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An indirect testing method for determining the tensile strength of rock-like heterogeneous materials is proposed. The realistic
failure process analysis method, which can consider material inhomogeneity, is applied to model the failure process of the square
plate containing a circular hole under uniaxial compression. The influence of plate thickness and applied loads on the maximum
tensile stress is investigated, and the tensile strength equation is deduced. Meanwhile, the initial cracking loads are obtained
by the corresponding physical tests, and the tensile strengths are determined by substituting the initial cracking loads into the
developed tensile strength equation. The values predicted by the newly proposed method are almost identical to those of the
direct tensile tests. Furthermore, the proposed method can give the relatively small tensile strength error with the direct tensile
test in comparison to the other test methods, which indicates that the proposed method is effective and valid for determining the
tensile strength of rock-like heterogeneous materials.

1.  Introduction
During the design process in geotechnical engineering, a
crucial parameter is the tensile strength of rock [1, 2].
Direct tensile testing (DTT) is one of the most reliable
methods for determining this strength and is independent
of the constitutive response of a material [3, 4]. How‐
ever, performing valid direct tensile tests is challenging.
Preparing the dog bone-shaped specimens required for
these tests is difficult, and stress concentrations at the ends
of specimens often lead to failure away from the midpoint
[5–7]. To use the direct methods, empirical equations from
the literature are typically used, and/or numerous rock
samples are tested in the laboratory. However, physical
experiment is usually time-consuming and costly. Mean‐
while, some indirect methods for assessing the tensile
strength have been proposed [8–10]. The classical indi‐
rect testing methods include the ring test [11–13], wedge
splitting test [14], three-point or four-point beam bend‐
ing tests [15–17], hollow cylinder test [18], unconfined

expansion test [19], point load test [20, 21], and Brazilian
test [22, 23]. The Brazilian split test (BST) is the most
commonly used indirect method to determine the tensile
strength of rock-like materials, which is the recommended
test method by the International Society for Rock Mechan‐
ics (ISRM) [24, 25]. However, the Brazilian test has been
criticized since it was initially proposed due to the test
results varying with loading rate [26–28], specimen size
[29–31], experimental materials [32, 33], jaw’s curvature
[34], and testing standards [35]. In order to carry out a
valid Brazilian test, researchers proposed plenty of modified
Brazilian test methods [36–40].

Several factors control the tensile strength of rock
materials, for example discontinuities, foliation, lamination,
mineral composition, cementing material, hardness, and
porosity [41–43]. Discontinuities, foliation, and lamina‐
tion contribute to the heterogeneous structure of rock-
like materials, which influences the macro-mechanical
properties of rock-like materials [44–47]. They also greatly
affect the disaster prevention and reduction in rock

GeoScienceWorld
Lithosphere
Volume 2024, Number 3, Article ID lithosphere_2023_322, 14 pages
https://doi.org/10.2113/2024/lithosphere_2023_322

Downloaded from http://pubs.geoscienceworld.org/gsa/lithosphere/article-pdf/doi/10.2113/2024/lithosphere_2023_322/6575010/lithosphere_2023_322.pdf
by guest
on 21 July 2024

http://orcid.org/0000-0002-9464-3423
https://doi.org/10.2113/2024/lithosphere_2023_322


engineering [48]. The formula of tensile strength under the
assumption of isotropy was unreasonable [49]. Therefore,
many researchers have studied the influence of rock
anisotropy on tensile strength. For example, Roy and Singh
[50] [50] studied the effect of the layer orientation on
the tensile properties of granitic gneiss by using a Bra‐
zilian configuration and found that the layer orientation
has a strong control over tensile strength. [51] addressed
Brazilian tests on transversely isotropic rocks, experimen‐
tally and analytically, to identify failure conditions for a
range of load contact types and anisotropy angles. Liu
et al. [52] [52] analyzed the effect of bedding dip angle
on the slate’s tensile strength, failure modes, and acoustic
emission characteristics. The above studies mainly focus on
the anisotropy of rock structure. However, rock consists of
a variety of mineral particles of different sizes, preexisting
cracks, and the contacts between mineral particles, which
contributes to the heterogeneity of rock. The heterogeneity
of rock is difficult to be quantified in laboratory experi‐
ments [53, 54]. There are few methods to determine the
tensile strength of rock-like materials by considering the
heterogeneity.

In  this  study,  a  square  plate  model  with  a  circular
hole  in  the  center  was  used to  test  the  tensile  strength
of  rock-like  materials,  and the  heterogeneity  of  the
material  was  considered during the  testing process.  First,
the  material  heterogeneity  was  quantified by a  uniax‐
ial  compression experiment  and numerical  simulation.
Subsequently,  the  effect  of  model  thickness  and applied
loads  on the  stress  field  is  studied by the  numerical
simulation method considering material  inhomogeneity.
Furthermore,  an indirect  testing method considering
material  inhomogeneity  to  determine the  tensile  strength
of  rock-like  materials  is  proposed.  Finally,  a  physical
experiment  is  carried out  to  verify  the  effectiveness  of
the  method.

2.  Quantification of the Material Heterogene‐
ity

2.1.   Numerical  Expression of  Material  Heterogene‐
ity.  The realistic  failure  process  analysis  (RFPA) method
has  been widely  used in  rock mechanics  [55–57].  The
most  important  hypothesis  reflected in  the  RFPA is
that  heterogeneity  in  rock strength causes  progressive
failure  behavior.  To simulate  the  random microstructures
in  rock,  rock heterogeneity  can be  well  characterized
using statistical  approaches  [58–60].  Namely,  a  numeri‐
cal  model  often consists  of  many meso-elements,  and
each element  has  its  specific  mechanical  parameters.
However,  the  statistical  distribution of  all  the  element
mechanical  parameters  is  assumed to  obey the  Weibull
distribution function [61,  62],  as  detailed below:

(1)ϕ f = mf0

ff0

m − 1exp − ff0

m − 1
,

where  m  defines  the  shape of  the  Weibull  distribu‐
tion function,  and it  can be  referred to  as  the  homoge‐
neity  index,  f  is  the  mechanical  parameters  including
the uniaxial  compressive  strength and elastic  modulus,
and f0  is  the  mean value  of  the  mechanical  parame‐
ters  of  all  elements.  According to  the  Weibull  distribu‐
tion,  the  parameter  m  defines  the  shape of  the  density
function,  which defines  the  degree  of  material  homoge‐
neity.  A larger  m  value  indicates  that  more  elements
have mechanical  properties  that  have  been approximated
to the  mean value,  which describes  a  more  homogene‐
ous  rock specimen.

2.2.  Uniaxial Compression Test of the Testing Material. A
kind of engineering mortar passed through a sieve with a

Figure 1: View of the sample for UCT.
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diameter of 0.6 mm was used as the testing material in
this study. The mortar and water were mixed in a ratio of
1:0.23. According to the Chinese standards (JGJ/T 70-2009),
a cubic specimen with the dimensions of 70.7 mm × 70.7
mm × 70.7 mm was selected for the uniaxial compression
test (UCT). Strain rosettes were glued on the lateral side of
specimens, as illustrated in Figure 1.

As a result, the curves of stress–axial strain, as well
as axial strain–lateral strain, can be obtained for each
specimen. For each curve of stress–axial strain, the elastic

modulus of the test mortar is determined as the slope of
the stress–axial strain curve. The Poisson’s ratio is the ratio
of lateral strain to axial strain. The compressive strength is
the peak of the stress–strain curve. UCTs were conducted by
the way of displacement controlling using the WDW-100E
mechanical testing machine with the maximum load of 100
kN. The loading rate applied by the test apparatus was set
as 0.5 mm/min. As shown in Table 1, the elastic modulus of
the experimental mortar used in this study was 1.53 GPa on
average, whereas the compressive strength was 25.41 MPa

Figure 2: Numerical simulation results of UCTs with different homogeneity indices: (a) m = 1, (b) m = 2, (c) m = 3, (d) m = 4, (e) m = 5,
(f) m = 6, and (g) m = 7.
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on average. The Poisson’s ratio was reaching up to 0.33,
averaging 0.30.

2.3. Determination of the Heterogeneity Index of the Testing
Material. RFPA was used to build a three-dimensional (3D)
numerical calculation model with the dimensions of 70.7
mm × 70.7 mm × 70.7 mm. The displacement loading
was applied on the top of the model, and the bottom
boundary of the numerical calculation model was fixed in
the normal direction. The employed strength criterion was
the Mohr–Coulomb failure criterion with a tension cutoff.
This criterion governs the initiation of element damage,
triggered when the stress state reaches the maximum tensile
stress or Mohr–Coulomb thresholds. Initially, elements are
assumed to exhibit linear elasticity, characterized by Young’s
modulus and Poisson’s ratio. This linearly elastic behav‐
ior persists until the imposed stress exceeds the material
capacity, at which point strain-softening occurs, altering the
element response.

To determine the heterogeneity index of the testing
material, a series of numerical calculations were performed
with the homogeneity index varying from 1 to 7 by
referring to Tang [63, 64] . The properties of the numerical
models were identical, and the physical and mechanical
parameters used in the calculations were obtained through
UCTs. The simulated results are summarized in Figure
2. As the homogeneity index m increases, the calculated
elastic modulus fluctuates around the value measured by
UCTs, while the compressive strength gradually decreases.
When the homogeneity index m is 6, the calculated elastic
modulus and compressive strength are closest to the values
obtained from the tests. Therefore, it can be concluded that
the homogeneity index of the testing material is 6.

3.  A New Method to Determine the Tensile
Strength of Rock-Like Heterogeneity Mate‐
rials

3.1.  Theoretical Basis. When the plate with a circular hole
in the center is submitted to a symmetric uniform pres‐
sure of magnitude q in the x direction (Figure 3), the
stress component at the edge of the hole in the carte‐
sian coordinate system can be expressed by the following
equation:

(2)
σx = q 1 − 2cos2φ sin2φσy = q 1 − 2cos2φ cos2φτxy = q 2cos2φ − 1 sinφ cosφ,

where σx is the normal stress along the x-axis, σy is the
normal stress along the y-axis, τxy is the shear stress in
the xy plane, and φ is the included angle of a line rotated
from the x-axis to a point. According to equation (2), the
distribution characteristics of σx along the y-axis and σy
along the x-axis are shown in Figure 4.

When the plate is submitted to a symmetric uniform
pressure of magnitude q, the maximum compressive stress
with 3q and the maximum tensile stress with −q appear
at the edge of the hole. The tensile strength of rock-like
materials is much less than its compressive strength. When
a rock-like plate with a circular hole in the middle of the
plate is submitted to a symmetric uniform pressure, tensile
failure will appear at the end of the hole near the loading
surface, and the tensile stress at the time of failure is equal
to the applied pressure.

Table 1: Test results of UCTs for experimental mortar.

Sample
number

Elastic modulus
(GPa)

Compressive
strength (MPa)

Poisson’s ratio

1 1.58 24.58 0.27
2 1.50 25.96 0.30
3 1.50 25.70 0.33

Mean 1.53 25.41 0.30

Figure 3: Model of a plate with a circular hole submitted to a
symmetric uniform compression.

Figure 4: The distribution of σx along the y-axis and σy along the
x-axis.
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3.2. Effect of Specimen Thickness on Tensile Stress Distribu‐
tion. The theoretical analysis given in Section 3.1 is two
dimensional (2D). The physical test model is 3D. Taking the
use of 2D stress analysis to determine the tensile strength
of a 3D model directly is unreasonable. In this section, a
numerical calculation method was adopted to explore the
variation rule of tensile stress distribution with the change
of the plate thickness. RFPA was used to build a 3D model
with length and height l = 24 cm and the diameter of the
central circular hole D = 3 cm, as shown in Figure 5.

The ratio of thickness to diameter can be expressed as
T/D with the thickness of the model is expressed by T.
Uniform load P was applied on the top surface of the model.
The bottom boundary of the numerical calculation model
was fixed in the normal direction. To study the effect of

specimen thickness on tensile stress distribution, a series of
numerical calculations were performed with the T/D ratio
varying from 0.1 to 2.0 and the uniform load P = 1 MPa.
An elastic constitutive model was used, and mechanical
parameters used in the calculation were presented in Table
1. The homogeneity index of numerical calculation material
was 6. Considering the influence of material heterogeneity
on the discretization of calculation results, five groups of
parallel numerical calculations were carried out with the
same homogeneity index in each working condition. A
total of 100 numerical calculations were performed in this
section.

Since the negative stress value in RFPA represents the
tensile stress, the contour of minimum principal stress can
be used to analyze the distribution law of the tensile stress

Figure 5: The 3D numerical calculation model.

Figure 6: Minimum principal stress distribution of model (a negative value represents tensile stress).
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in the model. The distribution of the minimum principal
stress of the model is shown in Figure 6. Due to the model
failure first from the maximum tensile stress point, this
section mainly focuses on the value and location of the
tensile stress of the model. It is indicated by Figure 6 that
the maximum tensile stress σtmax occurs at the top and
bottom of the hole, which is close to the loading surface.
The maximum tensile stress of the model with the variation
of model thickness is summarized in Figure 7.

When the T/D ratio and homogeneity index is con‐
stant, the randomness of material generation results in
some fluctuations in the calculation results. The stand‐
ard deviations are all less than 0.02, indicating that
the discreteness of the calculated results caused by the

randomness of materials is small. Therefore, the relationship
between the maximum tensile stress and the T/D ratio can
be analyzed by the average value of the calculated maximum
tensile stress. As can be seen from Figure 7, the maximum
tensile stress of the model first increases and then decreases
as the thickness of the model increases. The peak of the
maximum tensile stress appears when the T/D ratio of the
model reaches a certain value. For the test material selected
in this article, the peak of the curve occurs when the T/D
ratio is equal to 1.1.

3.3.  Effect of the Applied Load on Tensile Stress Distribu‐
tion. Numerical calculations were also used to explore the
determination method of the tensile strength of rock-like

Figure 7: Maximum tensile stress of the model with the variation of model thickness.

Figure 8: Relationship between the maximum tensile stress of the model and the applied load.
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heterogeneity materials. A series of numerical models were
created with the T/D ratio is 1.1 and the applied load P
varying from 0.1 to 2.5 MPa. The elastic–plastic constitutive
model was used in this section. Assuming that the tensile
strength of the material was one-tenth of the compressive
strength, other material parameters used in the calculation
were also presented in Table 1. The relationship between the
maximum tensile stress of the model and the applied load is
shown in Figure 8.

When the applied loads are small, the fluctuations of
the calculation results caused by the randomness of the
material are little, and the standard deviations are all less
than 1%. When the applied load is large, the fluctuations
of the calculated results become larger, but the standard
deviations of the calculated results are all less than 10%.
The discreteness of the calculated results caused by the
randomness of materials is small. The relationship between
the maximum tensile stress and the applied loads can be
analyzed by the mean value of the calculated maximum
tensile stress. When the applied load is less than 1.8 MPa,
the maximum tensile stress has a linear relationship with
the applied load. The linear fitting equation of maximum
tensile stress and applied load can be expressed as follows:

(3)σtmax = 1.1105p + 0.0061.

When the applied load exceeds 1.8 MPa, damaged
elements appear at the top and bottom of the hole. In Figure
9, the serious damage occurring at the bottom of the hole is
indicated by the blue elements. At this point, the maximum
tensile stress of the model is greater than the tensile strength
of the testing material, and the maximum tensile stress and
the applied load no longer obey the linear relationship.
Equation (3) is the relationship between the maximum
tensile stress and applied loads when the model is in the
elastic phase, which can be regarded as the tensile strength
calculation formula. If the applied load at the beginning
of the model failure can be obtained, the actual tensile
strength of the material can be calculated by substituting the
applied load at the beginning of the model failure into the
tensile strength calculation formula. For the convenience
of description, the new method proposed in this study is
named the square plate test (SPT).

4.  Comparison between the SPT and the Other
Methods

In order to verify the validity of the new method proposed
in this article, DTT, BST, three-point bending test (TPBT),
and SPT were used to test the tensile strength of the
engineering mortar mentioned earlier.

Figure 9: Distribution of damaged elements.

Figure 10: A real view of UCT combined with an image acquisition system.
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4.1.  Square Plate Test. The same engineering mortar
mentioned earlier was used to establish the model shown in

Table 2: Test results of UCTs for plate samples.

Sample
number

Initial cracking
force (kN)

Initial cracking
pressure (MPa)

Tensile strength
(MPa)

1 21.56 2.72 3.03
2 21.76 2.75 3.06
3 21.94 2.77 3.08
4 22.24 2.81 3.13
5 22.58 2.85 3.17

Mean 22.02 2.78 3.09 Figure 5, and the T/D was 1.1. The UCTs combined with an
image acquisition system were performed to determine the
loads of the specimen when the initial crack appeared. The
loads were generated by the WAW-1000B mechanical
testing machine with the maximum load of 1000 kN. The
main component of the image acquisition system was two

Table 3: Results of direct tension tests.

Sample number Peak load (kN) Tensile strength (MPa)

1 4.97 2.99
2 5.30 3.19
3 5.40 3.25

Mean 5.22 3.14

Figure 11: The specimens for direct tension tests.

Figure 12: Specimens for (a) Brazilian split tests and (b) three-point bending tests.
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high-speed cameras. In order to better capture the initial
crack load of the model, a strain gauge was attached to the
inner surface of the circular hole close to the loading

Table 4: Results of Brazilian split tests.

Sample number Peak load (kN) Tensile strength (MPa)

BST-1 6.23 3.97
BST-2 6.06 3.86
BST-3 6.11 3.89
BST-4 6.22 3.96
BST-5 6.22 3.96
Mean 6.17 3.93

surface, and the applied load corresponding to the strain
mutation was taken as the initial crack load of the model. A
real view of UCT combined with the image acquisition
system is shown in Figure 10.

The experimental results are listed in Table 2. The
experimental results show that the initial cracking force is
22.02 kN on average, and the corresponding initial cracking
pressure is 2.78 MPa on average. The tensile strength of
the experimental mortar can be obtained by substituting
the initial cracking pressure of 2.78 MPa into equation
(3). After calculation, the tensile strength of the testing
mortar is 3.09 MPa. The images captured by the high-speed
camera (in Figure 10) show that the initial cracks appear
at the top and bottom of the hole, which is consistent with
the distribution of the damaged elements in the numerical

Figure 13: Average tensile strength from different test methods.

Figure 14: Measured tensile strength and standard deviation from different test methods.
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simulation. The initiation and development of cracks begin
in the region with the maximum tensile stress, which
ensures the effectiveness of the new method for testing the
tensile strength of materials.

4.2.  Direct Tensile Testing. DTTs were carried out by using
cylindrical specimens 46 mm in diameter and 100 mm
in length to determine the tensile strength of the testing
mortar. Two steel connection bolts were bonded on the top
and bottom of the specimen, and the steel connection bolts
were connected with the collets of the WDW-30 micro‐
computer-controlled electronic universal testing machine
with the maximum load of 30 kN, as shown in Figure
11. The upper collet of the test machine was rotatable,
which ensured the specimen was subjected to pure tensile
stress. DTTs were carried out on the mortar cylindrical
specimens. After the test, the failure section of the specimen
was approximately horizontal, indicating that the specimen
failed in the tensile model. The average tensile strength was
3.14 MPa, as shown in Table 3.

The SPT takes into account the heterogeneity of the
material, and the tensile strength difference between the
SPT and the DTT is less than 2%, which indicates that
the SPT method is an effective method to test the tensile

strength of rock-like heterogeneous materials. The testing
method of tensile strength of materials mentioned in this
study uses the regular shape of specimens, which can avoid
eccentric compression or stress concentration in the loading
process, and the test results have little dispersion. The
principle of the SPT method is simple and easy to under‐
stand, which makes the SPT method proposed in this study
expected to be widely used.

4.3. BST and TPBT. The BST is a recommended method
to determine the tensile strength of rock-like materials by
the ISRM and the American Society for Testing Mate‐
rial (ASTM). The tensile strength can be calculated using
equation (4).

(4)σt = 2p
πDT ,

where P is the applied load, D is the diameter of the disc,
and T is the thickness of the disc. Taking into account the
suggestions of the ISRM and the ASTM, the diameter of the
Brazilian disc was 50 mm, and the thickness of the disc was
20 mm in this study (Figure 12(a)). The loading rate applied
on the specimens was set as 0.5 mm/min. Another adopted
testing method in this study was TPBT, in which the width

Figure 15: Implementing the new method to determine the tensile strength of rock-like heterogeneous materials.
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and height of the testing beam were all 40 mm, and the
distance of the two bases was 100 mm (Figure 12(b)). BSTs
and TPBTs are carried out by using the DYE-300 pressure
testing machine with the maximum load of 10 kN.

The testing beam specimens were placed on two bases
with a distance of 300 mm. The fracture will first occur
at the bottom of the beam, and the corresponding tensile
strength can be calculated:

(5)σt = 3pl
2ba2 ,

where l is the distance of the two bases, b is the width of
the beam, and a is the height of the beam. The results of the
BSTs and TPBTs are listed in Tables 4 and 5, respectively.
The average tensile strengths measured by BSTs and TPBTs
are 3.93 and 6.12 MPa, respectively.

4.4.  Test Results Comparison of BST, DTT, TPBT, and
SPT. The average tensile strengths obtained by BST, DTT,
TPBT, and SPT are summarized in Figure 13. The results
of BSTs and TPBTs are greater than those of DTTs, and
the results of SPTs are smaller than those of DTTs. The
experimental results of TPBTs are about twice higher than
those of the other tests, which is consistent with the findings
of other researchers [15, 65, 66]. The absolute errors of the
results of BST and TPBT with respect to DTT are 0.79 and
2.98 MPa, respectively. The relative errors of the results of
BST and TPBT with respect to DTT are more than 25%. The
absolute and relative errors of the result of SPT with respect
to DTT are −0.05 MPa and 1.6%, respectively, indicating
that the result of SPT is the closest to that of DTT.

Figure 14 reflects the measured tensile strength and
standard deviation of different test methods. The standard
deviation of the results of the BSTs and SPTs is less than 5%,
indicating that the dispersion degree of the two test results
is small, and the two methods can obtain the stable results.
The DTTs and TPBTs have greater instability and less
reproducibility, which is expected given by the complica‐
ted test setup, slight imperfections in specimens, and the
test’s low tolerance to sample imperfections. According to
Figures 13 and 14, the SPT result is stable, and the result
is consistent with those of DTTs. SPT can be considered
to measure the tensile strength of rock-like heterogeneous
materials. Figure 15 shows the flowchart to determine the
tensile strength of rock-like heterogeneous materials.

5.  Conclusions
In this study, based on the analytical solution of the elastic
mechanics of a plate with a circular hole under symmetrical
loads, the effect of model thickness and applied loads on
the stress field is studied by the numerical simulation by
considering material inhomogeneity. The main findings can
be drawn as follows:

(1) The material heterogeneity can be quantified by a
uniaxial compression experiment and numerical

simulation. With the growth of applied loads, the
damaged elements first appear in the region of the
plate which possesses maximum tensile stress, and
the failure mode is tension. Meanwhile, the
maximum tensile stress of the model first increases
and then decreases as the thickness of the model
increases. The peak of the maximum tensile stress
appears when the T/D ratio of the model reaches a
certain value. Besides, the maximum tensile stress of
the plate has a linear relationship with the applied
load before the damaged elements appear in the
plate.

(2) The SPT method to determine the tensile strength of
rock-like heterogeneous materials can be
summarized as follows: (a) the elastic modulus and
Poisson’s ratio of the material are measured by UCTs.
Then, RFPA is used to simulate the uniaxial
compression process under different homogeneity
indices. The homogeneity index of the material is
determined by comparing the numerical calculation
results with the physical test results; (b) RFPA is used
to establish the numerical model to study the
influence of model thickness on the maximum
tensile stress and to determine the T/D ratio
corresponding to the maximum tensile stress of the
testing material; (c) RFPA is used to establish the
numerical model to study the influence of applied
loads on the maximum tensile stress and to
determine the linear relation formula between
maximum tensile stress and applied loads; (d) the
rock models are made and UCTs are carried out to
obtain the initial crack load P; and (e) the tensile
strength of the material can be calculated by
substituting the load P obtained in step (d) into the
linear relation formula obtained in step (c).

(3) The analysis process to determine the tensile
strength of rock-like heterogeneous materials has
been determined. The inhomogeneity of the material
is considered in the new test method, and the results
obtained by the new method are almost identical to
those of the direct tensile tests, which indicates that
the new method is effective to test the tensile
strength of rock-like heterogeneous materials. The
test specimen used in the new method has a regular
shape which is easy to be prepared. The specimen

Table 5: Results of three-point bending tests.

Sample number Peak load (kN) Tensile strength (MPa)

TPBT-1 2.55 5.97
TPBT-2 2.65 6.20
TPBT-3 2.78 6.52
TPBT-4 2.62 6.14
TPBT-5 2.47 5.78
Mean 2.61 6.12
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with an outer square and inner circle can effectively
avoid the occurrence of eccentric compression or
local failure of compression. Compared with the
results of DTTs and TPBTs, the SPT results have less
discreteness and better stability. Furthermore, SPT
gave the smallest tensile strength difference with
DTTs than the other test methods. The test
equipment is simple, the principle is easy for
understanding, the test results are stable, and the test
results are consistent with those of DTTs, which
improves the applicability of the proposed method.
The limitation of this study is that only one material
was tested. Actually, different types of rocks should
be tested in further studies to provide more data for
assessing the proposed test method.
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