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Abstract

Robust inference for outliers to statistics and adversarial samples in deep learning is not

only ’a new tune of an old song’, yet also the current hot research topic in both statistics

and artificial intelligence. Asymmetric distributions, including heavy-tailed distributions in

regression models and data analysis have been challenging and are required to take into

account the robustness of methods. Bayesian inference or Bayesian analysis, as one of

the most popular statistics methods, has been widely used in all research fields, including

science, social science and engineering recently. Many regression models face challenging

issues in high-dimensional and computational problems, which has attracted substantial re-

search in the literature recent years. Therefore, this thesis aims to develop novel Bayesian

methods in parametric statistical inference to address these issues via three attempts. The

first attempt is to employ Bayesian variable selection with quantile-dependent prior for

the fractional polynomial (FP) model, with a medical application in the analysis of blood

pressure (BP) amongst United States adults. Whilst the FPs act as a concise and accu-

rate formula for examining smooth relationships between BP measures and risk factors of

cardiovascular disease, conditional quantile functions with FPs provide comprehensive re-

lationships, including median and extremely high BP measures. The second attempt is to

propose a new asymmetric Huberised loss function taking account of robustness, asymme-

try and heavy tails. This motivates the development of robust Bayesian regularisation for

a high-dimensional setting. The former has its corresponding probability distribution with

the normal scale-mixture property. This leads to a by-product of the research, that is, a

new Bayesian Huberised regularised quantile regression, which is derived by adopting the

Markov chain Monte Carlo (MCMC) method. Finally, the third attempt is to revisit the

work of the previous attempt addressing the computational issue. The MCMC method is

a popular technique for full Bayesian probabilistic models, however, it faces the high com-

putational cost when the amount of data increases. Alternative to the MCMC method,

variational inference is the approximate-based technique to tackle the computational is-

sue, and is utilised to propose variational Bayesian Huberised Lasso quantile regression and

variational Bayesian Huberised adaptive Lasso quantile regression for high-dimensional and

computational problems.
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Chapter 1

Background and Motivation

Robust statistics are amongst the most fundamental parts in parametric and non-parametric

estimations. They address the problem of making estimates that are insensitive to small

changes in the basic assumptions of the statistical models employed, and they take into ac-

count that parametric models are at best only approximations to reality. The term robust

defines the strength of a model, tests and methodologies according to the user’s require-

ments, whilst reducing the influence of small amount of unusual observations.

The earliest robust-statistics-based inference was studied by Peter Jost Huber in 1964, pro-

vided in the paper of Huber (1964) amongst some seminal papers, including Tukey (1960),

and Hampel (1968). They laid the foundations of modern robust statistics. For over half

century, a large and rich literature on robust statistics has been developed on theories and

applications, and it is difficult to summarise in the length of a thesis. However, there are

book-length expositions, which provided comprehensive information about robust inference,

theories, computational methods and applications. They can be found in Huber (1981) (and

its second edition, Huber and Ronchetti (2009)), Hampel et al. (1986), and Maronna et al.

(2006). Besides, the recent comprehensive review of robust statistics, provided in Gel-

man and Vehtari (2021), covered several works in statistics, econometrics, psychometrics,

epidemiology, and computer science for causal inference, Bayesian inference, big data, reg-

ularisation, and machine learning, amongst others. The field is currently ongoing, and has

penetrated mainstream statistics.

Title of this thesis employed the term ’Robust’, which focused on developing models that

are insensitive to outliers in data, whilst considering the potential impact of asymmetry

and heavy tails in data. The title also employed the terms ’Regression’, ’Regularisation’

and ’Fast Computation’ to explore several research studies under a framework of regression
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analysis, regularisation and fast computational methods. Particularly, there are research

gaps in the framework of quantile regression analysis, thus, the term ’Asymmetric Heavy-

Tailed Loss Function’. The research scopes of this thesis are given in details in this chapter.

First of all, to explain the concept behind the term ’Loss Function’ of the title of this thesis,

we begin with a brief overview of some basic concepts of robust statistics, and how they

motivate the use of regression analysis.

1.1 Loss Functions

A loss function, also known as a cost function or an error function, is the fundamental part of

statistics and machine learning. At its core, a loss function is a simple method of evaluating

how well an algorithm models a dataset. In most optimisation problems, one loss function

or a combination of different loss functions is treated as an objective function that aims

to be minimised. In statistics, a loss function is typically used for a parameter estimation,

which is the difference between the estimated value and true value. There are several types

of loss functions that are suitable for different applications. We list some loss functions that

are closely related to the novel loss function to be presented later in this thesis.

1.1.1 Huber Loss

The Huber loss function is commonly used for robust statistics and defined as

LHuber
δ (x) =


1
2x

2, |x| ≤ δ

δ
(
|x| − δ

2

)
|x| > δ,

(1.1)

where δ > 0 is a robustness parameter and practically set as δ = 1.345 (Huber (1964)). The

behaviour of this loss function is quadratic for small values of x and becomes linear when

x exceeds δ in magnitude. Clearly, the Huber loss function is not twice-differentiable that

makes it non-smooth. Although Huber (1964) developed the M-estimation method that

requires a first derivative only, other optimisation algorithms requiring a second derivative

are infeasible for the Huber loss function. For Bayesian inference, Li et al. (2020) stated

in Theorem 1 of their paper that the Huber likelihood function does not meet necessary

conditions of the normal scale-mixture property. In other words, derivatives of the density

function are not continuous in some degree, including the second derivative. As a result,

it cannot be expressed as a scale mixture of normal distributions. Thus, the Huber loss
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function has the limited scope in applications.

1.1.2 Generalised Huber Losses

Li et al. (2020) proposed two generalised Huber loss functions, which are Soft Huber and

Non-convex Huber loss functions. They are attractive alternatives to the Huber loss function

because they are analogous to the pseudo Huber loss function (Charbonnier et al. (1997))

and have the normal scale-mixture property resulting in a broader range of frequentist and

Bayesian applications. The Soft Huber loss function can be defined as

LSH
ζ1,ζ2(x) =

√
ζ1ζ2

(√
1 +

x2

ζ2
− 1

)
, (1.2)

and the Non-convex Huber loss function as

LNH
ζ1,ζ2(x) =

√
ζ1ζ2

(√
1 +
|x|
ζ2
− 1

)
, (1.3)

where ζ1, ζ2 > 0 are non-negative hyper-parameters. Here, the Soft Huber loss bridges the

`1 (absolute) loss and the `2 (squared) loss. On the other hand, the Non-convex Huber loss

bridges the `1/2 loss and the `1 loss. By letting η =
√
ζ1ζ2 and ρ2 =

√
ζ2/ζ1, the Soft Huber

loss function becomes the hyperbolic loss function, that is,

LHyp
η,ρ2

(x) =

√
η

(
η +

x2

ρ2

)
− η, (1.4)

where η > 0 is a robustness parameter and ρ2 > 0 is a scale parameter. Park and Casella

(2008) used this hyperbolic loss function to formulate the Bayesian Huberised Lasso, which

is different from that of Kawakami and Hashimoto (2023) even though they share the same

name. In case of a conditional prior, the former used σ of a model as the scale parameter,

whilst the latter used ρ2 of the hyperbolic loss function as the scale parameter, which has

proven to be more robust to outliers than that of the former.

1.1.3 Quantile Loss

Asymmetry is an important feature in modelling and has useful properties over symmetry.

It can provide information on the entire distribution of a dataset, specifically when it is

skewed. The quantile loss function, introduced by Koenker and Bassett (1978), is defined
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as

LQuantile
τ (x) = x(τ − I(x < 0)), (1.5)

where τ ∈ (0, 1) is the quantile level and I(x < 0) is the indicator function representing

the value 1 if x belongs to the set (−∞, 0), and the value 0 otherwise. Setting τ = 0.5, it

results in the absolute loss function as a special case. The quantile loss function is commonly

adopted as a minimisation problem for quantile regression problems.

1.2 Quantile Regression

Regression analysis is a technique that quantifies the relationship between a response vari-

able and predictors. Quantile regression, introduced by Koenker and Bassett (1978), is a

method to estimate the quantiles of a conditional distribution of a response variable and as

such, it permits a more complete portrayal of the relationship between the response variable

and predictors.

Given a dataset, {xi, yi}ni=1 and fixed τ , the τ th quantile regression model is represented as

yi = xiβ(τ) + ε(τ)i, i = 1, . . . , n, (1.6)

where yi is the response variable, xi is the vector of predictors, β(τ) is the vector of unknown

parameters of interest, and ε(τ) is the model error term for the τ th quantile. For the sake

of notation simplification, we omit τ from these parameters.

We wish to estimate the unknown parameters, β as β̂ for each τ th quantile, which can be

done by minimising the quantile loss function over β:

arg min
β

n∑
i=1

LQuantile
τ (yi − xiβ), (1.7)

where LQuantile
τ (·) is the quantile loss function that is defined in Equation (1.5).

Minimising Equation (1.7) is the same as maximising a likelihood function. An asymmetric

Laplace distribution (ALD) is employed, which is the common choice for the quantile regres-

sion analysis (Yu and Moyeed (2001), and Yu et al. (2003)). We assume that εi ∼ AL(0, σ, τ),

i = 1, . . . , n, where the AL(·) is the ALD with its density

fAL(εi) =
τ(1− τ)

σ
exp

{
−L

Quantile
τ (εi)

σ

}
. (1.8)
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Before presenting the scale mixture of normal representation of the ALD, we briefly describe

the general concept of scale mixture of normals. Suppose that a random variable X has a

probability density function f(x|Θ) and unknown parameter Θ that satisfies

f(x|Θ) =

∫
φ(x|µ, σ)π(σ|Θ) dσ, (1.9)

where φ(·) is the mixing distribution and π(·) is some density function that is defined on

(0,∞), then X or its f(x|Θ) is a scale mixture of normal distribution. It has many applica-

tions in statistics, finance and particularly in Bayesian inference. Probability distribution

with a scale mixture of normal expression could be grouped into two categories: symmetric

probability distributions (Andrews and Mallows (1974), and West (1987)) and asymmetric

probability distributions (Reed and Yu (2009), da Silva Ferreira et al. (2011), and Kozumi

and Kobayashi (2011)).

Returning to the ALD, by using the identity of Andrews and Mallows (1974),

exp(−|ab|) =

∫ ∞
0

a√
2πv

exp

{
−1

2
(a2v + b2v−1)

}
dv,

for any a, b > 0, letting a = 1/
√

2σ & b = ε/
√

2σ and multiplying a factor of exp{−(2τ −

1)ε/2σ}, to express the probability density function of the ALD errors as its scale mixture

of normal representation,

fAL(εi) =

∫ ∞
0

1√
4πσ3vi

exp

{
−(εi − (1− 2τ)vi)

2

4σvi
− τ(1− τ)vi

σ

}
dvi, i = 1, . . . , n,

as proposed by Reed and Yu (2009), and Kozumi and Kobayashi (2011). This representation

can be utilised to facilitate Gibbs sampling algorithms (Kozubowski and Podgórski (2001),

Geraci and Bottai (2007), Kozumi and Kobayashi (2011), and Chen et al. (2013), amongst

others).

1.3 Regularised Quantile Regression

We are interested in selecting a subset of important predictors, which have adequate ex-

planatory and predictive capabilities. One of the common procedures for simultaneously

facilitating the parameter estimation and variable selection is to impose a penalty function

on the likelihood to arrive at the penalised loss function. Regularisation has been shown

to be effective in improving the predictive accuracy (Li and Zhu (2008), and Wu and Liu
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(2009)). The Lasso, adaptive Lasso and Elastic Net estimates are all regularised estimates

and the differences amongst them are only at their penalty terms. Specifically, they are all

solutions to the following form of minimisation problem for regularised quantile regression

arg min
β

n∑
i=1

LQuantile
τ (yi − xiβ) + λ1g1(β) + λ2g2(β), (1.10)

for some λ1, λ2 ≥ 0 and penalty functions g1(·) and g2(·). The Lasso corresponds to λ1 > 0,

λ2 = 0, g1(β) = ‖β‖1 and g2(β) = 0 (Tibshirani (1996)). The adaptive Lasso corresponds

to λ1 = λ1j > 0, j = 1, . . . , k, λ2 = 0, g1(β) = ‖β‖1 and g2(β) = 0 (Zou (2006)). The

Elastic Net corresponds to λ1 > 0, λ2 > 0, g1(β) = ‖β‖1 and g2(β) = ‖β‖22 (Zou and Hastie

(2005)).

Letting τ = 0.5, the first term of Equation (1.10) reduces to
∑n

i=1|yi − xiβ| and the cor-

responding method is called the least absolute deviation (LAD) regression, which is known

to be robust against outliers in response variables. However, the LAD regression might

underestimate regression coefficients for non-outlying observations.

1.4 Bayesian Regularisation

Bayesian inference is one of the most popular approaches for the regression analysis. It

makes inference for an entire posterior distribution of a parameter of interest, as well as

incorporation of parameter uncertainty and prior information about data. This encourages

the use of Bayesian analysis over standard frequentist approaches. We will present the

existing Bayesian regularisation priors for regularised regression, such as regularised quantile

regression.

The Bayesian Lasso, proposed by Park and Casella (2008), is defined as

π(β|λ) =

k∏
j=1

λ

2
exp {−λ|βj |} , (1.11)

where λ is the penalisation parameter.

The Bayesian adaptive Lasso, proposed by Sun et al. (2010), is defined as

π(β|λ) =
k∏
j=1

λj
2

exp {−λj |βj |} , (1.12)

where λj is the penalisation parameter being assigned to each regression coefficient. What
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makes the Bayesian adaptive Lasso advantageous over the Bayesian Lasso is that the adap-

tive Lasso penalty allows coefficient-specific penalties. Also, Figure 1 of Park and Casella

(2008) showed that the coefficient paths of the Bayesian Lasso are a compromise between

the coefficient paths of the Lasso and ridge regression. On the other hand, intuitively, Sun

et al. (2010) suggested that the coefficient paths of the Bayesian adaptive Lasso approaches

the log penalty by iteratively applying the adaptive Lasso penalty. Figure 1 of Sun et al.

(2010) clearly outlined the difference between the Bayesian Lasso and the Bayesian adaptive

Lasso.

Note that the Bayesian adaptive Lasso is originally proposed by Griffin and Brown (2007),

and the main difference between the work of Griffin and Brown (2007) and Sun et al. (2010)

is that the latter studied the fully Bayesian approach for the adaptive Lasso penalty in

contrast to the former.

The Bayesian Elastic Net, proposed by Li et al. (2010), is defined as

π(β|λ3, λ4) =
k∏
j=1

C
(
λ̃3 λ4

) λ3

2
exp

{
−λ3|βj | − λ4β

2
j

}
, (1.13)

where C
(
λ̃3 λ4

)
= Γ−1

(
1/2, λ̃3

)(
λ̃3

)−1/2
exp

{
−λ̃3

}
is the normalising constant and λ̃3 =

λ2
3/(4λ4). The computations of the normalising constant is provided in Appendix B of Li

et al. (2010).

In contrast to the Lasso and adaptive Lasso penalties, the Elastic Net penalty is a flexible

regularisation that uses a mixture of the Lasso and ridge penalties. It addresses three

inherent issues of the Lasso method, as stated in Zou and Hastie (2005): (1) the Lasso

method cannot select more regression coefficients than the sample size due to the nature of

the convex optimisation in case of frequentist approach; (2) the Lasso method tends to select

only one regression coefficient from a group, whilst disregarding others when there is some

group structure amongst the regression coefficients; and (3) the Lasso method performs

poorly in case of highly correlated regression coefficients.

We have presented the quantile regression analysis and Bayesian regularisation so far, and

we need the computational methods to fit such models. The Gibbs sampling algorithm, as

mentioned earlier, is one of the well-known Markov chain Monte Carlo (MCMC) methods

in Bayesian analysis.
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1.5 Markov Chain Monte Carlo

MCMC methods are powerful techniques for sampling from probability distributions, us-

ing Markov chains to approximate the posterior distribution of a parameter of interest.

Typically, they are used in data modelling for different problems for Bayesian inference

and numerical integration. One often deals with high-dimensional integrals or multivariate

probability distributions where Bayesian analysis requires integrating over the posterior dis-

tribution of parameters of interest given the data. It is well known that Bayesian inference

regarding unknown quantities is entirely based on their probabilistic description.

Let y be a vector of n independently and identically distributed observations and Θ a vector

including latent variables and the parameters. We compute the posterior distribution by

Bayes’ rule,

p(Θ|y) =
p(y,Θ)

p(y)
=
p(y|Θ)p(Θ)

p(y)
, (1.14)

where p(y,Θ) is the joint posterior density of parameters and data, p(y|Θ) is the likelihood of

data given parameters, p(Θ) is the prior density of parameters, and p(y) =
∫
p(y|Θ)p(Θ)dΘ

is the marginal likelihood or the normalising constant.

However, for the majority of regression models, including quantile regression, it is analyti-

cally infeasible to compute these integrals directly. This is when the MCMC methods are

considered by either making inference about parameters of interest or making predictions

from sampling. Fundamentally, they consist of Monte Carlo integration using Markov chain

(Gilks et al. (1995)). Their basic concept will be described in the following subsections.

1.5.1 Monte Carlo Integration

Monte Carlo integration uses importance sampling to obtain the approximation of an inte-

gral. As in Gilks et al. (1995) and Hastings (1970), suppose that we sample x1, x2, . . . , xN

from the proposed distribution f(x) and we desire to compute

θ = E[φ(x)] =

∫ ∞
−∞

φ(x)f(x)dx, (1.15)

where θ is a parameter of interest, f(x) is a probability density function and φ(x) is neither

close to a constant nor has a large variance. The integral in Equation (1.15) can be rewritten
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as

θg = E[ψ(x)] =

∫ ∞
−∞

ψ(x)g(x)dx, (1.16)

where ψ(x) = φ(x)f(x)/g(x), and g(x) is some probability density function. Then we

can approximate the theoretical mean (Equation (1.16)) by sample mean to obtain the

approximation,

θ̂g = E[ψ(x)] ≈ 1

N

N∑
i=1

ψ(xi).

If g(x) is appropriately chosen then the importance function ψ(x) would be as close to a

constant as possible. This results in the variance of θ̂g being significantly lower than that

of θ̂ without importance sampling.

If {xi}Ni=1 are assumed to be independent random variables then it follows that the random

variables are independently and identically distributed. Hence, by using the Strong Law of

Large Numbers, the accuracy of approximation would increase, in other words,

1

N

N∑
i=1

ψ(xi)→ θ, as N →∞.

However, in most cases, the samples being drawn from a density function are often not

independent, since they may be correlated. To remedy this issue, Markov chain can be used

to assume the stationary distribution (Gilks et al. (1995)).

1.5.2 Markov Chain

Suppose that we sample the sequence of random variables x0, x1, . . . from the distribution

π(xr+1|xr) such that next sample xr+1 depends only on the current state xr, whilst it does

not depend on the further history of sequence x0, x1, . . . , xr−1. Hence, this stochastic process

is time-homogeneous. This type of sequence is called a Markov chain and π(·|·) is called the

transition kernel of the chain.

Therefore, the MCMC methods aim to construct generated chains that are progressively

more likely realisations of the distribution of interest. We will briefly describe some commonly-

used MCMC methods, including the Metropolis-Hastings algorithm (Hastings (1970)) and

its special case, the Gibbs sampling algorithm (Geman and Geman (1984)).
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1.5.3 Metropolis-Hastings Algorithm

The Metropolis algorithm was first introduced by Metropolis et al. (1953) then it was gener-

alised to the Metropolis-Hastings algorithm by Hastings (1970). It is made into mainstream

statistics and engineering, and all the other MCMC methods, including the Gibbs sampling

algorithm, stem from the Metropolis-Hastings algorithm.

The Metropolis-Hastings algorithm is a random walk that uses an acceptance-rejection rule

to converge to the target distribution. The acceptance-rejection rule is defined as

ω
(

Θ(r+1),Θ(r)
)

= min

(
1,
p
(
Θ(r+1)|y

)
g
(
Θ(r)|Θ(r+1),y

)
p
(
Θ(r)|y

)
g
(
Θ(r+1)|Θ(r),y

) ) ,
where g

(
Θ(r)|Θ(r+1),y

)
is the proposal distribution at state r and p

(
Θ(r+1)|y

)
is the pos-

terior distribution at state r + 1, as specified in Equation (1.14). Because the normalising

constant does not depend on the parameters, we have p
(
Θ(r+1)|y

)
∝ p

(
y|Θ(r+1)

)
p (Θ).

The Metropolis-Hastings algorithm is iterative based on the acceptance-rejection rule above

where generated samples converge to a target distribution. It is simple to implement because

the computations only depend on the posterior and proposal distributions without requiring

the normalising constant. Therefore, the marginal distribution does not need to be known,

and no factorisation or integration of the posterior distribution is required.

1.5.4 Gibbs Sampling Algorithm

The Gibbs sampling algorithm, proposed by Geman and Geman (1984), is a special case

of the Metropolis-Hastings algorithm wherein proposals are always accepted with a prob-

ability of 1. The idea of the Gibbs sampling algorithm is to draw a sequence of samples

from a multivariate probability distribution. It transfers from multivariate sampling to one-

dimensional sampling because it assumes independence amongst the samples (Geman and

Geman (1984)). These samples approximate the marginal distribution of one of the param-

eters, or some subset of the parameters. In short, the algorithm generates a sample from

the univariate distribution of each parameter in turn, conditional on the current values of

the other variables.

Suppose we want to obtain N samples, Θ(0) =
(
θ

(0)
1 , . . . , θ

(0)
N

)
, from a joint posterior distri-

bution, p(Θ), as the initial samples. At state r + 1, we need to draw a new set of samples,

Θ(r+1) =
(
θ

(r+1)
1 , . . . , θ

(r+1)
N

)
. To sample each component, θ

(r+1)
l (l = 1, . . . , N). we update
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it according to the univariate distribution specified by p
(
θ

(r+1)
l

∣∣θ(r+1)
1 , . . . , θ

(r+1)
l−1 , θ

(r)
1 , . . . ,

θ
(r)
N

)
. We use the (r + 1)th component depending on the lth samples. This follows from the

basic idea of the Markov chain. Finally, we iterate the procedure until the set of sample,

Θ(r+1), reaches the target distribution.

1.6 Variational Inference

Variational inference (VI) is useful for Bayesian inference and a method to deal with the

approximation of probability densities. Generally, this technique exchanges sampling, as in

MCMC procedures, for optimisation. By choosing a flexible family of approximate densities,

we search for a member of this family, which minimises some optimal criterion, for example,

the Kulback-Leibner (KL) divergence. The variational Bayesian (VB) method is useful for

approximating intractable or difficult-to-compute posterior distribution with some optimal

density. Compared to MCMC, the VB method is better in a fast computational problem,

whilst achieving a comparable prediction (Blei et al. (2017)). We first start by describing

the well-known mean-field VI for approximate posterior densities that can be normalised in

closed form belonging to some conjugate family of densities.

1.6.1 Mean-field Variational Inference

The basic concepts behind the VB method can be easily followed in Blei et al. (2017) and

Ormerod and Wand (2010). Several examples are presented in the Bishop book (Bishop and

Nasrabadi (2006)). The log marginal data distribution, also known as evidence integral, is

denoted by log p(y). Evidence integrals are often unavailable in closed form and requires

exponential time to be evaluated. To avoid calculating the evidence integrals, one searches

for a lower bound, which is known as evidence lower bound (ELBO) and will be denoted as

LB(q).

Jensen’s inequality (Jensen (1906)) states that if a function f is concave then we have

f(E[x]) ≥ E[f(x)].
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We use this Jensen’s inequality on the log marginal data distribution,

log p(y) = log

∫
Θ
p(y,Θ)dΘ

= log

∫
Θ
p(y,Θ)

q(Θ)

q(Θ)
dΘ (1.17)

= log

(
Eq(Θ)

[
p(y,Θ)

q(Θ)

])
≥ Eq(Θ) [log p(y,Θ)]− Eq(Θ) [log q(Θ)]

= LB(q). (1.18)

This is the ELBO. Note that the term −Eq(Θ) [log q(Θ)] is the entropy, which is another

quantity from the theory. The ELBO in Equation (1.18) has the relation with the KL

divergence. By using Bayes’ rule (Equation (1.14)), we compute the KL divergence as

KL(q(Θ)‖p(y,Θ)) = Eq(Θ)

[
log

q(Θ)

p(Θ|y)

]
= Eq(Θ) [log q(Θ)]− Eq(Θ) [log p(Θ|y)]

= Eq(Θ) [log q(Θ)]− Eq(Θ) [log p(y,Θ)] + Eq(Θ) [log p(y)]

= −
(
Eq(Θ) [log p(y,Θ)]− Eq(Θ) [log q(Θ)]

)
+ log p(y)

= −LB(q) + log p(y),

since log p(y) does not depend on q(Θ). Here, KL(q‖p) is the KL divergence between the

approximate distribution on the latent variables and the posterior distribution of the latent

variables.

Thus, minimising the KL divergence is the same as maximising the lower bound. In other

words,

arg min
q

KL(q‖p) ' arg max
q

LB(q).

Also, the KL divergence is always positive that is, KL(q‖p) ≥ 0 with equality if and only

if p(Θ|y) = q(Θ) (Kullback and Leibler (1951)). Generally, it is difficult to obtain this

posterior distribution, thus, the approach is to choose a family of tractable densities. We

make the following assumption,

q(Θ) =
N∏
l

ql(θl), (1.19)
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where a partition of the Θ into N disjoint groups is denoted as θl.

The central idea is to maximise each factor (blocks of θ’s) of q(Θ) in turn. We keep ql 6=h

fixed and maximise LB(q). Note that:

LB(q) =

∫
Θ

N∏
l

ql(θl) log p(y,Θ)dΘ−
∫

Θ

N∏
l

ql(θl) log

(
N∏
l

ql(θl)

)
dΘ

=

∫
Θ

log p(y,Θ)
N∏
l

ql(θl)dΘ−
∫

Θ

N∏
l

ql(θl)
N∑
l

log ql(θl)dΘ

=

∫
θh

qh(θh)

∫ log p(y,Θ)
∏
l 6=h

ql(θl)

 dθh −
∫
θh

qh(θh) log qh(θh)dθh + const

=

∫
θh

qh(θh) log p̃(y, θh)dθh −
∫
θh

qh(θh) log qh(θh)dθh + const, (1.20)

where p̃(y, θh) = El 6=h[log p(y,Θ)] and El 6=h[·] is the expectation evaluated for ql 6=h(θl 6=h) =∏
l 6=h ql(θl). Note that LB(q) depends on the variational parameters.

Because Equation (1.20) is equal to −KL(q‖p), maximising this equation is equivalent to

minimising KL. Thus, the optimal solution is

q∗(θh) = exp {El 6=h[log p(y,Θ)]} . (1.21)

Because all the latent variables are assumed to be independent in the family of tractable

densities, the expectations on the right-hand side do not involve the hth variational factor

qh(θh). Equation (1.21) implies that El 6=h[·] is not associated with the hth variational fac-

tor qh(θh). The optimal variational density q∗(θh) can be achieved when q∗(θl 6=h) on the

right-hand side are the optimal choices. This results in the optimisation problem and the

algorithm used to solve this problem is coordinate ascent VI (CAVI). The CAVI algorithm,

proposed by Bishop and Nasrabadi (2006), iterates between updating q∗(θh) via Equation

(1.21), whilst keeping other approximate densities fixed, and updating others, whilst keeping

q∗(θh) fixed. After the algorithm converges, we take the optimal variational density q∗(θh)

as an optimal estimate of parameter θh.

Moreover, q∗(θh) depends on the full conditional distributions, as usually denoted in the

MCMC literature (Casella and George (1992)). Therefore, there is a natural link with the

Gibbs sampling algorithm. Even so, the proposed approach leads to tractable solutions

involving only local operations.
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1.6.2 Laplace Variational Inference

Often, the mean-field VI approach is infeasible when a desired approximate density does not

belong to the family of tractable densities, or in other words, they are not conjugate to any

available closed-form distributions. Laplace VI method is alternatively proposed by Wang

and Blei (2013) that embeds Laplace approximation (Tierney et al. (1989), and MacKay

(1992)) within a variational optimisation algorithm.

Suppose that we have a variable amongst the parameter vector Θ, which is non-conjugate,

denoted as θt. We arrive at the following coordinate update,

qt(θt) = exp {El 6=t[log p(y,Θ)] + const}

∝ exp {χ(θt)El 6=t[ξ(Θl 6=t)] + log p(θt)} , (1.22)

where χ(θt) is a function of θt that are to be updated, ξ(Θl 6=t) is a function of the remaining

components of Θ except the component θt, and p(θt) is the prior density of θt. Define the

function h(θt) to contain the terms inside the exponent of the update (Equation (1.22)),

h(θt) = χ(θt)El 6=t[ξ(Θl 6=t)] + log p(θt).

The terms of h(θt) come from the model and involve ql 6=t(Θl 6=t) or θt. Note that we can

compute El 6=t[ξ(Θl 6=t)] via the mean VI approach. Since qt(θt) ∝ exp {h(θt)} cannot be

normalised in closed form, instead, we approximate the coordinate update by a second-

order Taylor approximation of h(θt) around its maximum, θ̂t. This follows the same logic

as from the Laplace approximation. The Taylor approximation for h(θt) around θ̂t is

h(θt) ≈ h(θ̂t) +∇h(θ̂t)(θt − θ̂t) +
1

2
(θt − θ̂t)2∇2h(θ̂t), (1.23)

where ∇h(θ̂t) and ∇2h(θ̂t) are the first and second derivatives estimated at θ̂t, respectively.

Notice that θ̂t is the maximum value of θt and its gradient ∇h(η̂) is 0. This implies that

the term ∇h(θ̂t)(θt − θ̂t) vanishes. Then Equation (1.23) is simplified to

qt(θt) = exp

{
h(θ̂t) +

1

2
(θt − θ̂t)2∇2h(θ̂t)

}
.

Therefore, the approximate update for qt(θt) is

q∗(θt) ≈ N
(
θ̂t,−∇2h(θ̂t)

−1
)
.
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Observe that its normal form stems from Taylor approximation so, we do not assume the

normality. During the CAVI algorithm, we require the computation of some expectation of

θt. Due to several great properties of a normal distribution, we can compute them directly,

for example, E[θt] = θ̂t or Var(θt) = −∇2h(θ̂t)
−1. Otherwise we may take a second-order

Taylor approximation around some difficult-to-compute function g(θt) given the optimal

update q∗(θt) for computing E[g(θt)].

1.7 Thesis Motivation

Collectively, the introductory chapter has presented different loss functions, quantile regres-

sion, Bayesian regularisation and Bayesian methods. As Bayesian analysis is capable of

full probabilistic uncertainty quantification, this thesis focuses on the development of novel

Bayesian methods in parametric statistical inference tackling different issues that are as

follows.

Non-linearity is prominent when quantifying the relationship between a response variable

and predictors, particularly in medical applications. Quantile regression is based on the

conditional quantile function that permits a more complete portrayal of the relationship as

well as is being robust to outliers. This led to tackling the first issue in this thesis, namely

non-linearity in relationships, whilst taking into account of robustness, by introducing the

quantile-dependent regularised prior to the non-linear model in facilitating the variable

selection method for a specific medical application.

However, quantile regression amongst several regression models faces challenging issues in a

high-dimensional problem and at the same time, asymmetric distributions, including heavy-

tailed distributions are difficult to work with and are required to take into account the

robustness of methods. Whilst quantile regression enjoys the benefit of robustness, it has

different modelling aims from robust regression. Thus, this thesis tackles the second issue

for a high-dimensional problem by proposing the novel loss function having properties of

asymmetry, heavy-tailedness and robustness, and Bayesian robust regularisation. This led

to a new variant of Bayesian regularised quantile regression model using the conventional

method. Yet, when the amount of data increases, the conventional method becomes compu-

tationally burdensome and the alternative approach is needed. This thesis further tackles

the third issue for a computational problem by replacing the conventional method with the

approximate-based technique that involves optimisation problems.
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1.8 Thesis Outline

The outline of the thesis is as follows. Chapter 2 proposes a Bayesian variable selection with

parametric non-linear quantile regression model by employing Bayesian variable selection

with quantile-dependent prior for the fractional polynomial (FP) model. We explore the ap-

plication in the analysis of blood pressure (BP) amongst United Status (US) adults. Higher

BP results in hypertension, which is a highly prevalent chronic medical condition and a

strong risk factor for cardiovascular disease (CVD). The FPs act as a concise and accurate

formula for examining the smooth relationship between response variable and predictors.

Since modelling conditional mean functions observes the partial view of a distribution of

response variable, conditional quantile functions with FPs provide comprehensive relation-

ships between the response variable and its predictors, such as median and extremely high

BP measures. Then modelling extremely high BP could explore CVD insight deeply and

precisely. The aim of this chapter is to examine a non-linear relationship between BP mea-

sures and their risk factors across median and upper quantile levels using data extracted

from the 2007-2008 National Health and Nutrition Examination Survey (NHANES). The

comparative studies are conducted with existing methods and the data analysis is provided.

Chapter 3 proposes a new Bayesian Huberised regularisation and its extension to quantile

regression taking account of robustness, asymmetry and heavy tails in a high-dimensional

setting. Robust regression has recently received a great amount of attention in the literature,

particularly for taking asymmetricity into account simultaneously and for high-dimensional

analysis. The literature review suggests that the majority of research on the topics falls in

frequentist approaches, which are not capable of full probabilistic uncertainty quantification.

This motivates the development of robust Bayesian regularisation. Firstly, the chapter pro-

poses a new Huberised-type of asymmetric loss function and its corresponding probability

distribution, which has the scale mixture of normal representation. Secondly, we introduce

a new Bayesian Huberised regularisation for robust regression. Finally, a by-product of the

research is that a new Bayesian Huberised regularised quantile regression is also derived.

We further study the theoretical properties. We compare the proposed method with ex-

isting regularised methods in recent literature under this topic, via extensive simulation

experiments. Three real data examples are also given.

Chapter 4 proposes a novel VB regularisation. It follows from Chapter 3 that MCMC meth-

ods are common techniques for Bayesian probabilistic models where posterior distributions

cannot be computed directly. However, they are not desirable due to extremely high com-
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putational cost when the amount of data information increases. The alternative approach is

needed. This chapter builds upon Chapter 3 by replacing its MCMC method with the VB

method based on KL divergence, to propose VB Huberised Lasso quantile regression and VB

Huberised adaptive Lasso quantile regression for a fast-computational and high-dimensional

problem. Both mean-field VI and Laplace VI methods are used to compute approximate

densities in place of exact posterior distributions. The CAVI algorithms with their ELBO

are derived. The computational performance is compared between the proposed VB algo-

rithms and the MCMC method from Chapter 3 via a wide variety of simulation studies,

and a real data example is also provided.

And finally, Chapter 5 provides a brief of the thesis and outlines some future research

directions along the research topics in the thesis.

Appendix A contains the mathematical proofs of the quantile property of the probability

density of asymmetric Huberised loss function, the posterior propriety and unimodality of

the joint posterior density for Bayesian Huberised regularisation in Chapter 3.

Appendix B provides the derivation of the full Gibbs sampling algorithms for the given

hierarchical models of Bayesian Huberised regularised quantile regression in Chapter 3.

Appendix C provides the derivation of the ELBO required for the VB algorithms in Chapter

4.

Appendix D contains the figures for the data analysis in Chapter 2 and those for the simu-

lation studies in Chapters 3-4.



Chapter 2

Bayesian Fractional Polynomial

Approach to Quantile Regression

and Variable Selection

Polynomial regression quantifies the non-linear relationship between the response variable

and predictors parametrically. FP regression is the extension of polynomial regression to

include the fractional orders, which allows for the smoother relationship. Modelling con-

ditional quantile function observes the full view of a distribution of a response variable,

providing comprehensive relationships. This chapter presents a Bayesian variable selection

with parametric non-linear quantile regression model with application to the analysis of BP

amongst United States (US) adults. The comparative studies between the proposed method

and existing methods show that the variable selection signified the importance of the FP

model in the Bayesian quantile regression model.

2.1 Introduction

Over the past three decades, the number of adults aged 30-79 with hypertension has in-

creased from 648 million to 1.278 billion globally (Zhou et al. (2021)). Worldwide, ap-

proximately 17.9 million deaths each year are caused by CVD (World Health Organisation

(2013a)). Out of these human losses, high BP accounts for approximately 9.4 million deaths

globally every year (Lim et al. (2012)). Hypertension is a highly prevalent chronic medical

condition and a strong modifiable risk factor for CVD, as it attributes to more than 45%

of CVD and 51% of stroke deaths (World Health Organization (2013b)). The risk of CVD
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in individuals rises sharply with increasing BP (Prospective Studies Collaboration (2002),

Ettehad et al. (2016), Navar et al. (2016), Bundy et al. (2017), and Clark et al. (2019)).

Continuous BP measurement has proven to be one of effective incident prevention. This

implies that BP is the essential physiological indicator of the human body. When the heart

beats, it pumps blood to the arteries resulting in changes in BP during the process. When

the heart contracts, BP in the vessels reaches its maximum, which is known as systolic BP

(SBP). When the heart rests, BP reduces to its minimum, which is known as diastolic BP

(DBP).

Linear regression and polynomial regression analyses have been used in assessing the as-

sociation between BP and risk factors contributing to various diseases (Koh et al. (2022),

Liu et al. (2022), and Yeo et al. (2022), amongst others). It is evident that the polynomial

regression models fit the data accurately in some research studies due to its adaptability

of non-linearity property, yet face high order polynomial approximation. The FPs, pro-

posed by Royston and Altman (1994), act as a concise and accurate formulae for examining

smooth relationships between response and predictors, and a compromise between precision

and generalisability. The FPs are parametric in nature and then intuitive for the inter-

pretation of the analysis results. The FP approach has clearly established a role in the

non-linear parametric methodology, especially with application by clinicians from various

research fields, such as obstetrics and gynaecology (Tilling et al. (2014)), gene expression

studies in clinical genetics (Tan et al. (2011)) and cognitive function of children (Ryoo et al.

(2017)), and other medical applications (Wong et al. (2011), Ravaghi et al. (2020), and

Frangou et al. (2021), amongst others).

However, modelling conditional mean functions observes the partial view of a distribution of

response variables, as the distributions of many response variables such as the BP measures

are typically skew. Then ‘average’ BP may link to CVD, yet extremely high BP could explore

CVD insight deeply and precisely. So, existing mean-based FP approaches for modelling the

relationship between factors and BP cannot answer key questions in need. It is attractive to

model conditional quantile functions with FPs that accommodate skewness readily. Quantile

regression, introduced by Koenker and Bassett (1978), provides comprehensive relationships

between the response variable and its predictors, which are useful for median and extremely

high BP measures in practical data analysis generally.

Zhan et al. (2021) suggested quantile regression with FP as a suitable approach for an

application, such as age-specific reference values of discrete scales, in terms of model con-
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sistency, computational cost and robustness. This approach is also used to derive reference

curves and reference intervals in several applications (Chitty and Altman (2003), Bell et al.

(2010), Bedogni et al. (2012), Kroon et al. (2017), Casati et al. (2019), Cai et al. (2020),

and Loef et al. (2020), amongst others), which allow quantiles to be estimated as a func-

tion of predictors without requiring parametric distributional assumptions. This is essential

for data that do not assume normality, linearity and constant variance. Recently, reason-

able amount of non-linear quantile regression analyses have been conducted in medical data

analysis (Maidman and Wang (2018), Huang et al. (2023), and Wu et al. (2023), amongst

others).

However, Bayesian approach to quantile regression has advantages over the frequentist ap-

proach, as it can lead to exact inference in estimating the influence of risk factors on the

upper quantiles of the conditional distribution of BP compared to the asymptotic inference

of the frequentist approach (Yu et al. (2005)). It also provides estimation that incorporates

parameter uncertainty fully (Yu and Moyeed (2001), and Yu et al. (2005)). Some com-

parison studies have been conducted for both Bayesian and frequentist approaches, such

as the analysis of risk factors for female CVD patients in Malaysia (Juhan et al. (2020))

and the analysis of risk factors of hypertension in South Africa (Kuhudzai et al. (2022)).

The former revealed that the Bayesian approach has smaller standard errors than that of

the frequentist approach. The latter also revealed that credible intervals of the Bayesian

approach are narrower than confidence intervals of the frequentist approach. These findings

suggested that the Bayesian approach provides more precise estimates than the frequentist

approach.

Variable selection in Bayesian quantile regression has been widely studied in the literature

(Li et al. (2010), Alhamzawi et al. (2012), Alhamzawi and Yu (2013), Chen et al. (2013),

Adlouni et al. (2018), Alhamzawi et al. (2019), and Dao et al. (2022), amongst others).

It plays an important role in building a multiple regression model, provides regularisation

for good estimation of effects, and identifies important variables. Sabanés Bové and Held

(2011) combined variable selection and ’parsimonious parametric modelling’ of Royston

and Altman (1994) to formulate a Bayesian multivariate FP model with variable selection

that efficiently selects best fitted FP model via stochastic search algorithm. However, in

the present, no research studies have been conducted for variable selection in Bayesian

parametric non-linear quantile regression for medical application, even though there is a

limited amount of studies in case of non-regularised models, such as mixed effect models

(Wang (2012), and Yu and Yu (2023)).
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Therefore, in this chapter, we explore a new quantile regression model using FPs and employ

Bayesian variable selection with quantile-dependent prior for a more accurate representation

of the risk factors on BP measures. The three-stage computational scheme of Dao et al.

(2022) is employed as a variable selection method due to its fast convergence rate, low

approximation error and guaranteed posterior consistency under model misspecification. So,

we propose a Bayesian variable selection with non-linear quantile regression model to assess

how body mass index (BMI) amongst US adults influences BP measures, including SBP

and DBP. The objective of this chapter is to examine non-linear relationships between BP

measures and their risk factors across median and upper quantile levels. The dataset used

in this chapter is the 2007-2008 NHANES, including the information on BP measurements,

body measures and socio-demographic questionnaires.

Section 2.2 presents the concept of FPs (Royston and Altman (1994)) and Bayesian variable

selection with quantile-dependent prior (Dao et al. (2022)). The details of the NHANES

2007-2008 dataset used for the analysis are provided in Section 2.3. Section 2.4 applies the

proposed method to the analysis, performs comparative analysis with two quantile regression

methods and provides all the findings. Section 2.5 concludes this chapter.

2.2 Methodology

Rather than the conventional linear model, we will be using the FP model to develop the

non-linear model under Bayesian quantile regression and variable selection. FPs provide

a powerful and flexible extension to conventional polynomial regression. They enable the

modelling of relationships that might not be linear, thereby capturing the subtleties of

medical surveys more effectively. The utility of FP quantile regression models scrutinises

medical surveys and the flexibility of the FP model is exploited to refine quantile regression

models for superior accuracy in regression. The inclusion of the variable selection method

within Bayesian quantile regression further aids in validating the choice of the model for

better data fitting and capturing comprehensive relationships, whilst adopting a non-linear

FP function (Royston and Altman (1994), and Royston and Sauerbrei (2008)).
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2.2.1 Fractional Polynomials

Box and Tidwell (1962) introduced the transformation now known as the Box-Tidwell trans-

formation,

x(a) =


xa, if a 6= 0,

log(x), if a = 0,

where a is a real number. Royston and Altman (1997) extended the classical polynomials

to a class which they called FPs.

An FP of degree m with powers p1 ≤ . . . ≤ pm and corresponding coefficients α1, . . . , αm is

fm(x;α,p) =

m∑
j=1

αjhj(x),

where h0(x) = 1 and

hj(x) =

x
(pj), if pj 6= pj−1 ,

hj−1(x) log(x), if pj = pj−1, (2.1)

for j = 1 . . . ,m. Note that the definition hj(x) allows the repeated powers. The bracket

around the exponent denotes the Box-Tidwell transformation (Equation (2.1)). For m ≤ 3,

Royston and Altman (1994) constrained the set of possible powers pj to the set

SFP =

{
−2,−1,−1

2
, 0,

1

2
, 1, 2, 3

}
, (2.2)

which encompasses the classical polynomial powers 1, 2, 3, yet also offers square roots and

reciprocals. Royston and Sauerbrei (2008) argued that this set is sufficient to approximate

all powers in internals [−2, 3]. The simple example of the FP model is as follows.

Example 2.1. An FP with m = 3 powers and its power vector p = (p1, p2, p3) = (−1/2, 2, 2)

would be

f3(x;α,p) = α1x
−1/2 + α2x

2 + α3x
2 log(x),

where the last term reflects the repeated power 2.
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Generalisation to the case of multiple predictors:

η(x) =
k∑
l=1

fmll (xl;αl,pl) =
k∑
l=1

ml∑
j=1

αljhlj(xl). (2.3)

This is called the multiple FP model. Suppose we continue examining k continuous predic-

tors x1, . . . , xk and content themselves with a maximum degree of mmax ≤ 3 for each fmll ,

for instance, 0 ≤ ml ≤ mmax for l = 1, . . . , k, where ml = 0 denotes the omission of xl from

the model. From the powers set SFP, ml powers are chosen, which need not be different due

to the inclusion of logarithmic terms for repeated powers (Equation (2.1)), we now employ

the τ th non-linear quantile regression with the scale mixture of normal representation of the

ALD errors,

y = Bβ + κ1v +
√
κ2vσ2z, (2.4)

where the (n × D)-matrix B is a function of the lth predictor for the ith observations, xil

(i = 1, . . . , n, and l = 1, . . . , k), the unknown parameter vector β = (α1, . . . ,αk)
T with

αl = (αl1, . . . , αlml) for l = 1, . . . , k, v = (v1, . . . , vn)T is a vector of exponential random

variables with a rate of τ(1− τ)/σ, z = (z1, . . . , zn)T is a vector of standard normal random

variables and zi is independent of vi for i = 1, . . . , n, κ1 = (1 − 2τ)/(τ(1 − τ)), and κ2 =

2/(τ(1− τ)). Each entry of matrix B is a vector, Bid = B(xid) = (hl1(xil), . . . , hlml(xil))
T ,

for i = 1, . . . , n, l = 1, . . . , k, and d = 1, . . . , D.

A special way of defining the matrix B is through the use of FPs. In this case, the basis

function B(xl) is chosen as the transformation hlj in Equation (2.3) (j = 1, . . . ,ml). The

transformation hj is determined by the power vector p1, . . . ,pk through their definition

(Equation (2.1)). Note that the pl is empty if the predictor xl is not included in the model

(ml = 0).

2.2.2 Bayesian Approach and Variable Selection

Given the model in Equation (2.4), the likelihood function conditional on β = (β1, . . . , βD)T ,

σ, v = (v1, . . . , vn)T can be written as

f(y|β, σ,v,B) =
n∏
i=1

1√
4πσ3vi

exp

{
−(yi −B(xi)

Tβ − (1− 2τ)vi)
2

4σvi
− τ(1− τ)vi

σ

}
.

We employ the three-stage algorithm of Dao et al. (2022) for Bayesian non-linear quantile
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regression with variable selection. It can be summarised, as follows.

The first-stage is the expectation-maximisation (EM) algorithm consisting of two main

steps: the Expectation step (E step) and the Maximum step (M step). Dempster et al.

(1977) proposed the EM algorithm, which is a statistical simulation method and it aims to

solve the complex data analysis problem with missing data.

Suppose the complete data (y,v) is composed of the observed data y = (y1, . . . , yn)T and

missing data v = (v1, . . . , vn)T , whereas B(xi), i = 1, . . . , n, is treated as a function of

fixed predictors. Maximum likelihood estimates (MLE) can be obtained by maximising

log-likelihood function log f(β, σ|y,v) of the complete data. The EM algorithm has the

following two steps: the E step and the M step

• [E step] Given initial values of β(0) and σ(0), we denote β(q−1) and σ(q−1) as the

(q − 1)th iteration value of parameters β and σ in the EM algorithm, and we define

the mathematical expectation of the complete data as a Q-function

Q(β, σ|y,β(q−1), σ(q−1)) = Ey,β(q−1),σ(q−1) [log f(β, σ|y,v)].

• [M step] We obtain the updated values of β(q) and σ(q) by maximising

Q(β, σ|y,β(q−1), σ(q−1)) over parameters β and σ:

β(q) = (BTW (q−1)B)−1BTW (q−1)(y − κ1∆3),

where

∆3 =
(∣∣∣y1 −B(x1)Tβ(q−1)

∣∣∣ , . . . , ∣∣yn −B(xn)Tβ
∣∣(q−1)

)T
,

W (q−1) = diag(1/∆31, . . . , 1/∆3n),

and

σ(q) =
1

2(3n+ 2)

{
n∑
i=1

∆2i +

n∑
i=1

(yi −B(xi)
Tβ(q))2

∆3i
− 2κ1

n∑
i=1

(yi −B(xi)
Tβ(q))

}
,

where ∆2i =
∣∣yi −B(xi)

Tβ(q−1)
∣∣+ 2σ(q−1) for i = 1, . . . , n.
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Repeat both E-step and M-step until the EM algorithm meets the required condition, then

the final iteration values are set as the posterior modes of β and σ, denoted by β̃ and σ̃,

respectively.

The second-stage algorithm is the Gibbs sampling algorithm. The quantile-specific Zellner’s

g-prior (Alhamzawi and Yu (2013)) is used for the prior specification and it is given by

β|σ,V ,B ∼ N
(
0, 2σgΣ−1

v

)
and p(σ) ∝ 1

σ
, (2.5)

where N(·) is the multivariate Normal distribution, g is a scaling factor,

V = diag(1/v1, . . . , 1/vn), and Σv = BTV B. This prior specification has an advantage, as

it contains information that is dependent upon the quantile levels, which increases posterior

inference accuracy.

Given the posterior modes, β̃ and σ̃ as the starting value, we denote β(r−1) and σ(r−1) as

the (r − 1)th iteration value of parameters β and σ in the Gibbs sampling algorithm.

• Sample v
(r)
i from

p(vi|y,β(r−1), σ(r−1)) ∼ GIG

(
0,

1

2σ
,
(yi −B(xi)

Tβ)2 + 1
gβ

TB(xi)B(xi)
Tβ

2σ

)
,

for i = 1, . . . , n, and GIG(x|ν, c, d) is the generalised inverse Gaussian (GIG) with its

density,

fGIG(x) =
(c/d)ν/2

2K1

(√
cd
)xν−1 exp

(
−1

2
(cx+ dx−1)

)
, v > 0, (2.6)

where Kν(·) is the modified Bessel function of the second kind at index ν (Barndorff-

Nielsen and Shephard (2001)).

• Sample σ(r) from

p(σ|y,v(r)) ∼ IG

(
3n

2
,
1

4
(y − κ1v)TV Hv(y − κ1v) +

2

κ2

n∑
i=1

vi

)
,

where IG(·) is the inverse gamma distribution, Hv = In − g
g+1BΣ−1

v B
TV .

• Sample β(r) from

p(β|y,v(r), σ(r)) ∼ N

(
g

g + 1
Σ−1
v B

TV (y − κ1v),
2σg

g + 1
Σ−1
v

)
.
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• Calculate the important weights

w(r) =
p(β(r), σ(r),v(r)|y)

p(β(r)|v(r), σ(r),y)p(σ(r)|v(r),y)p(v(r))
,

based on v(r), σ(r) and β(r). This is to adjust for the GIG approximation of the

marginal posterior of v given y, which is given by its unnormalised density function

π(v|y) ∝ p(v|β̃, σ̃,y)

p(β̃|y,v.σ̃)p(σ̃|y,v)
,

where p(v|β̃, σ̃,y) is an importance sampling density in the importance sampling algo-

rithm. The importance weights will be used to determine the acceptance probability

of each {β(r), σ(r),v(r)}.

The algorithm iterates until the Gibbs sampling algorithm reaches the final MCMC iteration

indexed at R and discards a burn-in period.

Finally, the third-stage is the important re-weighting step. The S samples are drawn from

the importance weights without replacement where S < R is the number of importance

weighting steps. A random indicator vector γ = (γ1, . . . , γD)T is introduced to the non-

linear model

Mγ : y = Bγβ + ε,

where Bγ is the (n×Dγ) matrix consisting of important predictors and βγ of length Dγ is

the non-zero parameter vector. The same prior specification in Equation (2.5) is employed

along with a prior on γd, d = 1, . . . , D, and a beta prior on π:

p(γ|π) ∝ π
∑D
d=1 γd(1− π)D−

∑D
d=1 γd and p(π) ∼ Beta

(
1

2
,
1

2

)
,

where π ∈ [0, 1] is the prior probability of randomly including a predictor in the model.

Then π is marginalised out from p(γ|π) resulting as

p(γ) ∝ Beta

(
D∑
d=1

γd +
1

2
, D −

D∑
d=1

γd +
1

2

)
.

The marginal likelihood of y under the model Mγ is then obtained by integrating out β
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and σ resulting as

p(y|γ,v) ∼ t2n

(
(1− 2τ)v,

4
∑n

i=1 vi
σκ2

(
V − g

g + 1
V BγΣv(γ)−1BT

γV

)−1
)
,

where t2n(·) is the multivariate Student t-distribution with 2n degrees of freedom. The

posterior probability of Mγ is therefore given by p(γ|y,v) ∝ p(y|γ,v)p(γ). Lastly, the

independent samples of v from the second-stage algorithm are drawn based on the S samples

and the important re-weighting step is iterated until the S samples of γ are obtained. Then

the posterior inclusion probability is estimated, as follows

p̂(γd = 1|y,v) =
1

S̃

S̃∑
s=1

γ
(s)
d , d = 1, . . . , D,

where S̃ is the number of iterations after discarding a burn-in period.

2.3 Data Preparation and Data Analysis

This study is based on the data of the NHANES during 2007-2008. The survey conducted by

the National Center for Health Statistics of the Centers for Disease Control and Prevention

used a complex, stratified, multistage sampling design to select a representative sample of

non-institutionalised population in the US civilians to participate in a series of comprehen-

sive health-related interviews and examinations. In total, 12,943 people participated in the

NHANES 2007-2008 study.

The study variables included SBP and DBP as the response variables. The BP measure-

ments were taken as follows. After a resting period of 5 minutes in a sitting position and

determination of maximal inflation level, three consecutive BP readings were recorded. A

fourth reading was recorded if a BP measurement is interrupted or incomplete. All the

results were taken in the Mobile Examination Center. The BP measurements are essential

for hypertension screening and disease management, since hypertension is an important risk

factor for cardiovascular and renal disease. Then in this study, SBP and DBP were selected

as response variables where each was averaged over the second and third readings. Predictor

variables were BMI, age, ethnicity, gender and marital status.

We initially included 9,762 participants who have completed both BP and body measure

examinations in the study. From 9,762 participants, we excluded those who had not under-

went examinations. Then amongst the remaining 4,612 participants, we further excluded
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those who refused to reveal their marital status. Finally, 4,609 participants were included

for analysis in this study.

The NHANES protocols were approved by the National Center for Health Statistics research

ethics review boards, and informed consent was obtained from all participants. The research

adhered to the tenets of the Declaration of Helsinki.

Both ’quantreg’ and ’Brq’ R packages were employed to fit the frequentist and Bayesian

approaches of the quantile regression model with FPs, respectively. The source R code was

provided from the main author of Dao et al. (2022) to fit the Bayesian quantile regression

with variable selection and FPs via the three-stage algorithm.

This study considered two quantile models at the 50th, 75th and 95th percentiles. When

modelling hypertension, it is preferable to model both median and extremely high values of

SBP and DBP, which correspond to the median and upper distributions of SBP and DBP,

respectively (Kuhudzai et al. (2022)). The following two quantile models were used for the

analysis for the fixed quantile level τ :

SBPi = BMIiβ1 + BMI0.5
i β2 + Ageiβ3 + Age0.5

i β4 + Ethnicityiβ5 + Genderiβ6

+ MaritalStatusiβ7,

DBPi = BMIiβ1 + BMI0.5
i β2 + Ageiβ3 + Age0.5

i β4 + Ethnicityiβ5 + Genderiβ6

+ MaritalStatusiβ7,

for i = 1, . . . , 4609.

The power of 0.5 was chosen for continuous variables, including BMI and age. The remaining

variables were linear because they are categorical. Similar FP models were employed to

model BP within the linear regression framework (Dong et al. (2016), Takagi and Umemoto

(2013), and Thompson et al. (2009), amongst others).

2.4 Results

In this section, both descriptive and model analyses are provided for the NHANES 2007-2008

dataset using the proposed model. To evaluate the performance of the proposed model, we

included two existing methods, including quantile regression and Bayesian quantile regres-

sion, with the FP model for a fair comparative analysis. The model comparison is discussed

outlining the advantages of the proposed model over these two methods. All the results are
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provided in this section through tables and figures for each regression analysis.

2.4.1 Descriptive Analysis

For this analysis, continuous variables were collapsed into categorical variables, including

SBP, DBP, BMI and age. According to the guidelines of Whelton et al. (2018), the BP

variables were divided into three groups: normal (< 120 mmHg for SBP, < 80 mmHg for

DBP), pre-hypertension (120−139 mmHg for SBP, 80−89 mmHg for DBP) and hypertension

(≥ 140 mmHg for SBP, ≥ 90 mmHg for DBP). The BMI variable was also divided into six

groups: underweight (< 18.5), healthy (18.5−24.9), overweight (25−29.9), obese (30−34.9),

very obese (35−39.9) and morbidly obese (≥ 40) (Centers for Disease Control and Prevention

(2022)).

Tables 2.1-2.2 report SBP and DBP proportions amongst US adults by demographic and

lifestyle characteristics, including BMI, age, ethnicity, gender and marital status. The

Cramér’s V value was used to measure the magnitude of the association between SBP,

DBP, socio-demographic characteristics and BMI of the participants. Their values with

p-values are also presented in Tables 2.1-2.2 and compared with with guidelines given by

Rea and Parker (2014): 0.00 to under 0.10 = very weak association, 0.10 to under 0.20 =

weak association, 0.20 to under 0.40 = moderate association and 0.40 and above = strong

association.

It is evident from Tables 2.1-2.2 that hypertension was more prevalent in underweight, very

obese and morbidly obese participants for both BP measures where the very obese and

morbidly obese had the highest prevalence for DBP and SBP measures, respectively. The

same trend is observed on the proportions of elevated BP for DBP measure. It is clear that

healthy participants had the highest prevalence of normal BP for both BP measures.

Concerning age, the prevalence of both elevated BP and hypertension increased with age,

with the 40-49 years age group having the highest proportions for DBP measure and the

50 years and above age group for SBP measure. In regards to ethnicity, the non-Hispanic

Black participants had the highest prevalence of hypertension compared to other races for

both BP measures.

Tables 2.1-2.2 also show that men had the highest prevalence of both elevated BP and

hypertension for both BP measures. Participants who were separated or divorced and

those who became widowed had the highest prevalence of hypertension for DBP and SBP

measures, respectively.
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Table 2.1: SBP amongst US adults by BMI and socio-demographic characteristics.

Normal BP Pre- Hypertension
(< 120 mmHg) Hypertension (≥ 140 mmHg)

(120-139 mmHg)

BMI Underweight 37 (56.92%) 16 (24.62%) 12 (18.46%)
Healthy 734 (60.31%) 343 (28.18%) 140 (11.50%)
Overweight 781 (49.49%) 565 (35.80%) 232 (14.70%)
Obese 415 (41.71%) 414 (41.61%) 166 (16.68%)
Very obese 201 (42.68%) 187 (39.70%) 83 (17.62%)
Morbidly obese 106 (37.46%) 116 (40.99%) 61 (21.55%)

P-value (Cramér’s V value) P-value < 0.01 (0.1106)

Age 20-29 years 493 (73.36%) 164 (24.40%) 15 (2.23%)
30-39 years 543 (65.66%) 251 (30.35%) 33 (3.99%)
40-49 years 460 (55.89%) 285 (34.63%) 78 (9.48%)
≥50 years 778 (34.02%) 941 (41.15%) 568 (24.84%)

P-value < 0.01 (0.2535)

Ethnicity Mexican American 456 (54.29%) 279 (33.21%) 105 (12.50%)
Other Hispanic 286 (53.16%) 186 (34.57%) 66 (12.27%)
Non-Hispanic white 1006 (47.61%) 793 (37.53%) 314 (14.86%)
Non-Hispanic black 425 (45.31%) 324 (34.54%) 189 (20.15%)
Other non-Hispanic race 101 (56.11%) 59 (32.78%) 20 (11.11%)

P-value < 0.01 (0.0665)

Gender Male 999 (43.28%) 957 (41.46%) 352 (15.25%)
Female 1275 (55.41%) 684 (29.73%) 342 (14.86%)

P-value < 0.01 (0.1310)

Marital Married 1219 (48.39%) 927 (36.80%) 373 (14.81%)
Status Widowed 84 (30.11%) 103 (36.92%) 92 (32.97%)

Divorced 226 (44.14%) 182 (35.55%) 104 (20.31%)
Separated 89 (52.05%) 57 (33.33%) 25 (14.62%)
Never married 468 (58.87%) 256 (32.20%) 71 (8.93%)
Living with partner 188 (56.46%) 116 (34.83%) 29 (8.71%)

P-value < 0.01 (0.1251)
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Table 2.2: DBP amongst US adults by BMI and socio-demographic characteristics.

Normal BP Pre- Hypertension
(< 80 mmHg) Hypertension (≥ 90 mmHg)

(80-89 mmHg)

BMI Underweight 49 (75.38%) 12 (18.46%) 4 (6.15%)
Healthy 1025 (84.22%) 148 (12.16%) 44 (3.62%)
Overweight 1265 (80.16%) 243 (15.40%) 70 (4.44%)
Obese 772 (77.59%) 168 (16.88%) 55 (5.53%)
Very obese 356 (75.58%) 78 (16.56%) 37 (7.86%)
Morbidly obese 217 (76.68%) 47 (16.61%) 19 (6.71%)

P-value (Cramér’s V value) P-value < 0.01 (0.0587)

Age 20-29 years 619 (92.11%) 47 (6.99%) 6 (0.89%)
30-39 years 681 (82.35%) 118 (14.27%) 28 (3.39%)
40-49 years 584 (70.96%) 173 (21.02%) 66 (8.02%)
≥50 years 1800 (78.71%) 358 (15.65%) 129 (5.64%)

P-value < 0.01 (0.1118)

Ethnicity Mexican American 699 (83.21%) 116 (13.81%) 25 (2.98%)
Other Hispanic 444 (82.53%) 70 (13.01%) 24 (4.46%)
Non-Hispanic white 1687 (79.84%) 327 (15.48%) 99 (4.69%)
Non-Hispanic black 711 (75.80%) 154 (16.42%) 73 (7.78%)
Other non-Hispanic race 143 (79.44%) 29 (16.11%) 8 (4.44%)

P-value < 0.01 (0.0569)

Gender Male 1732 (75.04%) 423 (18.33%) 153 (6.63%)
Female 1952 (84.83%) 273 (11.86%) 76 (3.30%)

P-value < 0.01 (0.1244)

Marital Married 2017 (80.07%) 385 (15.28%) 117 (4.64%)
Status Widowed 231 (82.80%) 38 (13.62%) 10 (3.58%)

Divorced 386 (75.39%) 87 (16.99%) 39 (7.62%)
Separated 133 (77.78%) 26 (15.20%) 12 (7.02%)
Never married 656 (82.52%) 103 (12.96%) 36 (4.53%)
Living with partner 261 (78.38%) 57 (17.12%) 15 (4.50%)

P-value = 0.0516 (0.0444)



2.4. Results 34

Figure 2.1: Trace, density and autocorrelation plots for the risk factors of SBP at τ = 0.95
under the Bayesian quantile regression model with FPs.

Lastly, at the 1% significance level, Tables 2.1-2.2 exhibit very weak to weak associations

between BP measures, BMI and socio-demographic characteristics amongst US adults. How-

ever, there is a moderate association between SBP measure and age. There is no statistically

significant association between DBP measure and marital status at the 5% level.

2.4.2 Model Analysis

Tables 2.3-2.4 provide the coefficients for predictors relating to SBP and DBP responses for

three quantile regression models with FPs at three quantile levels (τ = 0.5, 0.75, 0.95), in-

cluding one frequentist and two Bayesian approaches with one using variable selection. For

Bayesian approaches, parameters were obtained via posterior mean. The 95% confidence

intervals were also obtained for the frequentist approach, whilst the 95% credible intervals

were obtained for the Bayesian approaches. A confidence interval describes a probability, for

instance, if a user constructs a confidence interval with some confidence level then they are

confident that an estimate would fall within the interval. On the other hand, a credible inter-

val is an interval in the domain of a posterior probability distribution where an unobserved

parameter value falls with a particular probability. We denote the frequentist approach as

the QR-FP model, and two Bayesian approaches as the BQR-FP and BQRVS-FP models
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Figure 2.2: Trace, density and autocorrelation plots for the risk factors of DBP at τ = 0.95
under the Bayesian quantile regression model with FPs.

Figure 2.3: Trace, density and autocorrelation plots for the risk factors of SBP at τ = 0.95
under the Bayesian quantile regression model with FPs and variable selection.
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Table 2.3: One frequentist and two Bayesian quantile regression analyses for the relationship
between SBP and risk factors at different quantile levels (τ = 0.5, 0.75, 0.95).

Quantile Regression

τ 0.5 0.75 0.95
BMI -2.856 (-3.278, -2.280) -2.198 (-3.040, -1.715) -2.024 (-3.141, -0.798)
BMI0.5 36.085 (29.932, 40.529) 29.210 (23.907, 38.130) 29.113 (15.239, 42.302)
Age 0.510 (0.130, 0.785) 0.317 (-0.003, 0.885) 0.710 (-0.220, 1.630)
Age0.5 -1.758 (-5.430, 3.339) 3.297 (-4.116, 7.654) 2.300 (-9.906, 14.672)
Ethnicity 0.626 (0.154, 1.040) 0.995 (0.366, 1.495) 1.214 (0.199, 2.642)
Gender -4.323 (-5.302, -3.512) -3.813 (-5.231, -2.506) -3.278 (-6.147, -0.762)
Marital Status 0.894 (0.612, 1.155) 1.327 (0.916, 1.746) 1.400 (0.650, 2.037)

Bayesian Quantile
Regression

τ 0.5 0.75 0.95
BMI -2.818 (-3.208, -2.447) -2.255 (-2.669, -1.889) -2.120 (-2.603, -1.685)
BMI0.5 35.628 (31.653, 39.794) 29.825 (25.763, 34.419) 30.191 (25.146, 35.809)
Age 0.484 (0.233, 0.734) 0.364 (0.103, 0.664) 0.768 (0.428, 1.142)
Age0.5 -1.366 (-4.737, 2.002) 2.735 (-1.237, 6.249) 1.446 (-3.550, 6.077)
Ethnicity 0.640 (0.288, 0.979) 0.957 (0.561, 1.359) 1.341 (0.839, 1.829)
Gender -4.376 (-5.138, -3.645) -3.809 (-4.784, -2.823) -3.346 (-4.397, -2.190)
Marital Status 0.888 (0.656, 1.125) 1.347 (1.055, 1.637) 1.354 (1.041, 1.649)

Bayesian Quantile
Regression FP &
Variable Selection

τ 0.5 0.75 0.95
BMI -2.812 (-3.164, -2.468) -2.581 (-2.974, -2.168) -2.426 (-2.813, -2.027)
BMI0.5 35.547 (31.789, 39.269) 33.335 (28.817, 37.747) 33.335 (28.815, 37.784)
Age 0.459 (0.226, 0.680) 0.537 (0.274, 0.806) 0.945 (0.643, 1.256)
Age0.5 -1.129 (-4.197, 2.029) -0.051 (-3.717, 3.536) -1.382 (-5.473, 2.680)
Ethnicity 0.571 (0.258, 0.898) 0.843 (0.484, 1.212) 1.152 (0.753, 1.616)
Gender -4.577 (-5.300, -3.899) -4.291 (-5.053, -3.518) -4.343 (-5.301, -3.351)
Marital Status 0.828 (0.632, 1.033) 1.139 (0.893, 1.381) 1.331 (1.052, 1.617)
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Table 2.4: One frequentist and two Bayesian quantile regression analyses for the relationship
between DBP and risk factors at different quantile levels (τ = 0.5, 0.75, 0.95).

Quantile Regression

τ 0.5 0.75 0.95
BMI 1.174 (0.705, 1.496) 0.761 (0.507, 1.096) 0.582 (0.022, 1.572)
BMI0.5 -12.200 (-15.675, -7.071) -7.179 (-10.821, -4.242) -3.995 (-13.869, 2.247)
Age -2.266 (-2.477, -1.979) -2.018 (-2.252, -1.832) -1.852 (-2.418, -1.418)
Age0.5 31.329 (27.308, 34.170) 28.298 (25.758, 31.451) 26.918 (21.199, 34.557)
Ethnicity 0.561 (0.203, 0.841) 0.712 (0.411, 1.030) 1.264 (0.345, 2.013)
Gender -3.345 (-4.160, -2.651) -3.619 (-4.337, -2.976) -4.592 (-5.769, -3.047)
Marital Status 0.210 (-0.041, 0.448) 0.368 (0.171, 0.549) 0.466 (0.143, 0.934)

Bayesian Quantile
Regression

τ 0.5 0.75 0.95
BMI 1.153 (0.836, 1.433) 0.798 (0.539, 1.056) 0.656 (0.345, 0.974)
BMI0.5 -11.923 (-15.007, -8.505) -7.554 (-10.406, -4.748) -4.624 (-7.981, -1.332)
Age -2.253 (-2.431, -2.058) -2.040 (-2.224, -1.863) -1.870 (-2.064, -1.663)
Age0.5 31.131 (28.434, 33.566) 28.594 (26.243, 31.077) 27.176 (24.467, 29.773)
Ethnicity 0.536 (0.291, 0.777) 0.706 (0.455, 0.966) 1.328 (0.981, 1.667)
Gender -3.391 (-3.999, -2.778) -3.635 (-4.169, -3.109) -4.498 (-5.086, -3.924)
Marital Status 0.220 (0.030, 0.408) 0.374 (0.222, 0.533) 0.484 (0.304, 0.667)

Bayesian Quantile
Regression FP &
Variable Selection

τ 0.5 0.75 0.95
BMI 1.101 (0.823, 1.381) 0.808 (0.568, 1.041) 0.874 (0.584, 1.147)
BMI0.5 -11.299 (-14.374, -8.289) -7.620 (-10.207, -4.940) -7.217 (-10.158, -4.080)
Age -2.217 (-2.397, -2.033) -2.031 (-2.203, -1.867) -2.018 (-2.206, -1.821)
Age0.5 30.603 (28.089, 33.030) 28.381 (26.127, 30.639) 29.063 (26.415, 31.577)
Ethnicity 0.505 (0.278, 0.727) 0.630 (0.391, 0.868) 1.043 (0.747, 1.319)
Gender -3.401 (-3.934, -2.888) -3.733 (-4.219, -3.233) -4.436 (-5.032, -3.827)
Marital Status 0.193 (0.033, 0.347) 0.371 (0.222, 0.523) 0.454 (0.270, 0.628)

Table 2.5: Selected predictors for both SBP and DBP models under the Bayesian quan-
tile regression model with FPs and variable selection at different quantile levels (τ =
0.5, 0.75, 0.95).

Model BMI BMI0.5 Age Age0.5 Ethnicity Gender MaritalStatus

τ = 0.5
SBP 1.0000 1.0000 0.9920 0.3062 0.9733 1.0000 1.0000
DBP 1.0000 1.0000 1.0000 1.0000 0.9973 1.0000 0.8628

τ = 0.75
SBP 1.0000 1.0000 0.9920 0.2423 1.0000 1.0000 1.0000
DBP 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

τ = 0.95
SBP 1.0000 1.0000 1.0000 0.4034 1.0000 1.0000 1.0000
DBP 1.0000 0.9986 1.0000 1.0000 1.0000 1.0000 0.9986
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Figure 2.4: Trace, density and autocorrelation plots for the risk factors of DBP at τ = 0.95
under the Bayesian quantile regression model with FPs and variable selection.

where the latter uses variable selection.

For the BQR-FP model, the algorithm was implemented for 10,000 MCMC iterations and

1,000 MCMC iterations were discarded as a burn-in. For the BQRVS-FP model, the first-

stage algorithm ran for 1,000 EM iterations and repeated for 2 replications. Then 5,000

MCMC iterations were drawn for the second-stage algorithm, whilst discarding 2,500 MCMC

iterations as a burn-in. Finally, the last algorithm ran for 1,250 important re-weighting steps

of which 500 steps were discarded as a burn-in. The value of g was selected as 1,000 for all

implementations of the variable selection model.

It is evident from Table 2.3 that all the risk factors except both linear and non-linear terms

of age were found to have statistically significant associations with SBP across the two

upper quantile levels according to their 95% confidence intervals containing no zero value

under the QR-FP model. Looking at the median level, the linear term had association with

SBP under the same approach. When looking at the BQR-FP and BQRVS-FP models,

only the non-linear term of age did not have a statistically significant association for all

quantile levels. On the other hand, Table 2.4 observes that all the risk factors including

non-linear terms had statistically significant associations with DBP across all quantile levels

for all model approaches. Still, when looking at the median level under the QR-FP model,
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it revealed that the marital status did not have statistically significant association.

Table 2.3 also observes that the BMI, non-linear term of age and gender have negative

associations with SBP, whilst the non-linear term of BMI, age and gender have negative

associations with DBP from Table 2.4 for all three model approaches. Under the SBP

model, the coefficients of BMI, ethnicity, gender and marital status increased when the

quantile levels increased. The same trend is observed for the coefficients of BMI’s non-linear

term, age, ethnicity and marital status under the DBP model. Observing the coefficient

of age’s non-linear term, all models saw the reverse U-shaped trend under the SBP model

and on the other hand, both QR-FP and BQR-FP models had decreasing trends and the

BQRVS-FP had the U-shaped trend under the DBP model. Interestingly, the coefficient

of BMI’s non-linear term under the SBP model followed the decreasing trend for the QR-

FP model, the U-shaped trend for the BQR-FP model and the square-root trend for the

BQRVS-FP model.

Convergence of both Bayesian approaches was assessed using the trace plots, the density

plots and autocorrelation plots. This is essential to perform various diagnostic tools for as-

sessing the convergence (Sinharay (2003)). The convergence diagnostics are useful to check

stationarity of the Markov chain or good chain mixing and to verify the accuracy of the

posterior estimates (Lesaffre and Lawson (2012)). The trace plot is in the form of a time

series plot indicating whether it reaches stationarity or not. The density plot represents

the stationary distribution of posterior samples approximating the posterior distribution of

interest. The autocorrelation plot reports the correlation of posterior samples at each chain

step with previous estimates of the same variable, lagged by number of iterations. A de-

creasing trend indicates that the stationary distribution is more random and less dependent

on initial values in the chain (Hamra et al. (2013)).

Figures 2.1-2.2 present the trace, density and autocorrelation plots for each risk factor of

SBP and DBP, respectively under the BQR-FP model at τ = 0.95. When looking at the

trace plots, they exhibit stationarity due to relatively constant mean and variance of each

plot. Thus, they show the good Markov chain mixing rate. When looking at the density

plots, they reflect a smooth distribution with one peak at the mode of the distribution

indicating a good convergence. It is also shown from the figures that each risk factor of

SBP and DBP has increasingly random stationary posterior distribution, yet the trend has

a slower decreasing rate. Similar performances are observed at two other quantile levels

(τ = 0.5, 0.75) and their figures are provided in Appendix D.1 (see Figures D.1-D.2 and

D.5-D.6).



2.4. Results 40

Figures 2.3-2.4 also present the trace, density and autocorrelation plots for each risk factor

of SBP and DBP, respectively under the BQRVS-FP model at τ = 0.95. All the plots

show stationarity, good Markov chain mixing rates and good convergence. Particularly,

each autocorrelation plot indicates that their stationary distribution became random and

less correlated with the initial values at a faster rate. Similar performances are observed at

two other quantile levels (τ = 0.5, 0.75) and their figures are provided in Appendix D.1 (see

Figures D.3-D.4 and D.7-D.8).

Table 2.5 provides marginal inclusion probabilities (MIPs) that determine which risk factors

are influential on SBP and DBP for the BQRVS-FP model at three quantile levels. The risk

factors that lie above the threshold of 0.9 of MIP are selected as important predictors. Across

all the quantile levels for both SBP and DBP models, all the important risk factors were

consistently selected including the non-linear terms. There are two cases of non-important

risk factors where, unlike the SBP model, the DBP model did not select marital status at

the median level and the SBP model did not select the non-linear term of age at all the

quantile levels. This mostly agreed with findings on 95% credible intervals from Tables

2.3-2.4.

2.4.3 Model Comparison

Hespanhol et al. (2019) advised that the estimation effect must always be within the con-

fidence/credible interval, and the width of the interval represents the precision of the esti-

mation effect. Hence, the narrower the interval the more precise is the estimate. Observing

at the 95% confidence intervals of frequentist approach and the 95% credible intervals of

two Bayesian approaches from Tables 2.3-2.4, the BQRVS-FP model has tighter intervals

compared to the QR-FP model having wider intervals.

Another finding is from the diagnostic plots that the autocorrelation plots of BQRVS-FP

model have a faster decreasing rate across all the quantile levels, whereas those of the BQR-

FP model have a slower rate. This is evident that the BQRVS-FP model has more random

stationary posterior distributions of interest.

When looking at Tables 2.3-2.5, the BQRVS-FP model selected the important predictors

coinciding with statistically significant associations between SBP, DBP and their risk factors

based on their 95% credible intervals.

These findings suggest that the Bayesian variable selection approach to quantile regression

model with FPs obtained more precise estimates than the frequentist and unregularised



2.5. Chapter Summary 41

Bayesian approaches. The non-linear terms were selected as important variables in both

SBP and DBP models indicating that FP model was necessary to examine the non-linear

relationship between SBP, DBP and risk factors.

Whilst computational performance was not evaluated in this paper, it is noteworthy that all

computations were executed on R version 4.2.2, utilising an Intel Core i7-4790 CPU@3.6GHz

machine with 16GB DDR3 RAM memory. Both Rcpp and the Intel MKL compiler were

employed to enhance the efficiency of the proposed method and reduce running time. The

proposed method follows a three-stage algorithm, which, admittedly, demands more compu-

tational time compared to the unregularised Bayesian method that relies solely on a Gibbs

sampling algorithm. Nevertheless, as previously mentioned, the second-stage algorithm of

the proposed method, namely the Gibbs sampling algorithm, exhibits a faster convergence

rate. Consequently, it necessitates fewer iterations to run compared to the unregularised

Bayesian method. The first and last algorithms of the proposed method, requiring fewer

iterations, contribute to a reasonable overall computational performance. It is crucial to

note that, with an increasing amount of data, computational challenges may arise, poten-

tially necessitating a big data strategy to address these issues. However, it is important to

acknowledge that addressing these challenges should be left for future research work.

2.5 Chapter Summary

In this chapter, we conducted the data analysis of the impact of BMI on the BP measures,

including SBP and DBP using data extracted from the 2007-2008 NHANES database. The

descriptive analysis showed that the prevalence of hypertension increased by age and the

hypertension was highly prevalent amongst very obese and morbidly obese participants. In

particular, it was more prevalent in men than women. Moreover, there was a statistically

significant moderate association between SBP and age based on the Cramér’s V value,

whilst the remaining associations were weaker for both BP measures. However, there was

no association between DBP and marital status.

The analysis motivated a new Bayesian non-linear quantile regression under the FP model

and variable selection with quantile-dependent prior. The quantile regression analysis in-

vestigates how the relationships differ across the median and upper quantile levels. The use

of FPs allows for the relationships to be non-linear parametrically. The variable selection

investigates for important predictors that contribute to the non-linear relationships via the

Bayesian paradigm. The model analysis suggested that the proposed model provides better
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estimates because the 95% credible intervals were narrower and the autocorrelation plots

have faster decreasing rates of correlated posterior samples in comparison to two methods,

the frequentist and Bayesian approaches of quantile regression model. The analysis of the

data showed that non-linear relations do exist because the proposed model identified the

non-linear terms of continuous variables, including BMI and age as important predictors in

the model across all the quantile levels. On the other hand, the non-linear term of age was

not selected under the SBP model. The marital status was not selected as an important risk

factor for the DBP model at the median level. This agreed with findings of both descrip-

tive and model analyses. Moreover, the data analysis suggested that the quantile-based FP

approaches have the goodness of fit in comparison to mean-based FP approaches. Thus,

the importance of the non-linear quantile model with FPs is significant for modelling of BP

measures.



Chapter 3

Bayesian Huberised Regularisation

and Beyond

Along the frequentist line, robust regression is widely used and has an ability of taking

asymmetricity into account simultaneously and for high-dimensional analysis. However, the

majority of research is not capable of full probabilistic uncertainty quantification. This

motivates the development of a new Bayesian Huberised regularisation, including Bayesian

Huberised Lasso (Kawakami and Hashimoto (2023)) and Bayesian Huberised Elastic Net.

This chapter first introduces a new asymmetric Huberised loss function and its corresponding

probability distribution, which has the scale mixture of normal representation. A by-product

of Bayesian Huberised regularisation and asymmetric Huberised loss function results in a

new Bayesian Huberised regularised quantile regression. We also studied the theoretical

properties of the proposed methods, including posterior propriety and unimodality of their

joint posterior density. All the proofs can be found in Appendix A. Through a wide variety of

simulation studies and real data examples, the proposed methods showed promising results

in terms of robustness and applications.

3.1 Introduction

Robust regression methods have a wide range of applications and have attracted a great

amount of attention in the literature recently, particularly for taking asymmetricity into

account simultaneously and for high-dimensional analysis, such as the adaptive Huber re-

gression (Sun et al. (2020)) and asymmetric Huber loss and asymmetric Tukey’s biweight

loss functions for robust regression (Fu and Wang (2021)). The Lasso (Tibshirani (1996))
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and the Elastic Net (Zou and Hastie (2005)) are some popular choices for regularising re-

gression coefficients. The former has the ability to automatically set irrelevant coefficients

to zero. The latter retains this property and the effectiveness of the ridge penalty, and it

deals with highly correlated variables more effectively. Robust regularisation methods for

quantile regression provide a promising technique for variable selection and model estima-

tion in the presence of outliers or heavy-tailed errors (Li and Zhu (2008), Wu and Liu (2009),

Belloni and Chernozhukov (2011), and Su and Wang (2021), amongst others). However, the

majority of research on the topics falls in frequentist approaches, which are not capable of

full probabilistic uncertainty quantification.

Exploring unconditional Bayesian regularisation prior, such as the Bayesian Lasso (Park and

Casella (2008)) and the Bayesian Elastic Net (Li and Lin (2010)), for robust regression is not

straightforward. Several issues may arise. The joint posterior may be multi-modal, which

slows down the convergence of the Gibbs sampling algorithm and the point estimates may

be computed through multiple modes, which lead to the inaccurate estimators (Park and

Casella (2008), and Kyung et al. (2010)). The choices of hyper-parameters in gamma priors

of regularisation parameters may also have strong influences on the posterior estimates. For

the former, it was firstly observed by Park and Casella (2008) in the Bayesian Lasso. For the

latter, it is common to employ invariant prior on scale parameter (Berger (1985)). Cai and

Sun (2021) addressed these two issues by introducing the scale parameter to the Bayesian

Lasso and its generalisation for quantile regression. Moreover, Kawakami and Hashimoto

(2023) used the scale parameter of the hyperbolic loss function (Park and Casella (2008))

to propose the Bayesian Huberised Lasso, which is the robust version of Bayesian Lasso.

Along this line, we will propose Bayesian Huberised regularisation in this chapter.

As discussed in Chapter 2, the inclusion of Bayesian modelling and variable selection in

quantile regression has proven to be invaluable, owing to its exact inference, parameter

uncertainty, robustness and asymmetry properties, good estimation of effects, and its ability

to derive unique insights into comprehensive relationships. It is briefly mentioned in Chapter

1 that the error distribution for Bayesian quantile regression is usually assumed to follow the

ALD that guaranteed posterior consistency of Bayesian estimators (Sriram et al. (2013)) and

robustness (Yu and Moyeed (2001)). For regularisation, Alhamzawi et al. (2012) adopted the

inverse gamma prior density to the penalty parameters and treated its hyper-parameters as

unknown and estimated them along with other parameters. This allows different regression

coefficients to have different penalisation parameters, which improve the predictive accuracy.

Particularly, Bayesian quantile regression both on its own and in a high-dimensional setting
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enjoys some robustness, such as median being more robust than mean, yet has different

modelling aims from robust regression.

Delving into our proposed methodology, the approximate Gibbs sampler of Kawakami and

Hashimoto (2023) can be regarded as empirical Bayesian (EB) in nature, since it estimates

the tuning robustness parameter, or a hyper-parameter, directly. The idea of this sampling

algorithm originated from the paper of Miller (2019) that is similar to the EB Gibbs sampling

method of Casella (2001), yet is different in terms of computational algorithms for estimating

hyper-parameters. Generally, Bayesian inference based on data-dependent priors is not new,

and can be traced back to, at least, Berger (1984), and the history of the EB method is

detailed in the paper of Casella (1985). This method has shown to be both computationally

feasible and statistically valid (Morris (1983), and Casella (2001)). It is argued that if the

alternative method, such as adopting a flat prior for a hyper-parameter, is employed then

the usage of a flat prior may lead to models with improper posterior distributions that can

be problematic for Bayesian analysis (Natarajan and McCulloch (1995), and Hobert and

Casella (1996)). Precisely, Kawakami and Hashimoto (2023) stated that if the random-walk

Metropolis-Hastings algorithm is utilised for estimating the tuning robustness parameter,

it can result in instability due to the need of evaluation for the modified Bessel function of

the second kind. Consequently, the EB approach is suitable for our proposed methodology

in practice.

Therefore, this chapter first proposes a new Huberised-type of asymmetric loss function

and its corresponding probability distribution, which is shown to have the scale mixture of

normals. Then we introduce a new Bayesian Huberised regularisation for robust regression.

Furthermore, by taking advantage of the good quantile property of this probability distri-

bution, we develop Bayesian Huberised Lasso quantile regression and Bayesian Huberised

Elastic Net quantile regression. This results in the proposed models covering both Bayesian

robust regularisation and Bayesian quantile regularisation. Besides, Cai and Sun (2021) em-

phasised that the posterior impropriety does exist in Bayesian Lasso quantile regression and

its generalisation when the prior on regression coefficients is independent of the scale param-

eter. Thus, we will discuss some properties of the Bayesian Huberised regularised quantile

regression, including posterior propriety and posterior unimodality. The approximate Gibbs

sampler of Kawakami and Hashimoto (2023) is adopted to enable the data-dependent esti-

mation of the tuning robustness parameter in the fully Bayesian hierarchical model. Due

to the fact that it is being EB in nature, the advantage of this sampling step is that it

does not require cross validation evaluation of tuning parameters (see Alhamzawi (2016)
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for example) nor the rejection steps, such as the inversion method and adaptive rejection

sampling algorithm (see Alhamzawi et al. (2019) for example). We demonstrate the ef-

fectiveness and robustness of the Bayesian Huberised regularised quantile regression model

through simulation studies followed by real data analysis.

Section 3.2 defines the asymmetric Huberised loss function with its corresponding proba-

bility density function and derives the scale mixture of normal representation for Bayesian

inference. Section 3.3 presents the Bayesian Huberised regularisation including the Bayesian

Huberised Lasso (Kawakami and Hashimoto (2023)) and the Bayesian Huberised Elastic

Net. This results in a new robust Bayesian regularised quantile regression. In Section 3.4

and 3.5, a wide range of simulation studies and three real data examples are conducted. In

Section 3.6, we draw the conclusions.

3.2 Asymmetric Huberised Loss Function

When the error distribution is asymmetric or contaminated by asymmetric outliers, the

estimators obtained from Equations (1.1)-(1.4) may result in inconsistency of predictions of

a conditional mean given the predictors (Fu and Wang (2021)).

Therefore, we propose the Huberised-type asymmetric loss function, that is defined as

LAsy
η,ρ2,τ

(x) =

√
η

(
η +

x

ρ2
(τ − I(x < 0))

)
− η. (3.1)

By letting η =
√
ζ1ζ2, ρ2 =

√
ζ2/ζ1 and τ = 0.5, Equation (3.1) becomes the Non-convex

Huber loss function (Equation (1.3)) as a symmetric case.

The corresponding density function is

f(x|µ, η, ρ2, τ) =
ητ(1− τ)eη

2ρ2(η + 1)
exp

{
−

√
η

(
η +

x− µ
ρ2

(τ − I(x < 0))

)}
, (3.2)

where µ ∈ R is a location parameter. Here, ρ2 acts as a scale parameter and η acts as a

shape parameter of this density function.

The following proposition states that the parameters µ and τ in Equation (3.2) satisfy: µ

is the τth quantile of the distribution.

Proposition 3.1. If a random variable X follows the density function in Equation (3.2)

then we have P (X ≤ µ) = τ and P (X > µ) = 1− τ .
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Proof. The proof can be found under Proposition A.1 in Appendix A.

To observe the behaviour of the proposed loss function, we set

η =
√
ζ2

(√
ζ2 +

√
ζ2 + 1

)
and ρ2 =

√
ζ2/(
√
ζ2 +

√
ζ2 + 1) then we have the following limits,

lim
ζ2→0

LAsy
η,ρ2,τ

(x) =
√
x (τ − I(x < 0)),

lim
ζ2→∞

LAsy
η,ρ2,τ

(x) = x (τ − I(x < 0)) ,

which suggest that the proposed loss bridges the quantile loss function. Daouia et al. (2018)

used the quantile loss function for tail expectiles to estimate alternative measures to the

value at risk and marginal expected shortfall, which are two instruments of risk protection

of utmost importance in actuarial science and statistical finance. Ehm et al. (2016) showed

that any scoring function that is consistent for a quantile or an expectile functional can be

represented as a mixture of elementary or extremal scoring functions that form a linearly

parameterised family. However, in this chapter, we show a totally new way to achieve it,

and our proposed loss is a novel representative of asymmetric least squares (Daouia et al.

(2019)). Figure 3.1 illustrates the asymmetric shape behaviour for five different values of

τ (0.1, 0.25, 0.5, 0.75, 0.9). From the figure, LAsy
η,ρ2,τ

(x) approaches the square root of the

quantile loss function, as η −→ 0, and LAsy
η,ρ2,τ

(x) approaches the quantile loss function, as

η −→∞.

Kawakami and Hashimoto (2023) discussed that it is essential to choose the right value

of hyper-parameters of η and ρ2 where ρ2 can easily be estimated by a Gibbs sampling

algorithm in a Bayesian model whereas the estimation of η is difficult. They proposed the

approximate Gibbs sampler to enable the data-dependent estimation of η. This chapter will

also adopt their approximate Gibbs sampler.

To fully enable the Gibbs sampling algorithm for Bayesian modelling, we show in Appendix

A that the density function in Equation (3.2) has the scale mixture of normal representation

with exponential and GIG densities, which is stated in the following theorem.

Theorem 3.1. If the model error εi = yi − xiβ follows the density function (Equation
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Figure 3.1: Asymmetrical behaviour of the proposed loss function for τ=0.1 (short dashed),
0.25 (normal dashed), 0.5 (solid), 0.75 (short-normal dashed), and 0.9 (long dashed) for
different values of η and ρ2.
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(3.2)), then we can represent εi as the scale mixture of normals given by

f(εi; τ, η, ρ
2)

∝
∫∫

N (εi; (1− 2τ)vi, 4viσi) Exp

(
vi;

τ(1− τ)

2σi

)
GIG

(
σi;

3

2
,
η

ρ2
, ηρ2

)
dvidσi,

i = 1, . . . , n, (3.3)

where GIG(·) denotes the GIG distribution and its density is specified by Equation (2.6),

Exp(·) denotes the exponential distribution, and N(·) is the normal distribution.

Proof. The proof can be found under Theorem A.1 in Appendix A.

3.3 Bayesian Huberised Regularised Quantile Regression Model

In this section, we consider a Bayesian modelling of Huberised regularised quantile regres-

sion.

3.3.1 Bayesian Huberised Lasso Quantile Regression

Kawakami and Hashimoto (2023) showed that the unconditional Laplace prior of β (Park

and Casella (2008)) would lead to multi-modality of a posterior density and resolved this

issue by introducing ρ2 as a scale parameter to formulate the Bayesian Huberised Lasso,

that is,

π(β|ρ2, λ1) =

k∏
j=1

λ1

2
√
ρ2

exp

{
−λ1|βj |√

ρ2

}
. (3.4)

By using the scale mixture of normal representation of Laplace distribution (Andrews and

Mallows (1974)), the Bayesian Huberised Lasso can be expressed as

β|s, ρ2 ∼ N(0, ρ2Λ), sj |λ1 ∼ Exp

(
λ2

1

2

)
, j = 1, . . . , k,

where s = (s1, . . . , sk)
T and Λ = diag (s1, . . . , sk).

Therefore, with the Bayesian Huberised Lasso, we present the following hierarchical model
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using the scale mixture of normal representation in Theorem 3.1:

y|X,β,σ,v ∼ N(Xβ + (1− 2τ)v,V ),

σi|ρ2, η ∼ GIG

(
3

2
,
η

ρ2
, ηρ2

)
, vi|σi ∼ Exp

(
τ(1− τ)

2σi

)
, i = 1, . . . , n,

βj |sj , ρ2 ∼ N(0, ρ2sj), sj |λ2
1 ∼ Exp

(
λ2

1

2

)
, j = 1, . . . , k,

ρ2 ∼ π(ρ2) ∝ 1

ρ2
, λ2

1 ∼ Gamma(a, b), η ∼ Gamma(c, d),

where V = diag(4σ1v1, . . . , 4σnvn). As a prior of ρ2, we assume the improper scale invariant

prior, that is proportional to 1/ρ2, yet a proper inverse gamma prior can also be employed,

for example. Similar to Kawakami and Hashimoto (2023) and Cai and Sun (2021), we

present Propositions 3.2 and 3.3. The former shows that using the improper prior on ρ2

will lead to a proper posterior density. This ensures stability in making inference given that

the posterior density remains proper. The latter is crucial to theoretically prove that the

conditional prior on β leads to unimodality of the joint posterior because multi-modality

can affect the reliability of the sampling algorithm where it makes it difficult to find the

global maximum of the posterior distribution, that is a point estimate of the parameter,

and the sampling algorithm may face issues in searching for the posterior distribution and

converging to the true distribution.

Based on Proposition 3.3, Section 3.4.1 will show that the unconditional prior on β can

result in multi-modality of the joint posterior. We further impose a gamma prior on λ2
1 and

η. We set hyper-parameters a = b = c = d = 1 for simulation studies and real data analysis

although different values can be chosen and it is shown in Section 3.4.2 that different values

are insensitive to the model. The sensitivity analysis of hyper-parameters is detailed in

Section 3.4.2.

As for the Gibbs sampling algorithm, the full conditional distribution of β is a multivariate

normal distribution and those of σ, v, s and ρ2 are GIG distributions. The full conditional

distribution of λ2
1 is a Gamma distribution. The approximate Gibbs sampler is used for η.

Appendix B.1 gives the details of the full conditional posterior distributions for the Gibbs

sampling algorithm.

Proposition 3.2. Let ρ2 ∼ π(ρ2) ∝ 1/ρ2 (improper scale invariant prior). For fixed λ1 > 0

and η > 0, the posterior distribution is proper for all n.

Proof. The proof can be found under Proposition A.2 in Appendix A.
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Proposition 3.3. Under the conditional prior for β given ρ2 and fixed λ1 > 0 and η > 0,

the joint posterior (β, ρ2|y) is unimodal with respect to (β, ρ2).

Proof. The proof can be found under Proposition A.3 in Appendix A.

3.3.2 Bayesian Huberised Elastic Net Quantile Regression

We also present the Bayesian Huberised Elastic Net, that is,

π(β|ρ2, λ3, λ4) =

k∏
j=1

C
(
λ̃3, λ4

) λ3

2
√
ρ2

exp

{
−λ3|βj |√

ρ2
−
λ4β

2
j

ρ2

}
, (3.5)

where C
(
λ̃3 λ4

)
= Γ−1

(
1
2 , λ̃3

)(
λ̃3

)−1/2
exp

{
−λ̃3

}
is the normalising constant and λ̃3 =

λ2
3/(4λ4). Note that by letting ρ2 = 1, Equation (3.5) reduces to the original Bayesian

Elastic Net (Li and Lin (2010)).

By using the normal scale-mixture property (Andrews and Mallows (1974)), the Bayesian

Huberised Elastic Net can be expressed as the scale mixture of normal with truncated

gamma density:

π(β|ρ2, λ3, λ4) =
k∏
j=1

∫ ∞
0

Γ−1

(
1

2
, λ̃3

)√
2λ4tj

2πρ2(tj − 1)

√
λ̃3

tj

×N

(
βj ; 0,

ρ2(tj − 1)

2λ4tj

)
exp

{
−λ̃3tj

}
I(tj > 1)dt.

With the Bayesian Huberised Elastic Net, we have the following hierarchical model:

y|X,β,σ,v ∼ N(Xβ + (1− 2τ)v,V ),

σi|ρ2, η ∼ GIG

(
3

2
,
η

ρ2
, ηρ2

)
, vi|σi ∼ Exp

(
τ(1− τ)

2σi

)
, i = 1, . . . , n,

βj |tj , λ4, ρ
2 ∼ N

(
0,

2ρ2(tj − 1)

λ4tj

)
, j = 1, . . . , k,

tj |λ̃3 ∼ Γ−1

(
1

2
, λ̃3

)√
λ̃3

tj
exp

{
−λ̃3tj

}
I(tj > 1), j = 1, . . . , k,

ρ2 ∼ π(ρ2) ∝ 1

ρ2
, λ̃3 ∼ Gamma(a1, b1), λ4 ∼ Gamma(a2, b2), η ∼ Gamma(a3, b3),

where a1, a2, a3, b1, b2, b3 ≥ 0 are hyper-parameters, they are set to 1 for simulation studies

and real data analysis and Γ(·, ·) is the upper incomplete gamma function.

Appendix B.2 gives the details of the full conditional posterior distributions for the Gibbs
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sampling algorithm. The full conditional distributions are all well-known distributions ex-

cept the full conditional distributions of λ̃3 and η, and the Metropolis-Hasting algorithm

is employed on λ̃3. We also present Proposition 3.4 for the use of improper prior on ρ2.

Based on Proposition 3.5, Section 3.4.1 provides a demonstration of how the use of the

unconditional prior on β may result in multi-modality of the joint density.

Proposition 3.4. Let ρ2 ∼ π(ρ2) ∝ 1/ρ2 (improper scale invariant prior). For fixed λ3 > 0,

λ4 > 0 and η > 0, the posterior distribution is proper for all n.

Proof. The proof can be found under Proposition A.4 in Appendix A.

Proposition 3.5. Under the conditional prior for β given ρ2 and fixed λ3 > 0, λ4 > 0 and

η > 0, the joint posterior (β, ρ2|y) is unimodal with respect to (β, ρ2).

Proof. The proof can be found under Proposition A.5 in Appendix A.

3.3.3 Approximate Gibbs Sampler for Estimation of η

In this section, we will briefly discuss the approximate Gibbs sampler for the data-dependent

estimation of η that is proposed by Kawakami and Hashimoto (2023). Notice that in a

Bayesian Huberised regularised quantile regression model, the full conditional distribution

of η is

π(η|σ, ρ2) ∝ 1

K3/2(η)n
ηa−1 exp

{
−η

(
1

2

n∑
i=1

(
σi
ρ2

+
ρ2

σi

)
+ b

)}
, (3.6)

where a = c and b = d in case of Bayesian Huberised Lasso quantile regression and a = a3

and b = b3 in case of Bayesian Huberised Elastic Net quantile regression. Since the right

side of Equation (3.6) contains the modified Bessel function of the second kind, the full

conditional distribution of η does not have a conjugacy property. However, it is possible to

approximate Equation (3.6) by a common probability distribution.

For the selection of an initial value of the approximate Gibbs sampler, we need to approxi-

mate the modified Bessel function of the second kind. According to Abramowitz and Stegun

(1964), we have Kν(x) ∼ (1/2) Γ(ν) (x/2)−ν as x −→ 0 for ν > 0 and Kν(x) ∼
√
x/(2π)e−x

as x −→ ∞. Kawakami and Hashimoto (2023) stated that in either case, it would not make

much difference in estimating η. So, we will focus on the latter case only for this chapter.
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As η −→∞, we have

π(η|σ, ρ2) ≈ ηa+n/2−1 exp

{
−η

(
1

2

n∑
i=1

(
σi
ρ2

+
ρ2

σi

)
+ b− n

)}
,

which holds the approximation π(η|σ, ρ2) ≈ Gamma(η; a+n/2, 1/2
∑n

i=1

(
σi/ρ

2 + ρ2/σi) +

b− n
)

for large η.

The algorithm of the approximate Gibbs sampler is as follows. Given the current Markov

chain states (σ, ρ2), we set the initial value asA = a+n/2 andB = 1/2
∑n

i=1

(
σi/ρ

2 + ρ2/σi
)
+

b− n. For m = 1, . . . ,M , do the following steps

• η ←− A/B;

• A←− a+ nη2∂2/∂η2[logK3/2(η)];

• B ←− b+ (A− a)/η + n∂/∂η[logK3/2(η)] + 1/2
∑n

i=1

(
σi/ρ

2 + ρ2/σi
)
.

until |η/(A/B)−1| < ε or in other words, the convergence of η is met. The full derivation of

the algorithm is detailed in Kawakami and Hashimoto (2023) and they also illustrated that in

their simulation results, the approximation is close to the true full conditional distribution

and the approximation accuracy increases as the sample size increases. For simulation

studies and real data analysis, we set M = 10 and a tolerance ε = 10−8.

3.4 Simulations

Throughout the subsections, we conducted a wide variety of simulation studies to assess

the performance of the proposed methods. Firstly, we investigated the multi-modality of

the joint posterior density using unconditional prior on β in relation to Propositions 3.3

and 3.5. Secondly, we tested how the change in hyper-parameters of the priors for Bayesian

Huberised regularised quantile regression influence the estimation. Finally, we examined

the numerical performance and robustness of the proposed methods under various settings.

3.4.1 Multi-modality of Joint Posteriors

As related to Propositions 3.3 and 3.5, we presented a simple simulation to demonstrate

that the unconditional prior on β can result in multi-modality of the joint posterior. Instead

of Equations (3.4) and (3.5), we specified the unconditional Lasso prior (Equation (1.11))

and the unconditional Elastic Net prior (Equation (1.13)) with same improper prior π(ρ2) ∝
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Figure 3.2: Contour plot of an artificially generated posterior density of (β, log(ρ2)) of the
joint posterior density (Equations (3.7) and (3.8)) for Bayesian Huberised Lasso quantile
regression and Bayesian Huberised Elastic Net quantile regression, respectively. The loga-
rithm of ρ2 is used for better visibility.

1/ρ2. Then the joint posterior distribution of β and ρ2 for Bayesian Huberised Lasso quantile

regression is proportional to

π(β, ρ2|y) ∝ (ρ2)
−n/2−1

exp

−λ1

k∑
j=1

|βj |


×

n∏
i=1

exp

{
−

√
η

(
η +
|yi − xiβ|+ (1− 2τ)(yi − xiβ)

2ρ2

)}
, (3.7)

and that for Bayesian Huberised Elastic Net quantile regression is proportional to

π(β, ρ2|y) ∝ (ρ2)
−n/2−1

exp

−λ3

k∑
j=1

|βj | − λ4

k∑
j=1

β2
j


×

n∏
i=1

exp

{
−

√
η

(
η +
|yi − xiβ|+ (1− 2τ)(yi − xiβ)

2ρ2

)}
. (3.8)

In Appendix A, it is shown that using the conditional priors (Equations (3.4) and (3.5) leads

to a unimodal posterior for any choice of λ1, λ3, λ4 ≥ 0 and η > 0 with an improper prior

π(ρ2). On the other hand, the joint posteriors (Equations (3.7) and (3.8) can have more

than one mode. For example, Figure 3.2 shows the contour plots of a multi-modal joint

density of β and log(ρ2), which have seen three modes in the joint density. This suggests

that the sampling algorithm is unlikely to be reliable when using the unconditional priors
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Figure 3.3: Sensitivity analysis of hyper-parameters for the Bayesian Huberised Lasso quan-
tile regression.

because it does not find the global maximum of the joint posterior distribution and it would

lead to issues in converging to the true distribution. Thus, this simulation study emphasises

the importance of unimodality of the joint posterior density.

This particular example considered the following data generated model,

yi = xiβ + εi, εi ∼ AL(0, σ = 0.03, τ = 0.5),

where β = 1 and xi ∼ N(0, 1) for i = 1, . . . , 10, which is similar to Cai and Sun (2021). Due

to multi-modality in the joint posterior with unconditional prior on β, we use the prior for

β conditioning on the scale parameter ρ2.

3.4.2 Sensitivity Analysis of Hyper-parameters

In this subsection, we tested the sensitivity of hyper-parameters of gamma prior of η, λ1, λ3

and λ4 on the posterior estimates for the proposed methods. We equally divided x ∈ [−2, 2]

into 50 pieces and the data were generated from

yi = xiβ + εi, εi ∼ AL(0, σ = 0.03, τ = 0.5), i = 1, . . . , 50,

where xi =
((

1 + e−4(xi−0.3)
)−1

,
(
1 + e3(xi−0.2)

)−1
,
(
1 + e−4(xi−0.7)

)−1
,
(
1 + e5(xi−0.8)

)−1
)T

,
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Figure 3.4: Sensitivity analysis of hyper-parameters for the Bayesian Huberised Elastic Net
quantile regression.

and β = (1, 1, 1, 1)T . This indicates that the true curve is

f(x) =
(

1 + e−4(x−0.3)
)−1

+
(

1 + e3(x−0.2)
)−1

+
(

1 + e−4(x−0.7)
)−1

+
(

1 + e5(x−0.8)
)−1

.

In fact, this function was utilised in Jullion and Lambert (2007) to test the sensitivity of

hyper-parameters of the gamma prior on the scale component in Bayesian P-spline.

We considered the proposed models to estimate β. Note that there are four prior hyper-

parameters a, b, c and d in the Bayesian Huberised Lasso quantile regression and six prior

hyper-parameters a1, b1, a2, b2, a3 and b3 in the Bayesian Huberised Elastic Net quantile

regression. We mainly set a = b = c = d = a1 = a2 = a3 = b1 = b2 = b3 = 1 in both

simulation studies and data analysis. We generated 3000 posterior samples after discarding

the first 1000 posterior samples as a burn-in. Then we plotted yi = xiβ for i = 1, . . . , 50

in Figures 3.3 and 3.4 for both proposed Bayesian models, where β is the posterior mean

for the corresponding proposed model. In Figure 3.3, we fixed a = 1 with b varied for the

top-left plot and b = 1 with a varied for the top-right plot. In both cases, we kept c = d = 1
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Table 3.1: Numerical results based on 300 replications in Simulation 1 at different quantile
levels (τ = 0.25, 0.5, 0.75) for HBQR-BL, HBQR-EN, HBL BQR-BL and BQR-EN.

Methods RMSE MMAD AL CP

τ = 0.25

HBQR-BL100 0.3675 0.2548 0.9238 0.8711
HBQR-EN100 0.3795 0.2585 0.9673 0.8725
BQR-BL100 0.3956 0.2627 1.3406 0.9411
BQR-EN100 0.3859 0.2628 0.9624 0.8821

HBQR-BL200 0.3328 0.2108 0.6624 0.8483
HBQR-EN200 0.3380 0.2104 0.6822 0.8576
BQR-BL200 0.3534 0.2118 0.9076 0.9311
BQR-EN200 0.3476 0.2123 0.6819 0.8732

τ = 0.5

HBQR-BL100 0.2659 0.2059 0.9465 0.9211
HBQR-EN100 0.2678 0.2100 0.9834 0.9289
HBL100 0.2426 0.1891 0.9553 0.9432
BQR-BL100 0.2468 0.1946 1.2976 0.9848
BQR-EN100 0.2502 0.1968 0.9838 0.9413

HBQR-BL200 0.1962 0.1550 0.6810 0.9143
HBQR-EN200 0.1952 0.1549 0.6927 0.9192
HBL200 0.1777 0.1404 0.6763 0.9384
BQR-BL200 0.1825 0.1452 0.8756 0.9778
BQR-EN200 0.1841 0.1460 0.6900 0.9329

τ = 0.75

HBQR-BL100 0.3635 0.2521 0.9395 0.8756
HBQR-EN100 0.3662 0.2503 0.9891 0.8722
BQR-BL100 0.3943 0.2587 1.3484 0.9440
BQR-EN100 0.3853 0.2664 0.9920 0.8859

HBQR-BL200 0.3386 0.2141 0.6703 0.8573
HBQR-EN200 0.3315 0.2105 0.6895 0.8562
BQR-BL200 0.3571 0.2146 0.9053 0.9340
BQR-EN200 0.3512 0.2174 0.6890 0.8659

fixed. Both bottom plots of Figure 3.3 followed in a similar manner. As for Figure 3.4, we

also fixed a1 = 1 with b1 varied for the top-left plot, whilst keeping a2 = b2 = a3 = b3 = 1.

The rest of Figure 3.4 also followed in a similar manner. From the figures, we observe that

the estimation results do not change very much for different hyper-parameters. Thus, the

choice of hyper-parameters is insensitive for the Bayesian Huberised regularised quantile

regression.

3.4.3 Simulation Studies

In simulation studies, we illustrated performance of the proposed methods. We compared

the point and interval estimation performance of the proposed methods with those of some

existing methods. To this end, we considered the following regression model with n ∈
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Figure 3.5: Boxplots of RMSE based on 300 replications in six simulation scenarios for
HBQR-BL, HBQR-EN, BQR-BL and BQR-EN (τ = 0.25).
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Figure 3.6: Boxplots of MMAD based on 300 replications in six simulation scenarios for
HBQR-BL, HBQR-EN, BQR-BL and BQR-EN (τ = 0.25).
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Figure 3.7: Boxplots of AL based on 300 replications in six simulation scenarios for HBQR-
BL, HBQR-EN, BQR-BL and BQR-EN (τ = 0.25).
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Figure 3.8: Boxplots of RMSE based on 300 replications in six simulation scenarios for
HBQR-BL, HBQR-EN, HBL, BQR-BL and BQR-EN (τ = 0.5).
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Figure 3.9: Boxplots of MMAD based on 300 replications in six simulation scenarios for
HBQR-BL, HBQR-EN, HBL, BQR-BL and BQR-EN (τ = 0.5).
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Figure 3.10: Boxplots of AL based on 300 replications in six simulation scenarios for HBQR-
BL, HBQR-EN, HBL, BQR-BL and BQR-EN (τ = 0.5).
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Figure 3.11: Boxplots of posterior median of η based on 300 replications in six simulation
scenarios for HBQR-BL and HBQR-EN (n = 100).
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Table 3.2: Numerical results based on 300 replications in Simulation 2 at different quantile
levels (τ = 0.25, 0.5, 0.75) for HBQR-BL, HBQR-EN, HBL BQR-BL and BQR-EN.

Methods RMSE MMAD AL CP

τ = 0.25

HBQR-BL100 0.3822 0.2579 1.1290 0.9046
HBQR-EN100 0.4051 0.2767 1.2135 0.9002
BQR-BL100 0.5643 0.3385 2.6992 0.9506
BQR-EN100 0.4950 0.3100 1.6428 0.9311

HBQR-BL200 0.3418 0.2233 0.8011 0.8762
HBQR-EN200 0.3528 0.2368 0.8484 0.8765
BQR-BL200 0.4588 0.2540 1.7800 0.9521
BQR-EN200 0.4221 0.2436 1.2130 0.9394

τ = 0.5

HBQR-BL100 0.2886 0.2203 1.1750 0.9533
HBQR-EN100 0.2945 0.2336 1.2251 0.9522
HBL100 0.2683 0.2013 1.6040 0.9946
BQR-BL100 0.2954 0.2262 2.3330 0.9992
BQR-EN100 0.3273 0.2340 1.5357 0.9733

HBQR-BL200 0.2060 0.1591 0.7990 0.9279
HBQR-EN200 0.2130 0.1679 0.8332 0.9297
HBL200 0.1793 0.1386 1.0921 0.9943
BQR-BL200 0.1926 0.1511 1.4813 0.9992
BQR-EN200 0.1941 0.1522 1.1176 0.9929

τ = 0.75

HBQR-BL100 0.3791 0.2624 1.1734 0.9066
HBQR-EN100 0.3889 0.2822 1.2615 0.9000
BQR-BL100 0.5761 0.3468 2.7564 0.9525
BQR-EN100 0.4697 0.3086 1.8026 0.9433

HBQR-BL200 0.3324 0.2188 0.8013 0.8792
HBQR-EN200 0.3352 0.2198 0.8442 0.8705
BQR-BL200 0.4530 0.2498 1.7595 0.9521
BQR-EN200 0.4087 0.2416 1.2458 0.9437

{100, 200}, k = 20 and τ ∈ {0.25, 0.5, 0.75}:

yi = β0 + β1xi1 + . . .+ βkxik + σεi, i = 1, . . . , n,

where β0 = 1, β1 = 3, β2 = 0.5,β4 = β11 = 1, β7 = 1.5 and the other βj ’s were set to 0. We

assumed that y = (y1, . . . , yn)T is the response vector. The predictors xi = (xi1, . . . , xik)
T

were generated from a multivariate normal distribution Nk(0,Σ) with Σ = (r|i−j|)1≤i,j≤k

for |r| < 1. Similar to Kawakami and Hashimoto (2023), and Lambert-Lacroix and Zwald

(2011), we considered the following six scenarios.

• Simulation 1: Low correlation and Gaussian noise. ε ∼ Nn(0, In), σ = 2 and r = 0.5.

• Simulation 2: Low correlation and large outliers. ε = W/
√

Var(W ), σ = 9.67 and
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Table 3.3: Numerical results based on 300 replications in Simulation 3 at different quantile
levels (τ = 0.25, 0.5, 0.75) for HBQR-BL, HBQR-EN, HBL BQR-BL and BQR-EN.

Methods RMSE MMAD AL CP

τ = 0.25

HBQR-BL100 0.5676 0.4038 2.3005 0.9259
HBQR-EN100 0.5805 0.4285 2.5853 0.9268
BQR-BL100 0.6854 0.4754 5.0697 0.9524
BQR-EN100 0.6147 0.4293 2.9063 0.9430

HBQR-BL200 0.5173 0.3732 1.8027 0.9094
HBQR-EN200 0.5319 0.3825 2.0427 0.9060
BQR-BL200 0.5836 0.4033 3.7568 0.9519
BQR-EN200 0.5542 0.3872 2.4114 0.9422

τ = 0.5

HBQR-BL100 0.4949 0.3576 2.3700 0.9719
HBQR-EN100 0.4958 0.3856 2.5830 0.9700
HBL100 0.4525 0.3248 3.1990 0.9980
BQR-BL100 0.5023 0.3671 4.4369 0.9992
BQR-EN100 0.4910 0.3566 2.7858 0.9871

HBQR-BL200 0.4317 0.3197 1.8692 0.9611
HBQR-EN200 0.4317 0.3178 2.0474 0.9624
HBL200 0.3707 0.2719 2.4534 0.9965
BQR-BL200 0.4053 0.3041 3.3309 0.9992
BQR-EN200 0.3975 0.2995 2.3221 0.9921

τ = 0.75

HBQR-BL100 0.5563 0.3993 2.3546 0.9300
HBQR-EN100 0.5911 0.4240 2.7935 0.9321
BQR-BL100 0.6650 0.4591 4.9652 0.9531
BQR-EN100 0.5984 0.4318 3.3417 0.9482

HBQR-BL200 0.5241 0.3856 1.8819 0.9114
HBQR-EN200 0.5390 0.3926 2.1538 0.9033
BQR-BL200 0.5786 0.4008 3.8405 0.9522
BQR-EN200 0.5455 0.3940 2.6987 0.9479

r = 0.5. W is a random variable according to the contaminated density defined by

0.9×N(0, 1) + 0.1×N(0, 152), where
√

Var(W ) = 4.83.

• Simulation 3: High correlation and large outliers. ε = W/
√

Var(W ), σ = 9.67 and

r = 0.95.

• Simulation 4: Large outliers and skew Student-t noise. εi ∼ 0.9 × Skew-t3(γ = 3) +

0.1×N(0, 202), σ = 1 and r = 0.5.

• Simulation 5: Heavy-tailed noise. εi ∼ Cauchy(0, 1), σ = 2 and r = 0.5.

• Simulation 6: Multiple outliers. εi ∼ 0.8 × Skew-t3(γ = 3) + 0.1 × N(0, 102) + 0.1 ×

Cauchy(0, 1), σ = 1 and r = 0.5.

For the generated dataset, we applied the proposed robust methods denoted by HBQR-BL
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Table 3.4: Numerical results based on 300 replications in Simulation 4 at different quantile
levels (τ = 0.25, 0.5, 0.75) for HBQR-BL, HBQR-EN, HBL BQR-BL and BQR-EN.

Methods RMSE MMAD AL CP

τ = 0.25

HBQR-BL100 0.2705 0.1957 1.0598 0.9416
HBQR-EN100 0.2803 0.2093 1.1574 0.9408
BQR-BL100 0.3335 0.2542 2.5406 0.9990
BQR-EN100 0.3300 0.2362 1.5557 0.9769

HBQR-BL200 0.2265 0.1572 0.6799 0.9038
HBQR-EN200 0.2287 0.1584 0.7199 0.9004
BQR-BL200 0.2168 0.1679 1.5867 0.9979
BQR-EN200 0.2143 0.1636 1.0815 0.9721

τ = 0.5

HBQR-BL100 0.4965 0.2950 1.2265 0.9193
HBQR-EN100 0.5048 0.3049 1.2383 0.9213
HBL100 0.5434 0.3111 1.6510 0.9450
BQR-BL100 0.5609 0.3312 2.2801 0.9503
BQR-EN100 0.5184 0.3134 1.6965 0.9430

HBQR-BL200 0.4407 0.2385 0.8315 0.9029
HBQR-EN200 0.4466 0.2314 0.8457 0.9006
HBL200 0.4927 0.2461 1.1366 0.9446
BQR-BL200 0.5061 0.2571 1.4968 0.9506
BQR-EN200 0.4835 0.2515 1.1630 0.9444

τ = 0.75

HBQR-BL100 0.8388 0.4236 1.4484 0.9070
HBQR-EN100 0.8417 0.4460 1.5382 0.9005
BQR-BL100 1.1330 0.5333 2.7729 0.9492
BQR-EN100 1.0732 0.5514 2.1302 0.9281

HBQR-BL200 0.7868 0.3716 1.0323 0.8829
HBQR-EN200 0.7940 0.3874 1.0884 0.8676
BQR-BL200 1.0651 0.4624 1.9991 0.9462
BQR-EN200 1.0206 0.4729 1.5216 0.9149

and HBQR-EN where they were employed with Bayesian Huberised Lasso and Bayesian

Huberised Elastic Net, respectively. We also applied the existing robust methods, includ-

ing Bayesian linear regression with Bayesian Huberised Lasso (Kawakami and Hashimoto

(2023)), and Bayesian quantile regression with original Bayesian Lasso and Bayesian Elastic

Net (Li et al. (2010)) denoted by HBL, BQR-BL and BQR-EN, respectively. For HBL and

BQR-BL methods, we assumed λ1 ∼ Gamma(a = 1, b = 1) and for the BQR-EN method,

we assumed λ1 ∼ Gamma(a1 = 1, b1 = 1) and λ2 ∼ Gamma(a2 = 1, b2 = 1). For HBQR-BL

and HBQR-EN methods, we implemented both Gibbs and Metropolis-within-Gibbs sam-

pling algorithms, respectively and set all the hyper-parameters to 1. It is noteworthy that

different hyper-parameters could be chosen, since it is shown in Section 3.4.2 that the choice

of hyper-parameters does not matter for our proposed methods.



3.4. Simulations 68

Table 3.5: Numerical results based on 300 replications in Simulation 5 at different quantile
levels (τ = 0.25, 0.5, 0.75) for HBQR-BL, HBQR-EN, HBL BQR-BL and BQR-EN.

Methods RMSE MMAD AL CP

τ = 0.25

HBQR-BL100 0.4465 0.3012 1.4890 0.9169
HBQR-EN100 0.4460 0.3193 1.5992 0.9189
BQR-BL100 0.8163 0.4688 4.3100 0.9522
BQR-EN100 0.7197 0.3866 1.2336 0.8401

HBQR-BL200 0.3741 0.2456 1.0247 0.9108
HBQR-EN200 0.3926 0.2647 1.1039 0.9035
BQR-BL200 0.7137 0.3841 3.1585 0.9521
BQR-EN200 0.6376 0.3508 1.5062 0.8983

τ = 0.5

HBQR-BL100 0.3292 0.2257 1.4712 0.9668
HBQR-EN100 0.2469 0.2002 1.0604 0.9616
HBL100 0.4151 0.2771 2.3541 0.9909
BQR-BL100 0.4577 0.3172 3.6592 0.9963
BQR-EN100 0.6727 0.3435 0.7418 0.8184

HBQR-BL200 0.2320 0.1780 0.9866 0.9594
HBQR-EN200 0.2495 0.1861 1.0505 0.9570
HBL200 0.2861 0.1996 1.7512 0.9951
BQR-BL200 0.3155 0.2263 2.6611 0.9990
BQR-EN200 0.4242 0.2551 1.2599 0.9279

τ = 0.75

HBQR-BL100 0.4315 0.2998 1.5445 0.9321
HBQR-EN100 0.4356 0.3011 1.7046 0.9303
BQR-BL100 0.7818 0.4538 4.2976 0.9649
BQR-EN100 0.6703 0.3859 1.7851 0.8868

HBQR-BL200 0.3732 0.2442 1.0471 0.9089
HBQR-EN200 0.3913 0.2607 1.1202 0.9008
BQR-BL200 0.7062 0.3789 3.2171 0.9554
BQR-EN200 0.5920 0.3386 1.8842 0.9287

Whilst applying the above methods, we generated 2000 posterior samples after discarding

the first 500 samples as a burn-in. We computed posterior median of each element of βj ’s

for point estimates of βj ’s, and the performance was evaluated via root of mean squared

error (RMSE) defined as
[
(k + 1)−1

∑k
j=0(β̂j − βtrue

j )2
]1/2

, and median of mean absolute

deviation (MMAD) defined as median
[
(k + 1)−1

∑k
j=0

∣∣∣β̂j − βtrue
j

∣∣∣]. We also computed 95%

credible intervals of βj ’s, and calculated average lengths (ALs) and coverage probabilities

(CPs) defined as (k + 1)−1
∑k

j=0 |CIj | and (k + 1)−1
∑k

j=0 I(βj ∈ CIj), respectively. These

values were averaged over 300 replications of generating datasets.

We reported numerical results in Tables 3.1-3.6. In Simulation 1, there was no outlier

in generated datasets. At the median level (τ = 0.5), both HBL and BQR-BL methods

outperformed other methods in terms of RMSE and MMAD. Yet, at the lower and upper
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Table 3.6: Numerical results based on 300 replications in Simulation 6 at different quantile
levels (τ = 0.25, 0.5, 0.75) for HBQR-BL, HBQR-EN, HBL BQR-BL and BQR-EN.

Methods RMSE MMAD AL CP

τ = 0.25

HBQR-BL100 0.2669 0.2034 1.0971 0.9503
HBQR-EN100 0.2734 0.2141 1.1773 0.9546
BQR-BL100 0.3397 0.2591 2.2468 0.9960
BQR-EN100 0.3285 0.2438 1.4439 0.9639

HBQR-BL200 0.1931 0.1454 0.6920 0.9203
HBQR-EN200 0.1978 0.1466 0.7353 0.9235
BQR-BL200 0.2025 0.1595 1.4260 0.9984
BQR-EN200 0.2002 0.1557 0.9916 0.9814

τ = 0.5

HBQR-BL100 0.2550 0.1937 1.0816 0.9516
HBQR-EN100 0.2634 0.2050 1.1773 0.9546
HBL100 0.4862 0.2947 1.5152 0.9384
BQR-BL100 0.3228 0.2480 2.1960 0.9970
BQR-EN100 0.3200 0.2370 1.4295 0.9698

HBQR-BL200 0.4094 0.2328 0.8321 0.8971
HBQR-EN200 0.4147 0.2355 0.8701 0.8959
HBL200 0.4450 0.2384 1.0562 0.9379
BQR-BL200 0.4584 0.2502 1.3950 0.9498
BQR-EN200 0.4392 0.2452 1.0774 0.9363

τ = 0.75

HBQR-BL100 0.8115 0.4248 1.4426 0.8998
HBQR-EN100 0.8229 0.4399 1.5531 0.8946
BQR-BL100 1.0427 0.5067 2.5333 0.9468
BQR-EN100 0.9903 0.5243 1.8811 0.9092

HBQR-BL200 0.7661 0.3735 1.0210 0.8689
HBQR-EN200 0.7734 0.3836 1.0743 0.8630
BQR-BL200 0.9763 0.4381 1.8219 0.9437
BQR-EN200 0.9407 0.4492 1.3898 0.9019

quantile levels (τ = 0.25, 0.75), the proposed methods outperformed the existing methods.

In terms of AL, the HBQR-BL method has the shortest AL amongst methods at all quantile

levels, whilst HBQR-EN and BQR-EN methods have similar ALs. The BQR-BL method

produced wider ALs. Upon looking at Simulations 2 and 3 in the presence of large outliers,

the HBL method outperformed the quantile-based methods at the median level, whilst the

quantile-based methods have comparable results. When the value of τ deviated from the

median level, the proposed methods outperformed the existing methods significantly. In

terms of AL, the proposed methods produced shortest ALs, whilst the BQR-BL produced

ALs two times wider than the other methods. Upon looking at Simulations 4-6 where

there were skewed & heavy-tailed noise with large outliers, heavy-tailed noise (Cauchy

distribution) and multiple outliers, respectively, the proposed methods outperformed the

existing methods significantly at varying quantile levels with the exception of the latter
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having lower RMSEs in Simulation 4 at τ = 0.25. The behaviour of AL followed the same

pattern of those in Simulations 2 and 3. Finally, in terms of CP, the proposed methods have

CPs in range of 86% and 97% for different scenarios at varying quantile levels, which are

lower than those of the existing methods. By increasing the sample size, the CP would see

an increase, since the sample size is one of the primary factors on the CP (Wilcox (2003)).

We reported boxplot performances for visualisation in Figures 3.5-3.7 at τ = 0.25. Upon

looking at Figure 3.5 for RMSE performances, all four quantile-based methods produced

comparable boxplots for Simulation 1, yet the proposed methods have tighter boxplots and

the existing methods produced more outliers in their boxplots for Simulation 2-6. Par-

ticularly, in Simulation 5, the BQR-BL method saw an increase in RMSE, as the sample

size increased from n = 100 to n = 200, which is unusual. For MMAD performances,

Figure 3.6 showed the similar behaviour, and whilst observing results of Simulation 5, the

existing methods produced several outliers in their boxplots and the BQR-EN method had

the unusual boxplot. This is also observed in Figure 3.7 for AL performances, and the

proposed methods consistently produced lower median values in their boxplots. Similar

performances are observed for τ = 0.75 and the figures are provided in Appendix D.2 (see

Figures D.9-D.11).

We also reported boxplot performances in Figures 3.8-3.10 at τ = 0.5. Upon looking at

Figure 3.8 for RMSE performances, all five methods produced similar boxplots for Simu-

lations 1-3. For Simulation 4, it is noticeable that the existing methods produced tighter

boxplots. The BQR-EN method saw an unusual boxplot for Simulation 5 and the BQR-BL

method produced most outliers in its boxplots for all simulations. Unlike the HBL method,

Simulation 6 saw an increase in RMSE for each quantile-based method, as the sample size

increased from n = 100 to n = 200. Figure 3.9 observed the similar behaviour for MMAD

performances. Upon looking at Figure 3.10 for AL performances, Simulation 1 observed sim-

ilar boxplots for all five methods, yet the proposed methods consistently produced tighter

boxplots and their corresponding median values are lower than those of the existing methods

for Simulations 2-6. Whilst looking at Simulation 5, the BQR-EN method produced the

unusual boxplot with large box size, and median value being close to its lower quartile.

In terms of sample sizes, when there is an increase in the sample size, all tables and figures

mentioned above generally saw a decrease in error measures, including RMSE and MMAD,

and AL of credible intervals. This is due to the fact that the more data is available, the

better the model fitting is.
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We also presented boxplots of posterior median of η in Figure 3.11 for the sample size of

n = 100 at different quantile levels. For Simulation 1, both proposed methods produced the

relatively large value of η, whilst the HBQR-BL method produced large box size and long

whiskers in its boxplot in contrast to the HBQR-EN method having its tighter boxplot with

shorter whiskers. On the other hand, for Simulations 2-6, the relatively small value of η was

chosen by the proposed methods, whilst both saw tighter boxplots with shorter whiskers,

and those of the HBQR-EN method produced more outliers. Upon looking at Simulation

6, the proposed methods produced boxplots with slightly large box size and longer whiskers

like those in Simulation 1. Nevertheless, there is no noticeable difference between η values

of both proposed methods, and the behaviour of η did not differ at varying quantile levels.

Thus, η was adaptively chosen for different scenarios, which can also be observed in the

HBL method (Kawakami and Hashimoto (2023)). Similar performances are observed for

the sample size of n = 200 and the figure is provided in Appendix D.2 (see Figure D.12).

To summarise the results, it is acknowledged that the proposed methods have strengths

and limitations. At the median level, the existing methods are fairly competitive with the

proposed methods for some scenarios. When the error assumption is Gaussian either with

or without outliers, the HBL method is preferable because the HBL method dampens the

effect of outlying observations well under the Gaussian error assumption. However, when

the noise is non-Gaussian, the proposed methods performed significantly better because

they accommodate skewness and heavy tails well under the non-Gaussian noise assumption,

whilst they are adaptive for various outliers with the support of tuning robustness parameter

η. When the value of τ deviated from the median level, the proposed methods generally

outperformed the existing quantile-based methods. Additionally, the AL of the proposed

methods’ credible intervals is narrower than those of the existing methods at varying quantile

levels for each scenario. It is noteworthy that the BQR-BL method may be unstable in

producing estimates due to having wider ALs, and the BQR-EN method performed poorly

under the assumption of Cauchy noise, whilst the proposed methods are stable in all six

scenarios. Therefore, the proposed methods consistently performed well, particularly for

noises with contamination, skewness and/or heavy tails.

3.5 Real Data Analysis

The robustness and efficiency of the Bayesian Huberised regularised quantile regression

models were demonstrated via the analysis of three benchmarking datasets: Prostate Cancer
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Figure 3.12: Posterior medians and 95% credible intervals of the regression coefficients at
different quantile levels (τ = 0.1, 0.5, 0.9) for HBQR-BL, HBQR-EN, HBL, BQR-BL and
BQR-EN, applied to the Crime data.
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Figure 3.13: Posterior medians and 95% credible intervals of the regression coefficients at
different quantile levels (τ = 0.5, 0.7, 0.9) for HBQR-BL, HBQR-EN, HBL, BQR-BL and
BQR-EN, applied to the Prostate Cancer data.
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Figure 3.14: Posterior medians and 95% credible intervals of the regression coefficients at
different quantile levels (τ = 0.1, 0.5, 0.9) for HBQR-BL, HBQR-EN, HBL, BQR-BL and
BQR-EN, applied to the Top Gear data.
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Table 3.7: MSPE, MAPE, MHPE with δ = 1.345 and MedSPE for the Crime data, com-
puted from 10-fold cross-validation.

Methods MSPE MAPE MedSPE MHPE

τ = 0.1

HBQR-BL 0.0226 0.1223 0.0044 0.0113
HBQR-EN 0.0156 0.1034 0.0071 0.0078
BQR-BL 0.0157 0.1054 0.0137 0.0078
BQR-EN 0.0169 0.1285 0.0150 0.0085

τ = 0.5

HBQR-BL 0.0123 0.0946 0.0067 0.0061
HBQR-EN 0.0121 0.0938 0.0073 0.0061
HBL 0.0304 0.1534 0.0173 0.0152
BQR-BL 0.0192 0.1008 0.0081 0.0096
BQR-EN 0.0250 0.1474 0.0185 0.0125

τ = 0.9

HBQR-BL 0.0400 0.1439 0.0077 0.0200
HBQR-EN 0.0278 0.1346 0.0079 0.0139
BQR-BL 0.0453 0.1582 0.0106 0.0226
BQR-EN 0.0401 0.1629 0.0146 0.0200

data, Crime data and Top Gear data. The Crime and Top Gear datasets have large outliers.

For a better interpretation of the parameters and to put the predictors on the common

scale, we standardised all the numerical predictors and response variables to have mean 0

and variance 1. Like in simulation studies, we also considered all the five methods of which

we generated 10,000 posterior samples after discarding the first 5,000 posterior samples as

a burn-in. Then we reported posterior medians of regression coefficients and their 95%

credible intervals. For brevity, we dropped the names of predictors of the datasets and kept

the corresponding number to indicate each predictor. For BQR-BL, BQR-EN, HBQR-BL

and HBQR-EN, we set the quantile levels as τ ∈ {0.1, 0.5, 0.9} for the Crime and Top Gear

datasets. We also chose τ ∈ {0.5, 0.7, 0.9} for the Prostate Cancer dataset like Li and Lin

(2010), Alhamzawi et al. (2012) and Alhamzawi et al. (2019).

Since datasets may contain outliers, we adopted the following four criteria as measures

of predictive accuracy: mean squared prediction error (MSPE), mean absolute predic-

tion error (MAPE), mean Huber prediction error (MHPE) for δ = 1.345 and median

of squared prediction error (MedSPE) via the 10-fold cross validation. They are defined

by MSPE = 10−1
∑10

j=1(yj −XT
j β̂

(−j))2, MAPE = 10−1
∑10

j=1|yj −XT
j β̂

(−j)|, MHPE =

10−1
∑10

j=1 L
Huber
δ

(yj −XT
j β̂

(−j)) and MedSPE = median1≤j≤10(yj −XT
j β̂

(−j))2, where LHuber
δ (·) is defined

by Equation (1.1), β̂(−j) is the posterior median based on a dataset except for jth validation

set, and yj and Xj are the response variables and design matrix based on the jth validation

set, respectively.
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Table 3.8: MSPE, MAPE, MHPE with δ = 1.345 and MedSPE for the Prostate Cancer
data, computed from 10-fold cross-validation.

Methods MSPE MAPE MedSPE MHPE

τ = 0.5

HBQR-BL 1.1988 1.0378 1.2586 0.5977
HBQR-EN 1.2481 1.0607 1.2175 0.6216
HBL 1.3158 1.0906 1.3379 0.6541
BQR-BL 1.2932 1.0814 1.3393 0.6434
BQR-EN 1.3115 1.0882 1.3001 0.6519

τ = 0.7

HBQR-BL 1.2473 1.0606 1.4409 0.6222
HBQR-EN 1.2290 1.0513 1.4216 0.6131
BQR-BL 1.2916 1.0809 1.5416 0.6423
BQR-EN 1.2615 1.0644 1.4466 0.6283

τ = 0.9

HBQR-BL 1.2471 1.0564 1.5681 0.6227
HBQR-EN 1.1894 1.0245 1.4484 0.5943
BQR-BL 1.3358 1.0868 1.2840 0.6631
BQR-EN 1.2240 1.0338 1.3014 0.6102

3.5.1 Crime Dataset

The dataset was collected from the Statistical Abstract of the US for the 50 states and the

District of Columbia (U.S. Census Bureau (2006)). This dataset was analysed in the book

of Statistical Methods for the Social Sciences (Agresti and Finlay (1997)). The predictors

are the number of murders per 100,000 people in the population, the percentage of the

population living in Metropolitan areas, the percentage of the population who were white,

the percentage of the population who were high school graduates or higher, the percentage

of families living below the poverty level, and the percentage of families headed by a single

parent (male householders with no wife present and with own children, or female house-

holders with no husband present and with own children). The response of interest is the

number of murders, forcible rapes, robberies, and aggravated assaults per 100,000 people

in the population. In total, we have 51 observations and included squared variables, which

resulted in 12 predictors in our models.

The posterior medians and 95% credible intervals of the regression coefficients based on the

five methods are reported in Figure 3.12. From the figure, all the methods behaved similarly

and the estimates were very close. The BQR-BL method produced wider credible intervals,

which suggested that this method may be unstable in producing estimates. The similar

performances are observed in τ = 0.1 and τ = 0.9. Table 3.7 also presents the predictive

performance of the five methods for τ = 0.5 and the four Bayesian quantile regression based

methods for τ ∈ {0.1, 0.9}. The proposed methods performed better than the existing robust
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Table 3.9: MSPE, MAPE, MHPE with δ = 1.345 and MedSPE for the Top Gear data,
computed from 10-fold cross-validation.

Methods MSPE MAPE MedSPE MHPE

τ = 0.1

HBQR-BL 0.0288 0.1500 0.0196 0.0144
HBQR-EN 0.0296 0.1505 0.0229 0.0148
BQR-BL 0.0360 0.1736 0.0331 0.0180
BQR-EN 0.0331 0.1605 0.0267 0.0166

τ = 0.5

HBQR-BL 0.0127 0.0942 0.0064 0.0064
HBQR-EN 0.0120 0.0905 0.0070 0.0060
HBL 0.0110 0.0863 0.0055 0.0055
BQR-BL 0.0183 0.1102 0.0101 0.0092
BQR-EN 0.0110 0.0864 0.0063 0.0055

τ = 0.9

HBQR-BL 0.0643 0.2309 0.0410 0.0322
HBQR-EN 0.0843 0.2662 0.0628 0.0421
BQR-BL 0.6942 0.7652 0.7337 0.3471
BQR-EN 0.2290 0.4461 0.1790 0.1145

methods in both median and upper quantile levels. The HBL method produced relatively

large error measures in the median case amongst the rest of methods. Looking at the lower

quantile level (τ = 0.1), MSPE, MAPE and MHPE suggested that HBQR-EN and BQR-BL

performed better, whilst MedSPE suggested that both proposed methods performed better.

In this case, they were very comparable.

3.5.2 Prostate Cancer Dataset

The dataset was from a prostate cancer study (Stamey et al. (1989)) and analysed by Zou

and Hastie (2005). It is available in the R package ’bayesQR’ (Benoit and Van den Poel

(2017)). The predictors are eight clinical measures in men who were about to receive a

radical prostatectomy: the logarithm of cancer volume, the logarithm of prostate weight,

age, the logarithm of the amount of benign prostatic hyperplasia, seminal vesicle invasion,

the logarithm of capsular penetration, the Gleason score and the percentage Gleason score

4 or 5. The response of interest is the logarithm of prostate-specific antigens. In total,

we have 97 observations for the data and included squared variables, which resulted in 16

predictors in our models.

The posterior medians and 95% credible intervals of the regression coefficients based on the

five methods are reported in Figure 3.13. From the figure, all the methods were comparable

except the BQR-BL method that seemed to perform unstably due to its regression coeffi-

cients’ wide credible intervals. The similar performances are also observed in τ = 0.7 and



3.6. Chapter Summary 78

τ = 0.9. Table 3.8 also presents the predictive performance of the five methods for τ = 0.5

and the four Bayesian quantile regression based methods for τ ∈ {0.7, 0.9}. The proposed

methods performed better than the existing robust methods for τ = 0.5 and τ = 0.7. For

τ = 0.9, it revealed that the HBQR-EN and BQR-EN methods performed better except the

existing methods performed better according to MedSPE.

3.5.3 Top Gear Dataset

The dataset used information on cars featuring on the website of the popular BBC television

show Top Gear. It is available in the R package ’robustHD’ (Alfons (2021)) and contained

242 observations on 29 numerical and categorical variables after removing the missing values.

A description of the variables is provided in Table 3 of the paper (Alfons et al. (2016)). The

response of interest is MPG (fuel consumption) and the remaining variables are predictors.

For categorical variables, there were 4 binary variables and 12 variables with three levels.

These 12 variables were assigned two dummy variables each. The resulting design matrix

consisted of 12 numerical variables, 4 individual dummy variables, and 12 groups of two

dummy variables each, giving a total of 40 predictors.

The posterior medians and 95% credible intervals of the regression coefficients based on the

five methods are reported in Figure 3.14. From the figure, all the methods were comparable.

Like for the Crime and Prostate Cancer datasets, the BQR-BL method produced wider

credible intervals. The similar performances are also observed in τ = 0.1 and τ = 0.9.

Table 3.9 also presents the predictive performance of the five methods for τ = 0.5 and

the four Bayesian quantile regression based methods for τ ∈ {0.1, 0.9}. All the methods

were comparable in the median case (τ = 0.5) where both HBL and BQR-EN have the

lowest error measures. Looking at the extreme quantile levels (τ = 0.1, 0.9), the proposed

methods significantly outperformed the BQR-BL and BQR-EN methods especially at the

upper quantile level where the existing robust methods performed worse than the proposed

methods. Furthermore, BQR-BL had the highest error measures in all cases.

3.6 Chapter Summary

In this chapter, we have presented the Bayesian Huberised regularisation. We proposed the

asymmetric Huberised loss function and its corresponding probability density function that

led to the scale mixture of normal distribution with exponential and GIG mixing densities.
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This resulted in fully Bayesian hierarchical models for quantile regression and its Gibbs

sampling algorithm with the approximate Gibbs sampler for the data-dependent estima-

tion of the robustness parameter. We have proven theoretically that the proposed Bayesian

models yielded a good posterior propriety and unimodality in their joint posterior density

with conditional prior for the regression coefficients. Simulation studies and real data ex-

amples showed that the proposed methods are effective in predictive accuracy and their

robustness is evident under a wide range of scenarios. In many situations, the proposed

methods outperformed the existing Bayesian regularised quantile regression methods espe-

cially at the extreme quantile levels and under the non-Gaussian error assumption, since

they accommodate skewness and heavy tails, whilst they are adaptive for various outliers

with the support of tuning robustness parameter.. Our proposed methods have proven to

be robust in obtaining valuable results.



Chapter 4

Variational Bayesian Huberised

Adaptive Lasso

Chapter 3 has utilised the MCMC method that has proven to be successful in formulating full

Bayesian probabilistic models when posterior distributions are analytically intractable to be

computed directly. As sample size increases, the computational cost of the MCMC method

becomes more expensive and burdensome. This motivates the VB method as an alternative.

This chapter proposes a novel VB regularisation and its extension to quantile regression,

including VB Huberised Lasso quantile regression and VB Huberised adaptive Lasso quantile

regression. The full CAVI algorithms are presented. Via various simulation studies and

a real data example, the comparative studies with the MCMC method have shown that

the proposed methods performed much faster than the MCMC method, particularly the

algorithm of VB Huberised adaptive Lasso quantile regression, whilst obtaining similar

statistical results.

4.1 Introduction

MCMC methods are a common approach for Bayesian probabilistic models where posterior

distributions cannot be computed directly. As discussed in the previous chapters, some

Bayesian regularisation methods have been developed to simultaneously estimate model pa-

rameters and consistently select variables in a high-dimensional setting by imposing various

priors on parameters. However, they are not the best choices because they take a great deal

of computational time and are not scalable. The VB method is an alternative approach,

which has attracted much attention in recent years, such as Chen et al. (2016), Alves et al.
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(2021), Yi and Tang (2022), and Wang et al. (2023), amongst others.

The VB method transforms the problem of probabilistic inference into the optimisation

problem. It approximates the exact posterior distribution based on a family of tractable

densities. The KL divergence is used as a measure from the approximate posterior density to

the posterior distribution. VI originated from the free energy of statistical physics, such as

the mean-field free energy and Bethe/Kikuchi free energies (Saul et al. (1996), Yedidia et al.

(2000), and Yedidia et al. (2001)). It then extended to Bayesian statistics and machine

learning (Jordan et al. (1999), Beal (2003), Beal and Ghahramani (2003), and Beal and

Ghahramani (2004), amongst others). The comprehensive reviews of the VB method are

provided in Fox and Roberts (2012), Ostwald et al. (2014), Blei et al. (2017), Tran et al.

(2021), and Wu and Tang (2021). Blei et al. (2017) noted that the accuracy of VI has

not yet been thoroughly studied and many open questions are still there to be answered.

Nonetheless, the VB method is an attractive option for approximate inference due to its

sound theoretical foundation and high convergence rate (Jordan et al. (1999), and Minka

(2005)).

Therefore, in this chapter, we incorporate the VB method and Bayesian Huberised Lasso

(Kawakami and Hashimoto (2023)) to propose a novel VB Huberised regularisation using

the Lasso (Tibshirani (1996)) and adaptive Lasso (Zou (2006)) for robust regression for a

fast-computational and high-dimensional problem. Along with Bayesian Huberised regu-

larisation, the asymmetric Huberised loss function, proposed in Chapter 3, is utilised to

present both Bayesian Huberised Lasso quantile regression and Bayesian Huberised adap-

tive Lasso quantile regression, due to the quantile and normal scale-mixture properties of

its probability distribution. The MCMC method is replaced with the VB method where

the mean-field VB approach is used to formulate approximate densities in place of exact

posterior distributions. Because the tuning robustness parameter does not belong to the

conjugate prior family, the approximate Gibbs sampler is replaced with the Laplace VI

method (Wang and Blei (2013)) that uses the Laplace approximation. This retains the

advantage of the data-dependent estimation of the tuning robustness parameter. Without

compromising the accuracy of parameter estimation, the VB method retains the advantages

of Bayesian inference, including parameter uncertainty, priori knowledge and families of

tractable densities, whilst enjoys low computational cost and fast convergence rate. The

parameter estimation, efficiency and robustness of the proposed algorithms and its compu-

tational performance are demonstrated in simulation studies followed by real data analysis,

whilst conducting comparative analysis with the MCMC method.
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Section 4.2 presents the fully hierarchical models for Bayesian Huberised Lasso quantile

regression and Bayesian Huberised adaptive Lasso quantile regression. Then we derive

the VB algorithms using mean-field and Laplace methods in Section 4.3. The simulation

studies are conducted to investigate the numerical performance of the proposed algorithms

in Section 4.4 followed by the Boston Housing data example in Section 4.5. Section 4.6

provides the discussion of this chapter.

4.2 Bayesian Huberised Lasso Quantile Regression and its

Extension

In this section, we revisit the Bayesian Huberised Lasso quantile regression from Chapter 3

and reformulate the regression problem in order to keep the notation consistent for develop-

ing the VB algorithm where the intercept term is to be estimated independently from the

regression coefficient vector. We will also introduce the new Bayesian Huberised adaptive

Lasso quantile regression.

4.2.1 Bayesian Huberised Lasso

We consider the following Huberised regularised quantile regression model,

yi = β0 + xiβ + εi, i = 1, . . . , n,

where β0 is the intercept term, β is the vector of unknown coefficients, yi is the response vari-

able, xi is the regression coefficient vector and ε follows the density function from Equation

(3.2). We consider the Bayesian Huberised Lasso, that is given in Equation (3.4).

By using the scale mixture of normal representation of Laplace distribution (Andrews and

Mallows (1974)) for the Bayesian Huberised Lasso and that of Theorem 3.1, we present the

following hierarchical model:

y|X, β0,β,σ,v ∼ N(β0,Xβ + (1− 2τ)v,V ),

σi|ρ2, η ∼ GIG

(
3

2
,
η

ρ2
, ηρ2

)
, vi|σi ∼ Exp

(
τ(1− τ)

2σi

)
, i = 1, . . . , n,

βj |sj , ρ2 ∼ N(0, ρ2sj), sj |λ2 ∼ Exp

(
λ2

2

)
, j = 1, . . . , k,

ρ2 ∼ π(ρ2) ∝ 1

ρ2
, λ2 ∼ Gamma(a, b), η ∼ Gamma(c, d), β0 ∝ 1,
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The prior specification follows in the same way from Chapter 3 and we assume a flat prior

for β0. Whilst the Bayesian Huberised Lasso enjoys robustness and variable shrinkage

properties, it may experience overfitting like the Bayesian Lasso (Park and Casella (2008)).

Zou (2006) proposed adaptive Lasso, which extended the Lasso approach (Tibshirani (1996))

allowing different penalisation parameters for different regression coefficients.

4.2.2 Bayesian Huberised Adaptive Lasso

We extend Equation (3.4) to include the adaptive Lasso penalty resulting in the Bayesian

Huberised adaptive Lasso:

π(β|ρ2,λ) =

k∏
j=1

λj

2
√
ρ2

exp

{
−λj |βj |√

ρ2

}
, (4.1)

where λj is the penalisation parameter being assigned to each regression coefficient.

By using the scale mixture of normal representation of Laplace distribution (Andrews and

Mallows (1974)), the Bayesian Huberised adaptive Lasso can be expressed as

β|s, ρ2 ∼ N(0, ρ2Λ), sj |λ2
j ∼ Exp

(
λ2
j

2

)
, j = 1, . . . , k,

where s = (s1, . . . , sk)
T and Λ = diag (s1, . . . , sk).

Thus, we present the following hierarchical model with the Bayesian Huberised adaptive

Lasso:

y|X, β0,β,σ,v ∼ N(β0 +Xβ + (1− 2τ)v,V ),

σi|ρ2, η ∼ GIG

(
3

2
,
η

ρ2
, ηρ2

)
, vi|σi ∼ Exp

(
τ(1− τ)

2σi

)
, i = 1, . . . , n,

βj |sj , ρ2 ∼ N(0, ρ2sj), sj |λ2
j ∼ Exp

(
λ2
j

2

)
, λ2

j ∼ Gamma(aj , bj), j = 1, . . . , k,

ρ2 ∼ π(ρ2) ∝ 1

ρ2
, η ∼ Gamma(c, d), β0 ∝ 1,

This two-level prior distribution of regression coefficients provides flexible shrinkage weights

for regression coefficients. Instead of employing the usual MCMC method like in Chapter 3,

the VB approach is used, since it has a fast computational speed and retains the efficiency

of parameter estimation without compromising the accuracy.
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4.3 Variational Inference

This section follows the concept of VI that is fully explained in Chapter 1, and the notation

is modified such that it is appropriate for a given model. For each specified model, the CAVI

algorithm is developed and the evidence lower bound (ELBO), required for the convergence

criterion, is also formulated. The detailed derivation of ELBO, including all the variational

densities, is provided in Appendix C.

4.3.1 Bayesian Huberised Lasso Quantile Regression

Following from Chapter 1, the vector including latent variables and parameters denoted by

Θ is represented in this subsection by the vector Θ = (β0,β, s,v,σ, ρ
2, η, λ2).

Following the optimisation problem (Equation (1.21), we express the approximate posterior

distribution by factorisation,

q(Θ) =
N∏
l=1

q(θl) =

 k∏
j=1

q(βj)q(sj)

( n∏
i=1

q(vi)q(σi)

)
q(ρ2)q(η)q(λ2)q(β0) ≈ p(Θ|y).

For the sake of brevity, we denote E[θl] as the expectation of the variable θl about the

optimal variational posterior distribution q∗(θl). According to Equation (1.21), the optimal

variational density q∗(β) is

q∗(β) ∼ N(µβ,Σβ), (4.2)

where

Σβ =

(
XTE[V −1]X + E

[
1

ρ2

]
E[Λ−1]

)
,

µβ = ΣXT

(
E[V −1](y − E[β0])− 1− 2τ

4
E
[

1

σi

])
,

E[V −1] = diag

(
1

4
E
[

1

v

]
E
[

1

σ

])
,

E[Λ−1] = diag

(
E
[

1

s

])
.

The mean estimator βmean of β for the variational density q∗(β) is given by βmean = µβ.
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In the similar way, the optimal variational density q∗(σ) is

q∗(σi) ∼ GIG
(

0, âσi , b̂σi

)
, i = 1, . . . , n, (4.3)

where

âσi = E[η]E
[

1

ρ2

]
,

b̂σi =
1

4
E
[

1

vi

] (
(yi − E[β0]− xiE[β])2 + Var(β0) + Tr(xix

T
i Var(β))

)
+

(
τ(1− τ) +

(1− 2τ)2

4

)
E[vi]−

1− 2τ

2
(yi − E[β0]− xiE[β])

+ τ(1− τ)E[vi] + E[η]E[ρ2].

The mean estimator σmean
i of σi for the variational density q∗(σi) is given by σmean

i =√
b̂σi/âσiK1

(√
âσi b̂σi

)
/K0

(√
âσi b̂σi

)
for i = 1, . . . , n, where Kν(·) is the modified Bessel

function of the second kind at index ν.

The optimal variational density q∗(v) can be obtained similarly as follows:

q∗(vi) ∼ GIG

(
1

2
, âvi , b̂vi

)
, i = 1, . . . , n, (4.4)

where

âvi = E
[

1

σi

](
(1− 2τ)2

4
+ τ(1− τ)

)
,

b̂vi =
1

4
E
[

1

σi

] (
(yi − E[β0]− xiE[β])2 + Var(β0) + Tr(xix

T
i Var(β))

)
.

The mean estimator vmean
i of vi for the variational density q∗(vi) is given by vmean

i =√
b̂vi/âviK3/2

(√
âvi b̂vi

)
/K1/2

(√
âvi b̂vi

)
for i = 1, . . . , n.

Similarly, the optimal variational density q∗(ρ2) can be expressed as

q∗(ρ2) ∼ GIG

(
−n− k

2
, âρ2 , b̂ρ2

)
, (4.5)
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where

âρ2 = E[η]
n∑
i=1

E
[

1

σi

]
,

b̂ρ2 = E[η]

n∑
i=1

E[σi] +

k∑
j=1

E[sj ]E[β2
j ].

The mean estimator (ρ2)
mean

of ρ2 for the variational density q∗(ρ2) is given by (ρ2)
mean

=√
b̂ρ2/âρ2K−n−k/2+1

(√
âρ2 b̂ρ2

)
/K−n−k/2

(√
âρ2 b̂ρ2

)
.

The optimal variational density q∗(s) can also be expressed as

q∗(sj) ∼ GIG

(
1

2
, âsj , b̂sj

)
, j = 1, . . . , k, (4.6)

where âsj = E[λ2] and b̂sj = E[1/ρ2]E[β2
j ] for j = 1, . . . , k. The mean estimator smean

j of sj

for the variational density q∗(sj) is given by

smean
j =

√
b̂sj/âsjK3/2

(√
âsj b̂sj

)
/K1/2

(√
âsj b̂sj

)
for j = 1, . . . , k.

The optimal variational density q∗(λ2) is

q∗(λ2) ∼ Gamma
(
âλ2 , b̂λ2

)
, (4.7)

where âλ2 = a+ k and b̂λ2 = b+ 1/2
∑k

j=1 E[sj ]. The mean estimator (λ2)
mean

of λ2 for the

variational density q∗(λ2) is given by (λ2)
mean

= âλ2/b̂λ2 .

Finally, the optimal variational density q∗(β0) is

q∗(β0) ∼ N
(
µβ0 , σ

2
β0

)
, (4.8)

where

σ2
β0 =

(
1

4

n∑
i=1

E
[

1

σi

]
E
[

1

vi

])−1

,

µβ0 =

(
n∑
i=1

E
[

1

σi

](
E
[

1

vi

]
(yi − xiE[β])− (1− 2τ)

))( n∑
i=1

E
[

1

σi

]
E
[

1

vi

])−1

.

The mean estimator βmean
0 of β0 for the variational density q∗(β0) is given by βmean

0 = µβ0 .

The expected values involved in the definition of the above optimal variational densities are
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computed as follows.

E[β] = µβ, Var(β) = Σβ, E[β2
j ] = [µβ]j + [Σβ]jj ,

E[σi] =

√
b̂σi
âσi

K1

(√
âσi b̂σi

)
K0

(√
âσi b̂σi

) ,E [ 1

σi

]
=

√
âσi

b̂σi

K−1

(√
âσi b̂σi

)
K0

(√
âσi b̂σi

) ,

E[vi] =

√
b̂vi
âvi

K3/2

(√
âvi b̂vi

)
K1/2

(√
âvi b̂vi

) , E
[

1

vi

]
=

√
âvi

b̂vi
≡
√
âvi

b̂vi

K3/2

(√
âvi b̂vi

)
K1/2

(√
âvi b̂vi

) − 1

b̂vi
,

E[ρ2] =

√
b̂ρ2

âρ2

K−n−k/2+1

(√
âρ2 b̂ρ2

)
K−n−k/2

(√
âρ2 b̂ρ2

) ,

E
[

1

ρ2

]
=

√
âρ2

b̂ρ2

K−n−k/2−1

(√
âρ2 b̂ρ2

)
K−n−k/2

(√
âρ2 b̂ρ2

) ≡
√
âρ2

b̂ρ2

K−n−k/2+1

(√
âρ2 b̂ρ2

)
K−n−k/2

(√
âρ2 b̂ρ2

) +
2n+ k

b̂ρ2
,

E[sj ] =

√
b̂sj
âsj

K3/2

(√
âsj b̂sj

)
K1/2

(√
âsj b̂sj

) , E
[

1

sj

]
=

√
âsj

b̂sj
≡
√
âsj

b̂sj

K3/2

(√
âsj b̂sj

)
K1/2

(√
âsj b̂sj

) − 1

b̂sj
,

E[λ2] =
âλ2

b̂λ2
, E[β0] = µβ0 , Var(β0) = σ2

β0 , E[β2
0 ] = µ2

β0 + σ2
β0 ,

for j = 1, . . . , k and i = 1, . . . , n. The symbol ’≡’ indicates that one formula is equivalent

to another.

The derivation of the optimal variational density for η (Equation (4.13)) will be detailed

in Section 4.3.3. Based on the variational densities defined in Equations (4.2)-(4.8) and

(4.13), we update the ELBO through CAVI algorithm. The CAVI algorithm is summarised

in Algorithm 4.3.1.

4.3.2 Bayesian Huberised Adaptive Lasso Quantile Regression

Let Θ = (β0,β,v,σ, ρ
2, η, s,λ2). Based on the hierarchical model, we express the approxi-

mate posterior distribution by factorisation,

q(Θ) =

N∏
i=1

q(θi) =

 k∏
j=1

q(βj)q(sj)q(λ
2
j )

( n∏
i=1

q(vi)q(σi)

)
q(ρ2)q(η)q(β0) ≈ p(Θ|y).
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Algorithm 4.3.1 Variational inference for Bayesian Huberised Lasso quantile regression

Step 1. Initialise the variational densities q∗(β), q∗(σi), q
∗(vi) (i = 1, . . . , n), q∗(ρ2), q∗(η),

q∗(sj) (j = 1, . . . , k), q∗(λ2), q∗(β0).
while ELBO does not reach convergence criterion do

Step 2.
for i = 1, . . . , n do

update q∗(σi) according to the density (Equation (4.3));
update q∗(vi) according to the density (Equation (4.4));

end for
Step 3. update q∗(β) according to the density (Equation (4.2));
Step 4. update q∗(β0) according to the density (Equation (4.8));
Step 5. update q∗(ρ2) according to the density (Equation (4.5));
Step 6. update q∗(η) according to the density (Equation (4.13));
Step 7. update q∗(λ2) according to the density (Equation (4.7));
Step 8.
for j = 1, . . . , k do

update q∗(sj) according to the density (Equation (4.6));
end for
Step 9. Compute ELBO;

end while
Step 10. Return q∗(β), q∗(σ), q∗(v), q∗(ρ2), q∗(η), q∗(s), q∗(λ2), q∗(β0), β∗, σ∗, v∗, ρ2∗,
η∗, s∗, λ2∗, β∗0 .

Algorithm 4.3.2 Variational inference for Bayesian Huberised adaptive Lasso quantile
regression

Step 1. Initialise the variational densities q∗(β), q∗(σi), q
∗(vi) (i = 1, . . . , n), q∗(ρ2), q∗(η),

q∗(sj), q
∗(λ2

j ) (j = 1, . . . , k), q∗(β0).
while ELBO does not reach convergence criterion do

Step 2. Do Step 2-6 of Algorithm 4.3.1;
Step 3.
for j = 1, . . . , k do

update q∗(sj) according to the density (Equation (4.9));
update q∗(λ2

j ) according to the density (Equation (4.10));
end for
Step 4. Compute ELBO;

end while
Step 5. Return q∗(β), q∗(σ), q∗(v), q∗(ρ2), q∗(η), q∗(s), q∗(λ2), q∗(β0), β∗, σ∗, v∗, ρ2∗,
η∗, s∗, λ2∗, β∗0 .
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Then we can find the solution according to Equation (1.21) and most of the variational

parameters follow in the same way as in Section 4.3.1. However, we need to compute the

optimal variational densities for s and λ2, which are as follows.

The optimal variational density q∗(s) is

q∗(sj) ∼ GIG

(
1

2
, âsj , b̂sj

)
, j = 1, . . . , k, (4.9)

where âsj = E[λ2
j ] and b̂sj = E[1/ρ2]E[β2

j ] for j = 1, . . . , k. The mean estimator smean
j of sj

for the variational density q∗(sj) is given by

smean
j =

√
b̂sj/âsjK3/2

(√
âsj b̂sj

)
/K1/2

(√
âsj b̂sj

)
for j = 1, . . . , k.

The optimal variational density q∗(λ2) is

q∗(λ2
j ) ∼ Gamma

(
âλ2j

, b̂λ2j

)
, j = 1, . . . , k, (4.10)

where âλ2j
= a + 1 and b̂λ2j

= b + 1/2E[sj ]. The mean estimator (λ2
j )

mean
of λ2

j for the

variational density q∗(λ2
j ) is given by (λ2

j )
mean

= âλ2j
/b̂λ2j

.

The CAVI algorithm is summarised in Algorithm 4.3.2.

4.3.3 Laplace Approximation for η

We have the following coordinate update for η,

q(η) =
1

K3/2(η)n
exp

{
−η

2

n∑
i=1

(
E
[

1

ρ2

]
E[σi] + E[ρ2]E

[
1

σi

])}
ηc−1 exp {−ηd}

= exp {h(η)} , (4.11)

where h(η) = −n logK3/2(η)+(c−1) log η−η
(
1/2

∑n
i=1

(
E[1/ρ2]E[σi] + E[ρ2]E[1/σi]

)
+ d
)
.

Since Equation (4.11) does not belong to a family of tractable densities, we cannot update

q(η) using Equation (4.11). The remedy for this issue is to use the Laplace VI method

(Wang and Blei (2013)), which is alternative to the mean-field VI method. It is useful for

non-conjugate models that cannot be normalised in closed form, such as Equation (4.11).

Since h(η) is non-conjugate and twice-differentiable, we approximate the update by taking a

second-order Taylor approximation of h(η) around its maximum. The Taylor approximation
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for h(η) around η̂ is

h(η) ≈ h(η̂) +∇h(η̂)(η − η̂) +
1

2
∇2h(η̂)(η − η̂)2, (4.12)

where ∇h(η̂) = dh(η)/dη evaluated at η̂, ∇2h(η̂) = d2h(η)/dη2 evaluated at η̂ and η̂ is the

maximum a posterior (MAP) of q(η), found by maximising h(η). The derivations of ∇h(η̂)

and ∇2h(η̂) are as follows.

∇h(η̂) = −n d
dη

logK3/2(η) +
c− 1

η
− 1

2

n∑
i=1

(
E
[

1

ρ2

]
E[σi] + E[ρ2]E

[
1

σi

]
+ d

)
,

∇2h(η̂) = −n d
2

dη2
logK3/2(η)− c− 1

η2
.

In the Taylor expansion of Equation (4.12), the first-order term ∇h(η̂)(η − η̂) is equal to 0

because η̂ is the maximum of h(η).

Then we approximate Equation (4.11) as

q(η) ∝ exp {h(η)} ≈ exp

{
h(η̂) +

1

2
∇2h(η̂)(η − η̂)2

}
.

This results in the optimal variational density for q∗(η),

q∗(η) ≈ N(µη, σ
2
η), (4.13)

where µη = η̂ and σ2
η = −

(
∇2h(η̂)

)−1
.

Within the algorithm, we iterate between holding the other coordinate updates fixed, whilst

updating q∗(η) from Equation (4.13) and holding q∗(η) fixed, whilst updating the other

coordinate updates. Each time we update q∗(η), we require the use of numerical optimisation

to obtain η̂, the optimal value of h(η), such as Brent’s method (Brent (1973)). Whilst

updating the other coordinate updates, the only expectation required is E[η] and this can

easily be computed as E[η] = µη by using a property of the normal distribution.

4.4 Simulations

Throughout the subsections, we conducted a wide variety of simulation studies to assess

the performance of the proposed VB algorithms within the comparative studies with the

MCMC method from Chapter 3. Firstly, we presented the parameter estimation under
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Table 4.1: Parameter estimation and calculation speed comparison of each method in Sim-
ulation 1.

Methods RMSE MMAD β0 β1 β2 β3 Time Iterations

τ = 0.25

MCMC500 0.1004 0.1730 0.0012 0.6238 0.0092 0.0006 89.60 15000
VBL500 0.0931 0.1678 -0.0028 0.6007 0.0150 0.0013 16.15 301.84
VBAL500 0.0961 0.1698 -0.0031 0.6108 0.0138 0.0011 15.14 284.66

MCMC1000 0.0934 0.1639 0.0062 0.6055 0.0018 0.0019 202.39 15000
VBL1000 0.0824 0.1503 0.0047 0.5681 0.0030 0.0018 42.68 382.32
VBAL1000 0.0840 0.1522 0.0047 0.5734 0.0026 0.0017 41.44 370.52

τ = 0.5

MCMC500 0.0027 0.0333 -0.0010 -0.0085 0.0020 0.0001 90.38 15000
VBL500 0.0030 0.0366 -0.0030 -0.0100 0.0049 0.0004 15.62 291.82
VBAL500 0.0030 0.0361 -0.0033 -0.0071 0.0043 0.0004 15.35 285.28

MCMC1000 0.0009 0.0182 -0.0008 0.0019 0.0024 -0.0001 202.03 15000
VBL1000 0.0010 0.0176 -0.0009 0.0033 0.0024 0.0002 38.95 349.40
VBAL1000 0.0010 0.0175 -0.0011 0.0048 0.0021 0.0002 38.29 343.50

τ = 0.75

MCMC500 0.0939 0.1680 -0.0030 -0.6032 -0.0173 -0.0012 89.86 15000
VBL500 0.0877 0.1611 -0.0052 -0.5816 -0.0167 -0.0010 16.36 305.32
VBAL500 0.0871 0.1602 -0.0052 -0.5794 -0.0168 -0.0009 16.55 306.40

MCMC1000 0.0997 0.1675 -0.0069 -0.6277 0.0043 0.0015 202.01 15000
VBL1000 0.0891 0.1584 -0.0062 -0.5922 0.0019 0.0010 40.23 362.32
VBAL1000 0.0886 0.1580 -0.0062 -0.5906 0.0019 0.0009 40.11 361.34

a simple setting and its computational performance. Secondly, the computational perfor-

mance was further investigated under a high-dimensional settings with an increasing number

of predictors for the fixed sample size. Finally, we assessed the accuracy of the proposed

algorithms and their computational performance under high-dimensional setting with dif-

ferent error distributional assumptions. All computations were carried out on the R version

4.2.2 on an Intel (Core i7-4790) CPU@3.6GHz machine with 16GB DDR3 RAM memory.

4.4.1 Parameter Estimation

In this simulation study, the parameter estimation and computational performance of the

proposed variational Bayes algorithms of Bayesian Huberised Lasso and adaptive Lasso

quantile regression models were compared with its approximate Gibbs sampling algorithm.

For simplicity, we denote the proposed algorithms and the approximate Gibbs sampling

algorithm as VBL, VBAL and MCMC, respectively where VBL and VBAL were employed

with Bayesian Huberised Lasso and Bayesian Huberised adaptive Lasso, respectively. We

generated data from the following model:

yi = β0 + β1xi1 + β2xi2 + β3xi3 + xi1εi, i = 1, . . . , n,
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Figure 4.1: Boxplots of RMSE & MMAD based on 50 replications in parameter estimation
simulation for the proposed VB algorithms and MCMC method (τ = 0.5).

where yi is the response variable. xi1 and xi2 were produced from a uniform distribution

U(0, 1), xi3 was generated from the standard normal distribution N(0, 1), β0 = −0.5, β1 = 1,

β2 = 2, β3 = 0 and εi was drawn from the standard normal distribution N(0, 1). That is, a

heteroscedastic model was considered. A total of 50 replications were generated, different

sample sizes n ∈ {500, 1000} were chosen, and the model was fitted at three different quantile

levels: τ ∈ {0.25, 0.5, 0.75}. All the hyper-parameters of both proposed algorithms were set

to 1.

To sample from the posterior distributions as much as possible, the MCMC method was

iterated for 15,000 posterior samples, whilst discarding the first 5,000 samples and retain-

ing the results in the last 10,000 iterations. In both VBL and VBAL algorithms, 10−5

was taken as the convergence criterion, and the algorithm terminated after the ELBO

reached the convergence criterion. To compare the overall estimation effect of unknown

parameters, we computed posterior median and optimal estimate of each element of βj ’s

from the MCMC method and VBL & VBAL algorithms, respectively, for point estimates of
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Figure 4.2: Posterior median of η from the MCMC method and optimal estimate of η from
the proposed VB algorithms for parameter estimation simulation.

βj ’s, and the performances were evaluated via RMSE defined as
[
4−1

∑3
j=0(β̂j − βtrue

j )2
]1/2

,

MMAD defined as median
[
4−1

∑3
j=0

∣∣∣β̂j − βtrue
j

∣∣∣], and bias defined as (β̂ − βtrue), where

β = (β0, β1, β2, β3)T . To compare the computational efficiency, we calculated the computa-

tional time (Time in seconds) and the number of iterations (Iteration) that were averaged

over 50 replications.

We reported parameter estimation results in Table 4.1. From the table, the results show

that the performance of the proposed algorithms was close to that of the MCMC method

in terms of bias, RMSE and MMAD. All the values of bias, RMSE and MMAD were

less than 0.1 except the bias of β1 and those of RMSE and MMAD for lower and upper

quantiles (τ = 0.25, 0.75) because of quantile levels differing from median. This indicated

that the parameter estimation effect was generally good. As the quantiles were being farther

away from the median, the accuracy of parameter estimation decreased gradually at the

fixed sample size. However, an increase in the sample size resulted in decreases in RMSE,

MMAD and bias. This is generally the case for the median as well, which indicated that
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an increase in the sample size would improve the accuracy of parameter estimation. In

comparison of sample size and computational time, the computational time of all three

methods increased when the sample size increased. Yet, the proposed algorithms were

approximately 5-6 times faster than the MCMC method. Upon looking at the number of

iterations required for convergence in the proposed algorithms, they increased slightly when

the quantile levels deviated from the median, They also increased with an increase in the

sample size. Specifically, the VBAL algorithm required less iterations to converge than the

VBL algorithm. So, the VBAL algorithm was fastest of all three methods.

We reported boxplot performances for visualisation in Figure 4.1 at τ = 0.5. Upon looking

at RMSE performances, each method produced the similar boxplot for the sample size of

either n = 500 or n = 1000. For n = 500, each boxplot had a larger box with longer whiskers.

As the sample size increased to n = 1000, each boxplot became tighter with shorter whiskers

and more outliers, particularly, those of the proposed algorithms produced more outliers.

Nevertheless, an increase in the sample size saw a decrease in the median value of RMSE.

Upon looking at MMAD performances, the boxplots exhibited the similar behaviour as

those for RMSE performances. Similar performances are observed for τ = 0.25, 0.75 and

the figures are provided in Appendix D.3 (see Figures D.13-D.14).

We also presented the boxplots of η that were obtained as posterior median from the MCMC

method and as optimal estimate from the proposed algorithms in Figure 4.2 for all the

quantile levels. In terms of method comparison, the proposed algorithms produced dif-

ferent estimates of η from those of the MCMC method, which may be due to variational

approximation. Upon looking at the MCMC method, it is consistent in producing the same

posterior estimate at varying quantile levels and varying sample sizes. On the other hand,

the proposed algorithms saw subtle differences in boxplots at varying quantile levels, such as

an increase in the sample size led to a small decrease in the optimal estimates. Yet, the VBL

algorithm produced similar estimates as those of the VBAL algorithm. It is also evident

that the proposed algorithms have narrower boxplots than those of the MCMC method.

This suggested that the proposed algorithms may produce more precise estimates of η than

the MCMC method.

Overall, the results observed the similar performances of parameter estimation for all three

methods at varying quantile levels. Yet, the computational time of the proposed algorithms

was significantly faster than that of the MCMC method.
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Figure 4.3: Computational performance for the proposed VB algorithms and MCMC
method for different quantile levels (τ = 0.25, 0.5, 0.75).

4.4.2 Computational Details and CPU Times

We calculated the computational times for the MCMC method and the proposed VB al-

gorithms. Let β0 = 3, β = (0.5, 1, 1.5, 1, 0, . . . , 0)T and the data was generated from the

following heteroscedastic model, yi = β0 + xiβ + xikεi, i = 1, . . . , n, which is the same as

that in Section 4.4.1, and xi was generated from a multivariate normal distribution Nk(0,Σ)

with Σ = (r|i−j|)1≤i,j≤k for |r| < 1 and r = 0.5 was selected. Figure 4.3 shows the result of

CPU times in seconds for n = 200 and varying dimensions k ∈ {5, 10, 20, 50, 100}, averaged

over 10 replications. Like in Section 4.4.1, we retained 10,000 posterior samples after dis-

carding the first 5,000 samples as a burn-in for the MCMC method, and we obtained the

optimal estimates after the ELBO meets the convergence criterion for the VBL and VBAL

algorithms.

From the figure, the proposed algorithms performed significantly faster than the MCMC

method at varying quantile levels. As the dimension became higher, the computational

time of all three methods increased, however, that of the proposed algorithms increased

slower than that of the MCMC methods. By comparing the proposed algorithms, both

VBL and VBAL algorithms have similar computational time at the median, however, the

VBAL algorithm had the lowest time across all the quantiles for varying dimensions.

Remark 4.1. During the implementation of the proposed algorithms, the approximate den-

sity of ρ2 may have some limitations, as the number of predictors and the sample size

increase. This is because the modified Bessel function of the second kind involved in opti-

mising the approximate density can grow exponentially as a function of predictor and sample

size, and becomes infinite in a software implementation.
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4.4.3 Simulation Studies

In simulation studies, we illustrated performance of the proposed algorithms. We compared

both estimation accuracy and computational performance of the proposed algorithms with

the MCMC methods. To this end, we considered the following heteroscedastic model:

yi = β0 + xiβ + xikσεi, i = 1, . . . , n,

where xi = (xi1, . . . , xik), (xi1, . . . , xik−1) was generated from a multivariate normal distri-

bution Nk−1(0,Σ) with Σ = (r|i−j|)1≤i,j≤k for |r| < 1, xik was generated from a uniform

distribution U(0, 1), the intercept term β0 = −1 and all elements in the parameter β were

0 except β1 = 2, β2 = 1, β3 = −1, β4 = −2, β5 = β10 = β20 = β30 = β40 = β50 = 1. We

considered the three scenarios.

• Simulation 1: Gaussian noise. ε ∼ Nn(0, In) and σ = 1.

• Simulation 2: large outliers. ε = W/
√

Var(W ) and σ = 9.67. W is a random variable

according to the contaminated density defined by 0.9×N(0, 1)+0.1×N(0, 152), where√
Var(W ) = 4.83.

• Simulation 3: Multiple outliers and skew Student-t noise. εi ∼ 0.8 × Skew-t3(γ =

3) + 0.1×N(0, 102) + 0.1× Cauchy(0, 1) and σ = 1.

We considered six combinations of two sample sizes n ∈ {300, 600} and three correlations

r ∈ {0.2, 0.5, 0.8} for three different quantile levels, τ ∈ {0.25, 0.5, 0.75}. The computational

time (Time in seconds) and the number of iterations (Iteration) were also calculated. All the

hyper-parameters were set to 1 for each method. The dataset was replicated 50 times. Both

MCMC method and proposed algorithms followed the same procedure as those in Section

4.4.1. To evaluate the numerical performances, RMSE and MMAD were computed.

We reported simulation results in Tables 4.2-4.4 and Figures 4.4-4.7. From the tables, gen-

erally, the results show that the proposed algorithms converged well in all cases of sample

sizes, correlation coefficients and quantile levels. At the fixed value of sample size and corre-

lation, the algorithms have fewer iterations and faster convergence at the median than those

at the lower and upper quantile levels. This is because when τ 6= 0.5, the proposed algo-

rithms require more computations involving τ terms resulting in additional computational

time. The proposed algorithms have lower RMSE and MMAD than those of the MCMC

method in most cases, yet they were very similar. At the fixed value of sample size and
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Figure 4.4: Boxplots of RMSE based on 50 replications in Simulation 1 for the proposed
VB algorithms and MCMC method for sample size of n = 300 at different quantile levels
(τ = 0.25, 0.5, 0.75).
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Figure 4.5: Boxplots of RMSE based on 50 replications in Simulation 2 for the proposed
VB algorithms and MCMC method for sample size of n = 300 at different quantile levels
(τ = 0.25, 0.5, 0.75).
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Figure 4.6: Boxplots of RMSE based on 50 replications in Simulation 3 for the proposed
VB algorithms and MCMC method for sample size of n = 300 at different quantile levels
(τ = 0.25, 0.5, 0.75).
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Table 4.2: Numerical results based on 50 replications in Simulation 1 at different quantile
levels (τ = 0.25, 0.5, 0.75), different correlation coefficients (r = 0.2, 0.5, 0.8) and sample
sizes (n = 300, 600) for the proposed VB algorithm and the MCMC method.

r Methods RMSE MMAD Time Iterations

τ = 0.25

0.2

MCMC300 0.0062 0.0338 72.15 15000
VBL300 0.0072 0.0324 12.41 185.48
VBAL300 0.0072 0.0335 10.42 154.22

MCMC600 0.0061 0.0249 138.37 15000
VBL600 0.0062 0.0240 31.29 233.06
VBAL600 0.0062 0.0243 24.17 181.24

0.5

MCMC300 0.0064 0.0401 72.51 15000
VBL300 0.0074 0.0364 12.75 187.76
VBAL300 0.0072 0.0379 10.51 152.94

MCMC600 0.0063 0.0287 141.61 15000
VBL600 0.0064 0.0268 33.12 239.58
VBAL600 0.0064 0.0276 25.44 184.56

0.8

MCMC300 0.0081 0.0511 72.45 15000
VBL300 0.0082 0.0460 12.77 185.12
VBAL300 0.0081 0.0475 11.14 162.40

MCMC600 0.0073 0.0372 138.94 15000
VBL600 0.0070 0.0335 30.97 230.52
VBAL600 0.0071 0.0342 24.20 181.12

τ = 0.5

0.2

MCMC300 0.0013 0.0237 72.87 15000
VBL300 0.0013 0.0219 10.37 153.26
VBAL300 0.0012 0.0217 8.49 125.64

MCMC600 0.0005 0.0154 138.17 15000
VBL600 0.0005 0.0147 26.83 201.04
VBAL600 0.0005 0.0147 20.60 154.20

0.5

MCMC300 0.0016 0.0297 72.52 15000
VBL300 0.0014 0.0262 10.89 159.44
VBAL300 0.0013 0.0259 8.68 127.62

MCMC600 0.0006 0.0181 137.78 15000
VBL600 0.0006 0.0169 28.41 203.06
VBAL600 0.0006 0.0169 21.55 154.96

0.8

MCMC300 0.0029 0.0398 72.54 15000
VBL300 0.0022 0.0333 10.67 154.82
VBAL300 0.0022 0.0343 8.62 125.64

MCMC600 0.0014 0.0291 132.83 15000
VBL600 0.0012 0.0266 25.46 193.94
VBAL600 0.0012 0.0266 19.57 150.10

τ = 0.75

0.2

MCMC300 0.0045 0.0341 72.32 15000
VBL300 0.0041 0.0313 14.20 209.58
VBAL300 0.0047 0.0332 11.77 171.98

MCMC600 0.0054 0.0251 134.31 15000
VBL600 0.0050 0.0242 32.51 247.12
VBAL600 0.0053 0.0245 25.43 195.98

0.5

MCMC300 0.0047 0.0365 72.38 15000
VBL300 0.0041 0.0343 14.12 207.06
VBAL300 0.0047 0.0353 11.68 170.26

MCMC600 0.0057 0.0293 132.30 15000
VBL600 0.0052 0.0279 32.49 249.02
VBAL600 0.0056 0.0285 25.89 197.42

0.8

MCMC300 0.0068 0.0509 72.32 15000
VBL300 0.0057 0.0454 13.79 199.12
VBAL300 0.0063 0.0464 11.40 166.48

MCMC600 0.0059 0.0376 139.28 15000
VBL600 0.0053 0.0342 33.33 248.56
VBAL600 0.0057 0.0351 26.57 198.34
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Table 4.3: Numerical results based on 50 replications in Simulation 2 at different quantile
levels (τ = 0.25, 0.5, 0.75), different correlation coefficients (r = 0.2, 0.5, 0.8) and sample
sizes (n = 300, 600) for the proposed VB algorithm and the MCMC method.

r Methods RMSE MMAD Time Iterations

τ = 0.25

0.2

MCMC300 0.0480 0.1440 72.53 15000
VBL300 0.0527 0.1393 21.88 325.14
VBAL300 0.0543 0.1412 17.17 251.62

MCMC600 0.0373 0.1160 139.41 15000
VBL600 0.0417 0.1201 85.30 629.26
VBAL600 0.0433 0.1166 70.87 523.72

0.5

MCMC300 0.0535 0.1495 73.38 15000
VBL300 0.0564 0.1481 22.20 321.28
VBAL300 0.0576 0.1521 17.77 258.00

MCMC600 0.0399 0.1251 135.76 5000
VBL600 0.0438 0.1284 74.98 556.92
VBAL600 0.0456 0.1280 66.56 494.28

0.8

MCMC300 0.0933 0.2084 71.79 15000
VBL300 0.0931 0.1865 24.17 354.70
VBAL300 0.0938 0.1910 17.29 254.38

MCMC600 0.0694 0.1778 137.81 15000
VBL600 0.0700 0.1662 80.76 598.78
VBAL600 0.0714 0.1681 64.69 480.10

τ = 0.5

0.2

MCMC300 0.0421 0.1330 70.85 15000
VBL300 0.0408 0.1286 20.50 313.08
VBAL300 0.0367 0.1279 16.41 245.78

MCMC600 0.0244 0.1062 138.17 15000
VBL600 0.0256 0.1046 82.89 611.04
VBAL600 0.0227 0.1020 65.66 488.04

0.5

MCMC300 0.0461 0.1496 72.49 15000
VBL300 0.0442 0.1392 19.39 282.82
VBAL300 0.0408 0.1392 16.63 242.96

MCMC600 0.0282 0.1184 137.76 5000
VBL600 0.0303 0.1181 68.27 508.12
VBAL600 0.0281 0.1157 63.47 474.44

0.8

MCMC300 0.0843 0.2031 71.94 5000
VBL300 0.0848 0.1859 21.84 321.76
VBAL300 0.0800 0.1928 16.65 245.64

MCMC600 0.0465 0.1574 137.93 15000
VBL600 0.0479 0.1495 68.13 506.86
VBAL600 0.0447 0.1495 64.04 476.66

τ = 0.75

0.2

MCMC300 0.0647 0.1416 72.47 15000
VBL300 0.0916 0.1470 21.61 317.84
VBAL300 0.0867 0.1478 16.66 245.18

MCMC600 0.0464 0.1148 140.00 15000
VBL600 0.0608 0.1224 74.53 550.96
VBAL600 0.0572 0.1219 66.28 490.46

0.5

MCMC300 0.0768 0.1666 72.90 15000
VBL300 0.1073 0.1689 23.32 339.90
VBAL300 0.1042 0.1719 17.18 250.80

MCMC600 0.0555 0.1339 138.37 15000
VBL600 0.0670 0.1342 75.13 559.92
VBAL600 0.0652 0.1330 60.79 453.94

0.8

MCMC300 0.0971 0.1984 72.16 15000
VBL300 0.1256 0.2004 22.70 333.64
VBAL300 0.1184 0.2004 16.83 248.30

MCMC600 0.0718 0.1669 137.85 15000
VBL600 0.0834 0.1681 72.53 535.92
VBAL600 0.0800 0.1639 60.76 449.10
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Table 4.4: Numerical results based on 50 replications in Simulation 3 at different quantile
levels (τ = 0.25, 0.5, 0.75), different correlation coefficients (r = 0.2, 0.5, 0.8) and sample
sizes (n = 300, 600) for the proposed VB algorithm and the MCMC method.

r Methods RMSE MMAD Time Iterations

τ = 0.25

0.2

MCMC300 0.0386 0.1232 70.36 15000
VBL300 0.0372 0.1141 18.80 282.68
VBAL300 0.0320 0.1112 15.10 228.14

MCMC600 0.0203 0.0879 137.33 15000
VBL600 0.0188 0.0849 70.35 522.86
VBAL600 0.0165 0.0816 54.36 404.66

0.5

MCMC300 0.0448 0.1338 70.85 15000
VBL300 0.0425 0.1229 18.80 281.02
VBAL300 0.0374 0.1261 15.83 234.88

MCMC600 0.0259 0.0988 130.31 15000
VBL600 0.0253 0.0904 71.29 548.46
VBAL600 0.0220 0.0898 50.61 388.02

0.8

MCMC300 0.0652 0.1692 71.40 15000
VBL300 0.0609 0.1539 18.08 272.14
VBAL300 0.0545 0.1545 13.71 205.02

MCMC600 0.0373 0.1344 138.36 15000
VBL600 0.0339 0.1186 63.69 468.38
VBAL600 0.0309 0.1180 53.81 395.50

τ = 0.5

0.2

MCMC300 0.0887 0.1521 72.66 15000
VBL300 0.1174 0.1641 20.76 305.48
VBAL300 0.1117 0.1641 15.55 229.02

MCMC600 0.0700 0.1257 138.51 15000
VBL600 0.0853 0.1329 72.23 535.76
VBAL600 0.0817 0.1309 55.80 415.56

0.5

MCMC300 0.1012 0.1657 70.30 15000
VBL300 0.1318 0.1786 20.01 301.70
VBAL300 0.1264 0.1786 16.08 242.36

MCMC600 0.0766 0.1400 135.85 15000
VBL600 0.0918 0.1433 60.59 449.96
VBAL600 0.0885 0.1420 55.48 412.70

0.8

MCMC300 0.1191 0.2062 71.46 15000
VBL300 0.1449 0.2101 18.49 276.16
VBAL300 0.1401 0.2106 16.65 249.38

MCMC600 0.0949 0.1827 138.209 15000
VBL600 0.1100 0.1776 65.84 487.86
VBAL600 0.1039 0.1762 62.92 467.52

τ = 0.75

0.2

MCMC300 0.2602 0.2157 72.96 15000
VBL300 0.3162 0.2243 26.01 381.70
VBAL300 0.3139 0.2215 25.84 377.84

MCMC600 0.2397 0.1931 137.93 15000
VBL600 0.2701 0.2055 88.10 656.32
VBAL600 0.2724 0.2070 79.09 590.12

0.5

MCMC300 0.2753 0.2337 71.23 15000
VBL300 0.3277 0.2371 23.64 354.34
VBAL300 0.3284 0.2342 21.40 318.50

MCMC600 0.2508 0.2158 136.35 15000
VBL600 0.2730 0.2182 88.71 663.50
VBAL600 0.2735 0.2182 69.26 517.66

0.8

MCMC300 0.3338 0.3024 70.63 15000
VBL300 0.3858 0.2811 23.88 357.60
VBAL300 0.3958 0.2945 20.09 301.40

MCMC600 0.3005 0.2743 134.40 15000
VBL600 0.3208 0.2666 87.75 669.14
VBAL600 0.3272 0.2713 77.56 592.78
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Figure 4.7: Posterior median of η from the MCMC method and optimal estimate of η from
the proposed VB algorithms for sample size n = 300 (τ = 0.5).
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quantile level, when the correlation coefficient increased, the accuracy of parameter estima-

tion decreased slightly. This suggested that the correlation between predictors could have

an influence on variable selection. At the fixed value of correlation coefficient and quantile

level, an increase in the sample size led to a decrease in RMSE and MMAD. This suggested

that increasing the sample size is beneficial to parameter estimation and variable selection

because it increases the amount of data information, reduces the uncertainty of parameters

and thus, improves the effect of parameter estimation and variable selection.

Upon looking at Table 4.2, in Simulation 1, there was no outliers in generated datasets.

All three methods were comparable in terms of RMSE and MMAD. However, the proposed

algorithm was much faster than the MCMC method. In Simulation 2 with large outliers

(Table 4.3), the proposed algorithms required more iterations to converge, whilst the MCMC

method was consistent in computational time. Yet, the proposed algorithms remained faster.

Similar results are also observed in Simulation 3 (Table 4.4) where there was skewed and

heavy-tailed noise with multiple outliers. This indicated that the proposed algorithms are

as robust to outliers as the MCMC method is. By comparing the proposed algorithms, the

VBAL algorithm was generally faster than the VBL algorithm because the former required

fewer iterations than the latter.

We reported boxplot performances of RMSE in Figures 4.4-4.6 for the sample size of n =

300. Evidently, there is no noticeable difference between boxplots of both MCMC method

and proposed algorithms due to the similar trend at varying quantile levels for different

correlation coefficients. likewise, Simulations 1-3 each saw the similar trend. Upon looking

at correlation coefficients, the trend saw an increase in the box size and the amount of outliers

produced within the boxplot, as the correlation coefficient increased from r = 0.2 to r = 0.8.

This coincided with Tables 4.2-4.4 where they have observed that the accuracy of parameter

estimation would see a decrease after an increase in the correlation coefficient. Similar

performances are observed for boxplots of RMSE at n = 600 and MMAD at n = 300, 600,

and the figures are provided in Appendix D.3 (see Figures D.15-D.23).

We have also presented boxplots of η that were produced from the MCMC method as

posterior median and from the proposed algorithms as optimal estimate in Figure 4.7 at

τ = 0.5 for n = 300. In terms of method comparison, the boxplots of the MCMC methods

have larger box size with longer whiskers unlike the proposed algorithms having the tighter

boxplots with shorter whiskers. This coincided with Figure 4.2 in Section 4.4.1 where the

proposed algorithms have proven to be more precise in producing estimates of η. In terms

of correlation coefficients, they behaved similarly as those in Figures 4.4-4.6. Nevertheless,
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Table 4.5: MSPE, MAPE, MHPE with δ = 1.345 and MedSPE for the Boston Housing
data, computed from 20-fold cross-validation.

Methods MSPE MAPE MedSPE MHPE Time Iterations

τ = 0.3
MCMC 0.3031 0.3396 0.0949 0.1294 106.65 15000
VBL 0.3131 0.3420 0.0925 0.1329 14.25 201.15
VBAL 0.3029 0.3360 0.0940 0.1285 6.37 90.10

τ = 0.5
MCMC 0.2533 0.3113 0.0744 0.1080 104.90 15000
VBL 0.2644 0.3175 0.0772 0.1128 11.64 167.85
VBAL 0.2578 0.3112 0.0734 0.1090 6.74 98.45

τ = 0.7
MCMC 0.2566 0.3348 0.0850 0.1124 109.98 15000
VBL 0.2626 0.3370 0.0836 0.1145 10.17 140.60
VBAL 0.2652 0.3301 0.0848 0.1152 6.70 93.60

when looking at Simulations 1-3, both MCMC method and proposed algorithms adaptively

selected the value η where it is relatively large in the absence of outliers (Simulation 1) and

relatively small in the presence of outliers (Simulations 2-3). Therefore, like the MCMC

method, η was adaptively chosen for different scenarios via the proposed algorithms. Similar

performances are observed for sample sizes of n = 600 at τ = 0.5 and n = 300, 600 at

τ = 0.25, 0.75, and the figures are provided in Appendix D.3 (see Figures D.24-D.28).

To summarise the results, the proposed algorithms consistently performed well in terms

of parameter estimation and variable selection like the simulation studies of the MCMC

method in Chapter 3. They were also significantly faster than the MCMC method for

different scenarios at varying quantile levels, particularly, the VBAL algorithm has the lowest

computational time due to the nature of adaptive lasso. It is notable that an increase in the

correlation coefficients would lead to a decrease in the accuracy of parameter estimation.

Nevertheless, the proposed algorithms have proven to be robust to outliers under various

noises including skewness and heavy tail like the MCMC method, yet they are faster.

4.5 Boston Housing Data Example

The computational performance and efficiency of the variational algorithm of Bayesian Hu-

berised Lasso and adaptive Lasso quantile regression models were demonstrated via the

analysis of a famous benchmarking dataset, Boston Housing data (Harrison Jr and Rubin-

feld (1978)) in investigating the normality assumption of residuals for robust estimation

methods. This dataset is available in R package ’spData’ (Bivand et al. (2021)) and is

found to have large outliers (Kawakami and Hashimoto (2023)). The response variable in
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Figure 4.8: Posterior medians and 95% credible intervals of the coefficients for the MCMC
method and optimal estimates of the coefficients for the proposed algorithms (VBL &
VBAL), applied to the Boston Housing data at τ = 0.3, 0.5, 0.7.
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Table 4.6: Selection of important predictors by the MCMC method and the proposed al-
gorithms for the Boston Housing data at τ = 0.3, 0.5, 0.7 where the index 0 represents the
intercept term.

Methods Predictor Index

τ = 0.3
MCMC 0, 1, 4, 8, 11, 15, 18, 21, 22, 23, 29
VBL 7, 11, 14, 22, 29
VBAL 7, 11, 18, 22, 29

τ = 0.5
MCMC 0, 1, 4, 7, 8, 10, 11, 13, 15, 18, 21, 22, 23, 29
VBL 1, 7, 11, 22, 27, 29
VBAL 1, 7, 11, 18, 22, 29

τ = 0.7
MCMC 0, 1, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 18, 19, 20, 21, 22, 23, 29
VBL 1, 7, 9, 11, 14, 18, 19, 20, 22, 29
VBAL 1, 7, 9, 11, 14, 18, 20, 22, 29

the Boston housing data is the corrected median value of owner-occupied homes in USD

1000’s, and there are 15 predictors including one binary predictor. Similar to Hamura et al.

(2022), Hashimoto and Sugasawa (2020) and Kawakami and Hashimoto (2023), we stan-

dardised 14 continuous predictors, and included squared values of these predictors, which

resulted in 29 predictors in the design matrix for our models. We also centred response vari-

ables. The sample size is 506. Like in simulation studies, we also considered all the three

methods of which we generated 15,000 posterior samples with a burn-in of 5,000 posterior

samples for the MCMC method, and obtained the optimal estimates from the proposed

algorithms after the convergence criterion was met with error threshold of 10−5. Posterior

medians were computed for the MCMC method. For all methods, we set the quantile levels

as τ ∈ {0.3, 0.5, 0.7}.

Since this dataset may contain outliers, we adopted the following four criteria as measures

of predictive accuracy; MSPE, MAPE, MHPE for δ = 1.345 and MedSPE via 20-fold

cross validation. They are defined by MSPE = 20−1
∑20

j=1(yj − XT
j β̂

(−j))2, MAPE =

20−1
∑20

j=1|yj − XT
j β̂

(−j)|, MHPE = 20−1
∑20

j=1 L
Huber
δ (yj − XT

j β̂
(−j)) and MedSPE =

median1≤j≤20(yj − XT
j β̂

(−j))2, where LHuber
δ (·) is given in Equation (1.1), β̂(−j) is the

posterior median based on dataset except for jth validation set, and yj and Xj are the

response variables and design matrix based on the jth validation set, respectively.

The posterior medians and 95% credible intervals of the coefficients based on the MCMC

method and the optimal estimates of the coefficients based on the VBL and VBAL algo-

rithms are reported in Figure 4.8. The overall trend of the figure suggested that all the

methods were comparable and their estimates were similar for all the quantile levels. For
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the proposed algorithms, we followed a common practice of setting cutoff values for identify-

ing the non-significant coefficients (Hoti and Sillanpää (2006), Guo et al. (2012), Feng et al.

(2015), Feng et al. (2017), and Wang et al. (2023)). Specifically, if |βj | < 0.1 for j = 1, . . . , k,

then the coefficient is suggested to be close to 0. The identification of important predictors

for each method is summarised in Table 4.6. From the table, the MCMC method identified

more important predictors than the proposed algorithms. Moreover, from the figure and

table, we observed that more important predictors were selected, as the quantile level in-

creased from τ = 0.3 to τ = 0.7. Table 4.5 also presents the predictive performance of the

three methods for three different quantile levels. All the methods were comparable at each

quantile in terms of MSPE, MAPE, MedSPE and MHPE. Looking at the computational

performance, the VBAL algorithm was the fastest method and consistent for all the quantile

levels unlike the VBL algorithm and the MCMC method. The VBL and VBAL algorithms

were approximately 9 times and 15 times faster than the MCMC method, respectively.

4.6 Chapter Summary

We have proposed the novel VB Huberised Lasso and adaptive Lasso. By using the asymmet-

ric Huberised loss function, they easily extended to VB Huberised Lasso quantile regression

and VB Huberised adaptive Lasso quantile regression. We derived the approximate varia-

tional densities for the posterior distributions in corresponding hierarchical models using the

mean-field VB and Laplace VI methods. The Laplace VI method retained the advantage

of the data-dependent estimation of the tuning robustness parameter. The CAVI algorithm

is utilised to solve the optimisation problem, in other words, to iteratively optimise each

variational density. This resulted in the derivation of ELBO.

A variety of simulation studies and the Boston Housing data example showed that the pro-

posed VB algorithms outperformed the MCMC method significantly in terms of parameter

estimation, computational time and variable selection under various scenarios. In particular,

the algorithm of VB Huberised adaptive Lasso quantile regression yielded the fastest com-

putational speed amongst other methods because the adaptive Lasso penalty handles the

over-fitting issue of the Lasso penalty efficiently and thus, it increases the convergence rate.

Nevertheless, the proposed algorithms have proven to be successful in obtaining compara-

ble statistical inference results, whilst saving significant amount of computational memory.

Moreover, they retained the robustness of Bayesian Huberised regularisation, whilst enjoyed

low computational cost and fast convergence rate, which indicated that the VB Huberised
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Lasso and adaptive Lasso are much beneficial over the MCMC method.



Chapter 5

Conclusion and Future Research

In this chapter we discuss the main conclusions drawn from Chapters 2-4 and how these

relate to the aim of our thesis, mentioned in Chapter 1. Several directions for further

research are also outlined.

5.1 Conclusions

Throughout the thesis, we have presented the three distinctive contributions for the devel-

opment of novel Bayesian methods in parametric statistical inference, whilst considering

the robustness of methods. The first contribution is the new Bayesian non-linear quan-

tile regression with the variable selection method for a specific medical application, which

can easily be generalised to other applications. The second contribution is the novel loss

function and Bayesian robust regularisation, which have seen a new variant of Bayesian reg-

ularised quantile regression with well-grounded theoretical properties in a high-dimensional

setting. Yet, it faced some computational problems leading to the third contribution, that

is the incorporation of the approximate-based technique to speed up the computational

performance. The details of each contribution are as follows.

Chapter 2 has introduced the methodology of a new Bayesian non-linear quantile regression

under the FP model and variable selection with quantile-dependent prior. The quantile

regression analysis investigates how relationships differ across the median and upper quantile

levels. The utility of FPs allows them to be non-linear parametrically. The variable selection

investigates for important predictors that contribute to the non-linear relationships via

the Bayesian paradigm. We have applied this methodology to the medical application in

investigating the impact of BMI on the BP measures, including SBP and DBP using the
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data extracted from the 2007-2008 NHANES database. The descriptive analysis showed that

there are statistically significant associations between the BP measure and the risk factors

of CVD. The model analysis suggested that the proposed method provides better estimates

in terms of narrower credible intervals, autocorrelation plots with a faster decreasing rate

of correlated posterior samples, and non-linearity. The variable selection has also identified

important predictors, which contributed to the non-linear relationships under the FP model

across all the quantile levels. Thus, the analysis has proven that the quantile-based FP

approaches are adept at providing clearer statistical interpretations on the medical survey

data, whilst also demonstrate the significance of considering non-linear relationships in the

modelling process.

Chapter 3 has introduced a new loss function called the asymmetric Huberised loss function,

and derived its probability density function that has the scale mixture of normal represen-

tation. In a high-dimensional setting, we proposed a new Bayesian robust regularisation,

including Bayesian Huberised Lasso (Kawakami and Hashimoto (2023)) and Bayesian Hu-

berised Elastic Net. Thus, the by-product of this research is the derivation of Bayesian

Huberised regularised quantile regression. We have utilised the MCMC method with the

approximate Gibbs sampler for the data-dependent estimation of the robustness parameter.

The theorem and propositions are theoretically derived and new. Amongst all the simula-

tion studies and real-life data examples, the proposed methods showed promising results in

terms of robustness. In particular, they are effective in predictive accuracy being influenced

by the robustness parameter under different error distributional assumptions.

An alternative approach is proposed in Chapter 4 for Bayesian Huberised regularised quan-

tile regression for a fast computational performance. Both mean-field VI and Laplace VI

methods, retaining the advantage of the data-dependent estimation of the robustness pa-

rameter, are utilised to propose both VB Huberised Lasso quantile regression and VB Hu-

berised adaptive Lasso quantile regression. The CAVI algorithms and their ELBO are

derived. They have proven to perform significantly better than the MCMC method in

terms of computational time, whilst obtaining comparable statistical inference results for

parameter estimation and variable selection under various error distributions. Notably, the

algorithm of VB Huberised adaptive Lasso quantile regression is found to yield the fastest

computational speed amongst other methods, as the adaptive Lasso penalty handles the

over-fitting issue of the Lasso penalty efficiently that increases the convergence rate of the

ELBO. To this extent, the VB algorithms are preferable over the MCMC method for a fast

computational performance within a high-dimensional setting.
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One could continue this investigation and even contemplate some of the alternative proposals

in the next section.

5.2 Future Research

This is in a fascinating field of statistics, and there are still many open problems one could

examine.

Chapter 2

The methodology is presented for fitting a Bayesian quantile-based FP model to the real-

life data via the variable selection method. In this approach, a FP model is chosen at a

fixed degree manually. Based on the power set SFP = {−2,−1,−1/2, 0, 1/2, 1, 2, 3}, for

a univariate FP model, the number of possible FPs with degree m = 0, 1, 2 and 3 is

1, 8, 36 and 120, respectively. The model space complexity increases exponentially as a

function of the number of predictors. For example, for a maximum degree m = 2 and k = 5

predictors, there exist (1 + 8 + 36)5 = 184, 528, 125 different possible FP models. This is

computationally burdensome in searching for the best fitted model. For Bayesian mean-

based FP approach, Sabanés Bové and Held (2011) adopted a stochastic search algorithm

and Bayesian model averaging in a trans-dimensional setting. We could follow this idea by

extending our quantile-based FP approach to use reversible jump MCMC method, proposed

by Green (1995), where one can automatically select the best fitted FP model according to

different move types within a trans-dimensional setting. Given the multiple FP model,

η(x) =

k∑
l=1

fmll (xl;αl,pl) =

k∑
l=1

ml∑
j=1

αljhlj(xl),

we randomly select one of the following four move types:

• Birth: Randomly select one of the predictors with FP degree ml < mmax (l = 1, . . . , k).

Add a power to its pl after randomly drawing it from SFP.

• Death: Randomly select one of the predictors with FP degree ml > 0. Remove a

randomly chosen power from its pl.

• Move: Randomly select one of the predictors with FP degree ml > 0. Remove a

randomly chosen power from its pl, then randomly draw a power from SFP and add

it to pl.
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• Switch: Randomly select one of the covariates with non-empty power vector pl. Ran-

domly select one of the other covariates with power vector pq (q 6= l). Switch the

power vectors pl and pq.

The reversible jump MCMC method can be constructed by using the Metropolis-Hastings

algorithm with four move types in a trans-dimensional setting. This iterative sampling

algorithm would delete, add, switch and move FP powers to the model until the best FP

model is obtained, whilst converging to a target posterior distribution.

Chapter 3

The work has several potential research directions for developing new models in theory and

a wide variety of applications in many areas.

• The asymmetric Huberised loss function could replace the quantile loss function of

quantile regression forests, proposed by Meinshausen and Ridgeway (2006), which

present a new minimisation problem for random forests. Predictive intervals could

also be derived to make statistical inference. Within the Bayesian paradigm, we add

a prior distribution on each tree for random sampling of many decision trees, which is

analogous to the work of Quadrianto and Ghahramani (2014). Then theoretically, we

may develop new Bayesian robust quantile regression forests.

• Robust image analysis is the ongoing hot research topic in machine learning and is

challenging to work with. The Soft Huber loss function (Equation (1.2)) and the Non-

convex Huber loss function (Equation (1.3)) have been applied to the face recognition

problems with noisy pixel data (Li et al. (2020)). We only need to replace these loss

functions with our loss function and would develop an EM algorithm, consisting of

Expectation and Maximisation steps, due to the scale mixture of normal property, with

Bayesian robust regularisation. This is more robust due to the nature of conditional

quantile function and robustness parameter. Other applications may also be explored,

such as pattern recognition and speech recognition.

• The proposed models would easily be extended to a new type of time series models,

such as quantile autoregressive models (Cai et al. (2012), and Yang et al. (2023)). In

theory, we may develop a new Bayesian Huberised regularised quantile autoregressive

model for robust high-dimensional time series estimation and forecasting, as well as

apply to a wide variety of financial and economical applications.
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• We may explore some medical applications, for example, the analysis of high-dimensional

gene expression data. Currently, different variants of robust regularised regression

models are used to analyse these data, whilst having the ability of being robust against

outliers (see Ahdesmäki et al. (2007), Ren et al. (2023), and Algamal et al. (2018),

amongst others). The proposed methods are better alternatives to provide compre-

hensive information about data based on the conditional quantile function and being

robust to outliers simultaneously.

Chapter 4

This chapter has utilised an approximate-based technique to deal with slow-computational

problems. Although the proposed algorithms are successful for moderate data, they may

not scale to massive data because the modified Bessel function of the second kind involved in

the algorithms grows exponentially as a function of predictors and sample size, and becomes

infinite, which makes it infeasible in a software implementation. Some big data techniques

may be explored, such as a divide-and-conquer strategy and bag of little bootstrap.

A divide-and-conquer approach is one of the most common big data strategies and is being

conceptually and computationally appealing. It consists of three stages:

• First stage: partition the data independently.

• Second stage: perform local inference for each partitioned data.

• Third stage: combine the results to obtain a global approximation via aggregation.

The bootstrap method is a non-parametric method and a resampling technique for assessing

uncertainty. This method is relatively simple and does not require making distributional

assumptions, which makes inference easier. The bootstrap theory has been established for

variational inference (Chen et al. (2018)). Bag of little bootstraps, introduced by Kleiner

et al. (2012), extends the bootstrap method to the large-scale data setting. It has proven

that it increases the computational speed by reducing the amount of information being

passed between processors (Kleiner et al. (2012); Garnatz and Hardin (2021)).

This leaves an open problem for future research work.



Appendix A

Mathematical Proofs

Here we establish the proof for a range of propositions and theorem used in Chapter 3.

Proposition A.1. If a random variable X follows the density function in Equation (3.2)

then we have P (X ≤ µ) = τ and P (X > µ) = 1− τ .

Proof. We set µ = 0 and we wish to calculate P (X ≤ 0), that is,

P (X ≤ 0) =

∫ 0

−∞
fX(x)dx

=
ητ(1− τ)eη

2ρ2(η + 1)

∫ 0

−∞
exp

{
−

√
η

(
η − x(1− τ)

ρ2

)}
dx

=
ητ(1− τ)eη

2ρ2(η + 1)

∫ ∞
0

exp

{
−

√
η

(
η +

x(1− τ)

ρ2

)}
dx.

By letting u =
√
η (η + (x(1− τ))/ρ2), we have

P (X ≤ 0) =
ητ(1− τ)eη

2ρ2(η + 1)

∫ ∞
η

e−u × 2uρ2

η(1− τ)
du

=
τeη

(η + 1)

∫ ∞
η

ue−udu

=
τeη

(η + 1)

([
−ue−u

]∞
η

+

∫ ∞
η

e−udu

)
=

τeη

(η + 1)

(
ηe−η +

[
−e−u

]∞
η

)
=

τeη

(η + 1)

(
e−η(η + 1)

)
= τ.
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On the other hand, it follows that P (X > 0) = 1− τ . This completes the proof.

Theorem A.1. If the model error εi = yi − xiβ follows the density function (Equation

(3.2)), then we can represent εi as the scale mixture of normals given by

f(εi; τ, η, ρ
2)

∝
∫∫

N (εi; (1− 2τ)vi, 4viσi) Exp

(
vi;

τ(1− τ)

2σi

)
GIG

(
σi;

3

2
,
η

ρ2
, ηρ2

)
dvidσi,

i = 1, . . . , n,

where GIG(·) denotes the GIG distribution and its density is specified by Equation (2.6),

Exp(·) denotes the exponential distribution, and N(·) is the normal distribution.

Proof. Let a, b be some real constants. By using the equality

exp(−|ab|) =

∫ ∞
0

a√
2πσ

exp

{
−1

2
(a2σ + b2σ−1)

}
dσ, (A.1)

(Andrews and Mallows (1974)) and let a =
√
η/ρ2 and b =

√
ηρ2 + εi (τ − I(εi < 0)), f(εi)

can be expressed as the scale mixture of ALD and GIG densities:

ητ(1− τ)eη

2ρ2(η + 1)
exp

{
−

√
η

(
η +

εi
ρ2

(τ − I(εi < 0))

)}

∝
∫ ∞

0
AL (εi; 0, 2σi, τ) GIG

(
σi;

3

2
,
η

ρ2
, ηρ2

)
dσi

where GIG(·) denotes the GIG distribution and its density is given by Equation (2.6), and

AL(·) is the ALD and its density is given by Equation (1.8).

The ALD can be expressed as the scale mixture of normal and exponential densities using

the equality (Equation (A.1)) by letting a = 1/
√

4σi, b = εi/
√

4σi and multiplying a factor

of exp {−((2τ − 1)ε)/(4σi)} (Kozumi and Kobayashi (2011)). Therefore, f(εi) is expressed

as the scale mixture of normal, exponential and GIG densities:

ητ(1− τ)eη

2ρ2(η + 1)
exp

{
−

√
η

(
η +

εi
ρ2

(τ − I(εi < 0))

)}

∝
∫ ∞

0

∫ ∞
0

N(εi; (1− 2τ)vi, 4σivi)Exp

(
vi;

τ(1− τ)

2σi

)
GIG

(
σi;

3

2
,
η

ρ2
, ηρ2

)
dσidvi,
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where N(·) and Exp(·) are the normal and exponential densities, respectively.

Proposition A.2. Let ρ2 ∼ π(ρ2) ∝ 1/ρ2 (improper scale invariant prior). For fixed λ1 > 0

and η > 0, the posterior distribution is proper for all n.

Proof. The overall posterior distribution is given by

π(β, ρ2,v,σ, s|y)

=
π(y|X,β,v,σ)π(β|s, ρ2)π(v|σ)π(σ|ρ2)π(ρ2)π(s)∫∫∫∫∫

π(y|X,β,v,σ)π(β|s, ρ2)π(v|σ)π(σ|ρ2)π(ρ2)π(s)dβdvdσdsdρ2
.

We show that the normalising constant of the posterior distribution is finite, that is,

∫∫∫∫∫
π(y|X,β,v,σ)π(β|s, ρ2)π(v|σ)π(σ|ρ2)π(ρ2)π(s)dβdvdσdsdρ2 <∞.

First, we consider the integral with respect to β. We have

∫
π(y|X,β,v,σ)π(β|s, ρ2)dβ

=

∫ n∏
i=1

1√
8πσivi

exp

{
−(yi − xiβ − (1− 2τ)vi)

2

8σivi

}

×
k∏
j=1

1√
2πρ2sj

exp

{
−

β2
j

2ρ2sj

}
dβ

=

∫
(8π)−n/2(2π)−k/2(ρ2)

−k/2
(

n∏
i=1

σi

)−1/2( n∏
i=1

vi

)−1/2
 k∏
j=1

sj

−1/2

× exp

{
−1

2
(y −Xβ − (1− 2τ)v)TV −1(y −Xβ − (1− 2τ)v)

}
× exp

{
− 1

2ρ2
βTΛ−1β

}
dβ,
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where V = diag(4σ1v1, . . . , 4σnvn) and Λ = diag(s1, . . . , sk). In particular, we have

∫
exp

{
−1

2
(y −Xβ − (1− 2τ)v)TV −1(y −Xβ − (1− 2τ)v)

}
× exp

{
− 1

2ρ2
βTΛ−1β

}
dβ

= exp

{
−1

2
(y − (1− 2τ)v)TV −1(y − (1− 2τ)v)

}
×
∫

exp

{
−1

2

(
βT
(
XTV −1X +

1

ρ2
Λ−1

)
β − 2βTXTV −1(y − (1− 2τ)v)

)}
dβ

= exp

{
−1

2
(y − (1− 2τ)v)TV −1(y − (1− 2τ)v)

}

× (2π)k/2

∣∣∣∣∣
(
XTV −1X +

1

ρ2
Λ−1

)−1
∣∣∣∣∣
1/2

= exp

{
−1

2
(y − (1− 2τ)v)TV −1(y − (1− 2τ)v)

}
× (2π)k/2

∣∣∣∣ 1

ρ2
Λ−1

∣∣∣∣−1/2

|V |1/2
∣∣V + ρ2XΛXT

∣∣−1/2
(A.2)

= exp

{
−1

2
(y − (1− 2τ)v)TV −1(y − (1− 2τ)v)

}

× (2π)k/22n(ρ2)
k/2

 k∏
j=1

sj

1/2(
n∏
i=1

σi

)1/2( n∏
i=1

vi

)1/2 ∣∣V + ρ2XΛXT
∣∣−1/2

.

The expression in Equation (A.2) is due to the identity of |I +AB| = |I +BA| (Henderson

and Searle (1981)).

Hence, we have

∫
π(y|X,β,v,σ)π(β|s, ρ2)dβ

= (2π)−n/2 exp

{
−1

2
(y − (1− 2τ)v)TV −1(y − (1− 2τ)v)

}
×
∣∣V + ρ2XΛXT

∣∣−1/2
.
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Next, we have

∫∫∫∫∫
π(y|X,β,v,σ)π(β|s, ρ2)π(v|σ)π(σ|ρ2)π(ρ2)π(s)dβdvdσdsdρ2

=

∫∫∫∫
(2π)−n/2 exp

{
−1

2
(y − (1− 2τ)v)TV −1(y − (1− 2τ)v)

}
×
∣∣V + ρ2XΛXT

∣∣−1/2
n∏
i=1

τ(1− τ)

2σi
exp

{
−τ(1− τ)vi

2σi

}
π(σ|ρ2)π(ρ2)π(s)dvdσdsdρ2

≤
∫∫∫∫

(2π)−n/2 exp

{
−1

2
(y − (1− 2τ)v)TV −1(y − (1− 2τ)v)

}
|V |−1/2

×
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i=1

τ(1− τ)

2σi
exp

{
−τ(1− τ)vi

2σi

}
π(σ|ρ2)π(ρ2)π(s)dvdσdsdρ2,

by using the fact that |A + B| ≥ |A| implies |A + B|−1/2 ≤ |A|−1/2 for a positive definite

matrix A and a semi-positive definite matrix B.

Next, we consider the integral with respect to v. First, we have

∫
|V |−1/2 exp
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−1

2
(y − (1− 2τ)v)TV −1(y − (1− 2τ)v)

}
×

n∏
i=1

τ(1− τ)

2σi
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−τ(1− τ)vi

2σi

}
dv
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2
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2−n
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i=1

σi
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−(yi − (1− 2τ)vi)

2

8σivi
− τ(1− τ)vi

2σi

}
dv

=

(
τ(1− τ)

4

)n( n∏
i=1

σi

)−3/2

×
∫ n∏

i=1

v
−1/2
i exp

{
−(yi − (1− 2τ)vi)

2

8σivi
−
(
1− (1− 2τ)2

)
vi

8σi

}
dv

=

(
τ(1− τ)

4

)n( n∏
i=1

σi

)−3/2

×
∫ n∏

i=1

v
−1/2
i exp

{
− y2

i

8σivi
− (1− 2τ)yi

4σi
− vi

8σi

}
dv

=

(
τ(1− τ)

4

)n( n∏
i=1

σi

)−3/2

×
∫ n∏

i=1

v
−1/2
i exp

{
−1

2

(
vi

4σi
+

y2
i

4σivi

)}
exp

{
−(1− 2τ)yi

4σi

}
dv.
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Letting a2 = 1/(4σi) and b2 = y2
i /(4σi) and using the equality (Equation (A.1)), we have

∫
|V |−1/2 exp

{
−1

2
(y − (1− 2τ)v)TV −1(y − (1− 2τ)v)

}
×

n∏
i=1

τ(1− τ)

2σi
exp

{
−τ(1− τ)vi

2σi

}
dv

=

(
τ(1− τ)

4

)n( n∏
i=1

σ
−3/2
i exp

{
−(1− 2τ)yi

4σi

})

×
∫ n∏

i=1

v
−1/2
i exp

{
−1

2

(
a2vi + b2v−1

i

)}
dv

=

(
τ(1− τ)

4

)n( n∏
i=1

σ
−3/2
i exp

{
−(1− 2τ)yi

4σi

})

×
n∏
i=1

(2π)1/2(4σi)
1/2 exp

{
−|yi|

4σi

}

= (2π)n/2
(
τ(1− τ)

2

)n n∏
i=1

σ−1
i exp

{
−|yi|+ (1− 2τ)yi

4σi

}
.

Hence, we have

∫∫∫∫∫
π(y|X,β,v,σ)π(β|s, ρ2)π(v|σ)π(σ|ρ2)π(ρ2)π(s)dβdvdσdsdρ2

≤
∫∫∫ (

τ(1− τ)

2

)n n∏
i=1

σ−1
i exp

{
−|yi|+ (1− 2τ)yi

4σi

}

×
n∏
i=1

√
σi

2ρ2K3/2(η)
exp

{
−η

2

(
σi
ρ2

+
ρ2

σi

)}
π(ρ2)π(s)dσdsdρ2

=

∫∫∫ (
τ(1− τ)

2

)n( 1

2ρ2K3/2(η)

)n
×

n∏
i=1

σ
−1/2
i exp

{
−η

2

(
σi
ρ2

+
ρ2

σi

)
− |yi|+ (1− 2τ)yi

4σi

}
π(ρ2)π(s)dσdsdρ2.

Next, we consider the integral with respect to σ. First, we have

∫ n∏
i=1

σ
−1/2
i exp

{
−η

2

(
σi
ρ2

+
ρ2

σi

)
− |yi|+ (1− 2τ)yi

4σi

}
dσ

=

∫ n∏
i=1

σ
−1/2
i exp

{
−1

2

(
ησi
ρ2

+

(
ηρ2 +

|yi|+ (1− 2τ)yi
2

)
1

σi

)}
)dσ.

Letting c2 = η/ρ2 and d2 = ηρ2 + (|yi| + (1 − 2τ)yi)/2 and using the equality (Equation
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(A.1)), we have

∫ n∏
i=1

σ
−1/2
i exp

{
−η

2

(
σi
ρ2

+
ρ2

σi

)
− |yi|+ (1− 2τ)yi

4σi

}
dσ

=

∫ n∏
i=1

σ
−1/2
i exp

{
−1

2

(
c2σi + d2σ−1

i

)}
dσ

=
n∏
i=1

(
η

ρ2

)−1/2

(2π)1/2 exp

{
−

√
η

ρ2

(
ηρ2 +

|yi|+ (1− 2τ)yi
2

)}
.

Hence, we have

∫∫∫∫∫
π(y|X,β,v,σ)π(β|s, ρ2)π(v|σ)π(σ|ρ2)π(ρ2)π(s)dβdvdσdsdρ2

≤
∫∫

(2π)n/2
(
τ(1− τ)

2

)n( 1

2
√
ηρ2K3/2(η)

)n

×
n∏
i=1

exp

{
−

√
η

ρ2

(
ηρ2 +

|yi|+ (1− 2τ)yi
2

)}

×
k∏
j=1

λ2
1

2
exp

{
−λ

2
1sj
2

}
π(ρ2)dsdρ2

=

∫
(2π)n/2

(
τ(1− τ)

2

)n( 1

2
√
ηρ2K3/2(η)

)n

×
n∏
i=1

exp

{
−

√
η

ρ2

(
ηρ2 +

|yi|+ (1− 2τ)yi
2

)}
× 1

ρ2
dρ2

=

(√
πτ(1− τ)√
8ηK3/2(η)

)n ∫
(ρ2)

−n/2−1
n∏
i=1

exp

{
−

√
η

ρ2

(
ηρ2 +

|yi|+ (1− 2τ)yi
2

)}
.

(A.3)

In Equation (A.3), we note that the inequality

√
η

ρ2

(
ηρ2 +

|yi|+ (1− 2τ)yi
2

)
=

√
η2 + η

|yi|+ (1− 2τ)yi
2ρ2

≥

√
η

ρ2

(
|yi|+ (1− 2τ)yi

2

)

holds for any η > 0 for i = 1, . . . , n. Hence, we have



A. Mathematical Proofs 122

∫∫∫∫∫
π(y|X,β,v,σ)π(β|s, ρ2)π(v|σ)π(σ|ρ2)π(ρ2)π(s)dβdvdσdsdρ2

≤

(√
πτ(1− τ)√
8ηK3/2(η)

)n ∫
(ρ2)

−n/2−1
n∏
i=1

exp

{
−

√
η

ρ2

(
|yi|+ (1− 2τ)yi

2

)}
dρ2

=

(√
πτ(1− τ)√
8ηK3/2(η)

)n ∫ √
ρ2
−n−2

exp

{
− 1√

ρ2

√
η

2

n∑
i=1

√
|yi|+ (1− 2τ)yi

}
dρ2.

By using the transformation
√
ρ2 = x, we have

∫ √
ρ2
−n−2

exp

{
− 1√

ρ2

√
η

2

n∑
i=1

√
|yi|+ (1− 2τ)yi

}
dρ2

= 2

∫
x−n−1 exp

{
−1

x

√
η

2

n∑
i=1

√
|yi|+ (1− 2τ)yi

}
dx. (A.4)

Since the integrand is the kernel of IG
(
n,
√
η/2

∑n
i=1

√
|yi|+ (1− 2τ)yi

)
where IG(·) is the

inverse Gamma distribution, the integral is finite for any n. Hence, the posterior distribution

under the improper prior π(ρ2) ∝ 1/ρ2 is proper for any n.

Proposition A.3. Under the conditional prior for β given ρ2 and fixed λ1 > 0 and η > 0,

the joint posterior (β, ρ2|y) is unimodal with respect to (β, ρ2).

Proof. The joint posterior density of (β, ρ2) is expressed by

π(β, ρ2|y) =

∫∫
π(y|X,β,σ,v)π(β|ρ2)π(v|σ)π(σ|ρ2)π(ρ2)dvdσ.



A. Mathematical Proofs 123

First, we consider the integral with respect to v. We have

∫
π(y|X,β,σ,v)π(v|σ)dv

=

∫ n∏
i=1

1√
8πσivi

exp

{
−(yi − xiβ − (1− 2τ)vi)

2

8σivi

}

×
n∏
i=1

τ(1− τ)

2σi
exp

{
−τ(1− τ)vi

2σi

}
dv

= (8π)−n/2
(
τ(1− τ)

2

)n( n∏
i=1

σi

)−3/2

×
∫ n∏

i=1

v
−1/2
i exp

{
−(yi − xiβ − (1− 2τ)vi)

2

8σivi
− τ(1− τ)vi

2σi

}
dv

=

(
τ(1− τ)

2

)n n∏
i=1

σ−1
i exp

{
−|yi − xiβ|+ (1− 2τ)(yi − xiβ)

4σi

}
.

Hence, we have

π(β, ρ2|y)

= π(β|ρ2)π(ρ2)

∫ (
τ(1− τ)

2

)n n∏
i=1

σ−1
i exp

{
−|yi − xiβ|+ (1− 2τ)(yi − xiβ)

4σi

}

×
n∏
i=1

√
σi

2ρ2K3/2(η)
exp

{
−η

2

(
σi
ρ2

+
ρ2

σi

)}
dσ

= π(β|ρ2)π(ρ2)(ρ2)
−n
(
τ(1− τ)

4K3/2(η)

)n
×
∫ n∏

i=1

σ
−1/2
i exp

{
−1

2

(
η

ρ2σi
+

(
ηρ2 +

|yi − xiβ|+ (1− 2τ)(yi − xiβ)

2

)
1

σi

)}
dσ

= π(β|ρ2)π(ρ2)(ρ2)
−n
(
τ(1− τ)

4K3/2(η)

)n
×

n∏
i=1

(
η

ρ2

)−1/2

(2π)1/2 exp

{
−

√
η

ρ2

(
ηρ2 +

|yi − xiβ|+ (1− 2τ)(yi − xiβ)

2

)}

∝ (ρ2)
−1

(ρ2)
−k/2

(ρ2)
−n

(ρ2)
−n/2

k∏
j=1

exp

{
−λ1|βj |√

ρ2

}

×
n∏
i=1

exp

{
−

√
η

ρ2

(
ηρ2 +

|yi − xiβ|+ (1− 2τ)(yi − xiβ)

2

)}

= (ρ2)
−n/2−k/2−1

exp

− λ1√
ρ2

k∑
j=1

|βj |


×

n∏
i=1

exp

{
−

√
η

(
η +
|yi − xiβ|+ (1− 2τ)(yi − xiβ)

2ρ2

)}
.
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Then the log posterior density is given by

log π(β, ρ2|y) ∝ −
(
n

2
+
k

2
+ 1

)
log ρ2 − λ1√

ρ2
‖β‖1

−
n∑
i=1

√
η

(
η +
|yi − xiβ|+ (1− 2τ)(yi − xiβ)

2ρ2

)
. (A.5)

Like Kawakami and Hashimoto (2023) and Cai and Sun (2021), we consider the coordinate

transformation Φ↔ β/
√
ρ2, ξ ↔ 1/

√
ρ2. In the transformation coordinate, Equation (A.5)

is given by

(n+ k + 2) log ξ − λ1‖Φ‖1

−
n∑
i=1

√
η

(
η +

ξ

2
(|ξyi − xiΦ|+ (1− 2τ)(ξyi − xiΦ))

)
. (A.6)

Since the three terms in Equation (A.6) are log-concave, the joint posterior π(β, ρ2|y) is

unimodal. This completes the proof.

Proposition A.4. Let ρ2 ∼ π(ρ2) ∝ 1/ρ2 (improper scale invariant prior). For fixed

λ3 > 0, λ4 > 0 and η > 0, the posterior distribution is proper for all n.

Proof. We follow the proof of Proposition A.2 in the similar manner. The overall posterior

distribution is given by

π(β, ρ2,v,σ, t|y)

=
π(y|X,β,v,σ)π(β|t, ρ2)π(v|σ)π(σ|ρ2)π(ρ2)π(t)∫∫∫∫∫

π(y|X,β,v,σ)π(β|t, ρ2)π(v|σ)π(σ|ρ2)π(ρ2)π(t)dβdvdσdtdρ2
.

We show that the normalising constant of the posterior distribution is finite, that is,

∫∫∫∫∫
π(y|X,β,v,σ)π(β|t, ρ2)π(v|σ)π(σ|ρ2)π(ρ2)π(t)dβdvdσdtdρ2 <∞.
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First, we consider the integral with respect to β. We have

∫
π(y|X,β,v,σ)π(β|t, ρ2)dβ

=

∫
(8π)−n/2π−k/2λ

k/2
4 (ρ2)

−k/2
(

n∏
i=1

σi

)−1/2( n∏
i=1

vi

)−1/2
 k∏
j=1

tj
tj − 1

1/2

× exp

{
−1

2
(y −Xβ − (1− 2τ)v)TV −1(y −Xβ − (1− 2τ)v)

}
× exp

{
−λ4

ρ2
βTT−1β

}
dβ,

where V = diag(4σ1v1, . . . , 4σnvn) and T = diag((t1−1)t−1
1 , . . . , (tn−1)t−1

n ). In particular,

we have

∫
exp

{
−1

2
(y −Xβ − (1− 2τ)v)TV −1(y −Xβ − (1− 2τ)v)

}
× exp

{
−λ4

ρ2
βTT−1β

}
dβ

= exp

{
−1

2
(y − (1− 2τ)v)TV −1(y − (1− 2τ)v)

}

× (2π)k/2

∣∣∣∣∣
(
XTV −1X +

2λ4

ρ2
T−1

)−1
∣∣∣∣∣
1/2

= exp

{
−1

2
(y − (1− 2τ)v)TV −1(y − (1− 2τ)v)

}
× (2π)k/2

∣∣∣∣2λ4

ρ2
T−1

∣∣∣∣−1/2

|V |1/2
∣∣∣∣V +

ρ2

2λ4
XT−1XT

∣∣∣∣−1/2

= exp

{
−1

2
(y − (1− 2τ)v)TV −1(y − (1− 2τ)v)

}

× (2π)k/22n2k/2(ρ2)
k/2
λ
−k/2
4

 k∏
j=1

tj
tj − 1

−1/2(
n∏
i=1

σi

)1/2( n∏
i=1

vi

)1/2

×
∣∣∣∣V +

ρ2

2λ4
XT−1XT

∣∣∣∣−1/2

.

Hence, we have

∫
π(y|X,β,v,σ)π(β|t, ρ2)dβ

= (2π)−n/2 exp

{
−1

2
(y − (1− 2τ)v)TV −1(y − (1− 2τ)v)

}
×
∣∣∣∣V +

ρ2

2λ4
XT−1XT

∣∣∣∣−1/2

.
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Next, we have

∫∫∫∫∫
π(y|X,β,v,σ)π(β|t, ρ2)π(v|σ)π(σ|ρ2)π(ρ2)π(t)dβdvdσdtdρ2

=

∫∫∫∫
(2π)−n/2 exp

{
−1

2
(y − (1− 2τ)v)TV −1(y − (1− 2τ)v)

}
×
∣∣∣∣V +

ρ2

2λ4
XT−1XT

∣∣∣∣−1/2

π(v|σ)π(σ|ρ2)π(ρ2)π(t)dvdσdtdρ2

≤
∫∫∫∫

(2π)−n/2 exp

{
−1

2
(y − (1− 2τ)v)TV −1(y − (1− 2τ)v)

}
|V |−1/2

×
n∏
i=1

τ(1− τ)

2σi
exp

{
−τ(1− τ)vi

2σi

}
π(σ|ρ2)π(ρ2)π(s)dvdσdsdρ2.

Next, we consider the integral with respect to v. We have

∫
|V |−1/2 exp

{
−1

2
(y − (1− 2τ)v)TV −1(y − (1− 2τ)v)

}
×

n∏
i=1

τ(1− τ)

2σi
exp

{
−τ(1− τ)vi

2σi

}
dv

= (2π)n/2
(
τ(1− τ)

2

)n n∏
i=1

σ−1
i exp

{
−|yi|+ (1− 2τ)yi

4σi

}
.
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Hence, we have

∫∫∫∫∫
π(y|X,β,v,σ)π(β|t, ρ2)π(v|σ)π(σ|ρ2)π(ρ2)π(t)dβdvdσdtdρ2

≤
∫∫∫ (

τ(1− τ)

2

)n n∏
i=1

σ−1
i exp

{
−|yi|+ (1− 2τ)yi

4σi

}

×
n∏
i=1

√
σi

2ρ2K3/2(η)
exp

{
−η

2

(
σi
ρ2

+
ρ2

σi

)}
π(ρ2)π(t)dσdtdρ2

=

∫∫∫ (
τ(1− τ)

4K3/2(η)

)n
(ρ2)

−n

×
n∏
i=1

σ
−1/2
i exp

{
−1

2

(
ησi
ρ2

+

(
ηρ2 +

|yi|+ (1− 2τ)yi
2

)
1

σi

)}
π(ρ2)π(t)dσdtdρ2

=

∫∫ (√
πτ(1− τ)√
8ηK3/2(η)

)n
(ρ2)

−n/2
n∏
i=1

exp

{
−

√
η

ρ2

(
ηρ2 +

|yi|+ (1− 2τ)yi
2

)}

×
k∏
j=1

Γ−1

(
1

2
, λ̃3

)√
λ̃3

tj
exp

{
−λ̃3tj

}
I(tj > 1)× 1

ρ2
dtdρ2

=

(√
πτ(1− τ)√
8ηK3/2(η)

)n
λ̃−k3 Γ−k

(
1

2
, λ̃3

)
Γk
(

1

2
, 1

)

×
∫

(ρ2)
−n/2−1

n∏
i=1

exp

{
−

√
η

ρ2

(
ηρ2 +

|yi|+ (1− 2τ)yi
2

)}
dρ2

≤

(√
πτ(1− τ)√
8ηK3/2(η)

)n
λ̃−k3 Γ−k

(
1

2
, λ̃3

)
Γk
(

1

2
, 1

)

× 2

∫
x−n−1 exp

{
−1

x

√
η

2

n∑
i=1

√
|yi|+ (1− 2τ)yi

}
dx.

As the integrand is the same as that in Equation (A.4), the integral is finite for any n.

Hence, the posterior distribution under the improper prior π(ρ2) ∝ 1/ρ2 is proper for any

n.

Proposition A.5. Under the conditional prior for β given ρ2 and fixed λ3 > 0, λ4 > 0 and

η > 0, the joint posterior (β, ρ2|y) is unimodal with respect to (β, ρ2).

Proof. We follow the proof of Proposition A.3 in the similar manner. The joint posterior
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density of (β, ρ2) is expressed by

π(β, ρ2|y) =

∫∫
π(y|X,β,σ,v)π(β|ρ2)π(v|σ)π(σ|ρ2)π(ρ2)dvdσ

= π(β|ρ2)π(ρ2)

(√
πτ(1− τ)√
8ηK3/2(η)

)n
(ρ2)

−n/2

×
n∏
i=1

exp

{
−

√
η

ρ2

(
ηρ2 +

|yi − xiβ|+ (1− 2τ)(yi − xiβ)

2

)}

∝ (ρ2)
−n/2−k/2−1

exp

− λ3√
ρ2

k∑
j=1

|βj | −
λ4

ρ2

k∑
j=1

β2
j


×

n∏
i=1

exp

{
−

√
η

(
η +
|yi − xiβ|+ (1− 2τ)(yi − xiβ)

2ρ2

)}
.

Then the log posterior density is given by

log π(β, ρ2|y) ∝ −
(
n

2
+
k

2
+ 1

)
log ρ2 − λ3√

ρ2
‖β‖1 −

λ4

ρ2
‖β‖22

−
n∑
i=1

√
η

(
η +
|yi − xiβ|+ (1− 2τ)(yi − xiβ)

2ρ2

)
. (A.7)

We also consider the coordinate transformation Φ↔ β/
√
ρ2, ξ ↔ 1/

√
ρ2. In the transfor-

mation coordinate, Equation (A.7) is given by

(n+ k + 2) log ξ − λ1‖Φ‖1 − λ4‖Φ‖22

−
n∑
i=1

√
η

(
η +

ξ

2
(|ξyi − xiΦ|+ (1− 2τ)(ξyi − xiΦ))

)
. (A.8)

Since the four terms in Equation (A.8) are log-concave, the joint posterior of π(β, ρ2|y) is

unimodal. This completes the proof.



Appendix B

Details of Gibbs Sampling

Algorithms

Here we provide the full Gibbs sampling algorithms of hierarchical models for Bayesian

Huberised regularised quantile regression used in Chapter 3.
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B.1 Bayesian Huberised Lasso Quantile Regression

The joint posterior distribution is as follows.

π(β, ρ2,v,σ, λ1, s|y)

=
n∏
i=1

1√
8πσivi

exp

{
−(yi − xiβ − (1− 2τ)vi)

2

8σivi

}

×
n∏
i=1

√
σi

2ρ2K3/2(η)
exp

{
−η

2

(
σi
ρ2

+
ρ2

σi

)}

×
n∏
i=1

τ(1− τ)

2σi
exp

{
−τ(1− τ)vi

2σi

}

×
k∏
j=1

1√
2πρ2sj

exp

{
−

β2
j

2ρ2sj

}

×
k∏
j=1

λ2
1

2
exp

{
−λ

2
1sj
2

}
× ba

Γ(a)
(λ2

1)
a−1

exp
{
−bλ2

1

}
× dc

Γ(c)
ηc−1 exp {−dη}

× 1

ρ2
.

The full conditional posterior distribution of β is given by

π(β|y, ρ2,v,σ, λ1, s)

∝
n∏
i=1

1√
8πσivi

exp

{
−(yi − xiβ − (1− 2τ)vi)

2

8σivi

}

×
k∏
j=1

1√
2πρ2sj

exp

{
−

β2
j

2ρ2sj

}

∝ exp

{
−1

2
(y −Xβ − (1− 2τ)v)TV −1(y −Xβ − (1− 2τ)v)

}
× exp

{
− 1

2ρ2
βTΛ−1β

}
∝ exp

{
−1

2

(
βT
(
XTV −1X +

1

ρ2
Λ−1

)
β − 2βTXTV −1(y − (1− 2τ)v)

)}
∝ N (µβ,Σβ) ,

where V = diag(4σ1v1, . . . , 4σnvn), Λ = diag(s1, . . . , sk), Σβ =
(
XTV −1X + 1/ρ2Λ−1

)−1

and µβ = ΣβX
TV −1(y − (1− 2τ)v).
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The full conditional posterior distribution of σi, i = 1, . . . , n, is given by

π(σi|y,β, ρ2,v, λ1, s)

∝
n∏
i=1

1√
8πσivi

exp

{
−(yi − xiβ − (1− 2τ)vi)

2

8σivi

}

×
n∏
i=1

√
σi

2ρ2K3/2(η)
exp

{
−η

2

(
σi
ρ2

+
ρ2

σi

)}

×
n∏
i=1

τ(1− τ)

2σi
exp

{
−τ(1− τ)vi

2σi

}
∝ σ−1

i exp

{
−1

2

(
η

ρ2
σi +

(
(yi − xiβ − (1− 2τ)vi)

2

4vi
+ τ(1− τ)vi + ηρ2

)
1

σi

)}
∝ GIG

(
0,
η

ρ2
,
(yi − xiβ − (1− 2τ)vi)

2

4vi
+ τ(1− τ)vi + ηρ2

)
.

The full conditional posterior distribution of vi, i = 1, . . . , n, is given by

π(vi|y,β, ρ2,σ, λ1, s)

∝
n∏
i=1

1√
8πσivi

exp

{
−(yi − xiβ − (1− 2τ)vi)

2

8σivi

}

×
n∏
i=1

τ(1− τ)

2σi
exp

{
−τ(1− τ)vi

2σi

}
∝ v−1/2

i exp

{
−1

2

(
(yi − xiβ − (1− 2τ)vi)

2

4σivi
+
τ(1− τ)vi

σi

)}
∝ v−1/2

i exp

{
−1

2

(
(yi − xiβ)2

4σi

1

vi
+

(
(1− 2τ)2

4σi
+
τ(1− τ)

σi

)
vi

)}
∝ GIG

(
1

2
,
(1− 2τ)2

4σi
+
τ(1− τ)

σi
,
(yi − xiβ)2

4σi

)
.
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The full conditional posterior distribution of ρ2 is given by

π(ρ2|y,β,v,σ, λ1, s)

∝
n∏
i=1

√
σi

2ρ2K3/2(η)
exp

{
−η

2

(
σi
ρ2

+
ρ2

σi

)}

×
k∏
j=1

1√
2πρ2sj

exp

{
−

β2
j

2ρ2sj

}

× 1

ρ2

∝ (ρ2)
−n− k

2
−1

exp

−1

2

 n∑
i=1

η

σi
ρ2 +

 n∑
i=1

ησi +
k∑
j=1

β2
j

sj

 1

ρ2


∝ GIG

−n− k

2
,
n∑
i=1

η

σi
,
n∑
i=1

ησi +
k∑
j=1

β2
j

sj

 .

The full conditional posterior distribution of sj , j = 1, . . . , k, is given by

π(sj |y,β, ρ2,v,σ, λ1)

∝ 1√
2πρ2sj

exp

{
−

β2
j

2ρ2sj

}
× λ2

1

2
exp

{
−λ

2
1sj
2

}

∝ s−1/2
j exp

{
−1

2

(
β2
j

ρ2

1

sj
+ λ2

1sj

)}

∝ GIG

(
1

2
, λ2

1,
β2
j

ρ2

)
.

The full conditional posterior distribution of λ1 is given by

π(λ1|y,β, ρ2,v,σ, s)

∝
k∏
j=1

λ2
1

2
exp

{
−λ

2
1sj
2

}
× ba

Γ(a)
(λ2

1)
a−1

exp
{
−bλ2

1

}
∝ (λ2

1)
a+k−1

exp

−
b+

k∑
j=1

sj
2

λ2
1


∝ Gamma

a+ k, b+

k∑
j=1

sj
2

 .
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B.2 Bayesian Huberised Elastic Net Quantile Regression

The joint posterior distribution is as follows.

π(β, ρ2,v,σ, t, λ3, λ4|y)

=
n∏
i=1

1√
8πσivi

exp

{
−(yi − xiβ − (1− 2τ)vi)

2

8σivi

}

×
n∏
i=1

√
σi

2ρ2K3/2(η)
exp

{
−η

2

(
σi
ρ2

+
ρ2

σi

)}

×
n∏
i=1

τ(1− τ)

2σi
exp

{
−τ(1− τ)vi

2σi

}

×
k∏
j=1

√
λ4tj

πρ2(tj − 1)
exp

{
−

λ4tjβ
2
j

ρ2(tj − 1)

}

×
k∏
j=1

Γ−1

(
1

2
, λ̃3

)√
λ̃3

tj
exp

{
−λ̃3tj

}
I(tj > 1)

× ba11

Γ(a1)
(λ̃3)

a1−1
exp

{
−b1λ̃3

}
× ba22

Γ(a2)
λa2−1

2 exp {−b2λ4}

× ba33

Γ(a3)
ηa3−1 exp {−b3η}

× 1

ρ2
.

Clearly, it is obvious to see that the full conditional posterior distributions of σi and vi,

i = 1, . . . , n are the same as those in the Bayesian Huberised Lasso quantile regression.
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The full conditional posterior distribution of β is given by

π(β|y, ρ2,v,σ, t, λ3, λ4)

=
n∏
i=1

1√
8πσivi

exp

{
−(yi − xiβ − (1− 2τ)vi)

2

8σivi

}

×
k∏
j=1

√
λ4tj

πρ2(tj − 1)
exp

{
−

λ4tjβ
2
j

ρ2(tj − 1)

}

∝ exp

{
−1

2
(y −Xβ − (1− 2τ)v)TV −1(y −Xβ − (1− 2τ)v)

}
× exp

{
−λ4

ρ2
βTT−1β

}
∝ exp

{
−1

2

(
βT
(
XV −1X +

2λ4

ρ2
T−1

)
β − 2βTXTV −1(y − (1− 2τ)v)

)}
∝ N (µβ,Σβ) ,

where V = diag(4σ1v1, . . . , 4σnvn), T = diag((t1 − 1)t−1
1 , . . . , (tn − 1)t−1

n ),

Σβ =
(
XV −1X + 2λ4/ρ

2T−1
)−1

and µ = ΣβX
TV −1(y − (1− 2τ)v).

The full conditional posterior distribution of ρ2 is given by

π(ρ2|y,β,v,σ, t, λ3, λ4)

∝
n∏
i=1

√
σi

2ρ2K3/2(η)
exp

{
−η

2

(
σi
ρ2

+
ρ2

σi

)}

×
k∏
j=1

√
λ4tj

πρ2(tj − 1)
exp

{
−

λ4tjβ
2
j

ρ2(tj − 1)

}

× 1

ρ2

∝ (ρ2)
−n− k

2
−1

exp

−1

2

 n∑
i=1

η

σi
ρ2 +

 n∑
i=1

ησi +

k∑
j=1

2λ4tjβ
2
j

tj − 1

 1

ρ2


∝ GIG

−n− k

2
,

n∑
i=1

η

σi
,

n∑
i=1

ησi +

k∑
j=1

2tjλ4β
2
j

tj − 1

 .
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The full conditional posterior distribution of tj − 1 is given by

π(tj − 1|y,β, ρ2,v,σ, λ3, λ4)

∝

√
λ4tj

πρ2(tj − 1)
exp

{
−

λ4tjβ
2
j

ρ2(tj − 1)

}

× Γ−1

(
1

2
, λ̃3

)√
λ̃3

tj
exp

{
−λ̃3tj

}
I(tj > 1)

∝ (tj − 1)−1/2 exp

{
−

λ4tjβ
2
j

ρ2(tj − 1)
− λ̃3tj

}
I(tj > 1)

∝ (tj − 1)−1/2 exp

{
−1

2

(
2λ4β

2
j

ρ2

1

tj − 1
+ 2λ̃3(tj − 1)

)}
I(tj − 1 > 0)

∝ GIG

(
1

2
, 2λ̃3,

2λ4β
2
j

ρ2

)
I(tj − 1 > 0).

The full conditional posterior distribution of λ̃3 is given by

π(λ̃3|y,β, ρ2,v,σ, t, λ3, λ4)

∝
k∏
j=1

Γ−1

(
1

2
, λ̃3

)√
λ̃3

tj
exp

{
−λ̃3tj

}
I(tj > 1)

× ba11

Γ(a1)
(λ̃3)

a1−1
exp

{
−b1λ̃3

}
∝ Γ−k

(
1

2
, λ̃3

)
(λ̃3)

k
2

+a1−1
exp

−
 k∑
j=1

tj + b1

 λ̃3

 .

As it is infeasible to directly sample from π(λ̃3|y,β, ρ2,v,σ, t, λ3, λ4), the one-step Metropolis-

Hastings algorithm is employed. Following Li et al. (2010), the proposal distribution is

q(λ̃3|t) ∼ Gamma
(
k + a1, b1 +

∑k
j=1(tj − 1)

)
. They showed that

lim
λ̃3→∞

√
λ̃3 exp(λ̃3)

Γ−1
(

1
2 , λ̃3

) = 1

implies that

lim
λ̃3→∞

π(λ̃3|y,β, ρ2,v,σ, t, λ3, λ4)

q(λ̃3|t)

exists and equals to some positive constant. Hence, the tail behaviours of q(λ̃3|t) and

π(λ̃3|y,β, ρ2,v,σ, t, λ3, λ4) are similar.
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The full conditional posterior distribution of λ4 is given by

π(λ4|y,β, ρ2,v,σ, t, λ3)

∝
k∏
j=1

√
λ4tj

πρ2(tj − 1)
exp

{
−

λ4tjβ
2
j

ρ2(tj − 1)

}

× ba22

Γ(a2)
λa2−1

2 exp {−b2λ4}

∝ λ
k
2

+a2−1

4 exp

−
 k∑
j=1

tjβ
2
j

ρ2(tj − 1)
+ b2

λ4


∝ Gamma

k
2

+ a2,
k∑
j=1

tjβ
2
j

ρ2(tj − 1)
+ b2

 .



Appendix C

Evidence Lower Bound

Here we provide the derivations of evidence lower bound for VB Huberised Lasso quantile

regression and VB Huberised adaptive Lasso quantile regression used in Chapter 4.

C.1 Variational Bayesian Huberised Lasso Quantile Regres-

sion

According to the VI principle, minimising the KL divergence from q(Θ) to true posterior

distribution p(Θ|y) is equivalent to maximising the lower bound of evidence log p(y), that

is LB(q) = E[log p(Θ,y)]− E[log q(Θ)]. For some function g(θ) of parameter θ ∈ Θ, we use

E[g(θ)] to represent the expectation of g(θ) about the optimal variational posterior distri-

bution q∗(θ). ELBO is as follows. Based on the hierarchical model of Bayesian Huberised

lasso quantile regression, we have

p(Θ,y) = p(y|X,β,v,σ)p(v|σ)p(σ|ρ2, η)p(β|s, ρ2)p(s|λ2)p(λ2)p(ρ2)p(η)p(β0),

q(Θ) = q(β)q(s)q(v)q(σ)q(ρ2)q(η)q(λ2)q(β0).

For the former, they are computed as follows.
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• E[ log p(y|X,β,v,σ)]

= E

[
log

n∏
i=1

1√
8πσivi

exp

{
−(yi − xiβ − (1− 2τ)vi)

2

8σivi

}]

= −n
2

log 8π − 1

2

n∑
i=1

E[log σi]−
1

2

n∑
i=1

E[log vi]

− 1

8

n∑
i=1

{
E[σ−1

i ]E[v−1
i ]
(
(yi − E[β0]− xiE[β])2 + Var(β0) + Tr(xix

T
i Var(β))

)
+

(1− 2τ)2

4
E[σ−1

i ]E[vi]−
1− 2τ

2
E[σ−1

i ](yi − E[β0]− xiE[β])2
}
.

• E[log p(v|σ)] = E

[
log

n∏
i=1

τ(1− τ)

2σi
exp

{
−τ(1− τ)vi

2σi

}]

= n log
τ(1− τ)

2
−

n∑
i=1

E[log σi]−
τ(1− τ)

2

n∑
i=1

E[σ−1
i ]E[vi].

• E[log p(σ|ρ2, η)] = E

[
log

n∏
i=1

√
σi

2ρ2K3/2(η)
exp

{
−η

2

(
σi
ρ2

+
ρ2

σi

)}]

=
1

2

n∑
i=1

E[log σi]− n log 2− nE[log ρ2]− nE[logK3/2(η)]

− 1

2
E[η]

n∑
i=1

(E[σi]E[ρ2] + E[σ−1
i ]E[ρ2]).

• E[log p(β|s, ρ2)] = E

log

k∏
j=1

1√
2πsjρ2

exp

{
−

β2
j

2sjρ2

}
= −k

2
log 2π − k

2
E[log ρ2]− 1

2

k∑
j=1

E[log sj ]

− 1

2
E[(ρ2)

−1
]
k∑
j=1

E[s−1
j ]E[β2

j ].

• E[log p(s|λ2)] = E

log

k∏
j=1

λ2

2
exp

{
−λ

2sj
2

}
= −k log 2 + kE[log λ2]− 1

2
E[λ2]

k∑
j=1

E[sj ].

• E[log p(λ2)] = E
[
log

(
ba

Γ(a)
(λ2)

a−1
exp

{
−bλ2

})]
= a log b− log Γ(a) + (a− 1)E[log λ2]− bE[λ2].

• E[log p(ρ2)] = E
[
log 1

ρ2

]
= −E[log ρ2]
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• E[log p(η)] = E
[
log

(
dc

Γ[c]
ηc−1 exp {−dη}

)]
= c log d− log Γ(c) + (c− 1)E[log η]− dE[η].

• E[log p(β0)] = 0.

For the latter, they are also computed as follows.

• E[log q∗(β)] = E
[
log

(
(2π)−k/2|Σβ|−1/2 exp

{
−1

2
(β − µβ)TΣ−1

β (β − µβ)

})]
= −k

2
log 2π − 1

2
log|Σβ| −

k

2
.

• E[ log q∗(s)]

= E

log
k∏
j=1

1

2
K−1

1/2

(√
âsj b̂sj

)(
âsj

b̂sj

)1/4

s
−1/2
j exp

{
−1

2

(
âsjsj + b̂sjs

−1
j

)}
= −k log 2−

k∑
j=1

logK1/2

(√
âsj b̂sj

)
+

1

4

k∑
j=1

(
log âsj − log b̂sj

)

− 1

2

k∑
j=1

E[log sj ]−
1

2

k∑
j=1

(
âsjE[sj ] + b̂sjE[s−1

j ]
)
.

• E[ log q∗(v)]

= E

log

n∏
i=1

1

2
K−1

1/2

(√
âvi b̂vi

)(
âvi

b̂vi

)1/4

v
−1/2
i exp

{
−1

2

(
âvivi + b̂viv

−1
i

)}
= −n log 2−

n∑
i=1

logK1/2

(√
âvi b̂vi

)
+

1

4

n∑
i=1

(
log âvi − log b̂vi

)
− 1

2

n∑
i=1

E[log vi]−
1

2

n∑
i=1

(
âviE[vi] + b̂viE[v−1

i ]
)
.

• E[ log q∗(σ)]

= E

[
log

n∏
i=1

1

2
K−1

0

(√
âσi b̂σi

)
σ−1
i exp

{
−1

2

(
âσiσi + b̂σiσ

−1
i

)}]

= −n log 2−
n∑
i=1

logK0

(√
âσi b̂σi

)
−

n∑
i=1

E[log σi]

− 1

2

n∑
i=1

(
âσiE[σi] + b̂σiE[σ−1

i ]
)
.
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• E[ log q∗(ρ2)]

= E

[
log

1

2
K−1

−n− k
2

(√
âρ2 b̂ρ2

)(
âρ2

b̂ρ2

)−n
2
− k

4

× (ρ2)
−n− k

2
−1

exp

{
−1

2

(
âρ2ρ

2 + b̂ρ2(ρ2)
−1
)}]

= − log 2− logK−n− k
2

(√
âρ2 b̂ρ2

)
−
(
n

2
+
k

4

)(
log âρ2 − log b̂ρ2

)
−
(
n+

k

2
+ 1

)
E[log ρ2]− 1

2

(
âρ2E[ρ2] + b̂ρ2E[(ρ2)

−1
]
)
.

• E[ log q∗(η)]

= E

[
log

(
1

K3/2(η)n
ηc−1 exp

{
−η

2

n∑
i=1

(
E[(ρ2)

−1
]E[σi] + E[ρ2]E[σ−1

i ]
)}

exp {−ηd}

)]

= −nE[logK3/2(η)] + (c− 1)E[log η]− E[η]

(
1

2

n∑
i=1

(E[σi]E[ρ2] + E[σ−1
i ]E[ρ2]) + d

)
.

• E[log q∗(λ2)] = E

[
log

(
b̂
âλ2
λ2

Γ(âλ2)
(λ2)

âλ2−1
exp

{
−b̂λ2λ2

})]
= âλ2 log b̂λ2 − log Γ(âλ2) + (âλ2 − 1)E[log λ2]− b̂λ2E[λ2].

• E[log q∗(β0)] = E

log

 1√
2πσ2

β0

exp

{
−

(β0 − µβ0)2

2σ2
β0

}
= −1

2
log 2π − 1

2
log σ2

β0 −
1

2
.

From computing the ELBO above, we are required to calculate the expectation of the

following functions of parameters: E[log σi], E[log vi], E[log sj ], E[log ρ2], E[log λ2], E[log η]

and E[logK3/2(η)]. Because q∗(λ2) ∼ Gamma
(
âλ2 , b̂λ2

)
, we have E[log λ2] = ψ(âλ2) −

log b̂λ2 , where ψ(·) is the digamma function. For E[log η] and E[logK3/2(η)], the Taylor

approximation is used to produce a second-order expansion at the expected value of each

variable for approximation, in other words, g(x) ≈ f(x0)+(x−x0)g′(x0)+ 1
2(x−x0)2g”(x0).

Specifically, for E[log η], we generate a second-order expansion of the expectation of log η

and let x0 = µη then we have

E[log η] = E
[
logµη +

η − µη
µη

− 1

2

(η − µη)2

µ2
η

]
= logµη −

1

2µ2
η

E[(η − µη)2]

= logµη −
Var(η)

2µ2
η

.
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Because q∗(η) ∼ N(µη, σ
2
η), we have E[η] = µη and Var(η) = σ2

η.

Similarly, we have

E[logK3/2(η)] = logK3/2(µη) +
1

2
Var(η)

d2

dη2
logK3/2(µη).

Because q∗(σi) ∼ GIG
(

0, âσi , b̂σi

)
, q∗(vi) ∼ GIG

(
1
2 , âvi , b̂vi

)
,

q∗(sj) ∼ GIG
(

1
2 , âsj , b̂sj

)
and q∗(ρ2) ∼ GIG

(
−n− k

2 , âρ2 , b̂ρ2
)

, let x ∼ GIG(ν, a, b) be a

GIG random variable then we have

E[log x] = ∂/∂ν
[
Kν

(√
ab
)]
K−1
ν

(√
ab
)
− 1/2 log a/b. Thus, E[log σi], E[log vi], E[log sj ]

and E[log ρ2] are computed in the similar way.

By substituting the expectation of each parameter and the approximate expectation of the

function, the approximate ELBO can be obtained.

C.2 Variational Bayesian Huberised Adaptive Lasso Quantile

Regression

Based on the hierarchical model of Bayesian Huberised adaptive lasso quantile regression,

we have

p(Θ,y) = p(y|X,β,v,σ)p(v|σ)p(σ|ρ2, η)p(β|s, ρ2)p(s|λ2)p(λ2)p(ρ2)p(η)p(β0),

q(Θ) = q(β)q(s)q(v)q(σ)q(ρ2)q(η)q(λ2)q(β0).

For the former, they can be computed in the same way except

• E[log p(s|λ2)] = E

log
k∏
j=1

λ2
j

2
exp

{
−
λ2
jsj

2

}
= −k log 2 +

k∑
j=1

E[log λ2
j ]−

1

2

k∑
j=1

E[λ2
j ]E[sj ].

• E[log p(λ2)] = E

log

k∏
j=1

ba

Γ(a)
(λ2
j )
a−1

exp
{
−bλ2

j

}
= ka log b− k log Γ(a) + (a− 1)

k∑
j=1

E[log λ2
j ]− b

k∑
j=1

E[λ2
j ].

For the latter, they are also computed in the same way except
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• E[log q∗(λ2)] = E

log
k∏
j=1

b̂
â
λ2
j

λ2j

Γ(âλ2j
)
(λ2
j )
â
λ2
j
−1

exp
{
−b̂λ2jλ

2
j

}
=

k∑
j=1

{
âλ2j

log b̂λ2j
− log Γ(âλ2j

) + (âλ2j
− 1)E[log λ2

j ]− b̂λ2jE[λ2
j ]
}
.

Because q∗(λ2
j ) ∼ Gamma

(
âλ2j

, b̂λ2j

)
, we have E[log λ2

j ] = ψ(âλ2j
)− log b̂λ2j

for j = 1, . . . , k.



Appendix D

Figures

D.1 Chapter 2 Data Analysis

Figure D.1: Trace, density and autocorrelation plots for the risk factors of SBP at τ = 0.5
under the Bayesian quantile regression model with FPs.
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Figure D.2: Trace, density and autocorrelation plots for the risk factors of DBP at τ = 0.5
under the Bayesian quantile regression model with FPs.

Figure D.3: Trace, density and autocorrelation plots for the risk factors of SBP at τ = 0.5
under the Bayesian quantile regression model with FPs and variable selection.
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Figure D.4: Trace, density and autocorrelation plots for the risk factors of DBP at τ = 0.5
under the Bayesian quantile regression model with FPs and variable selection.

Figure D.5: Trace, density and autocorrelation plots for the risk factors of SBP at τ = 0.75
under the Bayesian quantile regression model with FPs.
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Figure D.6: Trace, density and autocorrelation plots for the risk factors of DBP at τ = 0.75
under the Bayesian quantile regression model with FPs.

Figure D.7: Trace, density and autocorrelation plots for the risk factors of SBP at τ = 0.75
under the Bayesian quantile regression model with FPs and variable selection.
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Figure D.8: Trace, density and autocorrelation plots for the risk factors of DBP at τ = 0.75
under the Bayesian quantile regression model with FPs and variable selection.
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D.2 Chapter 3 Simulation Studies

Figure D.9: Boxplots of RMSE based on 300 replications in six simulation scenarios for
HBQR-BL, HBQR-EN, BQR-BL and BQR-EN (τ = 0.75).
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Figure D.10: Boxplots of MMAD based on 300 replications in six simulation scenarios for
HBQR-BL, HBQR-EN, BQR-BL and BQR-EN (τ = 0.75).
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Figure D.11: Boxplots of AL based on 300 replications in six simulation scenarios for HBQR-
BL, HBQR-EN, BQR-BL and BQR-EN (τ = 0.75).
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Figure D.12: Boxplots of posterior median of η based on 300 replications in six simulation
scenarios for HBQR-BL and HBQR-EN (n = 200).
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D.3 Chapter 4 Simulation Studies

Figure D.13: Boxplots of RMSE & MMAD based on 50 replications in parameter estimation
simulation for the proposed VB algorithms and MCMC method (τ = 0.25).
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Figure D.14: Boxplots of RMSE & MMAD based on 50 replications in parameter estimation
simulation for the proposed VB algorithms and MCMC method (τ = 0.75).
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Figure D.15: Boxplots of RMSE based on 50 replications in Simulation 1 for the proposed
VB algorithms and MCMC method for sample size of n = 600 at different quantile levels
(τ = 0.25, 0.5, 0.75).



D.3. Chapter 4 Simulation Studies 155

Figure D.16: Boxplots of RMSE based on 50 replications in Simulation 2 for the proposed
VB algorithms and MCMC method for sample size of n = 600 at different quantile levels
(τ = 0.25, 0.5, 0.75).
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Figure D.17: Boxplots of RMSE based on 50 replications in Simulation 3 for the proposed
VB algorithms and MCMC method for sample size of n = 600 at different quantile levels
(τ = 0.25, 0.5, 0.75).
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Figure D.18: Boxplots of MMAD based on 50 replications in Simulation 1 for the proposed
VB algorithms and MCMC method for sample size of n = 300 at different quantile levels
(τ = 0.25, 0.5, 0.75).
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Figure D.19: Boxplots of MMAD based on 50 replications in Simulation 2 for the proposed
VB algorithms and MCMC method for sample size of n = 300 at different quantile levels
(τ = 0.25, 0.5, 0.75).
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Figure D.20: Boxplots of MMAD based on 50 replications in Simulation 3 for the proposed
VB algorithms and MCMC method for sample size of n = 300 at different quantile levels
(τ = 0.25, 0.5, 0.75).
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Figure D.21: Boxplots of MMAD based on 50 replications in Simulation 1 for the proposed
VB algorithms and MCMC method for sample size of n = 600 at different quantile levels
(τ = 0.25, 0.5, 0.75).
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Figure D.22: Boxplots of MMAD based on 50 replications in Simulation 2 for the proposed
VB algorithms and MCMC method for sample size of n = 600 at different quantile levels
(τ = 0.25, 0.5, 0.75).
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Figure D.23: Boxplots of MMAD based on 50 replications in Simulation 3 for the proposed
VB algorithms and MCMC method for sample size of n = 600 at different quantile levels
(τ = 0.25, 0.5, 0.75).
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Figure D.24: Posterior median of η from the MCMC method and optimal estimate of η
from the proposed VB algorithms for sample size n = 300 (τ = 0.25).
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Figure D.25: Posterior median of η from the MCMC method and optimal estimate of η
from the proposed VB algorithms for sample size n = 600 (τ = 0.25).
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Figure D.26: Posterior median of η from the MCMC method and optimal estimate of η
from the proposed VB algorithms for sample size n = 600 (τ = 0.5).
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Figure D.27: Posterior median of η from the MCMC method and optimal estimate of η
from the proposed VB algorithms for sample size n = 300 (τ = 0.75).
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Figure D.28: Posterior median of η from the MCMC method and optimal estimate of η
from the proposed VB algorithms for sample size n = 600 (τ = 0.75).
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