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Abstract: Due to their excellent mechanical properties, the carbon fiber-reinforced polymer compos-
ites (CFRPs) of thermoplastic resins are widely used, and an accurate constitutive model plays a
pivotal role in structural design and service safety. A two-parameter three-dimensional (3D) plastic
potential was obtained by considering both the deviatoric deformation and the dilatation defor-
mation associated with hydrostatic stress. The Langmuir function was first adopted to model the
plastic hardening behavior of composites. The two-parameter 3D plastic potential, connected to the
Langmuir function of plastic hardening, was thus proposed to model the constitutive behavior of
the CFRPs of thermoplastic resins. Also, T700/PEEK specimens with different off-axis angles were
subjected to tensile loading to obtain the corresponding fracture surface angles of specimens and the
load–displacement curves. The two unknown plastic parameters in the proposed 3D plastic potential
were obtained by using the quasi-Newton algorithm programmed in MATLAB, and the unknown
hardening parameters in the Langmuir function were determined by fitting the effective stress-plastic
strain curve in different off-axis angles. Meanwhile, the user material subroutine VUMAT, following
the proposed constitutive model, was developed in terms of the maximum stress criterion for fiber
failure and the LaRC05 criterion for matrix failure to simulate the 3D elastoplastic damage behavior
of T700/PEEK. Finally, comparisons between the experimental tests and the numerical analysis were
made, and a fairly good agreement was found, which validated the correctness of the proposed
constitutive model in this work.

Keywords: CFRPs; T700/PEEK; two-parameter; three-dimensional elastoplastic damage; constitutive
model; quasi-Newton method; Langmuir function; LaRC05 criterion

1. Introduction

Carbon fiber-reinforced polymer composites (CFRPs) have been integrated into many
industrial applications for their structural parts with the requirement of a lightweight de-
sign and high reliability. Thermosetting resins, such as epoxy and others, have been widely
used in various industry sectors. The thermoplastic resins, especially the polyetheretherke-
tone (PEEK), have a higher impact resistance, better fracture toughness, and the advantage
of waste recycling compared to the thermosetting resin [1–3]. Thus, the CFRPs of ther-
moplastic resins have great potential to be widely used in future aerospace, automotive,
and civilian products. The stress–strain relationships of CFRPs with thermoplastic resins
tend to be nonlinear and sensitive to the plastic strain [4,5], herein an accurate constitutive
model is one of the most critical considerations in its structural integrity.

Numerous studies on constitutive behavior have been conducted on the thermosetting
composites, whereas relatively few studies have been conducted on the thermoplastic
composites. The research methods of the former can provide available guidance for the
latter. It is widely accepted that the plastic potential plays a key role in the constitutive
model due to its calculation of the effective stress of materials [6,7]. Based on a simple flow
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rule and the Hill plastic potential, Sun and Chen [8] first proposed a plastic potential by con-
sidering a state of plane stress. The plastic potential includes one undetermined parameter
to characterize the level of plastic deformation developed under shear loading compared to
transverse loading, and the single-parameter 2D plasticity model was employed to describe
the nonlinear behavior of fibrous composites [9–11]. Sun and Chen [12] assumed afterward
that the composites were transversely isotropic, and a 3D plastic potential was established
with two undetermined parameters. It is always desirable to have fewer parameters in
the constitutive model by comparing the two-parameter 3D plastic potential with the
strain energy function for transversely isotropic elastic solids. Thus, two undetermined
parameters in the 3D plastic potential were reduced to one by Weeks and Sun [13], and
a single-parameter 3D model was established. Cho et al. [14] introduced a 3D plastic
potential, combining the functions related to dilatational deformations, and a simplified
2D plastic potential with two unknown parameters was given to perform the numerical
prediction. Also, the validating experiment of unidirectional carbon/epoxy (AS4/3501-6)
was carried out in this study. Chen and Suo [15] constructed an elastoplastic constitutive
model to describe the nonlinear compressive stress–strain behavior of the fiber-reinforced
polymer composites (FRPs) of T800H/3631 and HTS40/PA6, and the model was developed
under the single-parameter 2D plastic potential. T700/PPEK is a high-performance CFRP
of thermoplastic resins. Yao et al. [16] carried out a numerical and experimental study to
investigate the effect of interference fit on the bearing strength of the T700/PEEK riveted
joint. The single-parameter 2D plastic potential was chosen, and the unknown single
parameter was obtained using the off-axis test. No works were seen in the open literature
on combining the single-parameter 3D model with the functions related to the dilatational
deformations for the simulation of the elastoplastic behavior for the CFRPs, and no similar
works were seen for the CFRPs of thermoplastic resins.

The hardening laws were utilized to express the master effective stress-plastic strain
relation, and the unknown coefficients in the hardening laws can be obtained by performing
the off-axis tensile tests [17,18]. Ding et al. [19] performed a 3D elastoplastic analysis of the
interlaminar stresses for the AS4/PEEK composite laminate by using a single-parameter
3D plastic potential, and the master effective stress-plastic strain relation was fitted with
a power-law function. An elastoplastic damage model considering the cohesive matrix
interface layers was proposed for the composite laminates of AS4/PEEK by Mandal and
Chakrabarti [20]. It was pointed out that a hardening was considered in the shear direction,
and there were two shear hardening parameters given in this study. Chen and Suo [15]
concluded that the effective plastic strain could be expressed by the effective stress, initial
elastic response stress, and two hardening parameters, which assume that the hardening
behavior obeys a power law with an index independent of fiber orientation, tension, and
compression. However, further improvements can be made by changing the functional
form to enhance the accuracy of the numerical prediction. Vyas et al. [21] developed an
exponential strain-hardening model with an explicit integration finite element code and
studied the nonlinear mechanical response of AS4/55A under different transverse loads,
showing a good agreement between the simulation and experimental results. A pressure-
dependent elastoplastic constitutive model was established for the unidirectional CFRP
laminates of IM7/8552 and AS4/PEEK by Ren Rui et al. [22]. The hardening law was
expressed by a piecewise function composed of four terms, including three exponential
functions, the curves of predictions agreed well with the tests, but there were seven
unknown coefficients to be determined in this law. These functional forms of hardening
law in the aforementioned literature were generally obtained using the simple linear
combinations of exponential functions. The relation of the dependent variable–independent
variable in the Langmuir isothermal adsorption function [23–25] shows similar patterns
to that of the effective stress-effective plastic strain in the constitutive model. In addition,
there is a lack of research on the application of the Langmuir function in the hardening law
for the CFRPs of both thermosetting and thermoplastic resins.



Materials 2024, 17, 3317 3 of 22

Finite Element Analysis (FEA) plays a crucial role in the development of composite
materials, which have been widely embraced by the industry and academic research [26,27].
Chen et al. [6] developed a user-defined subroutine within ABAQUS/Standard to analyze
the plastic behavior of composite materials. This subroutine incorporates a single-parameter
plastic potential, Hashin failure criteria, and exponential damage evolution to predict the
plastic behavior, damage initiation, and failure process of AS4/PEEK. Liu et al. [18] exam-
ined the three-point bending behavior of AS4/PEEK through a comprehensive approach
involving both experimental and numerical methods. In addition to conducting exper-
imental research, a numerical model was constructed to enhance the understanding of
damage mechanisms and evolution. Din et al. [28] developed a UMAT subroutine in
ABAQUS/Standard finite element software to investigate the mechanical properties of
open-hole laminates, considering elastic-plastic continuous damage. The study utilized
a one-parameter flow rule for orthotropic plasticity to capture the nonlinear behavior of
the fiber-reinforced composite with a thermoplastic matrix. The Puck theory was em-
ployed as the failure criterion, along with an exponential damage evolution rule to predict
damage onset and evolution. The analysis results demonstrate a notable enhancement
in predicting the mechanical behavior of continuous unidirectional composite materials.
Harpreet et al. [29] proposed an elastoplastic damage model for 3D fiber-reinforced plastic
(FRP) composites to simulate progressive damage and induced inelastic deformation result-
ing from low-velocity impacts. The model utilized 3D plastic potential for plastic surface
growth and implemented an exponential softening model for predicting damage growth.
Additionally, delamination behavior was considered by incorporating surface-based cohe-
sive interactions between adjacent plies. The results demonstrated a close match between
the predicted behavior and the experimental observations. In recent years, numerous
failure criteria have been proposed, with the LaRC05 theory being recognized as one of the
most accurate based on the second World-Wide Failure Exercise (WWFE-II). Wang et al. [30]
developed a progressive damage model using the 3D LaRC failure criterion in conjunc-
tion with cohesive elements. They utilized an energy-based damage evolution method
to forecast the behavior of single-lap thin-ply laminated composite-bolted joints under
tension loading. Ma et al. [31] conducted a series of compression tests using specimens
at different off-axis angles to study the damage initiation and progression mechanisms in
unidirectional AS4/PEEK composites. The off-axis compression failure envelope, evaluated
based on the LaRC05 criteria, was compared to the experimental results, demonstrating the
ability of the LaRC05 criteria to predict failure accurately.

To overcome the aforementioned issues and limitations, the CFRPs of thermoplastic
resins—T700/PEEK—were regarded as the research object. A two-parameter 3D plastic
potential was given by combining the single-parameter 3D plastic potential with the
function terms related to the dilatational deformations, induced from the hydrostatic
pressure. The Langmuir function was first chosen to express the hardening law of CFRPs.
Furthermore, off-axis tensile tests were conducted to obtain the unknown parameters
both in the plastic potential and the hardening law. Finally, the prediction of numerical
simulations, considering the 3D elastoplastic damage behavior, was compared to the results
of the off-axis test to validate the availability of the proposed constitutive model.

2. Experiment Design and Results Analysis
2.1. Material and Specimen

The unidirectional thermoplastic composites used in this study was T700/PEEK
thermoplastic prepreg produced by Ningbo Material Technology and Engineering Research
Institute, Ningbo, Zhejiang. It was fabricated by lying prepregs in a mental mold and then
curing in a vacuum sulphuration at 380 ◦C and 3 MPa, as shown in Figure 1. There are
seven samples with different fiber layups to be manufactured, namely [0]8, [15]20, [30]20,
[45]20, [60]20, [75]20, and [90]16. After cooling to room temperature, the specimens were
cut to have off-axis angles, with respect to the fiber direction. The test specimens were cut
by using a five-axis linkage ultra-high pressure water jet cutting machine at 27 MPa and



Materials 2024, 17, 3317 4 of 22

800 mm/min to ensure that the samples did not have serious cutting damage or interlayer
delamination. The size of test specimens for the [0]8 layup is 250 mm × 15 mm × 1 mm,
the size of test specimens for the [90]16 layup is 175 mm × 25 mm × 2 mm, and the size of
test specimens for the other layups is 250 mm × 25 mm × 2.5 mm. Reinforcement plates
are attached to both ends of the test specimen, the size of reinforcement plates for the [0]8
layup is 56 mm × 15 mm × 2 mm, and the size of reinforcement plates for the other layups
is 25 mm × 25 mm × 2 mm. At least five specimens were tested for each sample.
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Figure 1. Main process of specimen preparation: (a) Mold opening. (b) Mold closing. (c) Vacuum
sulphuration.

2.2. Off-Axis Testing and Results

The experiment was conducted using the universal testing machine (MTS 370 Load
Frame; MTS Systems Corp., Eden Prairie, MN, USA), as shown in Figure 2, and its actuator
force capacity was 100 kN. An extensometer with a 50 mm gauge length was equipped
with the machine for specimen tests. Off-axis tensile tests were carried out according to the
standard ASTM D3039 [32] and the loading was applied under displacement control at a
rate of 2 mm/min. The frequency of data acquisition was set at 20 Hz.
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machine. (b) Specimen and extensometer.

The experimental data was processed according to ASTM D3039. The calculation
formula for tensile stress is given by:

σi =
Pi
A

(1)

where σi denotes the tensile stress of the ith data point, Pi is the load of ith data point, and
A represents the average cross-sectional area of the specimen.

The formula for calculating the elastic modulus is:

Echord = ∆σ/∆ε (2)

in which Echord refers to the tensile chord modulus of elasticity; ∆σ is the deviation value of
applied tensile stress between two strain points on the extensometer; and ∆ε represents the
deviation value of strain between two strain points.

Let the direction of uniaxial tensile loading be the x-axis, which is parallel to the
longitudinal direction of rectangular specimens, and the average experimental axial stress–
strain (σx − εx) curves of the off-axis tensile test are shown in Figure 3. From the stress–
strain curves, we can see that when the off-axis angle is 0◦, the mechanical behavior of the
specimens is linearly elastic before its failure. As the off-axis angle gradually increases, the
nonlinear behavior and ultimate fracture strain of specimens both show a decreasing trend.
When the off-axis angle ranges from 60◦ to 90◦, the mechanical behavior of the specimens
only exhibits a small amount of approximately linearly elastic behavior, and then fracture
failure occurs without apparent plastic deformation. This is because when the off-axis
angle is large, the fiber cannot bear the majority of applied loads, resulting in the fracture
failure of the matrix prior to the exhibition of plastic deformation.

The fracture surface angles are shown for the test specimens with different layups
in Table 1. Due to the tensile failure mode of longitudinal splitting and fiber breakage in
sample [0]8, the failure angle is set as zero. In terms of the off-axis angles among different
specimens, the fracture surface angles increase accordingly, approximately the same value
as the off-axis angle of the sample. The tested specimens with off-axis tension fracture
failure are shown in Figure 4.
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Table 1. Fracture surface angles for the different layup methods.

Sample Number

Layup

[0]8 [15]20 [30]20 [45]20 [60]20 [75]20 [90]16

Fracture Surface Angles/◦

Sample 1 0 15.06 29.35 47.45 60.05 75.90 90.05
Sample 2 0 14.95 30.03 43.45 61.35 75.45 92.00
Sample 3 0 15.70 29.45 46.10 60.32 75.54 89.70
Sample 4 0 14.75 29.65 44.90 60.45 74.00 89.55
Sample 5 0 15.35 30.30 45.60 60.24 76.35 89.25

Average value 0 15.16 29.76 45.50 60.48 75.45 90.11
Standard deviation 0 0.33 0.36 1.32 0.45 0.79 0.98
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3. Constitutive Model Coupling with 3D Elastoplastic Damage

From the results of the off-axis tensile tests, it can be seen that the CFRPs of T700/PEEK
laminates exhibit a significant nonlinear mechanical response and typical tensile failure
mode due to plastic deformation under the off-axis tensile load. In order to simulate the
above mechanical behavior accurately, a 3D elastoplastic constitutive model of the CFRPs
of thermoplastic resins was established by considering the elastic deformation, plastic
deformation, damage initiation, and damage evolution.

3.1. Elasticity Description

By assumption of the transverse isotropy for unidirectional composite laminates, the
expression of stress σ during the linear elastic stage is:

σ = C0 : εe (3)

where C0 represents the stiffness matrix of the initial undamaged composite laminates; εe

denotes the elastic strain tensor, and Equation (3) can be specifically given by:

σ11
σ22
σ33
σ12
σ23
σ13

 =



C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66





εe
11

εe
22

εe
33

εe
12

εe
23

εe
13

 (4)
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and 

C11 = λE11(1 − ν23ν32)
C22 = λE22(1 − ν13ν31)
C33 = λE33(1 − ν12ν21)

C12 = λE12(ν21 + ν23ν31)
C23 = λE22(ν32 + ν12ν31)
C13 = λE11(ν31 + ν21ν32)

C44 = G12
C55 = G23
C66 = G13

(5)

λ =
1

1 − ν12ν21 − ν32ν23 − ν13ν31 − 2ν13ν32ν21
(6)

where the parameters Eij (i, j = 1, 2, 3, i = j) are the Young’s modulus; νij (i, j = 1, 2, 3, i ̸= j)
are the Poisson ’s ratios; Gij (i, j = 1, 2, 3, i ̸= j) are the shear modulus. σij (i, j = 1, 2, 3) and
εe

ij (i, j = 1, 2, 3) are the stress and strain components, respectively.

3.2. Plasticity Description

For the test specimens, the applied external force is resisted by the effective and
undamaged area of the material. Therefore, it can be reasonably assumed that plastic
deformation occurs in the undamaged region of the material.

The plastic yield criterion proposed by Sun and Chen [8,12] can effectively simulate
the plastic mechanical behavior of the composite laminates under quasi-static conditions.
The form of this model is adopted:

F(σ, εp) = Fp(σ)− σ(εp) (7)

where Fp(σ) refers to the plastic potential; σ(εp) represents the hardening function.
Weeks et al. [13] assumed that the composite is transversely isotropic and only lin-

early elastic deformation occurred in its fiber direction. Also, the effect of dilatational
deformation on the plastic deformation was considered by Cho et al. [14]. By combining
the single-parameter 3D plastic potential [13] and the dilatational function terms [14]. A
two-parameter 3D plastic potential is then proposed:

Fp(σ) =

√
3[

1
2
(σ2

22 + σ2
33)− σ22σ33 + 2σ2

23 + a(σ2
12 + σ2

13)] + b(σ22 + σ33) (8)

where the values of a and b are both related to the properties of the composite material. As
the dilatational deformations are ignored, namely b = 0, the proposed two-parameter 3D
plastic potential in Equation (8) reduces to a single-parameter 3D plastic potential [13,33].

Defining effective stress as:
σ = Fp(σ) (9)

Assuming that the plastic deformation of the materials satisfies the associated flow
rule, the incremental component of plastic strain can be expressed by:

dε
p
ij = dλ

∂Fp(σ)

∂σij
, (i, j = 1, 2, 3) (10)

where dλ is the non-negative plastic multiplier of the entire plastic loading history; the
gradient vector ∂Fp(σ)

∂σij
represents the plastic gradient, which describes the direction of the

plastic strain increment component dε
p
ij.
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Combining Equations (8) and (10), we obtain:

dε
p
11

dε
p
22

dε
p
33

dε
p
12

dε
p
23

dε
p
13


= dλ

∂Fp(σ)

∂σij
= dλ



0
3(σ22 − σ33)/2

√
ξ + b

3(σ33 − σ22)/2
√

ξ + b
3aσ12/

√
ξ

6σ23/
√

ξ
3aσ13/

√
ξ

 (11)

ξ = 3[
1
2
(σ2

22 + σ2
33)− σ22σ33 + 2σ2

23 + a(σ2
12 + σ2

13)] (12)

The hardening law is utilized to describe the yield stress evolution of the materials after
entering the plastic phase. Sun and Chen [8,12] derived the effective plastic strain increment
by defining the increment of effective plastic work per unit volume, dWp. They assumed
that the product of effective stress and the increment of effective plastic strain is equal
to the sum of the products of stress components in each direction and its corresponding
increment of plastic strain. Finally, the relations can be given by:

dWp = σijdε
p
ij = σdεp (13)

Combining Equation (13) with Equations (9)–(12), it can be obtained that:

dWp = σijdλ
∂Fp(σ)

∂σij

= dλ{σ11 · 0 + σ22 · [ 3
2
√

ξ
(σ22 − σ33) + b] + σ33 · [ 3

2
√

ξ
(σ33 − σ22) + b]

+σ12 · 3√
ξ

aσ12 + σ23 · 6√
ξ

σ23 + σ13 · 3√
ξ

aσ13} = dλ[( 1√
ξ

ξ) + b(σ22 + σ33)]

= dλσ = σdεp

(14)

in which it is quite easy to find that:

dλ = dεp (15)

Currently, many researchers [28,29] have concluded that the hardening laws for ef-
fective stress σ and effective plastic strain εp were obtained from experimental data. The
following power hardening laws [34] are adopted:

σ(εp) = A + B(εp)C (16)

In this study, the Langmuir function with three unknown parameters is introduced to
characterize the hardening behavior of materials, and it can be defined as:

σ(εp) = [αβ(εp)1−n]/[1 + β(εp)1−n] (17)

where α, β, and n are the material parameters that can be obtained through nonlinear fitting
of the effective stress-plastic strain curves.

3.3. Damage Description
3.3.1. Damage Initiation Criteria

In order to predict the initiation of various damage modes within a single layer and to
evaluate the effective stress state during the loading process, this work uses the maximum
stress criterion and the matrix failure criterion in the LaRC05 criterion to determine the
damage initiation of fiber and matrix tension, respectively.

(1) Failure of the fiber tension (Fft ≥ 1, σ11 > 0):

Ff t =
σ11

XT
(18)
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where XT represents the tensile strength in the fiber direction of unidirectional FRP laminates.

(2) Failure of the matrix tension (Fmt ≥ 1, σn(θT) > 0):

Matrix failure, also known as inter-fiber failure, refers to the occurrence of initial
fracture surfaces in the matrix of unidirectional FRP laminates under transverse stress
and in-plane shear stress. The subsequent damage and failure behavior of the matrix
will propagate along the fracture surfaces parallel to the fibers. As shown in Figure 5, the
various stress components acting on the fracture surface of the matrix are given, where 1-2-3
represents the material coordinate system of the unidirectional lamina, L-N-T represents
the local coordinate system of the fracture surface, and the 1-axis coincides with the L-axis.
θT is the rotation angle between the normal direction of the potential fracture surface of the
matrix and the 2-axis of the material coordinate system, and the range of rotation angle θT
is [−90◦, 90◦]. σNN(θT) represents the normal stress on the fracture surface of the matrix,
while σNT(θT) and σLN(θT) represent the shear stresses perpendicular and parallel to the
fiber direction on the fracture surface of the matrix, respectively.
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Figure 5. The stress state of a single layer in the composite materials and the stress components on
potential fracture surfaces.

Pinho et al. [35,36] established a criterion to determine the initial damage of the matrix
in unidirectional FRPs laminates, based on the Mohr–Coulomb fracture theory, using stress
components in the local coordinate system of the initial fracture surface of the matrix.

Fmt =

(
σNT(θT)

ST − ηTσNN(θT)

)2

+

(
σLN(θT)

SL − ηLσNN(θT)

)2

+

(
σNN(θT)

YT

)2

(19)

In Equation (19), ST and SL represent the shear strengths perpendicular to the fiber
direction and along the fiber direction, respectively, on the fracture surfaces of the matrix;
ηT and ηL are the transverse shear and longitudinal shear friction coefficient of the matrix,
respectively; YT is the transverse tensile strength of the unidirectional FRPs laminate; and
the relationship among ST, SL, ηT, ηL, and YC can be given by:

ST = YC
2 tan θC

ηT = − 1
tan 2θC

ηL = SLηT
ST

(20)

In Equation (20), YC represents the transverse compressive strength of the unidirec-
tional FRPs laminate; θC denotes the angle between the fracture surface of the matrix and
the 3-axis in the material coordinate system, as failure occurs under transverse compression.
For CFRP composite laminates, researchers such as Puck et al. [37] have experimentally
determined its range of values to be [51◦, 55◦].
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The following relationship exists between the stress on the fracture surface and the
initial fracture surface angle θT of the matrix:

σθT = TθT σ (21)

where:
σθT = [σLL, σNN , σTT , σLN , σNT , σLT ]

T (22)

σ = [σ11, σ22, σ33, σ12, σ23, σ13]
T (23)

TθT =



1
cos2 θT sin2 θT 2 sin θT cos θT
sin2 θT cos2 θT −2 sin θT cos θT

cos θT sin θT
− sin θT cos θT sin θT cos θT cos2 θT − sin2 θT

− sin θT cos θT

 (24)

3.3.2. Damage Evolution Law

When the internal stress of the material satisfies the failure criteria, the further increase
in the effective stress will lead to the evolution of damage. During this process, strain
energy is continuously released and the material exhibits localized softening phenomena,
including the degradation of mechanical properties and a decrease in load-bearing capacity.
By observing the experimental stress–strain curve of unidirectional T700/PEEK laminates,
the curve segment concerning the damage evolution shows a sudden drop and degradation
after reaching the ultimate tensile strength. In this study, a linear progressive degradation
model is adopted to describe the damage evolution of the material [38,39].

d t
I = max{0, min{d ∗

I ,
ε

f inal
I (ε − ε0

I)

ε(ε
f inal
I − ε0

I)
}}; (I = f t, mt) (25)

where d t
I represents the damage parameter at the current incremental step; ε is the equiva-

lent strain in the composite ply and the strain values ε0
I and ε

f inal
I are the equivalent strains

corresponding to the initiation failure and final failure, respectively. When the material is
undamaged, d t

I = 0; when the material is completely failed, d t
I = 1. In order to prevent

the singularity of the material’s stiffness matrix due to stiffness reduction to zero during
the finite element calculation process, d ∗

I = 0.999 is set.
The material strain is the direct cause of damage evolution, so when the strain energy

release rate of the material is equal to its fracture toughness, the material has experienced
complete failure. As the material model behaves softer, the damage of the material exhibits
localizing characteristics as the dissipated energy decreases upon mesh refinement [40].
In order to avoid the effect of mesh size on the simulation results, Bazant’s crack band
theory [41] is chosen in this work and l*, which represents the characteristic length of
the element, is introduced for the numerical simulation analysis considering the linear
progressive degradation. The energy released per unit volume gI,m can be determined by
the specific energy release rate GI,c of the material.

gI,m =
GI,c

l∗
; (I = f t, mt) (26)

The equivalent strains ε I of various damage modes at any given time, at the beginning
of initial damage ε0

I , and at complete failure ε
f inal
I , as well as the equivalent stresses σ0

I at the
beginning of initial damage and the corresponding material fracture toughness calculation
formula, are as follows:
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(1) Fiber Tensile Failure: 
σ0

f t = XT

ε f t = ε11

ε0
f t =

XT
E11

ε
f inal
f t =

2g f t,m
XT

(27)

For the fiber damage mode, the shear stress on the fracture surface is generally small.
In this model, the consideration of equivalent strain is directly replaced by the strain in the
direction of the fiber.

(2) Matrix tensile failure:

σ0
mt =

√
⟨σNN⟩2 + σ2

LN + σ2
NT

ε0
mt =

√
⟨εNN⟩2 + ε2

LN + ε2
NT

εmt =
√
⟨εNN⟩2 + ε2

LN + ε2
NT

Gmt,c = GIC

(
⟨σd

NN⟩
σ0

mt

)2
+ GI IC

(
σd

LN
σ0

mt

)2
+ GI I IC

(
σd

NT
σ0

mt

)2

ε
f inal
mt =

2Gmt,c
σ0

mt l∗

(28)

where ⟨•⟩ represents the Macaulay operator, where ⟨x⟩ = (x + |x|)/2 when x ∈ R. GIC, GIIC,
and GIIIC refer to the fracture toughness corresponding to the opening-type I, sliding-type
II, and tearing-type III cracks in the matrix, respectively. εNN is the normal strain on the
fracture surface of the matrix. Gmt,c is the equivalent fracture toughness of the matrix under
mixed mode. εNT and εLN denote the shear strains that are perpendicular and parallel to the
fiber direction on the fracture surface of the matrix, respectively. The calculation formulas
are as follows:

εθT = TθT ε (29)

where:
εθT = [εLL, εNN , εTT , εLN , εNT , εLT ]

T (30)

ε = [ε11, ε22, ε33, ε12, ε23, ε13]
T (31)

Under the tensile loading, as Fmt ≥ 1, the matrix damage occurs, which means that
cracks occur in the matrix of the potential fracture surface. The mentioned damage can be
simulated by reducing the traction component on the potential fracture surface, defined as
follows: 

σd
NN = (1 − dmt)σNN

σd
LN = (1 − dmt)σLN

σd
NT = (1 − dmt)σNT

(32)

where σd
NN , σd

LN , and σd
NT in Equation (32) represent the softened normal stress and shear

stress on the potential fracture surface of the matrix, respectively. In this paper, we assume
that the composite material is transversely isotropic and we defined σTT and σLT to be
softened in the same manner as described by Equation (32). The softened stress in the
global coordinate system can be given by:

σd = T−1
θT

σd
θT

(33)
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When the fiber reaches its ultimate tensile strength, its damage failure also affects the
damage evolution of the matrix. Therefore, the stress reduction calculation formula caused
by fiber tensile failure is defined as:

[
σd′

ij

]
=



(1 − d f t)σ
d
11

σd
22

σd
33

(1 − d f t)σ
d
12

σd
23

(1 − d f t)σ
d
13


(34)

where σd
ij and σd′

ij are the stresses after the softening of the material, corresponding to matrix
fracture and fiber damage, respectively, in the global coordinate system.

4. Model Validation
4.1. Implementation of the Numerical Simulation

As shown in Figure 6, the virtual specimen was discretized using eight-node linear
reduced integration (C3D8R) solid elements with a size of 2.5 mm × 2.5 mm × 0.125 mm
and assumes that the interfaces between layers are completely bonded. The left end of the
finite element model is constrained to restrict the displacement in the loading direction and
the right end loading is controlled by a displacement applied to a reference point outside
its face. Computational accuracy was set as double precision to reduce the accumulation
error during simulation. The proposed 3D elastoplastic damage constitutive model was
implemented in ABAQUS 2021, using a user-defined material subroutine (VUMAT). A
detailed flow chart of the VUMAT is presented in Figure 7. To validate the model, off-
axis tensile analysis tests were simulated by using ABAQUS 2021. As shown in Table 2,
the material parameters for T700/PEEK unidirectional laminates are presented, among
which the fiber tensile fracture energy, matrix fracture energy, in-plane shear strength, and
transverse compressive strength are taken from the literature [30,42,43]. The remaining
material parameters are measured from the manufacturer’s experiments and are provided
by the manufacturer.
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Table 2. The material parameters of the T700/PEEK.

E11 (GPa) * E22 (GPa) * E33 (GPa) * G12 (GPa) * G13 (GPa) * v12 *

130 10.1 10.1 5.77 5.77 0.32

v13 * XT (MPa) * XC (MPa) * YT (MPa) * YC (MPa) [43] SL (MPa) [43]

0.32 2419 1094 50.2 205.9 133

Gft (KJ/m2) [30] GI (KJ/m2) [42] GII (KJ/m2) [42] GIII (KJ/m2) [42]

133 1.7 2.0 2.0

* Values provided by the manufacturer.

4.2. Determination of the Plasticity Parameters

The relationship between the effective stress and effective plastic strain for a given
material is uniquely determined and is independent of loading conditions [44]. Therefore,
the plastic parameters of the constitutive model in the plastic phase can be attained through
longitudinal tensile tests. As shown in Figure 8, the composite laminate is subjected to a
longitudinal tensile load, then a state of plane stress can be assumed.

The stress components are transformed along the principal material axes and are
expressed in terms of axial stress (σx), as follows:

σ11 = cos2 θσx (35)

σ22 = sin2 θσx (36)

σ12 = − sin θ cos θσx (37)
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where θ represents the angle between the tensile loading direction and the fiber direc-
tion, and the effective stress σ can be obtained by combining Equations (35)–(37) with
Equation (8):

σ = h(θ)σx (38)

and the transformation function h(θ) can be given by:

h(θ) =

√
3
2
(sin4 θ + 2a sin2 θ cos2 θ) + b sin2 θ (39)
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Assuming that the studied material exhibits significant plastic deformation and small
deformation. In terms of the experimentally measured stress–strain data, the incremental
plastic strain dε

p
x can be obtained by subtracting the incremental elastic strain dεe

x from the
incremental strain dεx, and it can be expressed as:

dε
p
x = dεx − dεe

x (40)

The incremental elastic strain dεe
x can be computed from:

dεe
x =

dσx

Ex
(41)

The elastic modulus Ex at different off-axis angles can be experimentally achieved by
the stress–strain curve, and it also can be theoretically determined by the elastic modulus
E1 and E2, off-axis angel θ, as well as the shear modulus G12 and Poisson ’s ratio ν12. The
theoretical calculation formula can be given by:

Ex =
1

1
E1

cos4 θ +
(

1
G12

− 2ν12
E1

)
sin2 θ cos2 θ + 1

E2
sin4 θ

(42)

As shown in Figure 9, a comparison concerning the elastic modulus in loading direc-
tion is made between the experimental data and calculation value obtained by Equation (42).
It can be observed that there is a comparatively good agreement between the experimental
and theoretical values, which confirm the validity of the experiment in this work.
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According to the coordinate transformation law of plastic strain components, the
increment of plastic strain in the uniaxial loading direction can be expressed as [45]:

dε
p
x = cos2 θdε

p
11 + sin2 θdε

p
22 − sin θ cos θdε

p
12 (43)

Based on Equations (8), (10), (15) and (35)–(37), the effective plastic strain can be
simplified as:

εp =
ε

p
x

h(θ)
(44)

For the determination of plasticity parameters a and b in Equation (8), many researchers
adopt artificial methods, like trial and error, to obtain them. In this study, an objective
function regarding the plasticity parameters is provided to make each curve of effective
stress-plastic strain associated with different off-axis angles coincide with one master curve.
The plastic parameters a and b can be obtained by minimizing the objective function in
Equation (45) by adopting the quasi-Newton algorithm. This aims to further enhance the
consistency of the effective stress-plastic strain curves at different off-axis angles. The
expressions are given as follows:

f (a, b) =
√

∑
εp

[σθ1(ε
p)− σθ2(ε

p)]2; (θ1, θ2 = 15◦, 30◦, 45◦, 60◦, 75◦, 90◦, θ1 ̸= θ2) (45)

where σθ(ε
p) is the effective plastic strain at different off-axis angles.

The plastic parameters were then calculated by using the quasi-Newton algorithm
programmed in MATLAB R2021b. The initial and final values of the effective plastic
strain were set to 10−6 and 0.01, respectively, with a step size of 10−6. The initial values
of the plastic parameters were set to 0.5, and the optimization results of the objective
function are provided in Table 3. It can be observed that the optimal objective function
value for the two-parameter function model is 18,491.6292, whereas the optimal objective
function value for the single-parameter function model is 31,926.5522. This indicates that
the proposed approach is more suitable for characterizing the plastic behavior of CFRPs
with thermoplastic resins.
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Table 3. The calculation results of the optimization objective function between the single-parameter
and two-parameter plastic potential.

Parameter
Plastic Potential

Single-Parameter Two-Parameter

a 3.0727 1.2612
b - 0.0252

Objective
function value 31,926.5522 18,491.6292

Computational time/s 0.5690 0.9793

The power function of plastic hardening was regarded as the existing and gener-
ally adopted approach to characterizing the hardening law. In this work, the effective
stress-plastic strain relationships are fitted by using the Langmuir function. According
to Equations (38) and (44), the axial stress-plastic strain curves at different off-axis angles
were transformed into effective stress-plastic strain curves, which were analyzed and fitted
with a main curve by two-parameter Langmuir function (2 para_Lan) model, as shown in
Figure 10. The processed data points show good consistency, and the parameters of the
fitted hardening function are as follows: α = 200.01, β = 87.61, and n = 0.28.
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4.3. Prediction of the Results and Verification

As shown in Figure 11, the failure envelope curve, predicted by the present failure
criterion, is in good agreement with the experiment data. Under the condition of the same
loaded area of the specimen, the tensile strength decreases rapidly within the range of 0◦

to 15◦ of off-axis angle. However, as the off-axis angle further increases, the decreasing
trend of the tensile strength gradually becomes gentler. The cloud map in Figure 12 shows
the amount of matrix damage variables at the ultimate load and end of the analysis of
the specimen, which was quantified by the variable of matrix damage dmt. As the dmt
is 0, it indicates that the matrix has not been damaged, while when the dmt is 0.999, it
indicates that the matrix has completely failed and has lost its bearing capacity. As is
depicted in this cloud map, the matrix first suffers damage in the gage section of the
specimen. With the further increase in the displacement load, the damage of the matrix
begins to evolve towards the undamaged areas, and the evolution direction is consistent
with the fiber direction. At the end of the analysis, the matrix damage has completely
penetrated the cross-section of the specimen, directly leading to the complete failure and
loss of load-bearing capacity of the specimen.
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The stress–strain curves obtained from numerical simulations and experiments for
the 15◦ and 90◦ layups are compared in Figure 13. It can be observed that the proposed
model in this study can effectively predict the mechanical behavior of the unidirectional
T700/PEEK composite materials. Figure 14 shows the plastic strain components-total axial
strain relations under different off-axis angles. Due to the assumption that there is no
plastic deformation in the fiber direction, ε

p
11 is always zero. The plastic strain components

in the 1–3 and 2–3 plane, ε
p
13 and ε

p
23, are the minimum values among all the plastic strain
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components which can be almost negligible. The curves of the plastic strain components,
ε

p
13 and ε

p
23, versus the total axial strain ε both like a straight line almost perpendicular to

the vertical axis, and the two lines almost coincide with each other. It can be observed that
the plastic strain components ε

p
12 plays a major contribution on the plastic deformation

for the off-axis angles 15◦. In particular, it can still be observed that the in-plane shear
plastic strains generated are approximately 9 times and 12 times larger in the 2 and 3
directions, respectively. This indicates that plastic deformation is predominantly governed
by the in-plane shear strain. However, as the off-axis angle increases further, accompanied
by the weakening of in-plane plastic shear effects, the material’s nonlinear behavior also
gradually weakens. When the off-axis angle increases to 90◦, the in-plane plastic shear
strain decreases to zero, and the plastic behavior of the material is mainly contributed to by
the plastic strains in the 2 and 3 directions.
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5. Conclusions

(1) By conducting off-axis tensile tests on seven types of samples, namely [0]8, [15]20,
[30]20, [45]20, [60]20, [75]20, and [90]16, the corresponding axial stress–strain curves,
elastic modulus, and tensile strengths were obtained. The fracture surface angles of the
specimens for different off-axis angles were measured by using a high-precision digital
angle gauge, and the difference between the measured fracture surface angle and
the off-axis angle of each specimen was within −2◦~3◦. This difference is small and
acceptable, and it may be caused by the manufacturing defects of the unidirectional
T700/PEEK specimen.
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(2) A two-parameter 3D plastic potential was developed by incorporating both deviatoric
and dilatation deformations. The plastic parameters in the proposed plastic potential
are determined using the quasi-Newton algorithm to optimize an objective function
related to these plastic parameters. The Langmuir function was initially employed to
fit the effective stress–strain relationships of the composites for hardening behavior,
providing a precise prediction of the nonlinear mechanical response in CFRPs with
thermoplastic resins.

(3) The two-parameter 3D plastic potential was integrated with the Langmuir function of
plastic hardening to model the constitutive behavior for unidirectional T700/PEEK
Laminates. Based on the proposed constitutive model, a user-defined subroutine
(VUMAT), based on ABAQUS, has been developed. This subroutine incorporates
the maximum stress criterion for fiber failure and the LaRC05 criterion for matrix
failure, allowing for the simulation of 3D elastoplastic damage behavior during
tensile loading tests. This work constructs a two-parameter 3D elastoplastic dam-
age constitutive model considering the material plasticity, damage evolution, and
dilatational deformation.

(4) Applying the 3D elastoplastic damage constitutive model to simulate the off-axis
tensile behavior of unidirectional T700/PEEK laminates, the predicted stress–strain
curves align closely with experimental data. This suggests that the model effectively
captures the plastic behavior of unidirectional T700/PEEK thermoplastic laminates.
The analysis of plastic strain in various directions indicates that shear plastic strain
in the 1–2 plane governs plastic deformation. Nevertheless, this effect diminishes as
the off-axis angle increases. The comparison between the numerically simulated and
experimentally measured tensile strengths under identical loading planes reveals a
gradual decrease in ultimate tensile strength with an increasing off-axis angle.

This work has investigated the nonlinear behavior of unidirectional thermoplastic
composites under off-axis tensile loading. An anisotropic constitutive model for the
nonlinear kinematic hardening elastoplastic damage of woven thermoplastic compos-
ites is still needed, including the asymmetry of tension and compression under cyclic
loading conditions.
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