fail
to exploit opportunities for consolidating visits to cities with increasing
rewards over time. This suboptimal resource allocation can result in
the generation of inferior solutions. Time-dependent reward dynamics
require a more adaptive approach that can quickly adjust routes based
on evolving circumstances. This insight is particularly important in the
context of election campaign planning, where maximizing the impact of
meetings is critical. A performing algorithm like AGVNS must account
for the dynamic changes in rewards based on the day of the visit and
the recency of previous visits.

To empirically demonstrate AGVNS’s superiority over MFDOR in
problems with time-dependent reward mechanisms, we conduct a com-
parative analysis on instances where optimal solutions are available.
The analysis involves comparing both methods by applying a 10-
second stopping rule and examining the obtained results. For MFDOR
solutions, we calculate the objective function at the point where the so-
lution was obtained. The results are depicted in Fig. 8. We observe that
AGVNS consistently generates higher-quality solutions when compared
to MFDOR. Our findings suggest that AGVNS exhibits a better ability
to approximate the final optimal solution within a limited time frame
15

when contrasted with MFDOR.
Fig. 8. Comparison of AGVNS and MFDOR under a 10-second stopping rule.

Fig. 9. Value of time-dependent objective function.

7.2. The value of time-dependent rewards

In this section, we compare the solutions conveyed by mRSP with
those obtained by eliminating the time dependency from the original
model (Static mRSP). The objective function of Static mRSP is formu-
lated by setting 𝛿𝑡 = 1, and thus 𝑏𝑖𝑡 = 𝑏𝑖,∀𝑡 ∈ 𝑇 , while penalty function
𝛼𝑠, where 𝑠 is the number of days elapsed since the last visit, remains
unchanged.

Due to this fundamental adjustment, the objective function values
of the two problems cannot be directly compared. Consequently, our
analysis focuses solely on the changes in the number of meetings during
the campaign. The results are illustrated in Fig. 9. We observe that
the value of including a time-dependent objective function is higher
when the number of political representatives increases (compare results
for instances m4c20t2 and m5c20t2). This is because, under a static
reward mechanism, political representatives have minimal incentive to
strategically plan the future to gain more rewards. Our model offers
campaign planners a valuable tool for incorporating more realistic
assumptions into their decision-making processes. This is supported by
comparing the itinerary (cities visited) obtained from the two formu-
lations in the two instances m4c20t2 and m5c20t2, where the resulting
number of meetings is different. In the case of m4c20t2, we observe
that the original model holds two additional meetings in the cities of
Artvin and Balikesir. These cities hold significant strategic importance
for the selected political party, as evidenced by the recent presidential
election results in Turkey. Artvin, for instance, saw the selected party
receiving 46.59% of total votes, while the competing party obtained
47.68%, marking a marginal difference of 1.249 votes. This highlights
Artvin’s criticality for the success of the selected party. Interestingly,
our original mRSP scheduled a meeting in Artvin on the second day,
whereas Static mRSP failed to hold a meeting there. Similar circum-
stances are evident in Balikesir, where the competing party secured
48.67% of the votes while the selected party obtained 45.07%. This
outlines the city’s crucial political significance and suggests that even
a slight increase in the selected party’s votes could potentially alter the
battleground significantly. This analysis signifies the value of a time-
dependent reward mechanism, which effectively assesses the dynamics
of an election and prioritizes cities critical to electoral success.
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Fig. 10. Value of including closed tour, open tour, and rest days in travel itinerary.
7.3. The value of different tour types

Our problem deals with novel characteristics not typically addressed
in routing literature. One of the most important features is the coexis-
tence of closed and open tours within a campaign’s daily schedule. To
test the value of incorporating three tour types into the itineraries of
political representatives, we have developed a model (the Single-Depot
mRSP) that mandates all daily tours be closed-tour by indicating that
the starting and ending cities for all representatives on every day have
to coincide. To implement the Single-Depot mRSP, we set 𝑆𝑚,1,𝑡 = 1 for
all 𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇 , where index 1 refers to the campaign center.

Based on analysis results presented in Fig. 10, the highest benefits,
both in terms of objective value and the number of realized meetings,
are achieved in the mRSP, where all representatives are flexible to
create any tour type necessary to cover more cities. In particular, the
flexibility to vary tour types results in cost savings by eliminating the
need for daily returns to the campaign center. This leads to an increase
in the number of meetings by more than 22% on average. When
comparing results for instances with an equal number of representatives
(𝑚 = 2) and days (𝑡 = 2), it becomes evident that the growing trend
of the number of meetings is similar for both problems as the number
of cities increases. Rewards also show an increase with the number of
cities, but the growth is more pronounced for the mRSP compared to
the Single-Depot mRSP.

Although this analysis has been conducted on optimal solutions, in
several other instances (not solved to optimality), we observed that
when a representative cannot visit two highly rewarded cities A and
B in a single day due to maximum tour duration constraints, AGVNS
forces the traveler to visit city A on the day 𝑡 and conclude the daily
tour in a city nearby city B. This plan allows for a quicker visit to city
B the following day, while also granting more time for the traveler
to explore additional cities. In other instances, we have observed a
traveler beginning the daily tour in city A, exploring neighboring cities,
and then returning to city A by the end of the day, forming a closed-
tour route. This pattern is often made due to the presence of several
highly rewarding cities near city A. On day t+1, the traveler departs
from city A without holding any meetings, ventures to other cities, and
concludes their tour in a different city, resulting in an open-tour route.
Such scenarios underscore the need for flexible planning strategies that
adapt to the diverse preferences and schedules of political representa-
tives. The presence of closed tours, open tours, and even no tours in
our solutions highlights a managerial challenge and opportunity. Our
results indicate that campaign planners may design itineraries to strike
the right balance between closed and open tours. Finally, a distinctive
feature of mRSP is that not every terminal node is included in the
reward collection. In instances with only a few days available, we
observe many travelers using their daily remaining time to stay in a city
near big cities. The mRSP excels in developing concise yet impactful
itineraries. Campaign managers can apply this insight to ensure that
every day of the campaign is used effectively. This allows politicians to
cover a wider range of cities within tight time constraints.
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7.4. Impact of varying values for parameters 𝑝 and 𝑞

Two parameters that significantly influence the scheduling of trav-
elers are the maximum number of daily meetings 𝑝 and the maximum
tour duration 𝑞. In our primary experiments, we fixed these values
to 4 visits and 14 hours, respectively. To gauge the impact of these
parameters, we conducted a sensitivity analysis with varying values
for both of them. Regarding the parameter p, we examine two extreme
scenarios: one, where only 2 meetings per day were allowed, and the
other, where up to 5 meetings per day could be held. The results,
as depicted in Fig. 11, reveal that increasing the value of p to 5,
while making the model more complex, does not yield any additional
value. Conversely, restricting p to 2 leads to a notable decrease in
performance, both in terms of the objective value and the number
of realized meetings. However, notice that the impact of decreasing
𝑝 diminishes with a longer planning horizon (cf. m2c20t5), as the
longer planning horizon increases flexibility and allows arranging more
meetings even with only two representatives. Moreover, as the number
of travelers increases, the impact of increasing p diminishes because
a higher number of representatives can visit cities that could not be
visited with only 2 candidates.

For parameter 𝑞, we introduce two additional scenarios in which the
maximum tour duration was set to 12 and 16 hours, respectively. The
results are displayed in Fig. 12. We note a similar pattern to the analysis
for 𝑝. Correspondingly, increasing the value of 𝑞 to 16 hours, though
introducing added complexity, does not yield significant additional
value. Conversely, in scenarios where 𝑞 is limited to 12 hours, the
model generates inferior solutions characterized by reduced objective
values and a reduced number of meetings realized during the campaign.
As with the previous analysis, the impact of increasing 𝑞 diminishes as
the number of travelers increases. This observation can be attributed
to the real-life travel times used to construct our instances, making it
infeasible to visit more cities when the value of 𝑝 is set at 4. Finally, the
impact of decreasing q also diminishes with a longer planning horizon
(see m2c20t5) as each traveler benefits from a greater time allocation
within each period.

7.5. Impact of the constraint limiting the repeated visits

In the original mRSP, we impose a restriction that prevents repeated
visits by the same representative to a same city in the upcoming 𝜉 days.
This constraint avoids revisiting highly rewarded cities too frequently.
To assess the impact of this restriction, we formulated an alternative
model in which we excluded Constraints (6). The comparison is made
on instance m2c20t5 where with 5 time periods and 𝜉 = 2, the analysis
can be made. The results are presented in Fig. 13. Without such con-
straints, the solution indicates 28 meetings out of which 8 are repeated
visits concerning 6 cities. In particular, 2 cities have two repeated visits
one for each representative which means unnecessary activities given
the horizon of 5 days. Adding these constraints, the meeting number

decreases to 23 out of which 4 were repeated visits concerning 4 cities.
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Fig. 11. Impact of varying parameter p values.
Fig. 12. Impact of varying parameter q values.
Fig. 13. Impact of constraints (6) on model’s performance.

As expected, relaxing Constraints (6) allows the repetition of visits
to cities with higher rewards more than once, consequently achieving
higher objective function values.

8. Conclusion

In this paper, we study an innovative variant of the roaming sales-
man problem (RSP), referred to as multiple RSP (mRSP), involving
many representatives whose itineraries are linked by budget constraint,
and controlled repeated visits to cities. mRSP is a computationally chal-
lenging NP-Hard problem characterized by time-dependent rewards
and different daily tour types (closed, open, and no tour routes), and
that finds application in numerous real-world scenarios.

We introduce 48 new benchmark instances for the problem in-
volving up to 5 representatives, 50 cities, and 10 days. To address
the issue of large-sized instances, we develop a hyper-heuristic called
adaptive granular variable neighborhood search (AGVNS) that selects
low-level neighborhood operators adaptively and thoroughly explores
the solution space. Our approach incorporates a learning mechanism
and complements it with granular neighborhood operators to facili-
tate more efficient progress in the search trajectory. Furthermore, to
intensify the search, we perturb the current solution only when the
local search engine fails to improve it. To evaluate the effectiveness
of our AGVNS, we conducted a comprehensive validation analysis.
Our computational study demonstrates the potential of AGVNS as an
17
efficient algorithm in time-constrained campaign planning scenarios.
AGVNS consistently produced high-quality solutions, often outperform-
ing commercial solvers and a matheuristic adapted from the literature
(MFDOR), while achieving this within remarkably short computational
times. For campaign planners working under tight schedules and bud-
get constraints, AGVNS can significantly enhance the efficiency of route
and meeting plan optimization. Finally, we want to clarify that our
paper primarily focuses on the operational aspects of planning election
campaigns. While we do acknowledge the potential ethical consider-
ations and concerns regarding the democratic process, we would like
to emphasize that our paper does not advocate or endorse any specific
political strategies or intentions. Therefore, it is essential to distinguish
between the operational aspects of campaign planning, which our paper
focuses on, and the broader political considerations, which are beyond
the scope of our study.
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