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Abstract: Electric vehicles (EVs) encounter substantial obstacles in effectively managing energy,
particularly when faced with varied driving circumstances and surrounding factors. This study aims
to evaluate the performance of three different control systems in a fully operational hybrid energy
storage system (HESS) installed in the Nissan Leaf. The objective is to improve the performance of
EVs by focusing on optimising energy management in response to different global environmental
and driving circumstances. This study utilises an analytical strategy by developing a distinct energy
management system model using MATLAB/Simulink. This model is specifically designed for
optimising the integration and control of batteries and supercapacitors (SCs) in a fully active HESS.
This model mimics the performance of the controllers under three different driving cycles—Artemis
rural, Artemis motorway, and US06. The findings demonstrate notable progress in managing the
battery state of charge (SOC) and the system’s responsiveness, especially when employing the
radial basis function (RBF) controller. This study emphasises the capacity of HESSs to enhance the
effectiveness and durability of EVs, therefore promoting wider acceptance and progress in electric
transportation technology.

Keywords: electric vehicles; hybrid energy storage system; proportional-integral controller; model
predictive control and radial basis function

1. Introduction

Electric vehicles (EVs) have attracted considerable interest in the past decade owing to
their capacity to replace traditional combustion engines (ICEs), recognised for their envi-
ronmental impact. The United States witnessed the first wave of effort for developing an
EV that is compatible with road transportation in as early as 1834 [1]. The shift towards EVs
has been facilitated by advancements in storage technology, energy management systems,
and motor efficiency. There are numerous advantages associated with the adoption of pure
electric vehicles. These advantages encompass a simpler and more reliable infrastructure,
reduced and more cost-effective maintenance, much lower transportation expenses—up to
tenfold lower in comparison to traditional vehicles—as well as the instantaneous accessibil-
ity of complete power throughout the entire RPM spectrum. Furthermore, governments
frequently promote the adoption of EVs by implementing tax reductions and grants, thus
bolstering their economic feasibility.

While there are other innovations available, such as Plug-in Hybrid cars (PHEVs) and
Fuel Cell Vehicles (FCVs), EVs exhibit extraordinary energy efficiency, which drastically
impacts their performance. The results can be obtained from Table 1, displaying less energy
dissipation, energy consumption, and higher efficiency rates than other types of vehicles.
The assessment of energy dissipation using the ‘Well-to-Wheel’ (WTW) methodology,
which considers the complete energy flow from gasoline extraction to power gearbox at the
vehicle’s wheels, further emphasises the efficiency benefits of pure EVs [2]. This thorough
evaluation emphasises the decreased energy inefficiency of EVs in comparison to their
hybrid and fuel cell counterparts.
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In addition to the characteristics illustrated in Table 1, EVs demonstrate a potential for
energy efficiency that is up to four times greater than ICEs, and their energy can be derived
from sources of clean energy. This feature greatly alleviates the greenhouse effect and
minimises air pollution, especially in urban areas. The positive environmental effects of
EVs can immediately outweigh the emissions produced throughout the production process.
Figure 1a depicts the current expansion in the market share of EVs [3]. It is necessary to
tackle certain issues to facilitate the widespread adoption of EVs over ICE vehicles [4]. The
problems can be classified into four primary categories, as depicted in Figure 1b [5]:

a. Practical: challenges encompass prolonged charging durations, a shortage of public
rapid chargers, weighty batteries, and restricted vehicle self-sufficiency, exacerbated
by undeveloped energy management systems.

b. Economic: the high expenses, elevated electricity bills resulting from rising demand,
and limited profitability discourage widespread popularity.

c. Social: despite incentives, user concerns regarding the range and safety of the vehicle,
as well as a reluctance to shift away from traditional vehicles, obstruct adoption.

d. Environmental: The sustainable utilisation of electric vehicles necessitates using clean
sources of electricity and implementing effective recovery techniques for hazardous
batteries. Additionally, it is crucial to tackle the consequences associated with the
extraction of rare materials.

Table 1. Analysis of various vehicle technologies in terms of their impact on road operation [5].

Type Energy Dissipation Efficiency Energy Consumption
(kWh/km)

Gasoline 86% 14% 1.36

Diesel 80% 20% 0.95

Liquefied Petroleum Gas 84% 16% 1.19

Compressed Natural Gas 81% 19% 1.00

PHEV 55% 45% 0.42

FCV 78% 22% 0.87

Battery/EV 33% 67% 0.28

Vehicles 2024, 24, x FOR PEER REVIEW  2  of  25 
 

 

thorough evaluation emphasises the decreased energy inefficiency of EVs in comparison 

to their hybrid and fuel cell counterparts. 

In addition to the characteristics illustrated in Table 1, EVs demonstrate a potential 

for energy efficiency that is up to four times greater than ICEs, and their energy can be 

derived from sources of clean energy. This feature greatly alleviates the greenhouse effect 

and minimises air pollution, especially in urban areas. The positive environmental effects 

of EVs  can  immediately outweigh  the emissions produced  throughout  the production 

process. Figure 1a depicts the current expansion in the market share of EVs [3]. It is nec‐

essary to tackle certain issues to facilitate the widespread adoption of EVs over ICE vehi‐

cles [4]. The problems can be classified into four primary categories, as depicted in Figure 

1b [5]: 

a. Practical: challenges encompass prolonged charging durations, a shortage of public 

rapid chargers, weighty batteries, and restricted vehicle self‐sufficiency, exacerbated 

by undeveloped energy management systems. 

b. Economic: the high expenses, elevated electricity bills resulting from rising demand, 

and limited profitability discourage widespread popularity. 

c. Social: despite incentives, user concerns regarding the range and safety of the vehicle, 

as well as a reluctance to shift away from traditional vehicles, obstruct adoption. 

d. Environmental:  The  sustainable  utilisation  of  electric  vehicles  necessitates  using 

clean sources of electricity and implementing effective recovery techniques for haz‐

ardous batteries. Additionally, it is crucial to tackle the consequences associated with 

the extraction of rare materials. 

Table 1. Analysis of various vehicle technologies in terms of their impact on road operation [5]. 

Type  Energy Dissipation Efficiency 
Energy Consumption 

(kWh/km) 

Gasoline  86%  14%  1.36 

Diesel  80%  20%  0.95 

Liquefied Petroleum Gas  84%  16%  1.19 

Compressed Natural Gas  81%  19%  1.00 

PHEV  55%  45%  0.42 

FCV  78%  22%  0.87 

Battery/EV  33%  67%  0.28 

 

 

 

(a)  (b) 

Figure 1. Composite overview: (a) global electric vehicle market growth [3]; (b) key factors influenc‐
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Figure 1. Composite overview: (a) global electric vehicle market growth [3]; (b) key factors influencing
the adoption of electric vehicles [5].

The widespread use of EVs in transportation leads to a significant reduction in energy
wastage, despite the ongoing presence of reliability and effectiveness problems in existing
storage systems. Over time, electrochemical batteries age and experience a reduction in
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capacity, which requires them to be replaced. In order to tackle this issue, recent studies
have investigated a hybrid energy storage system (HESS) that integrates both batteries
and supercapacitors (SCs). SCs, characterised by their high power density (Wh/kg) but
low energy density (W/kg), play a crucial role in HESSs. These systems combine the
advantages of SCs with batteries. While batteries can sustain high cycling numbers, they
are unsuitable for high discharge rates. This is a considerable benefit of incorporating SCs
with batteries in a HESS. The performance and lifespan of the energy storage system in
EVs are improved by this combination, which capitalises on the high power density of SCs
and the high energy density of batteries. Furthermore, the integration of an HESS not only
improves the response speed and improves the system’s lifespan, but also reduces the total
size and expenses, which boosts the system’s reliability and balance. This combination
significantly reduces the constraints of utilising a single energy storage method, thereby
offering a more efficient and durable solution for EVs [6].

An important obstacle in HESS design involves analysing the configuration of the
SC and battery with regard to the DC (Direct Current) bus. Various configurations for
battery–SC interconnections have been investigated and explored, each exhibiting distinct
merits and drawbacks. Several studies in the literature have strived to develop battery–SC
HESSs for EVs, adopting different configurations to connect the battery and the SC [7–10].
Figure 2 depicts various configurations of HESSs [11]. The fully active HESS is one of
the most widely used topologies, as represented in Figure 2d. A broad range of energy
management strategies have been proposed and have attracted significant interest among
EV communities’ societies. This setup establishes a connection between both components
and the DC bus using bidirectional DC–DC converters, providing notable benefits. This
configuration enables an effective energy allocation and a quick adaptation to power
requirements, enhancing the overall efficiency and durability of the electric vehicle’s energy
storage system. By capitalising on the high power density of supercapacitors and the high
energy density of batteries, the fully active HESS optimises energy efficiency, guaranteeing
dependable and consistent operation in a variety of driving scenarios.
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1.1. Related Work

In determining how efficient HESSs are in managing the stress posed by charge and
discharge cycles on energy storage systems, the implementation of an appropriate control
strategy for the energy management strategy is crucial. Rule-based approaches and optimisa-
tion algorithm-driven approaches are the two primary classifications of these methodologies.

Rule-based controllers are commonly referred to as deterministic rules and fuzzy logic
control. The authors of [12] carried out a study to allocate the power demand between
the SC and battery energy sources using several techniques, such as the PI approach, the
external energy maximisation strategy, and the equivalent consumption reduction. Con-
sequently, the SC regulates the DC bus voltage, which exhibits rapid dynamics, while the
battery maintains the load power. In [13], the classical proportional-integral-derivative
(PID) regulator is utilised in Battery/SC HESSs for EVs due to its proven ease and depend-
ability. However, this type of regulator can suffer significant degradation when faced with
changing operating conditions, primarily due to issues related to local linearisation. In [14],
the author developed a fuzzy logic controller to regulate the power distribution between
the battery and the SC. The controller’s input consisted of the overall vehicle load demand
and the state of charge (SOC) of the SC and the battery. The simulated vehicle’s control
strategy was implemented using the ADVISOR platform. A fuzzy logic controller was
utilised in [15] to regulate the HESS for EVs. The objective of the regulator was to allocate
the power load between the battery and the SC, to maintain the voltage of the DC bus, and
to monitor the SOC of the SC. The findings demonstrated that the recommended controller
prolonged the longevity of the battery by consistently providing the load energy from the
battery during stable periods and from the supercapacitor during transient periods. A
fuzzy rule-based energy management system has been developed in study [16]. This was
developed to optimise the SOC of both the SC and the battery. Moreover, the controller
utilises the real-time speed of the vehicle as an input to optimise the power distribution
of the energy management system. Deterministic and fuzzy logic rule approaches can
greatly improve energy efficiency; however, they have limitations, such as not being able to
quickly adjust to new situations, not being able to scale with complicated structures, and
prioritising practical solutions over optimal ones [17].

Optimisation-based approaches in the energy management of HESSs in EVs utilise
past or projected driving data. These methods tackle both local and global optimisation
difficulties by using prior driving cycle data to find the most efficient allocation of power
across energy storage devices. The optimisation of HESSs for EVs has been thoroughly
investigated to improve the lifetime of batteries and to increase the overall efficiency of
the system. Adaptive filter-based strategies have proven effective in enhancing HESSs in
EVs. A study by the authors of [18] utilised an artificial potential field (APF) in conjunction
with a feed-forward compensator to dynamically regulate power allocation. This method
decreases battery degradation and enhances system effectiveness by avoiding excessive
charging and eliminating changes in the DC-link voltage. In [19], the author proposed an
adaptive power split approach by employing dynamic Fourier spectrum analysis. This tech-
nique optimises power allocation according to current load requirements, enhancing power
equilibrium and minimising battery degradation. Both research studies demonstrate the
efficacy of adaptive filters in enhancing battery performance and prolonging the lifespan of
energy storage components in HESSs for EVs [18,19]. Advanced control techniques, such as
dynamic programming (DP), have also been pivotal in optimising HESS configurations and
control methods. A study by the authors of [20] utilised a DP technique to optimise both the
configuration of the HESS and the control techniques. This approach effectively reduced
battery degradation by lowering the capacity rate of the discharge–charge current. Another
study was carried out to create a power management strategy for PHEVs [21]. This strategy
considered battery ageing mechanisms and variations in state-of-health. The study showed
that incorporated optimisation approaches can effectively improve battery longevity and
system performance in different driving conditions. These studies highlight the essential
importance of advanced control techniques and dynamic programming in attaining sustain-
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able and efficient energy management in EVs [20,21]. Incorporating neural networks and
multi-objective optimisation techniques has yielded substantial improvements in energy
management strategies. A study by the authors of [22] proposed a supervisory energy
management technique that utilised DP and neural networks. This strategy resulted in a
60% increase in battery life and significant enhancements in energy efficiency. Similarly,
another study adopted multi-objective optimisation and random forests to reach a nearly
ideal performance, effectively maintaining a balance between system costs and battery
lifespan [23]. These studies provide evidence of the effectiveness of integrating DP using
real-time adaptive approaches [22,23]. Evolutionary algorithms have been beneficial for
optimising HESSs. A study by the authors of [24] utilised a multi-objective evolutionary
algorithm to enhance the performance and lifespan of HESSs in microgrids. They achieved
notable advancements by considering cost, performance, and lifetime aspects in a balanced
manner. In addition to this, another study addressed light rail vehicles using evolutionary
algorithms to achieve multi-objective optimisation [25]. The results showed significant
cost savings and improved operational efficiency in areas without overhead wires. These
studies emphasise the crucial importance of advanced optimisation techniques in creat-
ing cost-efficient and reliable HESS solutions for dynamic transportation and microgrid
applications [24,25]. Recent developments have highlighted the potential of sophisticated
reinforcement learning algorithms in energy management systems for EVs with HESSs.
A study by the authors of [26] presented an energy management system based on a soft
actor–critic (SAC) approach. This system incorporated DP knowledge and parallel com-
puting to improve control performance and training efficiency. As a result, it achieved
notable reductions in energy loss and demonstrated an enhanced adaptability compared
to conventional deep Q-network (DQN) and deep deterministic policy gradient (DDPG)
methods. In addition to this, in [27], the author introduced an incentive learning-based
energy management system for EVs that utilised battery–supercapacitor technology. The
primary focus of this system was to reduce battery capacity and power loss. This approach
integrated a system of rewards and procedures for initial training, resulting in enhanced
speed and flexibility in learning across different driving scenarios. As a result, it achieved
significant cost savings compared to current deep reinforcement learning methods. These
studies demonstrate the potential of advanced reinforcement learning methods in opti-
mising energy management systems for EVs that feature HESSs. Model predictive control
(MPC) techniques offer remarkable accuracy and the ability to generate near-optimal future
projections and responses. In [28], the author proposed a multi-horizon MPC approach
for HEVs, optimising power allocation between the battery and supercapacitor, resulting
in a 4.2% reduction in battery deterioration and improved efficiency. Despite the high
accuracy of MPC, its performance heavily depends on the model of the controlled system.
Khil et al. implemented the MPC technique using MATLAB Simulink and tested it on the
dSPACE platform for HESSs [29], dynamically estimating reference currents for DC-link
voltage control and reducing battery discharge rates. Chen et al. introduced a speed
detection approach based on long short-term memory (LSTM) to forecast driving cycles,
using this in an MPC approach to minimise battery energy loss [30]. Combining simulation
and hardware in the loop, this study verified the performance of the energy management
system, showing a 15.3% reduction in battery energy loss using MPC [30]. Those extensive
studies demonstrate the significant progress and potential of various optimisation methods
in improving the efficiency and durability of HESSs in EVs.

1.2. Main Contribuiton

The primary objective of this work is the development of an innovative energy man-
agement approach specifically designed for fully active HESSs in EVs. This technology
employs advanced control systems to optimise the integration of SCs into traditional bat-
tery systems, resulting in a substantial increase in the operational efficiency of EVs under
different environmental driving situations.
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The rest of this paper is organised as follows: Section 2 presents the system and
modelling, where it provides an overview and analysis of the system being studied. Sec-
tion 3 outlines the chosen energy management control methodology and compares its
performance against other methods. Also, it highlights how the chosen control technique
improves system performance, saves energy, and aligns with the overall operational ob-
jectives of the system. Section 4 presents and discusses the results when applying three
control strategies in EV HESSs using MATLAB/Simulink. Finally, the paper is concluded
in Section 5.

2. Summary of the System and Modelling

This research investigates an EV that is propelled using a fully active HESS, which
consists of a SC and a battery. This typical HESS configuration is illustrated in Figure 2d.
The DC bus operates in parallel with the SC and battery banks through two-quadrant
DC–DC converters. By adopting this particular configuration, the battery can effectively
sustain the DC bus voltage at the appropriate level. Furthermore, it enables the HESS to
interchange power in both directions, allowing the vehicle to recharge either the battery or
SC during regenerative braking phases. It also facilitates the battery’s power transfer by
authorising it to charge the SC and recharge it. To determine how to develop the power
flow controller, it is necessary to study the vehicle dynamics and the features of the SC,
assuming that the battery is appropriately sized to cover a specific range. The subsequent
two subsections provide a comprehensive explanation of the modelling process for the EV
and the HESS.

2.1. Vehicle Model

The Nissan Leaf has been chosen as the proposed vehicle for this study, and its
specifications are outlined in Table 2. The primary factors that affect the dynamics of a
vehicle include aerodynamic force (Faero), rolling force (Froll), grading force (Fgrad), and
inertial force (Facc). Each of these forces is an essential element in conducting a thorough
examination of the vehicle’s performance. These forces are integral to developing a reliable
model that predicts the vehicle’s power and energy consumption based on different driving
scenarios, as illustrated in Figure 3. This comprehensive modelling is the first step in
optimising the energy efficiency of the vehicle’s drivetrain. Therefore, in this study, the
grading force had been eliminated from the analysis, as it had a minimal effect on the main
objective of examining driving resistance and power demands. This exclusion guarantees
a more concentrated and effective evaluation of the vehicle’s performance in suitable
situations without introducing unneeded sophistication. Equation (1) is used to determine
the total force on a vehicle [31].

FTotal = Faero + Froll + Fgrad + Facc (1)

While in motion, a vehicle is exposed to a variety of different forces, one of which is
aerodynamic drag. This force arises from the contact between the inbound and outgoing
airflow. The determination of aerodynamic force can be achieved using Equation (2) [31].

Faero = 0.5 ρ Cd A f v2 (2)

where ρ is air density, Cd represents the drag coefficient, A f represents the frontal area of
the vehicle, and v denotes velocity. The main cause of rolling resistance is the interaction
between the road surface and the tyre. Both the friction of ball bearings and the power
transmission system are factors that contribute to the rolling resistance. Rolling resistance
increases in direct correlation with the mass of the vehicle. Equation (3) represents the force
of horizontal road rolling resistance [31].

Froll = Crr m g (3)
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where Crr is the coefficient of rolling resistance, m represents the mass of the vehicle
in kilogrammes, and g represents the acceleration due to gravity in metres per second.
Equations (4) and (5) are employed for calculating the gradient force and acceleration force.

Fgrad = m g sin (θ) (4)

Facc = m a (5)

where a represents the acceleration. The power required for an EV can be determined and
expressed using Equation (6).

PReq = FTotal ∗ v (6)

Table 2. Specifications for EV, battery, and SC modules [32,33].

Module Parameter Value Unit

EV

A f 2.14 m2

Cd 0.28 -
Crr 0.01 -
g 9.81 m/s2

m 1567 kg

Battery

Nominal Pack Voltage 360 Volts
Nominal Pack Capacity 24 kWh

Number of Cells 192 -
Parallel Number 2 -

Nominal Cell Voltage 3.75 Volts
Cell Nominal Capacity 64 Ah

SC

Maxwell BMO3000 - -
Nominal Pack Voltage 24 Volts

Nominal Pack Capacity 85 Faraday
Number of Cells 89 -
Parallel Number 1 -

Nominal Cell Voltage 2.7 Volts
Cell Nominal Capacity 3000 Faraday
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Cell Nominal Capacity 64  Ah 

SC 

Maxwell BMO3000  ‐  ‐ 

Nominal Pack Voltage  24  Volts 

Nominal Pack Capacity  85  Faraday 

Number of Cells  89  ‐ 

Parallel Number  1  ‐ 

Nominal Cell Voltage  2.7  Volts 

Cell Nominal Capacity  3000  Faraday 

 

Figure 3. Vehicle forces. Figure 3. Vehicle forces.

2.2. Battery Model

The battery model depicted in Figure 4 has two integral equations to govern the
charging and discharging operations, effectively capturing the operational dynamics of a
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lithium-ion battery. Equation (7), which is crucial to the functioning and is illustrated in the
selector switch mechanism Sel, is expressed as:

Exp (s)
Sel (s)

=
A(

1
B ∗ i(t) ∗ s + 1

) (7)
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Figure 4. Battery equivalent circuit [34].

The above formula utilises an exponential smoothing Exp (s) function to adjust
the current i(t), ensuring the system exhibits a seamless and progressive response to
variations in load and charging circumstances. This equation is generated from the battery
model and is designed to maintain efficiency and longevity by preventing sudden changes
in current. This smoothing process provides an interaction between power demand,
battery energy degradation, and Equation (7), which helps regulate the battery’s reaction
to power needs. The two constants A and B, combined with the variable s (from the
Laplace transform domain) and the current i(t), adjust the impact of the input current
dynamically. This adjustment is carried out to match the operational mode determined
using the Sel (s) switch.

The model also includes a set of equations referred to as Equations (8) and (9), which
are used to describe both the charging and discharging situations.

Echarge = f1 (it, i∗, Exp.BattType) (8)

Edischarge = f2(it, i∗, Exp. BattType) (9)

Equations (8) and (9) play a crucial role in determining the amount of energy needed for
charging and discharging by taking into consideration many variables, including the actual
current (it), the filtered current (i∗), the exponential smoothing factor (Exp), and the battery
type (BattType). By including these parameters, the equations play a crucial role in enabling
the battery management system to accurately regulate energy distribution, thus improving
efficiency and prolonging the battery’s lifespan under different operational circumstances.
The precise derivation and proper integration of these mathematical equations with the
battery model’s elements are crucial for efficiently controlling energy flows, as depicted in
the battery model schematic.

2.3. SC Model

The SC model, depicted in Figure 5 presents a schematic representation of the equiva-
lent circuit of an SC, wherein a controlled voltage source is connected to a cell featuring
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an internal resistance. Two essential mathematical equations that are fundamental to com-
prehending the operational behaviour of the system are also depicted in the schematic.
Equation (10) describes the total current i.

i = isc ∗ (1 − u(t)) + isel f dis
∗ u(t) (10)

where isc is the short circuit current, isel f dis
is the self-discharge current, and u(t) is the unit

step function that controls the transition between normal operation and self-discharge.
This configuration offers a comprehensive examination of how a cell reacts to different
operational situations, encompassing the impact of internal chemical processes and external
circuit parameters on the flow of electric current.
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The floating potential VT , which is the potential when the cell is not supplying current
to an external load, can be determined using Equation (11).

VT =
Ns QT d

Np Ne ∈∈0 Ai
+

2 Ne Ns R T
F

arsinh

(
QT

Np Ne
2 Ai

√
8RT ∈∈0 c

)
(11)

where Ns and Np are the number of series and parallel connections of the cells, QT is the
electric charge (C), d is the molecular radius, Ne is the number of layers of electrodes, ∈
and ∈0 are the permittivity of material and free space, Ai is the interfacial area between
electrodes and electrolyte (m2), Ne is the number of layers of electrodes, R is the ideal gas
constant, T is the operating temperature (K), F is the Faraday constant, and c is the molar
concentration (mol/m3).

Equations (10) and (11) above are crucial for precisely predicting the performance char-
acteristics of electrochemical cells. They are particularly valuable in applications that need
in-depth investigation of power distribution and storage behaviours under different elec-
trical loads and situations. This knowledge is crucial for optimising battery management
systems, improving reliability, and prolonging the lifespan of battery-powered equipment.

3. Controller Design

An effective controller is vital for solving the issues of optimising energy flows within
an HESS to enhance the dynamic response and extend the battery life in EVs. The regulator
has to carefully manage power distribution among the battery and SC to protect the battery
from sudden power changes and to improve vehicle handling and passenger comfort.
Figure 6 illustrates the structure of the system used in this study. This section provides an
overview of the design concerns for three specific types of controllers—PI, MPC, and RBF.
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3.1. PI Controller

The PI regulator is used for optimising the power allocation among batteries and
SCs, assuring the system operates efficiently. The purpose of the regulator is to reduce the
difference between the desired reference value and the actual result, which is expressed in
Equation (12).

e(t) = r(t)− y(t) (12)

where r(t) represents the setpoint and y(t) represents the actual measurement. Here, e(t)
is the difference between the desired reference value and the actual measured value. The
regulator responds by adjusting the control action, which is expressed in Equation (13).

u(t) = Kp ∗ e(t) + Ki

∫
e(t)dt (13)

where Kp and Ki represent the proportional and integral gains, respectively. These gains
serve as essentials for guaranteeing the stability and precision of the system. The out-
put u(t) is used to control the pulse-width modulation (PWM) signal, which controls the
switching operations of the converter in the HESS. This adjustment facilitates the adap-
tation of the charge and discharge cycles following the changing power demands. The
controller effectively maintains the desired performance levels, thereby optimising energy
consumption and response times, which are critical in EV applications, due to the system’s
continuous feedback.

3.2. MPC

The MPC approach is considered to be one of the best control strategies to effectively
regulate the power conversion in an HESS utilised in an EV, specifically concentrating on
DC–DC converters. The MPC approach is specifically developed to optimise a cost function
to forecast future system states by assessing the future state of the inductor current (IL,k+1),
as delineated in Equation (14).

IL,k+1 =

(
ts

L

)
∗ (Vin − IL ∗ RL − Vout ∗ (1 − Staten)) + IL (14)
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where ts is the sampling time, L is the inductance, RL is the load resistance, Staten indicates
the converter mode (Buck or Buck-Boost), Vin is the input voltage, Vout is the output voltage,
and IL is the inductor current. Staten alternates between the Buck and Buck-Boost modes
depend on the voltage needs of the DC bus in comparison with the input voltage. To
systematise this procedure, Equation (15) represents an inequality condition that can be
used to dynamically ascertain the suitable state of the converter, guaranteeing the most
efficient voltage adjustment, whether it be a raise or decrease, based on the requirements of
the system.

Staten =

{
‘Buck’

‘Buck − Boost’

(
i f Vin > Vout

i f Vin ≤ Vout

)
(15)

The above equation guarantees that the converter mode is chosen to either increase or
decrease the voltage according to current power demands. More precisely, when the input
voltage (Vin) from the energy storage is higher than what the output load requires, the Buck
mode is employed to decrease the voltage. On the other hand, if the output load needs a
voltage higher than what is stored, the Buck-Boost mode is engaged to raise the voltage.
This technique enhances the energy efficiency of the system by altering the voltage levels
to meet the individual requirements at any given moment, hence reducing energy wastage
and improving the overall performance of the system.

The cost function is optimised using the MPC outline, as is expressed in Equation (16).

J =
∣∣∣ILre f − IL,k

∣∣∣+ w f ∗ | Staten − Stateold| (16)

where variables ILre f , IL,k, w f , Staten, and Stateold represent the reference inductor current,
predicted inductor current at step k, weighting factor, and current and previous states of
the converter, respectively. w f imposes a penalty on the cost involved with transitioning
between states. The MPC algorithm assesses possible future states by computing the cost
associated with each state, considering the deviations from the current reference state and
the cost of transitioning between states. It then chooses the control action that leads to
the lowest overall cost. This optimisation guarantees effective power management and
minimises energy wastage inside the system.

3.3. Radial Basis Fucntion Controller

The radial basis function (RBF) controller approach is considered as the most effective
controller within HESSs for EVs. The RBF controller enhances energy management by
utilising a Gaussian activation function, which is expressed in Equation (17):

Φ(x, µ, σ) = e−(| x−µ
σ |)2

(17)

where variables x, µ, and σ represent the input, the centre, and the spread. The function
plays a vital part in determining the controller’s response to changes in input, effectively
modifying the system’s behaviour to minimise errors and enhance reliability.

The weight (W), centre (µ), and spread (σ) parameters in the RBF are adjusted using
the gradient descent technique. This approach improves these parameters by using the
error obtained from the system’s output, as shown in Figure 7. The weight update rule is
expressed in Equation (18).

∆W = λw EΦ(x, µ, σ) (18)

where variables ∆W, λw, E, and Φ(x, µ, σ) represent the change in weight, the learning rate,
the error, and the Gaussian activation function. This update is essential for fine-tuning the
impact of the input features on the network’s output. Equation (19) expresses the updated
weight, guaranteeing that the system adjusts gradually.

Wk = λwEØk(x, µ, σ) + Wk−1 (19)



Vehicles 2024, 6 1100

µ is adjusted using the formula shown in Equation (20).

∆µ = λµWE
(x − µ)

σ2 Φ(x, µ, σ) (20)

where (x − µ) represents the distance between the data point and the centre. This formula
modifies the midpoint of the Gaussian activation function, enabling the function to maintain
its responsiveness to the input data near the updated average. It is essential to update µ, in
order to ensure that the Gaussian distribution appropriately represents the most significant
data points. This adjustment maintains the precision of the model when handling various
inputs, and strengthens the performance and dependability of the control system by
enhancing its capacity to adjust to new conditions. The updated centre is determined using
Equation (21).

λµWE
(x − µ)

σ2 Φ(x, µ, σ) + µk−1 (21)

σ represents the width of the Gaussian bell curve, and can be obtained using Equation (22).

∆σ = λσ WE
(x − µ)2

σ3 Φ(x, µ, σ) (22)

The update rule plays a crucial role in regulating the responsiveness of the output to
variations in the input. This enables the model to improve its ability to make generalisations
or concentrate more specifically based on the specific driving conditions. Equation (23)
expresses the new spread.

σk = λσWE
(x − µ)2

σ3 Φ(x, µ, σ) + σk−1 (23)
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For this work, the RBF performs a crucial role in optimising the operation of the
DC–DC converter, which is essential for regulating the energy flow between batteries
and SCs. The inputs of this controller include voltage levels (input and output), current
measurements, and error signals (W, µ, and σ). The outputs are control commands for
converter settings and parameter adjustments. The control commands executed using the
RBF controller assure a flawless alignment between the power sourced from the battery or
SC and the power produced from the converter side. Ensuring synchronisation is essential
for preserving the effectiveness and steadiness of the energy transfer in the HESS, hence
improving the overall efficiency of the EV. Furthermore, the adjustments made to the
RBF controller to improve its adaptability and efficiency for this particular use have been
discussed. These tasks involve enhancing the learning rate and adjusting the controller
parameters to more accurately align with the characteristics of the electric vehicle’s energy
components. These adjustments guarantee that the RBF controller adequately tackles the
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distinct obstacles presented by the EV environment, thereby enhancing both performance
and energy efficiency.

The RBF controller utilises these methods to dynamically adjust its parameters, hence
optimising the control approach for real-time energy management. The controller’s capacity
to continuously adjust these settings depending on the system’s feedback loop makes it very
efficient in handling the intricate dynamics of EVs, hence improving vehicle responsiveness.
This adaptive mechanism guarantees that the EV functions at its best in various driving
situations, utilising the maximum capabilities of its energy storage system.

3.4. Comparative Analysis of Control Strategies

To summarise, the PI controller offers simplicity and robustness for predictable situa-
tions, whereas MPC is particularly effective in optimising complicated systems by predict-
ing future states. On the other hand, the RBF controller provides great precision in dynamic
and unexpected contexts. By integrating various controllers, the unique advantages of
each one are utilised to achieve optimal performance and reliability. Table 3 illustrates an
overview of control strategy performance in EVs.

Table 3. Overview of control strategy performance in EVS.

Type Key Findings Merits Demerits Ref

PI

Proposed controller boosts EVs with HESS operating
efficiency, energy efficiency, and stability.

• Simple, stable perfor-
mance.

• Adequate dynamic response;
• Nonlinearities present a chal-

lenge.

[35]

Proposed controller improves fuel cell system
performance and reliability for automotive

applications, according to the research.
[36]

Highlights how the proposed controller improves
hybrid EV power system efficiency and stability. [37]

MPC

Energy flow between storage components is
dynamically adjusted based on the battery’s SOC to

improve energy efficiency and battery life.

• Effectively manages con-
straints

• Predicts future states

• High computational burden
• Implementation complexity

[38]

MPC improves hybrid system efficiency and
performance by dynamically modifying control

actions based on vehicle mass estimates, according to
the study.

[39]

Demonstrates that recognising driving patterns
improves MPC systems’ prediction accuracy and

energy management efficiency
[40]

RBF

Simulations show improved transition smoothness
and system robustness during mode transitions.

• Highly proficient at man-
aging nonlinearities

• Demonstrates excep-
tional adaptability with
learning mechanisms

• Necessitates a significant
amount of training data

• Carries the risk of overfitting,
which can be mitigated with
appropriate tuning

[41]

Research shows that adaptive strategies enhance fuel
efficiency and pollution [42]

4. Results and Discussion

This section presents an evaluation of the outcome demonstrated by the three control
strategies. MATLAB/Simulink has been used to implement the designed control system.
The system parameters are detailed in Table 2, alongside the battery pack and SC parameters
that have been studied in the previous section. The simulation profiles are derived from
three distinct driving cycles, encompassing three unique environmental driving conditions
to effectively test the controller performance of the optimised HESS.

The selected driving cycles are the Artemis rural cycle, the Artemis motorway with a
speed differential of 150 km/h, and US06. These driving cycles are depicted in Figure 8.
The Artemis rural cycle is designed to replicate driving conditions commonly found in
rural areas, which are distinguished by reduced speeds and frequent stops and starts.
This simulation accurately represents the stop-and-go aspect of country roadways. The
motorway cycle represents high-speed motorway driving conditions, simulating sustained
speeds of 150 km/h, typical of highway travel. Finally, the US06 cycle is a representation of
rough driving circumstances, with its fast acceleration and deceleration patterns, which are
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typical of city driving in heavy traffic. The attributes of each driving cycle are detailed in
Table 4 [43]. The next section presents a more comprehensive examination of the efficiency
and effectiveness of HESSs in optimising battery SOC across various driving cycles, utilising
the insight obtained from the controller analysis.
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Figure 8. Representation of selected driving cycles: (a) Artemis rural, (b) Artemis motorway, (c) US06.

Table 4. Characteristics of each driving cycle [43].

Driving Cycle Artemis Rural Artemis 150 km/h Motorway US06

Average Speed (km/h) 70 150 34.2

Type Rural Roads High-Speed Motorway Aggressive Urban

Stops and Starts Frequent Few Frequent

Acceleration Patterns Varied Sustained Rapid

Speed Variability Moderate Minimal High

Duration (s) 1082 1068 596

Traffic Condition Light Smooth Heavy

4.1. Impact of HESSs on Battery Performance

The implementation of the HESS resulted in significant advancements in the man-
agement of battery SOC throughout all driving cycles that were examined. For this study,
the analysis will focus on the initial 600 s for both Artemis driving cycle scenarios and the
first 300 s of the US06 cycle. This deliberate selection aims to provide a clear and easily
interpretable presentation of results. The choice to give priority to the first 600 s of the
Artemis driving cycle scenarios and the first 300 s of the US06 cycle was made after careful
consideration. This decision has been made to capture crucial times in battery performance
during dynamic and demanding driving phases. For a detailed explanation of the time
setup, refer to Section 4.2.
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This approach was utilised to guarantee a thorough comprehension of battery SOC
management, specifically in challenging start-up situations marked by significant inter-
actions between energy demand and supply. The goal of this study aimed to enable a
concentrated investigation by focusing on these particular periods, to provide useful in-
sights that could be directly used in real-world situations. Ultimately, this approach aims
to drive innovation and optimisation in battery technology for vehicle systems. The control
system accurately determines the SOC of the battery by utilising real-time data from the
battery management system. This system analyses variables such as voltage, current, and
other relevant factors to provide an accurate estimation of the SOC.

Upon analysis of the Artemis rural cycle, it can be observed from Figure 9 that the
introduction of the HESS led to a very consistent battery SOC profile for all three controllers,
notably PI, MPC, and RBF. The stability of the HESS demonstrates its capacity to efficiently
manage the balance between energy storage and distribution, hence reducing changes in
SOC that may result in losses and rapid deterioration. The enhancement can be attributed
to the HESS’s capacity to utilise the high power density of SCs in managing abrupt power
demands and transient loads. This decreases the strain on the battery, as it is more suitable
for providing a consistent energy supply due to its higher energy density but lower power
density. HESSs optimise the longevity and performance of the battery by dividing the load
between the battery and supercapacitor, reducing the rate and depth of battery discharges.
In addition, the HESS can effectively capture the energy from regenerative braking by
utilising the SC, which can quickly charge and discharge. This process helps maintain the
battery’s SOC and enhances the overall energy efficiency.
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Figure 9. Battery SOC comparison over time for an HESS versus a standalone battery across various
control strategies for the Artemis rural cycle. (a) SOC decay under the RBF, (b) SOC decay under the
MPC, (c) SOC decay under the PI.
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The same principle applies to the Artemis motorway cycle; the benefits of HESS
integration persisted. This is evident from Figure 10, where all three controllers exhibited
enhanced battery SOC control, with the HESS, ensuring a consistent and optimised SOC
profile throughout the cycle. This consistency is crucial for EVs operating in high-speed
conditions, where rapid energy fluctuations can occur.
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Regarding the US06 cycle, the stability and effective management of the battery
SOC were seen in all three controllers, as depicted in Figure 11. This demonstrates the
adaptability of the HESS in handling dynamic and unpredictable driving situations. The
capacity to adapt is crucial for practical EV applications, as different driving circumstances
can significantly affect the storage and usage of energy.

The analysis of SOC across three distinct driving cycles provides valuable insights
into the performance of various controllers in efficiently controlling the use of energy. In
the context of the Artemis rural scenario, as depicted in Table 5, it is evident that the RBF
regulator exhibits a higher efficiency in comparison to both the MPC and PI controllers,
regardless of whether the system is battery only or an HESS. This is evident from the
notably improved SOC values attained using the RBF controller, which signifies a reduced
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energy usage. Conversely, the MPC and PI controllers exhibit lower SOC values, with the
MPC controller substantially surpassing the PI controller.
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Figure 11. Battery SOC comparison over time for an HESS versus a standalone battery across various
control strategies for US06. (a) SOC decay under the RBF, (b) SOC decay under the MPC, (c) SOC
decay under the PI.

Table 5. Comparison of battery SOC for Artemis Rural.

RBF MPC PI Energy Saved (kWh)

RBF_PI MPC_PI

Battery only 77.27% 62.5% 53.49% 5.66 2.11

HESS 78.86% 64.41% 64.2% 3.452 0.05

In the Artemis Motorway scenario depicted in Table 6, it can be observed that all
controllers exhibit high SOC values, with just slight variations among them. Nevertheless, it
is worth noting that the RBF controller exhibits an exceptional energy efficiency, particularly
in the battery-only setup, thus demonstrating its efficacy in optimising energy utilisation.
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Table 6. Comparison of battery SOC for Artemis Motorway.

RBF MPC PI Energy Saved (kWh)

RBF_PI MPC_PI

Battery Only 99.47% 98.26% 96.47% 0.54 0.39

HESS 99.69% 99.28% 99.14% 0.11 0.04

The driving cycle of the US06, as depicted in Table 7, displays similar trends, with
the RBF controller exhibiting the highest SOC, followed by the MPC and PI controllers.
In summary, the findings reveal that the RBF controller effectively conserves energy in
various driving conditions, making it a suitable choice for enhancing the efficiency of
battery and HESSs. The distinctive urban driving characteristics of the US06 cycle, such
as numerous starts and stops, quick acceleration, and significant speed variability, can
be considered as the main reason for this. The RBF controller is particularly adept at
meeting the requirements of these situations, which necessitate a highly sensitive energy
management system. When comparing them, the Artemis rural and motorway cycles
exhibit more consistent and stable driving patterns, leading to comparatively smaller
improvements in SOC. The battery system is not as dynamically challenged by the frequent
stops and starts at lower speeds of the rural cycle and the persistent high-speed driving of
the motorway cycle, compared to the US06 cycle. Consequently, the US06 cycle exhibits a
greater increase in the SOC as a result of the efficient utilisation of regenerative braking
and the advanced control techniques offered by the RBF controller, which enhance energy
efficiency in these challenging driving situations.

Table 7. Comparison of battery SOC for US06.

RBF MPC PI Energy Saved (kWh)

RBF_PI MPC_PI

Battery Only 82.91% 72.75% 70.2% 3.09 0.61

HESS 86.46% 77.1% 77.1% 2.67 0

4.2. Impact of HESSs on SC Performance

Expanding on battery SOC, this subsection examines the influence of SCs on HESSs.
By assessing the effect of HESSs on SC performance, significant findings emerge on the
combined benefits that arise from including SCs as an additional energy source alongside
batteries for EVs. The incorporation of SCs alongside EV batteries proves crucial for opti-
mising the overall efficiency of the system. In the context of driving scenarios, the SC can
play a role in supplementing power during acceleration, hence enhancing responsiveness
and allowing a smoother driving interface. The SC’s rapid charge and discharge attributes
facilitate the provision of swift power bursts as required, particularly in situations requiring
rapid acceleration or climbing a hill. The enhanced responsiveness of the vehicle benefits
to its overall performance, yet preserves efficiency.

The examination of the SOC profiles of the SC under the influence of three controllers
during each drive cycle, in conjunction with their corresponding SC charge and discharge
profiles, offers valuable understanding surrounding the performance of each controller.

Throughout the Artemis rural driving cycle, the RBF controller regularly demonstrated
superior efficiency by regularly achieving a higher SOC. The superior performance of the
controller in terms of SOC improvements proved particularly apparent throughout the
time intervals of 120–300 s, 380 s, and 500 s, as illustrated in Figure 12a. Furthermore, the
power profiles for charging and discharging demonstrated the RBF controller’s superiority,
particularly evident within the initial 200 s. The charging/discharging profiles for the three
controllers demonstrate the rapid adaptability to power requirements and the effective
utilisation of regenerative energy, both of which play a vital role in the acceleration and
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deceleration of EVs. Figure 12b provides further details on these features. Compared
to the battery charging/discharging profile depicted in Figure 12c, the RBF controller
demonstrates its dynamic and adaptive reaction to changing circumstances, as evidenced
by its frequent and substantial fluctuations in power output. This behaviour demonstrates
a control system that is very sensitive and capable of efficiently managing intricate and
quickly evolving situations with accuracy. While MPC and PI controllers offer smoother
responses, the RBF’s agility is advantageous in applications that prioritise flexibility and
rapid modifications.
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Figure 12. Artemis Rural: (a) SOC of SC, (b) charging/discharging profile of SC, (c) charg-
ing/discharging profile of battery.

The RBF controller proved exceptional proficiency in managing the SC charge dur-
ing the Artemis highway cycle study, as demonstrated in Figure 13a. Although the RBF
controller initially had a lower SOC, it demonstrated significant efficiency improvements,
especially obvious between the 300 s and 500 s time intervals. In contrast, the PI controller
exhibited a steady decline in the SOC, as depicted in Figure 13a. The charging and discharg-
ing patterns shown in Figure 13b exhibited a strong indication of the superior performance
of the RBF controller, highlighting its capacity for efficiently controlling the energy flow of
the SC. Being able to maintain consistent speeds is particularly crucial in the environment
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of driving on motorways. The effective control of the RBF regulator assures excellent power
availability and durability, thus being vital for longer high-speed journeys, even in steady-
speed circumstances. Compared to the battery charging/discharging profile depicted in
Figure 13c. The RBF controller demonstrates a highly steady and constant power output,
maintaining a level very close to its maximum capacity during the entire time. The stability
seen indicates a notable degree of accuracy and dependability in adapting to different
circumstances, which is particularly important in situations that require a consistent and
reliable performance. Conversely, the MPC exhibits a stable output, albeit with a bit more
variability than the RBF method. This suggests that the MPC provides effective control,
albeit with slightly less consistency. The PI controller, although effective, exhibits greater
oscillations, indicating that it may be less appropriate for situations where power stability
is of greatest significance.
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In the analysis of the US06 cycle, it appeared that the RBF controller demonstrated a
slightly lower SOC when compared to the MPC and PI controllers. However, it demon-
strated an improvement within the 100 s time frame, as illustrated in Figure 14a. During
the cycle, the energy profile indicated the RBF controller’s capability to rapidly respond to
variations in power, a crucial aspect in effectively handling the demanding acceleration
and deceleration situations commonly observed in the US06 cycle. This can be observed in
Figure 14b. Overall, the RBF controller consistently eclipsed the MPC and PI controllers in
all cycles, demonstrating its superior energy management abilities. This results in greater
assistance for EV acceleration, along with the effective utilisation of regenerative braking
energy, which is crucial for extending battery life, as well as the effectiveness of electric
vehicles. Compared to the battery charging/discharging profile depicted in Figure 14c,
the RBF controller exhibits a greater level of stability and maintains a consistently high
power output over the entire duration, especially following the early fluctuations. This
demonstrates a greater capacity to handle disruptions and adjust to fluctuating circum-
stances, emphasising its strength and effectiveness in maintaining target power levels.
The RBF exhibits less instability and a more consistent power output profile compared to
MPC and PI, making it an ideal option for EV applications that need great dependability
and precision.
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4.3. Overall System Efficiency and Performance

By combining HESSs with EVs, as demonstrated using the Artemis rural, Artemis
motorway, and US06 driving cycles, there is a substantial improvement in the management
of battery SOC and the efficiency of SCs. When the HESS is exposed to different driving
scenarios, such as situations that need high power, quick acceleration, and fluctuating
speeds, it shows an improved responsiveness and energy management. During periods of
high acceleration, the SC delivers rapid surges of power, reducing the burden on the battery
and keeping the SOC steady. This effect is most noticeable in the US06 cycle. Artemis
rural cycles effectively handle frequent stops and starts by optimising energy demand
distribution between the battery and SC, resulting in minimised energy losses and battery
degradation. During constant high speeds on the motorway cycle, the HESS ensures a
steady SOC, which is crucial for long-duration travel. This study primarily examines the
Nissan Leaf; however, the control strategies described can be tailored for other EV models
by adjusting control parameters to align with their unique attributes. This guarantees that
the advantages of HESSs, including enhanced SOC management along with improved
SC performance, can be achieved in different EVs. In summary, the integration of HESSs
improves energy management, improves vehicle performance, and extends the lifespan of
the battery. This underscores the significance of employing advanced control algorithms
for sustainable transportation.

5. Conclusions

The assessment of a fully active HESS in a Nissan Leaf has shown substantial improve-
ments in energy management and dependability in different driving situations. The study
validates that integrating SCs with batteries in a HESS not only helps to manage the SOC
of the battery, but also enhances the system’s overall energy efficiency compared to con-
ventional battery-only systems. The RBF controller consistently outperformed traditional
controllers in dynamic and unexpected environments, thus validating its appropriateness
for real-world applications in EVs. It is worth mentioning that although the Artemis high-
way and US06 cycles show significant enhancements, the rural cycle posed difficulties
in sustaining an appropriate SOC. This indicates that the technique may need additional
adjustments for situations including frequent stops and low speeds.

The findings highlight the significance of utilising advanced control algorithms in
HESSs to improve electric vehicles’ efficiency and long-term durability. This will aid in their
greater feasibility and sustainability in tackling global energy challenges. This research
not only strengthens current knowledge by presenting actual evidence of the effectiveness
of different control systems in HESSs, but also creates opportunities for further study.
Further research should explore the incorporation of adaptive learning models that can
flexibly adapt to various driving behaviours and environmental fluctuations. Furthermore,
conducting further studies to investigate the efficacy of HESSs in large-scale vehicles and
areas with severe atmospheric conditions will result in a full comprehension of its practical
uses and restraints.

This study lays the foundation for progress in EV technology and energy management
methods, fostering the creation of tailored control systems that can be adjusted to different
driving circumstances.
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