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Abstract

Contact tracing played a crucial role in minimizing the onward dissemination of Severe

Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) in the recent pandemic. Previ-

ous studies had also shown the effectiveness of preventive measures such as mask-wear-

ing, physical distancing, and exposure duration in reducing SARS-CoV-2 transmission.

However, there is still a lack of understanding regarding the impact of various exposure set-

tings on the spread of SARS-CoV-2 within the community, as well as the most effective pre-

ventive measures, considering the preventive measures adherence in different daily

scenarios. We aimed to evaluate the effect of individual protective measures and exposure

settings on the community transmission of SARS-CoV-2. Additionally, we aimed to investi-

gate the interaction between different exposure settings and preventive measures in relation

to such SARS-CoV-2 transmission. Routine SARS-CoV-2 contact tracing information was

supplemented with additional data on individual measures and exposure settings collected

from index patients and their close contacts. We used a case-control study design, where

close contacts with a positive test for SARS-CoV-2 were classified as cases, and those with

negative results classified as controls. We used the data collected from the case-control

study to construct a Bayesian network (BN). BNs enable predictions for new scenarios when

hypothetical information is introduced, making them particularly valuable in epidemiological

studies. Our results showed that ventilation and time of exposure were the main factors for

SARS-CoV-2 transmission. In long time exposure, ventilation was the most effective factor

in reducing SARS-CoV-2, while masks and physical distance had on the other hand a mini-

mal effect in this ventilation spaces. However, face masks and physical distance did reduce

the risk in enclosed and unventilated spaces. Distance did not reduce the risk of infection

when close contacts wore a mask. Home exposure presented a higher risk of SARS-CoV-2

transmission, and any preventive measures posed a similar risk across all exposure settings

analyzed. Bayesian network analysis can assist decision-makers in refining public health
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campaigns, prioritizing resources for individuals at higher risk, and offering personalized

guidance on specific protective measures tailored to different settings or environments.

Introduction

The novel Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) spread rapidly

from Wuhan (China) to the rest of the world, resulting in the coronavirus disease 2019

(COVID-19) pandemic [1, 2]. Essential infection prevention and control measures for respira-

tory pathogens advocated by the World Health Organisation (WHO) were adopted [3] to con-

tain the dissemination of the infection [4]. Contact tracing, which was adopted by most

countries [5, 6], complemented wearing a facemask in public settings, maintaining physical

distancing and hand hygiene as main public health approaches to reduce transmission, infec-

tion-related hospital admissions, and mortality [7–12]. The measures aimed to mitigate the

effect of transmission, such as improving ventilation and minimizing exposure time to infected

individuals [13–16], have been identified as essential for controlling community transmission

[12, 17]. Even with approaches to reduce the rate of onward transmission, there were moments

where such transmission was very high and uncontrollable.

The scientific community has underscored the importance of adhering to preventive mea-

sures to mitigate the spread of SARS-CoV-2. However, achieving complete compliance with

all recommended measures has proven challenging due to community conditions, environ-

ments, and socio-demographic characteristics [18]. Therefore, customizing preventive mea-

sures based on the specific feasibility of adoption in each environment could prove

advantageous. Further studies and data analysis are necessary to assess the intricate relation-

ship among various preventive factors that influence the transmission of SARS-CoV-2. Con-

currently, the dynamics of the pandemic have been significantly shaped by family members,

relatives, and close contacts in social and work environments [19]. Despite the substantial con-

tribution of these settings and human networks, the majority of studies have predominantly

concentrated on a singular exposure setting, such as hospitals [20–25], households [8, 26],

schools [27], or public transportation [28]. Limited research has delved into the transmission

of SARS-CoV-2 in other settings where routine activities like working or exercising take place.

Additionally, only a small number of studies have considered environmental and exposure-

related factors, including ventilation, duration of exposure, and physical distancing [14, 27].

Bayesian networks (BNs) [29, 30] offer a paradigm for interpretable Artificial Intelligence,

where high-stakes applications have increased, and therefore, the use of interpretable models

is important [31]. In this sense, BNs can be applied to aid health practitioners by providing

SARS-CoV-2 characterization estimates as a probability network which updates dynamically

as new information is obtained. BNs could also assist in the implementation of most effective

prevention measures, regard of which set of measures may be compliance in different every

day scenarios [32, 33].

During close contact tracing, carried out at the COVID Coordination Center (CCCOVID) in

Mallorca, Spain, additional information was collected to address the lack of evidence regarding

the interaction of different exposure settings and preventive measures in relation to SARS-CoV-

2 transmission. Therefore, we aimed to evaluate and compare the transmission of SARS-CoV-2

based on individual protective measures and exposure settings. Additionally, we describe the

interplay between these prevention measures and the characteristics of exposure settings using a

Bayesian network approach with data from a national contact tracing program.
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Materials and methods

Participants

This study examined a case-control of close contact tracing of SARS-CoV-2-positive patients,

detailed in a previously published manuscript [34]. During the data collection period, Mallorca

was under the 2nd to 4th level of COVID-19 public health measures (Control Situation and

High Risk). In the food and hospitality sector (i.e., restaurants and bars), up to six people could

sit at a table, with social gatherings limited to a maximum of six individuals.

A total of 1, 766 close contacts were included in the sample, of which 420 were positive

(cases) and 1, 346 negative (controls). Public and private official testing centers sent daily all

positive COVID-19 test results to CCCOVID. Upon receiving this information, nurses con-

tacted the positive patient and did a systematic contact tracing. For this study, positive patients

of unknown origin were selected, designating them as index patients. Close contacts were

extracted from COVID-19 contact tracing conducted by nurses at the CCCOVID-19 (Balearic

Islands). During systematic tracing from February to June 2021, additional information was

collected from close contacts of the index patients for this study. A ‘close contact’ was defined

as a person who had been at the same place as an individual with a positive SARS-CoV-2 test,

two days before the onset of symptoms or, if the index patient was asymptomatic, from posi-

tive diagnosis to isolation of the index patient. In addition, close contacts should have been

within 2 meters of the index patient for more than 15 minutes within 24 hours [35]. After sys-

tematic close contact tracing, the criteria for selecting the close contact were as follows: asymp-

tomatic and older than 18 years. Exclusion criteria were: 1) to be institutionalized in nursing

homes, 2) persons in contact with a healthcare setting and 3) having difficulties with telephone

communication or understanding. Inclusion and exclusion criteria for case and controls were

the same, except for the SARS-CoV-2 test result, where cases had to be positive (by any diag-

nostic or screening test used) and controls negative.

All the study procedures followed the Declaration of Helsinki for research on human partic-

ipants and legal regulations regarding data confidentiality and research involving human par-

ticipants. The study protocol received approval from the Balearic Committee of Clinical

Research Ethics (Ref. no: IB 4444/21). All participants were informed of the study’s purpose

and procedures before providing their verbal consent to participate.

Instruments

Data collection and definition of variables. Data collection methods are described in

detail in the case-control study itself [34]. To summarise, the following data collected regard-

ing the environment or setting, and exposure characteristics associated with SARS-CoV-2

transmission: contact place, ventilation characteristics (open-air, closed space with or without

ventilation), mask-wearing, type of mask, duration of contact, shortest distance, case-contact

relationship, household members, test result, and handwashing. Social-demographic variables

for close contacts were also collected. A description of variables is given in Table 1.

Learning Bayesian networks

A BN includes [36]: (i) a set of variables or features (nodes) and a set of directed edges between

these variables (arcs), (ii) taking into account that each variable or feature (node) has a finite

set of mutually exclusive states, and (iii) the variables along with the directed edges (arcs) form

a directed acyclic graph (DAG). A BN model estimates the joint probability distribution P over

a vector of random variables X = (X1, . . ., Xn). The joint probability distribution, which factor-

izes as a product of several conditional distributions, represents the dependency/independency
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structure by a DAG:

PðX1; . . . ;XnÞ ¼
Yn

i¼1

PðXi j PaðX
G
i ÞÞ ð1Þ

Eq (1) (where PaðXG
i Þ denotes the parent nodes of Xi) which is the main reason for the for-

mulation of a multivariate distribution by BNs; this equation is also called the chain rule for
Bayesian networks.

The process of learning a BN implies in two tasks: (i) structural learning, i.e., consists in

identifying the topology (structure defined by a DAG) of the BN, and (ii) parametric learning,
i.e., estimation of numerical parameters (conditional probabilities assigned to each node of the

DAG) given a network topology.

Structural learning. Discovering the structure of a BN is a problem where difficulty

increases with the number of variables [37].

Three approaches to structure learning could be considered [38]: (i) search-and-score struc-

ture learning, (ii) constraint-based structure learning, and (iii) a combination of both gives a

hybrid learning framework. Search-and-score algorithms assigns a number (score) to each BN

structure, and then the structure model with the highest score is chosen. Constraint-based
search algorithms determine a set of conditional independence exploration on the data. This

exploration is used in order to generate an undirected graph. Taking into consideration some

additional independence test, the graph is transformed into a BN.Hybrid algorithms incorpo-

rate characteristics of both constraint-based and score-based algorithms, they use conditional

independence test in order to lessen the search space, and network score in order to obtain the

optimal network in the restricted space.

In order to obtain the structure, two possible options can be considered: (i) to select a single
bestmodel or (ii) to obtain some average model, which is known asmodel averaging [39].

Average models are considered more robust models than the single best ones.

Data were divided into a train data (1,413 close contacts, with 1,010 negative cases and 315

positive cases) to obtain the model and a test data (353 close contacts, with 336 negative cases

and 105 positive cases). The tabu learning algorithm (a search-and-score learning algorithm)

from package bnlearn [40, 41] of R language [42] was used to learn the structure using a thresh-

old of 0.85 bymodel averaging over 500 networks in order to obtain a more robust model. The

score used by the structure learning algorithm was the Akaike Information Criterion (AIC).

Prior knowledge of the variables under study was taken into account in order to reduce the

number of structures that are consistent with the same set of independencies into the model

Table 1. Description of 11 data set variables used to build the BN model.

Variable name Description Values

AGEgroup Age in years 18-27, 28-42, 43-55, 56-94

EXPOSUREsettings Exposure place Education, Home place, Household members, Leisure, Sport place, Transportation, Work place

COUGH Cough present No, Yes

FEVER Fever present No, Yes

FACEmask Used Face mask No, Sometimes, Yes

DISTANCE Physical distance 0m, 0m-1m, 1m-2m

RELATIONSHIP Relationship Couples, Friendship, Living family, Other, Other relatives, Work

VENTILATION Type of ventilation Closed non ventilated, Closed ventilated, Open

ExposureTIME Exposure time 15min-1h, 1h-4h, 4h-24h, More 24h

HandWASHING Hand hygiene 1time/day, 2-3 times/day, More 3 times/day

SARS-CoV-2 Infection No, Yes

https://doi.org/10.1371/journal.pone.0307041.t001
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selection process, and to choose a structure which reflects the causal order and dependencies,

causal graphs tend to be sparser [29]. We restrict the model selection process by blacklisting (i,

e., disallowing) arrows that point from a later block to an earlier block [43]. An adjacency matrix

containing the disallowed edges is constructed, then we convert this into a dataframe.

Variables were divided into four ordered blocks: (i) background variables = {AGEgroup,

EXPOSUREsettings, COUGH, FEVER}, (ii) conditional variables = {DISTANCE,HandWASH-
ING, FACEmask}, (iii) intermediate variables = {RELATIONSHIP, ExposureTIME, VENTILA-
TION}, and, (iv) diagnostic variable = {SARS-CoV-2}.

And therefore, by blacklisting (i,e., disallowing) arrows that point from a later block to an

earlier block, arrows are only allowed between variables in the same block and from variables in

a block to variables in another block under the first one (from the top to the bottom, i.e, accord-

ing to the block division: first block is background variables, second block is conditional vari-
ables, third block is intermediate variables, and finally fourth block is the diagnostic variable).

A DAG was obtained through tabu search by model averaging and considering prior

knowledge (the causal order given by the four blocks) in model selection (see Fig 1) using

bnlearn package in R language [42].

Parametric learning. In order to obtain the parameters of the BN, a Bayesian parameter

estimation through the method bayes of bnlearn package was used.

Fig 1. A possible structure obtained through tabu learning algorithm from bnlearn package in R language using a

threshold = 0.85 by model averaging over 500 networks. Prior knowledge was included in model selection, thus

variables were divided into four blocks: 1) background variables = {AGEgroup, EXPOSUREsettings, COUGH, FEVER},

2) conditional variables = {DISTANCE,HandWASHING, FACEmask}, 3) intermediate variables = {RELATIONSHIP,

ExposureTIME, VENTILATION}, and, 4) diagnostic variable = {SARS-CoV-2}.

https://doi.org/10.1371/journal.pone.0307041.g001
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A conditional probability distribution was obtained for each node. An example of condi-

tional probability distribution is shown in in Table 2.

SARS-CoV-2 BN model

Even though the bnlearn package [40, 41] in R language [42] could be used to make inference,

in order to have a clear graphical representation from the structure and parameters obtained

with bnlearn, the SARS-CoV-2 BN model was then plotted in Netica [44]. Fig 2 represents the

BN once it has been compiled. The joint probability distribution of the SARS-CoV-2 BN in Fig

2 requires the specification of 11 conditional probability tables, one for each variable condi-

tioned to its parents’ set.

Conditional independence

The BN can also be regarded from the perspective that the graph encodes a set of conditional

independence assumptions. The SARS-CoV-2 BN model outputs obtain conditional indepen-

dencies among the variables. That is, in a BN any node is conditionally independent of its

non-descendants given its parents’ nodes, i.e. I(Xi, non − descendants(X)jPa(Xi)), as the local

Markov property states. In this case, the BN obtained for SARS-CoV-2model (see Figs 1 and 2)

shows some independencies:

IðCOUGH; fAGEgroupg j PaðCOUGHÞ ¼ fEXPOSUREsettingsgÞ;

IðSARS � CoV � 2; fAGEgroup;EXPOSUREsettings;COUGH; FEVER;
HandWASHING; FACEmask;DISTANCE;
RELATIONSHIPg j PaðSARS � CoV � 2Þ ¼

fVENTILATION;ExposureTIMEg;

IðFACEmask; fHandWASHINGg j PaðFACEmaskÞ ¼ fEXPOSUREsettings;
COUGH; FEVERgÞ;

IðDISTANCE; fAGEgroup; FEVER;HandWASHINGg j PaðDISTANCEÞ ¼
fEXPOSUREsettings;COUGH; FACEmaskgÞ;

IðExposureTIME; fAGEgroup; EXPOSUREsettings; FEVER;COUGH;
HandWASHINGg j PaðExposureTIMEÞ ¼
fDISTANCE;RELATIONSHIP; FACEmaskgÞ:

Table 2. Expected values of probabilities for COUGH feature conditional on combination of its parent value, in

this case conditional on EXPOSUREsettings feature.

EXPOSUREsettings COUGH = No COUGH = Yes
Education 0.4216 0.5784

Home place 0.5151 0.4849

Household members 0.5310 0.4690

Leisure 0.5564 0.4436

Sport place 0.4119 0.5881

Transportation 0.3773 0.6227

Work place 0.4421 0.5579

https://doi.org/10.1371/journal.pone.0307041.t002
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Performance of SARS-CoV-2 BN model

The BN was tested with the test data. In Table 3, the area under the ROC curve (AUC), and the

percentage correctly classified for the different features are shown. These last values are

obtained with GeNIe software [45].

In addition, three statistics that evaluate the degree of fit compared with a set of new data

(the test data): logarithmic loss, quadratic loss and spherical payoff have been considered. Log-

arithmic loss varies between zero and infinity, where zero indicates the best goodness of fit.

The quadratic loss varies between zero and two, where zero corresponds to the best execution,

and finally, the spherical payoff is bounded between zero and one, one indicating a perfect fit

between the model and the data. In Table 4, we see SARS-CoV-2 variable has a good degree of

fit (logarithmic loss = 0.4817, quadratic loss = 0.3169, spherical payoff = 0.8220).

Fig 2. The compiled SARS-CoV-2 BN model shows a summary of the original data distribution, where probabilities are expressed in percentage.

https://doi.org/10.1371/journal.pone.0307041.g002
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Performance comparison. We report other classification performances (see Table 5) in

order to provide reference benchmarks about how our BN classifies, only for informational

purposes, as the main objective of the study was on modelling a potential BN model for study-

ing SARS-CoV-2 transmission. We include the widely used: Support vector machine (SVM),

Multilayer Perceptron (MLP), and the Random Forest algorithms integrated in WEKA [46].

SVM fins a hyperplane that best separates data into different classes while maximizing the

Table 3. AUCs and percentage correctly classified for the different features.

Variable name State AUC Accuracy

AGEgroup 18-27 0.6208 34.72

AGEgroup 28-42 0.5829 34.72

AGEgroup 43-55 0.5629 34.72

AGEgroup 56-94 0.6132 34.72

EXPOSUREsettings Education 0.9887 49.81

EXPOSUREsettings Home place 0.7041 49.81

EXPOSUREsettings Household members 0.7265 49.81

EXPOSUREsettings Leisure 0.7701 49.81

EXPOSUREsettings Sport place 0.8733 49.81

EXPOSUREsettings Transportation 0.8030 49.81

EXPOSUREsettings Workplace 0.8316 49.81

COUGH No 0.6781 62.11

COUGH Yes 0.6781 62.11

FEVER No 0.6612 65.36

FEVER Yes 0.6612 65.36

FACEmask No 0.7907 67.70

FACEmask Sometimes 0.7530 67.70

FACEmask Yes 0.8177 67.70

DISTANCE 0m 0.9135 67.47

DISTANCE 0m-1m 0.7735 67.47

DISTANCE 1m-2m 0.8437 67.47

RELATIONSHIP Couples 0.9486 55.17

RELATIONSHIP Frienship 0.8156 55.17

RELATIONSHIP Living family 0.7256 55.17

RELATIONSHIP Other 0.8999 55.17

RELATIONSHIP Other relatives 0.7794 55.17

RELATIONSHIP Work 0.8644 55.17

VENTILATION Closed non ventilated 0.7585 58.71

VENTILATION Closed ventilated 0.6656 58.71

VENTILATION Open 0.8568 58.71

ExposureTIME 15min-1h 0.7773 57.43

ExposureTIME 1h-4h 0.8193 57.43

ExposureTIME 4h-24h 0.7187 57.43

ExposureTIME More 24h 0.8688 57.43

HandWASHING 1t/day 0.7314 86.79

HandWASHING 2-3t/day 0.5957 86.79

HandWASHING More 3t/day 0.5864 86.79

SARS-CoV-2 No 0.7466 76.23

SARS-CoV-2 Yes 0.7466 76.23

https://doi.org/10.1371/journal.pone.0307041.t003
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margin between them, and can handle non-linear relationships through the use of kernel func-

tions. Multilayer Perceptron (MLP) is a type of neural network with multiple layers, including

input, hidden, and output layers. And, Random Forest builds multiple decision trees during

training and merges them together to get a more accurate and stable prediction, it is less prone

to overfitting compared to individual decision trees.

Only the diagnostic feature (SARS-CoV-2) was considered as a comparative example. Per-

formance of each classification model is evaluated using three statistical measures: accuracy,

sensitivity, specificity and the ROC area. Accuracy represents the ratio of the number of cor-

rect predictions to the total number of predictions. Sensitivity represents the true positive rate,

while specificity represents the true negative rate. The ROC (Receiver Operating Characteris-

tics) or relative operating curves is a graphical plot of the sensitivity. The ROC area or AUC

(Area under the Curve) is defined as the probability of correctly classifying a pair of cases (pos-

itive and negative), and it is used as a predictive indicator of goodness.

From Tables 3–5 we conclude that the SARS-CoV-2 BN provides a computational efficient

prediction system for the study of the relationships of different aspects related to SARS-CoV-2

infection.

Results

MAP queries

BNs allow the calculation of new probabilities once new information is inputted [47]. An

important task consists of finding a high-probability joint assignment to a subset of features

Table 4. Scoring results obtained with Netica.

Variable name Logarithmic loss Quadratic loss Spherical payoff

AGE 1.3690 0.7379 0.5104

COUGH 0.7311 0.5001 0.7095

DISTANCE 0.9438 0.5549 0.6683

EXPOSUREsettings 1.3910 0.6544 0.5879

ExposureTIME 1.1400 0.5768 0.6381

FACEmask 0.8342 0.4665 0.7191

FEVER 0.6562 0.4440 0.7454

HandWASHING 0.3752 0.2037 0.8929

RELATIONSHIP 1.3380 0.6229 0.6052

VENTILATION 0.8996 0.5344 0.6821

SARS-CoV-2 0.4817 0.3169 0.8220

https://doi.org/10.1371/journal.pone.0307041.t004

Table 5. Performance for SARS-CoV-2 feature comparing our BN with the corresponding algorithms integrated in Weka.

Algorithms Accuracy Sensitivity Specificity ROC Area

Bayesian network 76.2264 0.8512 0.4857 0.7466

Lib SVM 79.5918 0.7960 0.3990 0.5980

Multilayer Perceptron 67.8005 0.6780 0.4210 0.6370

Random Forest 74.1497 0.7410 0.4150 0.6660

Accuracy = TPþTN
PþN ; Sensitivity = TP

TPþFN; Specificity = TN
TNþFP. Where: True Positive (TP), False Negative (FN), False Positive (FP), True Negative (TN), Positive (P), Negative

(N).

https://doi.org/10.1371/journal.pone.0307041.t005
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[29]. A variant of this type of task is themost probable explanation (also known as MAP

query). The goal is to find the most likely assignment to the features inW = complementary(E)

given the evidence E = e:

MAPðW j eÞ ¼ argmaxwPðw; eÞ ð2Þ

The most likely assignment to a single feature in a probability query, that is, to compute P
(Xje) is taking into account. The most likely joint assignment toW in a MAP query is found.

In order to analyze the BN, the concept of Markov blanket of a node (which includes its

parents, its children, and the children’s other parents (spouses)) together with causal (where

we predict effects from causes (we proceed from top to bottom)) and intercausal (which con-

stitutes a very common pattern in human reasoning, when different causes of the same effect

can interact) reasoning patterns were considered.

Minimizing SARS-CoV-2 in yes state. The initial probability of being infected by

SARS-CoV-2 is of 23.80% expressed in percentage, and we are interested in knowing the vari-

ables’ states that minimize that value with different type of ventilation: open, closed ventilated,

and closed non ventilated. For that, in order to determine the influence of the different values

states of VENTILATION feature on the evolution of SARS-CoV-2 feature in yes state (with an

initial probability of 23.80% expressed in percentage), different features are instantiated (they

take a value), i.e., evidence is introduced, VENTILATION in their three possible states (step 1),

followed of FACEmask feature in yes state (step 2), then DISTANCE in 1m-2m (step 3), and

finally ExposureTIME feature in 15m-1h state (step 4). We observe that, when ExposureTIME
feature is instantiated (in step 4), then the FACEmask and DISTANCE features do not have

any influence on SARS-CoV-2 feature, the trail of influence is broken (the Markov blanket of

SARS-CoV-2 feature is composed by ExposureTIME and VENTILATION features (its parents,

its children, and the other parents of its children or espouses)). As expected, under these

instantiations, the estimated probability of SARS-CoV-2 feature in yes state decreases (achiev-

ing an estimated probability of 2.92% when VENTILATION is open, 4.99% when VENTILA-
TION is closed ventilated, and 18.10% when VENTILATION is closed non ventilated, from the

initial value of 23.80% once the BN is compiled). A summary of the propagation of influences

can be seen in Fig 3. Also, the results showed that in open spaces the mask and the distance do

not lower the risk of contagion, but the time of exposure does. However, these measures do

lower the risk in closed ventilated or unventilated spaces.

Face mask influence. The use of facemasks is evaluated in SARS-CoV-2 propagation

when DISTANCE is instantiated to 1m-2m (the maximum distance considered in this study),

ExposureTIME is instantiated to 15m-1h (the minimum exposure time considered in this

study), and finallyHandWASHING feature is instantiated to statemore 3 times. As seen in Fig

4 the use of face masks was not relevant when DISTANCE was maximum and ExposureTIME
minimum. Hand hygiene does not show any influence on SARS-CoV-2 feature, at any level for

FACEmask feature. Keeping the maximum prevention distance and minimum exposure time

shows a clear decrease on SARS-CoV-2 feature in yes state (achieving an estimated conditional

probability of 7.49% when FACEmask is instantiated to yes state, 7.55% when FACEmask is

instantiated to sometimes state, and 7.75% when FACEmask is instantiated to no state). Dis-

tance did not reduce the risk of infection when close contacts wore a mask. However, regard-

less of mask usage and maximum distance, minimizing exposure time resulted in a similar

decrease in risk at any level.

Influence of exposure settings under negative measures. The influence of the different

exposure settings on SARS-CoV-2 variable at the value yes is evaluated under negative mea-

sures (where the estimated conditional probabilities once EXPOSUREsettings variable is
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instantiated gives 17.70% for education, 23.40% for home place, 28.20% for household members,
19.90% for leisure, 17.00% for sport place, 20.40% for transportation, and 21.60% for work
place, expressed in percentage).

According to that, FACEmask variable is instantiated to no state, VENTILATION variable is

instantiated to closed non ventilated state, and finally DISTANCE variable is instantiated to 0 m
state, showing a similar conditional probability estimation for SARS-CoV-2 feature (see Fig 5)

for the different exposure settings (37.70% for education, 43.30% for home place, 43.30% for

household members, 42.70% for leisure, 37.60% for sport place, 41.50% for transportation, and

42.40% for work place, expressed in percentage), which increases under the instantiations of

negative measures, although the differences of estimated conditional probabilities are shorten.

Home exposure had a higher risk of SARS-CoV-2 transmission, but not taking any prevention

measures posed a similar risk across all exposure settings analyzed.

Influence of exposure time under positive measures. The ExposureTIME variable is con-

sidered under the different states to evaluate their influence on SARS-CoV-2 feature in yes
state, showing little difference under positive measures (FACEmask variable in state yes, DIS-
TANCE variable in state 1m-2m, and VENTILATION in state open), as it is showed in Fig 6.

Observe that once VENTILATION is instantiated to open in step 4, then FACEmask and

Fig 3. The probability of infection by SARS-CoV-2 is updated in the different steps when new evidence is introduced for

the three possibilities of ventilation. The different steps: step 1 = VENTILATION, step 2 = FACEmask in state yes, step 3 =

DISTANCE in state 1m-2m, and step 4 = ExposureTIME in state 15m-1h, to evaluate SARS-CoV-2 feature in yes state. The steps

are represented in the horizontal axis, while the estimated probability for SARS-CoV-2 variable at the value yes is shown in the

vertical axis.

https://doi.org/10.1371/journal.pone.0307041.g003
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DISTANCE do not have any influence on SARS-CoV-2 feature, as any trail would be broken

(the Markov blanket of SARS-CoV-2 feature (VENTILATION and ExposureTIME features) is

instantiated), however, we consider this order in the instantiations to see their influence (The

estimated conditional probability for SARS-CoV-2 feature in yes state, at the last step is 2.92%

for ExposureTIME at 15m-1h state, 9.68% for ExposureTIME at 1h-4h state, 9.44% for Exposur-
eTIME at 4h-24h state, 8.48% for ExposureTIME atmore 24h state). VENTILATION variable

was an effective factor in reducing SARS-CoV-2 infection risk in exposure time level, while

masks and maintaining distance have minimal effect.

Discussion

Our study has shown the suitability of BNs in epidemiological research. BN allowed us to

quantify the effect of protective measures and the exposure setting on SARS-CoV-2

transmission.

Characterising the interplay between different factors that contribute to SARS-CoV-2 trans-

mission through model development and analysis can have both theoretical and practical ben-

efits, for example in explanation, prediction, monitoring, and prevention of any emerging and

non-emerging diseases. BN models are especially well-suited for investigating the risk factors

Fig 4. The probability of infection by SARS-CoV-2 is updated in the different steps when new evidence is introduced for

the three possibilities of using face mask. The different steps: step 1 = FACEmask, step 2 = DISTANCE in state 1m-2m, step 3

= ExposureTIME in state 15m-1h, and step 4 =HandWASHING in statemore 3 times, to evaluate SARS-CoV-2 feature in yes
state. The different steps are represented in the horizontal axis, while the estimated probability for SARS-CoV-2’s variable at the

value yes is shown in the vertical axis.

https://doi.org/10.1371/journal.pone.0307041.g004
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for SARS-CoV-2 transmission in the community since they can analyse intricate relationships

between multiple variables and account for the probabilistic nature of causal dependencies [4,

48]. Additionally, BN models can create hypothetical scenarios based on new observations,

which would facilitate knowledge mobilization and optimal/effective decision-making. More-

over, the utilization of the SARS-CoV-2 transmission model has the potential to offer a thor-

ough description of all the variables included in the analysis, providing a complete

understanding of the relationships between them.

This case-control study evaluates the risk factors for infection among the close contacts of

an index patient diagnosed with SARS-CoV-2 of unknown origin, using a BN model and the

Markov blanket concept. Our results showed that maintaining contact in an open or ventilated

space, exposure time, mask use and distance from the index patient are determinants for

SARS-CoV-2 transmission. Furthermore, limited exposure time with the index patient is an

important protective factor even in the presence of other protective factors such as being out-

doors and wearing a mask. The results of our analysis are in accordance with previous evi-

dence reporting that exposure time is the main important risk factor for SARS-CoV-2

transmission [14, 23, 49].

Fig 5. The probability of infection by SARS-CoV-2 is updated in the different steps when new evidence is introduced for

the seven possibilities of exposure place. The different steps: step 1 = EXPOSUREsettings, step 2 = FACEmask in state no, step

3 = VENTILATION in state closed non ventilated, and step 4 = DISTANCE in state 0 m, to evaluate SARS-CoV-2 feature in yes
state. The different steps are represented in the horizontal axis, while the estimated probability for SARS-CoV-2’s variable at the

value yes is shown in the vertical axis.

https://doi.org/10.1371/journal.pone.0307041.g005
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The primary distinction from other research on SARS-CoV-2 and transmission are that

this study utilized intercausal reasoning and the notion of a Markov blanket to enhance the

contact tracing feature. The reason for choosing the BN model is that it generates probability

estimates rather than predictions. Unlike regression, the process of learning the structure of a

BN is a type of unsupervised learning where the model does not differentiate between the

dependent variable and the independent ones. This is advantageous because it avoids the limi-

tations of a traditional regression model.

This study also indicates that the use of a facemask would reduce the risk of transmission

when a close contact occurs in an unventilated, enclosed space but not in the open air. Previ-

ous studies have reported similar results about the higher risk of transmission in poorly venti-

lated spaces [13, 50], but have however not compared the use of masks and ventilation. In

addition, our results showed that for close contacts who do not wear a mask, maintaining a

safe distance from others would have a comparable effect in terms of risk of infection as wear-

ing a mask. Although, a lot of studies reported lower SARS-CoV-2 transmission using masks

and maintaining distance [8, 11, 51] few studies analysed the combination of both measures.

Our study showed that social distancing can help to reduce the risk of transmission even in sit-

uations where wearing a mask were difficult. A previous study reported results, showing a

Fig 6. The probability of infection by SARS-CoV-2 is updated in the different steps when new evidence is introduced for

the four possibilities of exposure time. The different steps: step 1 = ExposureTIME, step 2 = FACEmask in state yes, step 3 =

DISTANCE in state 1m-2m, and step 4 = VENTILATION in state open, to evaluate SARS-CoV-2 feature in yes state. The

different steps are represented in the horizontal axis, while the estimated probability for SARS-CoV-2’s variable at the value yes
is shown in the vertical axis.

https://doi.org/10.1371/journal.pone.0307041.g006
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synergistic effect between use of facemasks and social distancing [52]. While wearing a mask

remains an important factor, the distance effect could complement wearing mask measures to

reduce the risk of transmission.

Moreover, our research implies that while living index patient poses the greatest risk of

infection, not implementing preventive measures in other exposure settings can also lead to a

similar risk regardless of how long the exposure lasts. Various studies have revealed similar

findings, with households having a higher percentage of secondary attack rates compared to

other exposure settings [53–56]. For instance, one study demonstrated how wearing masks

and maintaining social distance within households can make a significant difference [11].

These results highlight the significance of implementing protective and preventive measures

during at-risk contact, rather than relying on the link between the index patient and their close

contacts.

Limitations

Our study has limitations in terms of its design and methods. Firstly, we assumed that all posi-

tive contacts had been infected by the index patient, whereas some contacts may have con-

tracted the virus from other unknown sources in the community. For that reason, there could

be misclassification of exposure settings and prevention measures, potentially leading to

reduced statistical power. Nevertheless, our results have demonstrated significant differences.

Another limitation of the study is that the variability in the types of masks used by the par-

ticipants was not thoroughly analyzed, which could have influenced the results.

Compared with other types of analysis, such as logistic regression that also use the outcome

as a binary, BN analysis evaluates the risk of different settings, adding the presence of different

variables (ventilation, face mask, etc.) instead of adjusting for the effect of other factors as

logistic regression [34] that evaluate the adjusted effect of each condition. BN modeling is a

more practical approach for risk management since provides probability estimates for different

scenarios that could easily interpret.

Our study has several strengths. Firstly, we included the majority of index patients diag-

nosed between February and June 2021, ensuring a comprehensive sample size. Secondly, we

analyzed all COVID tests conducted in Mallorca during the study period, providing results

that can be generalized to the wider community. Also to minimize the bias of case-control

studies [57], the questionnaire was administered before the respondents were notified of their

test results, ensuring that their responses were not influenced to minimize the complacency.

Additionally, recall bias was minimized by contacting individuals at the time of their identifi-

cation as close contacts, minimizing the time elapsed between the exposure and the interview.

Conclusion

Ventilation and exposure time are the main risk factors for SARS-CoV-2 transmission while

wearing a mask in unventilated spaces is an important protective factor in this setting. The BN

analysis is an advanced model for dynamic description and prediction to identify risk exposure

settings and the most effective personal protective measures at each setting. In addition, the

BNs tool could help public institutions to focus on individuals most at-risk and disseminate

community messages with more targeted and compelling recommendations in future pan-

demic scenarios. Furthermore, by understanding the specific protective measures that are

applicable in different settings or environments, more personalized guidance could be pro-

vided to individuals.
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Author Contributions

Conceptualization: Aina Huguet-Torres, Enrique Castro-Sánchez, Miquel Bennasar-Veny,

Aina M. Yañez.

Data curation: Aina Huguet-Torres.

Formal analysis: Pilar Fuster-Parra, Enrique Castro-Sánchez, Miquel Bennasar-Veny, Aina

M. Yañez.

Funding acquisition: Aina Huguet-Torres.

Methodology: Pilar Fuster-Parra, Miquel Bennasar-Veny, Aina M. Yañez.

Supervision: Aina M. Yañez.

Writing – original draft: Pilar Fuster-Parra, Aina Huguet-Torres.

Writing – review & editing: Enrique Castro-Sánchez, Miquel Bennasar-Veny, Aina M. Yañez.

References
1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A Novel Coronavirus from Patients with Pneumo-

nia in China, 2019. N Engl J Med. 382(8) 727–33 (2020). https://doi.org/10.1056/NEJMoa2001017

PMID: 31978945

2. WHO. Novel Coronavirus (2019nCoV) situation report-51. 2020 [cited 2023]; Available from: https://

www.who.int/docs/default-source/coronaviruse/situation-reports/20200311-sitrep-51-covid-19.pdf?

sfvrsn=1ba62e57_10.

3. WHO. Infection prevention and control of epidemic- and pandemic-prone acute respiratory infections in

health care. 2014 [Cited 2023]; Available from: https://www.who.int/publications/i/item/infection-

prevention-and-control-of-epidemic-and-pandemic-prone-acute-respiratory-infections-in-health-care.

4. Zhang T, Ma Y, Xiao X, Lin Y, Zhang X, Yin F, et al. Dynamic Bayesian network in infectious diseases

surveillance: a simulation study. Sci Rep. 9(1):10376 (2019). https://doi.org/10.1038/s41598-019-

46737-0 PMID: 31316113

5. OurWorldinData. Which countries do COVID-19 contact tracing? 2022 [cited 2022]; Available from:

https://ourworldindata.org/grapher/covid-contact-tracing?time=2022-04-17.

6. El-Sadr WM, Platt J, Bernitz M, Reyes M. Contact Tracing: Barriers and Facilitators. Am J Public Health

112(7) 1025–33 (2022). https://doi.org/10.2105/AJPH.2022.306842 PMID: 35653650

7. European Centre for Disease Prevention and Control. COVID-19 Contact Tracing: country experiences

and way forward. Copenhagen: WHO Regional Office for Europe and Stockholm: European Centre for

Disease Prevention and Control (2022).

8. Chaabna K, Doraiswamy S, Mamtani R, Cheema S. Facemask use in community settings to prevent

respiratory infection transmission: A rapid review and meta-analysis. Int J Infect Dis. 104, 198–206

(2021). https://doi.org/10.1016/j.ijid.2020.09.1434 PMID: 32987183

9. CDC. Coronavirus Disease 2019 (COVID-19) 2020 [cited 2023]; Available from: https://www.cdc.gov/

coronavirus/2019-ncov/prevent-getting-sick/prevention.html.

10. WHO. Advice on the use of masks in the community, during home care and in health care settings in the

context of the novel coronavirus (2019-nCoV) outbreak. 2020 [cited 2023]; Available from: https://apps.

who.int/iris/bitstream/handle/10665/330987/WHO-nCov-IPCMasks-2020.1-eng.pdf?sequence=

1&isAllowed=y.

11. Wang Y, Tian H, Zhang L, Zhang M, Guo D, Wu W, et al. Reduction of secondary transmission of

SARS-CoV-2 in households by face mask use, disinfection and social distancing: a cohort study in Bei-

jing, China. BMJ Glob. Health 5(5) (2020). https://doi.org/10.1136/bmjgh-2020-002794 PMID:

32467353

PLOS ONE Protective measures and settings on the SARS-CoV-2 transmission

PLOS ONE | https://doi.org/10.1371/journal.pone.0307041 July 11, 2024 16 / 19

https://doi.org/10.1056/NEJMoa2001017
http://www.ncbi.nlm.nih.gov/pubmed/31978945
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200311-sitrep-51-covid-19.pdf?sfvrsn=1ba62e57_10
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200311-sitrep-51-covid-19.pdf?sfvrsn=1ba62e57_10
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200311-sitrep-51-covid-19.pdf?sfvrsn=1ba62e57_10
https://www.who.int/publications/i/item/infection-prevention-and-control-of-epidemic-and-pandemic-prone-acute-respiratory-infections-in-health-care
https://www.who.int/publications/i/item/infection-prevention-and-control-of-epidemic-and-pandemic-prone-acute-respiratory-infections-in-health-care
https://doi.org/10.1038/s41598-019-46737-0
https://doi.org/10.1038/s41598-019-46737-0
http://www.ncbi.nlm.nih.gov/pubmed/31316113
https://ourworldindata.org/grapher/covid-contact-tracing?time=2022-04-17
https://doi.org/10.2105/AJPH.2022.306842
http://www.ncbi.nlm.nih.gov/pubmed/35653650
https://doi.org/10.1016/j.ijid.2020.09.1434
http://www.ncbi.nlm.nih.gov/pubmed/32987183
https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/prevention.html
https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/prevention.html
https://apps.who.int/iris/bitstream/handle/10665/330987/WHO-nCov-IPCMasks-2020.1-eng.pdf?sequence=1&isAllowed=y
https://apps.who.int/iris/bitstream/handle/10665/330987/WHO-nCov-IPCMasks-2020.1-eng.pdf?sequence=1&isAllowed=y
https://apps.who.int/iris/bitstream/handle/10665/330987/WHO-nCov-IPCMasks-2020.1-eng.pdf?sequence=1&isAllowed=y
https://doi.org/10.1136/bmjgh-2020-002794
http://www.ncbi.nlm.nih.gov/pubmed/32467353
https://doi.org/10.1371/journal.pone.0307041


12. Fetzer T, Graeber T. Measuring the scientific effectiveness of contact tracing: Evidence from a natural

experiment. Proc. Natl. Acad. Sci. 118(33) (2021). https://doi.org/10.1073/pnas.2100814118 PMID:

34385318

13. Li Y, Qian H, Hang J, Chen X, Cheng P, Ling H, et al. Probable airborne transmission of SARS-CoV-2 in

a poorly ventilated restaurant. Build Environ. 196:107788 (2021). https://doi.org/10.1016/j.buildenv.

2021.107788 PMID: 33746341

14. Doung-Ngern P, Suphanchaimat R, Panjangampatthana A, Janekrongtham C, Ruampoom D, Dao-

chaeng N, et al. Case-Control Study of Use of Personal Protective Measures and Risk for SARS-CoV 2

Infection, Thailand. Emerg. Infect. Dis. 26(11) 2607–16 (2020). https://doi.org/10.3201/eid2611.

203003 PMID: 32931726

15. Duval D, Palmer JC, Tudge I, Pearce-Smith N, O’Connell E, Bennett A, et al. Long distance airborne

transmission of SARS-CoV-2: rapid systematic review. BMJ 377:e068743 (2022). https://doi.org/10.

1136/bmj-2021-068743 PMID: 35768139

16. Morawska L, Milton DK. It Is Time to Address Airborne Transmission of Coronavirus Disease 2019

(COVID-19). Clin. Infect. Dis. 71(9):2311–3 (2020). https://doi.org/10.1093/cid/ciaa939 PMID:

32628269

17. WHO. WHO Coronavirus (COVID-19) Dashboard, Measures. 2022[cited 2023; Available from: https://

covid19.who.int/measures.

18. Tomczyk S, Rahn M, Schmidt S. Social Distancing and Stigma: Association Between Compliance With

Behavioral Recommendations, Risk Perception, and Stigmatizing Attitudes During the COVID-19 Out-

break. Front Psychol 11: 1821 (2020). https://doi.org/10.3389/fpsyg.2020.01821 PMID: 32849073

19. Cheng VCC, Wong SC, Chen JHK, Yip CCY, Chuang VWM, Tsang OTY, et al. Escalating infection con-

trol response to the rapidly evolving epidemiology of the coronavirus disease 2019 (COVID-19) due to

SARS-CoV-2 in Hong Kong. Infect Control Hosp Epidemiol. 41(5) 493–8 (2020). https://doi.org/10.

1017/ice.2020.58 PMID: 32131908

20. Chavhan SS, Adsul B, Dhikale PT, Kinge K, Gokhale C, Ingale A, et al. Assessment of Risk Factors for

COVID-19 in Health Care Workers: A Nested Case-Control Study. J Assoc Physicians India 69(10)

11–2 (2021). PMID: 34781649

21. Dev N, Meena RC, Gupta DK, Gupta N, Sankar J. Risk factors and frequency of COVID-19 among

healthcare workers at a tertiary care centre in India: a case-control study. Trans R Soc Trop Med Hyg.

115(5) 551–6 (2021). https://doi.org/10.1093/trstmh/trab047 PMID: 33763687

22. Lentz RJ, Colt H, Chen H, Cordovilla R, Popevic S, Tahura S, et al. Assessing coronavirus disease

2019 (COVID-19) transmission to healthcare personnel: The global ACT-HCP case-control study.

Infect Control Hosp Epidemiol. 42(4):381–7 (2021). https://doi.org/10.1017/ice.2020.455 PMID:

32900402

23. Rosser JI, Tayyar R, Giardina R, Kolonoski P, Kenski D, Shen P, et al. Case-control study evaluating

risk factors for SARS-CoV-2 outbreak amongst healthcare personnel at a tertiary care center. Am J

Infect Control 49(12) 1457–63 (2021). https://doi.org/10.1016/j.ajic.2021.09.004 PMID: 34536502

24. Heinzerling A, Stuckey MJ, Scheuer T, Xu K, Perkins KM, Resseger H, et al. Transmission of COVID-

19 to Health Care Personnel During Exposures to a Hospitalized Patient—Solano County, California,

February 2020. MMWR Morb Mortal Wkly Rep 69(15) 472–476 (2020). https://doi.org/10.15585/

mmwr.mm6915e5 PMID: 32298249

25. Radonovich LJ Jr., Simberkoff MS, Bessesen MT, Brown AC, Cummings DAT, Gaydos CA, et al. N95

Respirators vs Medical Masks for Preventing Influenza Among Health Care Personnel: A Randomized

Clinical Trial. Jama. 322(9) 824–33 (2019). https://doi.org/10.1001/jama.2019.11645 PMID: 31479137

26. Chen Y, Wang Y, Quan N, Yang J, Wu Y. Associations Between Wearing Masks and Respiratory Viral

Infections: A Meta-Analysis and Systematic Review. Front Public Health 10: 874693 (2022). https://doi.

org/10.3389/fpubh.2022.874693 PMID: 35570912

27. Lim C, Nam Y, OhW S, Ham S, Kim E, Kim M, et al. Characteristics of transmission routes of COVID-19

cluster infections in Gangwon Province, Korea. Epidemiol Infect 150: e19 (2022). https://doi.org/10.

1017/S0950268821002788 PMID: 34991757

28. Zhen J, Chan C, Schoonees A, Apatu E, Thabane L, Young T. Transmission of respiratory viruses

when using public ground transport: A rapid review to inform public health recommendations during the

COVID-19 pandemic. S Afr Med J 110(6): 478–483 (2020). PMID: 32880558

29. Koller D, Friedman N, Probabilistic graphical models. Principles and techniques, The MIT Press, Cam-

bridge, Massachusetts, London, England (2010).

30. Pearl J, Causality. Models, reasoning and inference, Cambridge university press, Cambridge, (2000).

31. Mihaljević B, Bielza C, Larrañaga P, Bayesian networks for interpretable machine learning and optimi-

zation. Neurocomputing 456 648–665 (2021). https://doi.org/10.1016/j.neucom.2021.01.138

PLOS ONE Protective measures and settings on the SARS-CoV-2 transmission

PLOS ONE | https://doi.org/10.1371/journal.pone.0307041 July 11, 2024 17 / 19

https://doi.org/10.1073/pnas.2100814118
http://www.ncbi.nlm.nih.gov/pubmed/34385318
https://doi.org/10.1016/j.buildenv.2021.107788
https://doi.org/10.1016/j.buildenv.2021.107788
http://www.ncbi.nlm.nih.gov/pubmed/33746341
https://doi.org/10.3201/eid2611.203003
https://doi.org/10.3201/eid2611.203003
http://www.ncbi.nlm.nih.gov/pubmed/32931726
https://doi.org/10.1136/bmj-2021-068743
https://doi.org/10.1136/bmj-2021-068743
http://www.ncbi.nlm.nih.gov/pubmed/35768139
https://doi.org/10.1093/cid/ciaa939
http://www.ncbi.nlm.nih.gov/pubmed/32628269
https://covid19.who.int/measures
https://covid19.who.int/measures
https://doi.org/10.3389/fpsyg.2020.01821
http://www.ncbi.nlm.nih.gov/pubmed/32849073
https://doi.org/10.1017/ice.2020.58
https://doi.org/10.1017/ice.2020.58
http://www.ncbi.nlm.nih.gov/pubmed/32131908
http://www.ncbi.nlm.nih.gov/pubmed/34781649
https://doi.org/10.1093/trstmh/trab047
http://www.ncbi.nlm.nih.gov/pubmed/33763687
https://doi.org/10.1017/ice.2020.455
http://www.ncbi.nlm.nih.gov/pubmed/32900402
https://doi.org/10.1016/j.ajic.2021.09.004
http://www.ncbi.nlm.nih.gov/pubmed/34536502
https://doi.org/10.15585/mmwr.mm6915e5
https://doi.org/10.15585/mmwr.mm6915e5
http://www.ncbi.nlm.nih.gov/pubmed/32298249
https://doi.org/10.1001/jama.2019.11645
http://www.ncbi.nlm.nih.gov/pubmed/31479137
https://doi.org/10.3389/fpubh.2022.874693
https://doi.org/10.3389/fpubh.2022.874693
http://www.ncbi.nlm.nih.gov/pubmed/35570912
https://doi.org/10.1017/S0950268821002788
https://doi.org/10.1017/S0950268821002788
http://www.ncbi.nlm.nih.gov/pubmed/34991757
http://www.ncbi.nlm.nih.gov/pubmed/32880558
https://doi.org/10.1016/j.neucom.2021.01.138
https://doi.org/10.1371/journal.pone.0307041


32. Fuster-Parra P, Bennasar-Veny M, Ligeza A, López-González AA, Aguiló A. Bayesian network model-
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