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Abstract—In this paper, we consider a reconfigurable in-
telligent surface (RIS)-assisted multiple-input multiple-output
communication system with multiple antennas at both the base
station (BS) and the user. We plan to maximize the achievable
rate through jointly optimizing the transmit precoding matrix,
the receive combining matrix, and the RIS reflection matrix
under the constraints of the transmit power at the BS and the
unit-modulus reflection at the RIS. Regarding the non-trivial
problem form, we initially reformulate it into an considerable
problem to make it tractable by utilizing the relationship between
the achievable rate and the weighted minimum mean squared
error. Next, the transmit precoding matrix, the receive combining
matrix, and the RIS reflection matrix are alternately optimized.
In particular, the optimal transmit precoding matrix and receive
combining matrix are obtained in closed forms. Furthermore,
a pair of computationally efficient methods are proposed for
the RIS reflection matrix, namely the semi-definite relaxation
(SDR) method and the successive closed form (SCF) method. We
theoretically prove that both methods are ensured to converge,
and the SCF-based algorithm is able to converges to a Karush-
Kuhn-Tucker point of the problem.

Index Terms—Reconfigurable intelligent surface (RIS),
transceiver optimization, weighted minimum mean squared
error (WMMSE), semi-definite relaxation (SDR), successive
closed form (SCF), alternating optimization, Karush-Kuhn-
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I. INTRODUCTION

Millimeter-wave (mmWave) communication plays a pivotal
role in the next generation of wireless communication systems
since it enables the remarkable increase in data rates by utiliz-
ing the spectrum recourses between 30 GHz and 300 GHz [1]–
[3]. Acting as another key technology in future wireless com-
munication, massive multiple-input multiple-output (MIMO)
is capable of providing the large array gain to compensate
the severe path loss that mmWave signals undergo. However,
one of the remaining issues is that mmWave signals are highly
sensitive to blockage, which leads to channel sparsity and low-
rank channel structures [4]–[6].

In order to alleviate the negative effects caused by blockage,
reconfigurable intelligent surface (RIS) was advocated as a
pioneering technology to establish favorable wireless channels
by creating a virtual line-of-sight (LoS) link to bypass the
obstacle [7]–[10]. RIS is an artificial metal-surface comprising
hundreds or even thousands of low-cost passive reflective
components. Specifically, each component of RIS is capable
of introducing a specified phase shift to the incident elec-
tromagnetic wave with the help of the dedicated controller
[11]–[13]. Without regard to the practical implementation,
what makes RIS widely concerned is that it can amplify and
forward the impinging signal without additional power. In
comparison to the classic amplify and forward (AF) relay,
RIS neither produces additional thermal noise nor consumes
extra power since there is no active radio frequency (RF)
component needed [14], [15]. Therefore, RIS is actually a cost-
effective and energy-efficient device that perfectly matches
the green and sustainable communication trend. Moreover,
RISs can be easily and vastly installed on building surfaces
to realize enhanced signal coverage, due to their attractive
advantages of light weight and small sizes. Note that the terms
large intelligent surfaces and intelligent reflecting surfaces also
revolve around the concept of RIS but emphasizes scale and
the reflective properties of these surfaces, respectively [16],
[17].

Among the numerous merits of RIS, one most attrac-
tive thing is its ability in achievable rate improvement. By
judiciously tuning the phase shifts in accordance with the
instantaneous wireless channels, the electromagnetic signals
transmitted by the RIS can be received coherently with those
via other propagation paths to strengthen the received signal
power. As a result, considerable performance gain can be har-
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vested by a smartly designed RIS reflection. Specifically, both
theoretical analysis and numerical simulations have validated
that a properly designed RIS with N reflecting elements is
anticipated to provide a beamforming gain of O(N2) while
the traditional multiple-antenna technology is only able to
provide a beamforming gain of O(N) [18], [19]. On the one
side, enlarging N renders an increased number of reflecting
elements to harvest the associated wireless energy transmitted
from the BS, which yields a receive antenna gain of O(N).
Conversely, the reflect beamforming towards the user (UE) by
the RIS provides another transmit beamforming gain of O(N).

Against the above background, existing works have in-
vestigated the spectrum efficient design in RIS-assisted sys-
tems. Generally, the primary challenge in dealing with such
problems arises from the non-trivial unit-modulus constraints
imposed on the RIS reflection coefficients. Although previous
studies [20]–[22] have addressed such constraints using diverse
approaches like semidefinite relaxation (SDR), they primarily
focused on the single-antenna systems such as single-input
single-output (SISO) and multiple-input single-output (MISO)
communication, and only few works looked into RIS-assisted
multi-input multi-output (MIMO) communication due to the
more sophisticated parameter optimization [23]–[25]. For ex-
ample, [23] and [24] indirectly solved the capacity maximiza-
tion problem for a RIS-assisted point-to-point MIMO system
through changing the objective function from the capacity to
the received signal-to-noise (SNR). By studying the specific
structure of the channel capacity expression, [25] developed
an element-wise based optimization algorithm for capacity
maximization through alternatively obtaining one of the re-
flection coefficients or the transmit precoder while keeping
other optimization variables fixed. However, the element-wise
optimization involves much processor computation time and
no optimality is guaranteed.

Aiming at maximizing the achievable rate for a RIS-
assisted massive MIMO system, we develop effective solutions
for the corresponding parameter design in this paper. More
specifically, the main contributions of this paper are listed as
follows1:

• First, we establish the achievable rate maximization prob-
lem for a point-to-point MIMO system assisted by RIS,
which is hard to solve with the nonconvex objective
function and the unit-modulus constraint. Regarding this
sophisticated problem, we initially convert it to an con-
siderable form by utilizing the relationship between the
achievable rate and the weighted minimum mean-squared
error (WMMSE). This allows us to alternatively optimize
the RIS reflection matrix and the transceiver in a more
efficient way.

• With an arbitrary RIS reflection matrix, the optimal
transmit precoding matrix and the receive combining
matrix are obtained in closed forms by exploiting the

1In this paper, we mainly investigate the passive RIS-assisted wireless
communications. However, the proposed algorithm can also be regarded as a
more complicated version of its active counterpart and provides inspiration
for future researchers. The trade-off between the performance of active and
passive RISs in terms of the number of RIS elements and the additional power
consumption have also been investigated in [26].

Lagrangian multiplier approach. After a series math-
ematical calculations and transformations, the original
RIS reflection matrix design problem is converted to
a non-convex quadratically constrained quadratic pro-
gram (QCQP) with the unit-modulus constraint. Then
for the nonconvex QCQP problem, we propose two
computationally-efficient optimization algorithms on the
basis of the semi-definite relaxation (SDR) and successive
closed forms (SCF) methods. Specifically, the SCF-based
algorithm allows a semi-closed form solution to the RIS
reflection matrix. Moreover, we theoretically prove that
both algorithms are guaranteed to converge, and the
SCF-based algorithm converges to a Karush-Kuhn-Tucker
(KKT) point of the equivalent problem.

• Finally, we provide numerical results to validate the sat-
isfactory performance of the proposed algorithms. Partic-
ularly, it is demonstrated that with a judiciously designed
RIS phase shifts, various key performance metrics of
the RIS-aided MIMO system can be greatly improved,
such as achievable rate, normalized mean squared error
(NMSE), channel total power. Moreover, we extend our
designs to more practical situations, i.e., discrete-phase
cases, by adopting a quantized phase projection approach.
It is observed that even 2 bits of quantization phase
control may work well with very limited performance
degradation.

The remainder of this paper is listed as follows. System
model is introduced in Section II, followed by problem for-
mulation part. In Section III, the WMMSE-based problem
is reformulated at first, and then the optimal transceiver is
presented. We then propose two alternating minimization algo-
rithms to solve the RIS reflection design problem in Section IV,
with the optimality and convergence analysis of the proposed
algorithms provided as well. Numerical simulation results are
provided in Section V to show the advantage of our proposed
design, and the conclusion is summarized in Section VI.

Notations: Operators diag(·) and Re{·} are utilized to
denote a diagonal matrix and the real component of a complex
value. vec(·) means vectorization. The symbol ⊗ returns the
Kronecker product. The notation A1/2 is the squared root
of matrix A by Cholesky decomposition and ⊗ means the
Kronecker product. The notations tr{·} and E{·} respectively
stand for the trace operation and the expectation operation.
Notation ∥ ·∥1, ∥ ·∥2, ∥ ·∥F and ∥ ·∥∞ respectively, denote the
L1 norm, the L2 norm, the Frobenius norm and the infinite
norm of the input matrix. λmax(·) corresponds to the maximum
eigenvalue. CN (0, σ2) models the standard complex Gaussian
distribution whose mean is zero and variance is σ2. Im is the
m×m identity matrix. 1 and 0 means an all-one and all-zero
vectors, respectively. Finally, arg{·} stands for the phase of a
complex value and O denotes the standard big-O notation.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a downlink point-to-point MIMO system as
depicted in Fig. 1. More specifically, the BS equipped with
Nt transmit antennas communicates Ns data streams to a
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Fig. 1. System model for a RIS-assisted MIMO system.

UE with Nr receive antennas through a RIS with N passive
reflective components. Taking into account the severe path
attenuation at high frequency, the transmit signals that are
passively transmitted via RIS greater than once are neglected.
Since the received signal is a summation of both the BS-UE
(direct) link and RIS-UE link, the system performance can be
significantly improved compared with that without RIS.

For convenience, quasi-static flat-fading is assumed for
all channels within our studied configuration. We denote
Hd ∈ CNr×Nt , G ∈ CN×Nr and H ∈ CN×Nt as the
channels of the BS-UE link, the UE-RIS link, and the BS-
RIS link, respectively. The reflection matrix of the RIS is
Θ = diag (θ) ∈ CN×N where θ = [eȷφ1 , · · · , eȷφN ]

T , in
which φn ∈ [0, 2π) stands for the phase shift of the nth
reflecting element. Note that in writing this expression, we
have implicitly assumed that the reflection mode of RIS is
full reflection, i.e., there is no energy loss. In practice, it is
difficult to realize full reflection due to hardware impairments.
However, if we adopt the same energy loss factors for all
the reflecting elements, then the proposed two algorithms in
the next section still apply since the constant-modulus con-
straint does not change. For the more complicated scenario of
different energy loss factors for different reflecting elements,
since this paper mainly focus on the joint design of the active
transceiver and passive RIS beamforming, it will be left for
further research due to page limit. Filtered by the baseband
precoding matrix Ws ∈ CNt×Ns , the signal arrived at the UE
can be expressed as

yd = GHΘHWss+HdWss+ n, (1)

in which s ∈ CNs×1 denotes the transmit signal vector with
normalized power E{ssH} = INs

, and n ∼ CN
(
0, σ2INr

)
models the complex Gaussian noise with noise power σ2. Note
that the transmit power satisfies tr

(
WsW

H
s

)
≤ P where P is

the total power available.

Then, a receive combining matrix Wd ∈ CNr×Ns is
implemented at the UE side, so the processed signal after
receive combining can be expressed as

y=WH
d yd=WH

d GHΘHWss+WH
d HdWss+WH

d n. (2)

B. Problem Formulation
When Gaussian symbols are transmitted, the achievable rate

of the considered system is thus given by

R = log2

(∣∣∣∣INs +
1

σ2

(
WH

d Wd

)−1

WH
d HeqWsW

H
s HH

eqWd

∣∣∣∣) ,

(3)
where Heq ≜ GHΘH + Hd denotes the equivalent channel
from the BS to the UE which includes both the direct link and
the reflection link through RIS.

Compared with the classic rate expression of traditional
MIMO system in [27], the achievable rate of the considered
system is not only dependent on the transmit precoder and
the receiver combiner, but also on the RIS phase shift, since
it can influence the equivalent channel matrix Heq and the
corresponding optimal transceiver. Generally, since RISs are
mostly passive reflecting devices without any signal processing
abilities, the RIS reflection coefficients are appointed by the
BS through the dedicated RIS controller according to different
performance goals.

Motivated by the above discussions, we aim at maximizing
the achievable rate of the above system through a joint design
of the transmit precoding matrix Ws, the RIS reflection matrix
Θ, and the receive combining matrix Wd, with the total
power constraint at the BS and the unit-modular constraints
on the reflection coefficients. The associated problem is then
expressed as

(P) max
Θ,Ws,Wd

R (4a)

s.t. tr
(
WsW

H
s

)
≤ P, (4b)

Θ = diag(θ), (4c)
|θn| = 1,∀n ∈ {1, 2, · · · , N} (4d)

where θn = eȷφn is the nth element of θ.
For simplicity, we assume all involved channels are avail-

able at both the BS and the UE, i.e., Hd, G, and H. which
can be obtained by some existing advanced channel estimation
techniques such as cascaded channel estimation followed by
a matrix factorization [13], [28].

Note that problem (P) is shown to be non-convex mainly
because the achievable rate is non-concave with regard to
RIS reflection matrix Θ, not to mention the nonconvex unit-
modulus constraint in (4d). In addition, the coupling effect
between the transmit precoding matrix Ws, the receive com-
bining matrix Wd, and the RIS reflection matrix Θ further
aggravates the challenge. As countermeasures, two efficient
methods are advocated in the following to deal with problem
(P).

III. LOW-COMPLEXITY ALGORITHM DESIGN

This section studies the joint design of the transceiver and
the RIS reflector to realize achievable rate maximization of
the considered system. To this end, first we reformulate the
original problem design and transform the rate maximiza-
tion problem into the WMMSE problem. Then, we propose
efficient algorithms to iteratively and alternatively solve the
optimization variables. The objective value will be improved
after each iteration step, and finally converges.
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A. Problem Reformulation

In the sequel, we resort to the classic relationship between
the achievable rate and the MSE to reformulate problem P .
In particular, the MSE matrix of the received signal after
combining is calculated as

E=E
{
(s− y)(s− y)H

}
=
(
INs −WH

d HeqWs

)(
INs −WH

d HeqWs

)H

+ σ2WH
d Wd,

(5)

Considering that the optimal solution to Wd is the well-known
MMSE combiner:

Wd =
(
σ2INr

+HeqWsW
H
s HH

eq

)−1
HeqWs. (6)

By substituting (6) into (5), it yields

E = INs
−WH

s HH
eq

(
σ2INr

+HeqWsW
H
s HH

eq

)−1
HeqWs.

(7)
To proceed further, we invoke the following lemma to convert
the original sophisticated optimization problem into an easier
one.

Lemma 1: By introducing an auxiliary weight matrix W ⪰
0, the original problem (P) is equivalent to

(P1) min
Ws,Wd,W,Θ

tr{WE} − log2|W|

s.t. (4b)− (4d). (8)

Proof: See Appendix A.
Note that while more optimization variables are introduced

in problem (P1) compared to the original problem (P), i.e.,
W, the reformulated problem (P1) is in a more tractable
form. More specifically, for a given RIS reflection matrix Θ,
(P1) is convex with regard to the other optimization variables.
Consequently, we can solve the problem (P1) in a more
effective way by using the alternating optimization approach.

To this end, we first derive the optimal solution for W when
the other optimization variables are fixed. In that case, problem
(P1) is reformulated as an unconstrained problem in terms of
W. Then by utilizing the KKT condition, the optimal W is
give by

W = E−1. (9)

When W is fixed, the optimization problem (P1) becomes
the weighted MMSE problem which is more tractable than
the original rate maximization problem. For the remainder of
this section, we first pay attention to the optimization of Ws

and Wd with fixed Θ, and then focus on the optimization of
Θ with fixed Ws and Wd.

B. Optimal Transceiver Design

Next, we first deal with the optimization of the precoder Ws

and then on the combiner Wd while fixing Θ. In particular,
the corresponding problem with respect to Ws is written as

min
Ws

WMSE1

s.t. (4b), (10)

where

WMSE1=tr{WE}

=tr
{
σ2WWd

HWd

}
−2Re

{
tr
{
WWs

HHH
eqWd

}}
+ tr {W}+ tr

{
WWd

HHeqWsWs
HHH

eqWd

}
.

Note that (10) is convex with regard to Ws, we first derive
its Lagrangian function:

L(Ws, µ) = WMSE + µ
(
tr
{
WsW

H
s

}
− P

)
, (11)

with µ ≥ 0 being the Lagrangian multiplier associated with
(10). We then differentiate (11) with respect to Ws, which
yields

∂L(Ws, µ)

∂Ws
= HH

eqWdWWd
HHeqWs−HH

eqWdW+µWs.

(12)
Finally the optimal Ws is obtained by solving ∂L(Ws,µ)

∂Ws
= 0,

whose solution is

Ws =
(
HH

eqWdWWH
d Heq + µINt

)−1
HH

eqWdW, (13)

and µ is chosen to satisfy the power constraint. Specifi-
cally, let Ws(µ) denote the right-side hand of (13). When
HH

eqWdWWH
d Heq is invertible and tr

(
Ws(0)Ws(0)

H
)
≤

P , then Ws = Ws(0), otherwise we must have

tr
{
Ws(µ)Ws(µ)

H
}
= P, (14)

which can be written as

tr{(Λ+ µINt
)−2Φ} = P, (15)

where UΛUH is the eigendecomposition of
HH

eqWdWWH
d Heq, and Φ = UHHH

eqWdW
2WH

d HeqU.
Therefore, (15) is rewritten as

Nt∑
i=1

Φi,i

(Λi,i + µ)2
= P, (16)

where Φi,i and Λi,i are respectively the ith diagonal element
of Φ and Λ.

Obviously, the left-side hand of (16) is monotonically
decreasing with respect to µ. Recall that µ ≥ 0, hence, we can
easily get the optimal µ by using bisection method. Finally,
by substituting the optimal µ to (13), the closed-form solution
to Ws is obtained directly.

Analogously, it can also be proven that the MMSE solution
given in (6) is exactly the optimal solution to Wd. Now that
we have completed the optimization of Ws and Wd, then we
focus on problem (P1) for the optimization with respect to Θ.

C. Design of the RIS Reflection Matrix

Now we turn again our attention on the unfinished task of
problem (P1) with given Ws and Wd. For the purpose of
clarity in our presentation, we first define G ≜ WH

d G, yR ≜
HWss, Hd ≜ WH

d HdWs, and n ≜ WH
d n. Accordingly, the

signal model in (2) is recast as

y = GΘyR +Hds+ n. (17)
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By fixing the other optimization variables and substituting
(17) into the corresponding objective of (P1), the univariate
optimization problem only with respect to Θ is obtained as
follows

min
Θ

WMSE2

s.t. (4c), (4d), (18)

with

WMSE2 = E
{∥∥∥W1/2

(
s−GΘyR −Hds− n

)∥∥∥2
2

}
= −2Re

{
tr
{(

I−Hd

)
RxΘ

HG
H
W

}}
+ tr

{
GΘRyΘ

HG
H
W

}
+tr

{
HdH

H

d W
}

− 2Re
{

tr
{
H

H

d W
}}

+ tr {W}+ tr
{
σ2WH

d WdW
}
,

where Rx ≜ E
{
syH

R

}
= WH

s HH and Ry ≜ E
{
yRy

H
R

}
=

HWsW
H
s HH .

In order to facilitate the mathematical tractability, we further
define Wx ≜

(
I−Hd

)
RxR

−1
y , it yields(

I−Hd

)
RxΘ

HG
H
W = WxRyΘ

HG
H
W. (19)

Then by introducing a constant term tr
{
WxRyW

H
x W

}
, we

can reformulate into WMSE2 as follows

WMSE2 = −2Re
{

tr
{
WxRyΘ

HG
H
W

}}
+ tr {W}

+ tr
{
GΘRyΘ

HG
H
W

}
+ tr

{
WxRyW

H
x W

}
+ tr

{
HdH

H

d W
}
− tr

{
WxRyW

H
x W

}
− 2Re

{
tr
{
H

H

d W
}}

+ tr
(
σ2WH

d WdW
)

=
∥∥∥W1/2WxR

1/2
y −W1/2GΘR1/2

y

∥∥∥2
F
+ c, (20)

where c is a constant that includes the extraneous terms from
the first equation. After securely omitting this constant term,
the WMMSE-based RIS design for (18) with given Ws and
Wd can be equivalently obtained by solving

min
Θ

∥∥∥W1/2WxR
1/2
y −W1/2G

H
ΘR1/2

y

∥∥∥2
F

s.t. (4c), (4d), (21)

where 
Wx ≜

(
I−Hd

)
E
{
syH

R

}
E
{
yRy

H
R

}−1

=
(
I−Hd

)
H

H
(
HH

H
)−1

,

Ry ≜ E
{
yRy

H
R

}
= HH

H
,

with H ≜ HWs.

To proceed further, we then convert the matrix operation
in (21) to the equivalent vector operation and eliminate the
diagonal constraint (4c) by utilizing the property of Kronecker
product. Accordingly, (21) can be rewritten as

min
Θ

∥ar−Avec (Θ)∥22
s.t. (4c), (4d), (22)

where  ar
∆
= vec

(
W1/2WxR

1/2
y

)
,

A
∆
= R

1/2
y ⊗

(
W1/2G

H
)
.

Next, we extract the non-zero elements of vec (Θ) to remove
the diagonal constraint in (22) according to the following
lemma.

Lemma 2: For N = [n1,n2, · · · ,nN ] ∈ CM×N and r =
[r1, r2, · · · , rN ]

T ∈ CN×1. If ri = 0, then we have

Nr = N̂r̂, (23)

in which N̂ = [n1, · · · ,ni−1,ni+1, · · · ,nN ] ∈ CM×(N−1)

and r̂ = [r1, · · · , ri−1, ri+1, · · · , rN ]
T ∈ C(N−1)×1.

Proof: This can be easily proven according to the basic
matrix multiplications.

By applying Lemma 2, we obtain the following equation

Avec (Θ) = Arθ, (24)

in which Ar can be produced by eliminating the associated
columns from A, i.e., Ar = [a1,aN+2, · · · ,aN2 ], and ai
denotes the ith column of A. Mathetically, Ar can be defined
as

Ar = [r1 ⊗ g1, r2 ⊗ g2, · · · , rN ⊗ gN ] , (25)

where rn and gn denote the nth column of R
1/2
y and

W1/2G
H

, respectively, ∀n ∈ {1, 2, · · · , N}.

Plugging (24) into (22), it is reduced to

min
θ

∥ar−Arθ∥22
s.t. (4d). (26)

Mathematically, by elaborating the objective function of prob-
lem (26), (26) is equivalent to:

min
θ

aHr ar + θHAH
r Arθ − 2Re

{
θHAH

r ar
}

s.t. (4d). (27)

Up to now, while the alternative problem formulation in (27) is
yet non-convex, it is easier to be handled by existing optimiza-
tion tools after a series of mathematical transformations. For
the remainder of this subsection, two computationally efficient
methods are advocated to tackle (27).

1) Semi-Definite Relaxation: Problem (27) is a standard
QCQP with unit-modulus constraints, which can be reformu-
lated as

min
θ

θ
H
Rrθ

s.t. |θn| = 1,∀n ∈ {1, 2, · · · , N + 1}, (28)

where

Rr =

[
AH

r Ar AH
r ar

aHr Ar aHr ar

]
,θ =

[
θ
1

]
. (29)
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Define Θ ≜ θθ
H

, problem (32) is equivalent to

min
Θ⪰0

tr{ΘRr}

s.t. Θn,n = 1,∀n ∈ {1, 2, · · · , N + 1}
rank(Θ) = 1. (30)

Considering that the above rank-one constraint is non-convex,
we temporarily relax it by utilizing SDR technique, which
yields

min
Θ

tr{ΘRr}

s.t. Θn,n = 1,∀n ∈ {1, 2, · · · , N + 1}
Θ ⪰ 0. (31)

Obviously, (31) is a semi-definite programming (SDP) prob-
lem and hence can be tackled effortlessly by CVX. Moreover,
to recover the rank-one θ from the higher-rank Θ, Gaussian
randomization is recommended, the details of which have been
investigated in [29] and hence ignored here. However, it is
noted that if the Gaussian randomization trials are not suffi-
cient, the optimality of Θ would no longer exist and thus the
proposed algorithm would not converge. Hence, to guarantee
its convergence, a large number of random trials are required,
causing extremely high computational complexity. To address
this issue, we then advocate another computationally-efficient
method.

2) Sequence of Closed Forms: The SCF method solves
a difficult non-convex optimization problem with constant-
modulus constraint by tackling a series of convex equality
constrained QP problems instead. Specifically, each of the
subproblem turns out to have a closed form solution and the
constant-modulus is satisfied upon convergence [30].

For complex-valued problem (27), its equivalent real-valued
problem is formulated as follows:

min
u

uTPu− tTu− uT t+ r

s.t. u2n + u2n+N = 1, ∀n ∈ {1, 2, · · · , N} (32)

where r ≜ aHr ar, u ≜
[
Re{θ}T , Im{θ}T

]T
, ul is the lth

element of u, and

P≜

[
Re{AH

r Ar} −Im{AH
r Ar}

Im{AH
r Ar} Re{AH

r Ar}

]
, t≜

[
Re{AH

r ar}
Im{AH

r ar}

]
.

Define

R ≜

[
P −t
−tT r

]
,x ≜

[
u
1

]
=

 Re{θ}
Im{θ}
1

 ,
then the objective of (32)is reexpressed as

uTPu− tTu− uT t+ r = xTRx. (33)

By substituting (33), (32) can be equivalently written as

min
x

xT (R+ λI2N+1)x

s.t. xTEnx = 1, ∀n ∈ {1, 2, · · · , N + 1} (34)

where λ > 0 is a auxiliary variable and En is a (2N + 1)×

(2N + 1) matrix which is defined as

En(m, l) =


1 if m = l = n, n ≤ N,
1 if m = n, l = n+N,n ≤ N,
1 if m = l = 2N + 1, n = N + 1,
0 Otherwise.

Note that since (34) enforces xTEnx = 1, ∀n ∈
{1, 2, · · · , N + 1}, then we have λxTx = λ(N + 1). Con-
sequently, the optimal solution to (34) and that to (27) (the
complex version of (32)) are completely identical for any
λ ≥ 0.

Next, we focus on the relaxation of the unit-modulus
constraint of (34). Consider the following sequences of con-
straints:

B(i)x = 1, (35)

with

B(i)(m, l)=


cos

(
arg

(
θ
(i−1)
n

))
if m = l = n, n ≤ N,

sin
(
arg

(
θ
(i−1)
n

))
if m = n, l = n+N,n ≤ N,

1 if m = N + n, l = 2N + 1,
0 Otherwise.

(36)
where θ(i−1)

n = x
(i−1)
n + jx

(i−1)
n+N with x

(i−1)
n being the nth

element of x obtained in the (i− 1)th iteration.
Replacing the unit-modulus constraint in (34) by (35), we

obtain the subsequent sequence of QPs subject to equality
constraints

(QP(i)) min
x

xT (R+ λI2N+1)x

s.t. B(i)x = 1, (37)

whose optimal solution is easily acquired by its optimality
condition according to [31]:

x(i) = R
−1

B(i)T
(
B(i)R

−1
B(i)T

)−1

1, (38)

where R = 2(R+ λI2N+1).
Specifically, while the problem (QP(i)) does not lead to

a unit-modulus solution, a series of (QP(i)) generates a
sequence of non-increasing objective values. Furthermore, the
converged solution is guaranteed to satisfy the unit modulus. In
other words, the affine constraint (35) is adjusted to satisfy the
unit-modulus constraint. To explain this, let θ(i) be the com-
plex version of x(i), i.e., x(i) =

[
Re{θ(i)}T , Im{θ(i)}T , 1

]T
.

If θ(i) satisfies the unit-modulus constraint, then we have
θ(i) = θ(i−1), where θ(i−1) denotes the unit-modulus version
of θ(i−1) with θ(i−1) = eȷarg(θ(i−1)). Then we get B(i+1) =

B(i), which indicates that the constraint of problem (QP(i+1))
is the same as that of (QP(i)). Consequently, θ(i+1) = θ(i)

is obtained, the iteration converges. Otherwise, the constraint
will be continuously updated according to (35). Together, the
convergence is then guaranteed by the following lemma.

Lemma 3: The objective function value of the sequence of
(27) with respect to θ(i) is non-increasing in i when λ ≥
N
8 λmax(A

H
r Ar) + ∥AH

r ar∥2. Moreover, upon convergence,
unit modulus is guaranteed and the unit-modulus solution
satisfies the KKT conditions of problem (27).

Proof: See Appendix B.
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Algorithm 1 SDR-based Capacity Maximization Algorithm

1: Let t = 0 and initialize θ(t), W
(t)
s . Let Θ(t) =

diag
(
θ(t)

)
,H

(t)
eq ≜ GHΘ(t)H+Hd.

2: repeat
3: t← t+ 1
4: Calculate W

(t)
d according to (6);

5: Calculate W(t) according to (9);
6: Calculate W

(t)
s according to (13);

7: Solve (31) using CVX optimization tool box, and apply
Gaussian randomization to obtain θ(t).

8: Θ(t) = diag
(
θ(t)

)
;

9: H
(t)
eq ≜ GHΘ(t)H+Hd;

10: until convergence
11: W = W(t),Ws = W

(t)
s ,Wd = W

(t)
d ,Θ = Θ(t).

D. Computational Complexity

Up to now we have finished the optimizations of
W,Ws,Wd, and Θ in Section III, our two proposed achiev-
able rate maximization algorithms for the considered system
are respectively summarized in Algorithms 1 and 2, where we
initialize Ws by the singular value decomposition of the ef-
fective channel, i.e., Heq. As shown, the optimization variables
are iteratively and alternatively obtained until convergence.
On the one hand, both the SDR-based and the SCF-based
approaches increase the capacity after each iteration. One
the other hand, the achievable rate has been upper-bounded
within the feasible set of (4b)-(4d), as a result it will not grow
infinitely. Together, the convergence of both Algorithm 1 and
Algorithm 2 are guaranteed.

The associated complexity of the two proposed algorithms
mainly hinges on two parameters, i.e., the number of external
iterations, say T , and the complexity required to obtain each
variable.

As for Algorithm 1, the optimization of Θ is based on SDR
with Gaussian randomization, whose computational complex-
ity is of O(N3.5) + O(LN2), with L being the number of
randomization trials. To sum up, the complexity of Algorithm
1 can be evaluated as

O
(
T (N3

t +N3.5 + LN2)
)
. (39)

A similar analysis applies to Algorithm 2, except that
the computational complexity of requiring the optimal RIS
reflection matrix is O(IN2.373) where I is the number of
SCF iterations. Analogously, the complexity of Algorithm 2
is calculated as

O
(
T (N3

t + IN2.373 +N2Nr)
)
. (40)

Generally, the number of Gaussian randomization trials L is
far greater than the number of RIS reflecting elements and
the number of SCF iterations, i.e., L >> N,L >> I , thus,
the SCF-based method, or Algorithm 2 exhibits significantly
reduced complexity in contrast to Algorithm 1.

E. Convergence and Optimality Analysis
Denote the objective function of (P1) by

f (Wd,W,Ws,Θ). First, it is obvious that the global

Algorithm 2 SCF-based Capacity Maximization Algorithm

1: Let t = 0 and initialize θ(t), W
(t)
s . Let Θ(t) =

diag
(
θ(t)

)
,H

(t)
eq ≜ GHΘ(t)H+Hd.

2: repeat
3: t← t+ 1
4: Calculate W

(t)
d according to (6);

5: Calculate W(t) according to (9);
6: Calculate W

(t)
s according to (13);

7: i = 0,θi = θ(t−1),θi = eȷarg(θi);
8: while (|h(θi)− h(θi−1)| ≥ ϵ do
9: i← i+ 1;

10: Calculate B(i) according to (36);

11: x(i) = R
−1

B(i)T
(
B(i)R

−1
B(i)T

)−1

1;

12: θi =
[
x(i)

]
(1:N)

+ ȷ
[
x(i)

]
(N+1:2N)

;

13: θi = eȷarg{θi};
14: end while
15: θ(t) = θi;
16: Θ(t) = diag

(
θ(t)

)
;

17: H
(t)
eq ≜ GHΘ(t)H+Hd.

18: until convergence
19: W = W(t),Ws = W

(t)
s ,Wd = W

(t)
d ,Θ = Θ(t).

optimality of Wd,W, and Ws can be guaranteed according
to (6), (9) and (13). Besides, the local optimality of Θ
in Algorithm 2 has been proven in Lemma 2. According
to [18], with a sufficiently large number of randomization
trials, π

4 -approximation of the optimal Θ is guaranteed for
SDR-based Algorithm 1. As a result, both Algorithm 1 and
Algorithm 2 monotonically decrease the WMSE value after
each iteration, which gives

f
(
W

(t−1)
d ,W(t−1),W(t−1)

s ,Θ(t−1)
)

≥ f
(
W

(t)
d ,W(t−1),W(t−1)

s ,Θ(t−1)
)

≥ f
(
W

(t)
d ,W(t),W(t−1)

s ,Θ(t−1)
)

≥ f
(
W

(t)
d ,W(t),W(t)

s ,Θ(t−1)
)
≥f

(
W

(t)
d ,W(t),W(t)

s ,Θ(t)
)
.

(41)

Furthermore, f
(
W

(t)
d ,W(t),W

(t)
s ,Θ(t)

)
can not decrease

indefinitely since it is lower-bounded by zero. Hence, Algo-
rithm 1 and Algorithm 2 always converge.

On the other hand, considering the optimality analysis, due
to the existence of Gaussian randomization, no optimality
claim can be made to Algorithm 1. So we only focus on the
optimality analysis of Algorithm 2 based on the convergence
analysis above.

To begin with, we rewrite problem (P1) as the following
equivalent form

(P2) min
Ws,Wd,W,x

tr{WE} − log2|W|+ λxxT (42a)

s.t. (4b), (42b)

xTEnx = 1, ∀n ∈ {1, 2, · · · , N + 1} (42c)
Θ = diag (x+ ȷx) . (42d)

Note that problem (P2) is absolutely equivalent to problem
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(P1) since we only convert the complex-valued optimization
variable θ into its real-valued version x, and add a constant
term λxxT = λ(N + 1). Moreover, building upon the
derivations in Section III-A, it is known that problem (P)
and problem (P1) are equivalent in the sense that the global
optimal solutions of Ws and Θ for the two problems hold the
same. Hence, problem (P2) is also equivalent to (P). As such,
we present the optimality analysis of Algorithm 2 by analyzing
the first-order necessary conditions of problem (P2).

Proposition 1: As the increasing of the iteration t, Algorithm
2 is guaranteed to converge to a KKT point of problem (P1).
In other words, the proposed Algorithm 2 is KKT optimal.

Proof: Since the diagonal constraint in (42d) is naturally
satisfied at the reformulation of the problem by utilizing
Lemma 1, we just consider the transmit power constraint (42b)
and the unit-modulus constraint (42c). The KKT conditions of
problem (P2) are expressed as follows

HH
eqWdWWd

HHeqWs −HH
eqWdW + µWs = 0,

2(R+ λI2N+1)x+
N+1∑
n=1

2ηnEnx = 0,

xTEnx = 1. n ∈ {1, 2, · · · , N + 1} (43)

Suppose that the sequence of variables{
W

(t)
d ,W(t),W

(t)
s ,Θ(t)

}
converges at the tth iteration.

Evidently, the first equation can be guaranteed for W(t) with
the global optimality of Ws. Besides, by following similar
derivations as (65)-(72) in the Appendix, the last equations
can also be verified for x(t). Recall that problem (P2) is
equivalent to problem (P1), it can then be concluded that the
final converged solution generated by Algorithm 2 meets the
first-order optimality conditions of problem (P1).

IV. SIMULATION RESULTS

In this section, numerical results are demonstrated to show
the efficiency of our proposed algorithms, which solved the
joint transceiver and reflecting beamforming design for the
point-to-point MIMO system assisted by RIS. The error toler-
ance factor are chosen as 10−4 to guarantee the convergence
rate of the proposed algorithms.

A uniform rectangular array (URA) of size N = NxNy

is assumed for the RIS, where Nx and Ny stand for the
number of reflecting elements in the horizontal and vertical
directions, respectively. For both the BS and the UE, we
consider a uniform linear array (ULA). For all the channels
involved, including H, G, and Hd, the mmWave model is
employed. For the purpose of precisely modeling the high-
frequency characteristics, the well-known Saleh-Valenzuela
model is adopted [32], [33]. Take the channel from BS to
the RIS, i.e., H, as an example, it is given by

H =

√
NtN

NclNp

∑
iℓ

αI
ilaI (ϕ

a
il, ϕ

e
il)at

(
ϕtil

)H
, (44)

where Ncl denotes the total amount of scatters, and each
of which has Np propagation paths. Here for simplicity we
assume that each individual channel has the same number of

scatters and paths, i.e., Ncl = 8 and Np = 10. αil ∼ CN (0, 1)
is the complex Gaussian gain corresponds to the (i, l)th link,
i.e., the lth path in the ith scatter. Besides, ϕail and ϕeil are
respectively the azimuth and elevation angles of arrival (AOA)
at the RIS, and ϕtil denotes the angle of departure (AOD)
at the BS. As for ar(ϕ

a
il, ϕ

e
il) and at(ϕ

t
il), they represent

the corresponding array response vector for the URA and
the ULA, respectively. Specifically, the expression of ULA
is given by

at(ϕt)=
1√
Nt

[
1, e−j 2πd

L sin(ϕt), . . . , e−j(Nt−1) 2πd
L sin(ϕt)

]T
,

(45)
in which L refers to the signal wavelength, and d is the nor-
malized antenna spacing. As for the UPA, the array response
vector aI(ϕ

a
I , ϕ

e
I ) is given by [18]

aI(ϕ
a
I , ϕ

e
I ) = aaI (ϕ

a
I )⊗ aeI (ϕ

e
I ), (46)

with aaI (ϕ
a
I ) ∈ CNx×1 and aeI (ϕ

e
I ) ∈ CNy×1 defined in the

same manner as at(ϕt).
As for the direct channel from the BS to the UE, it can be

written as

Hd =

√
NtNr

NclNp

Ncl∑
i=1

Np∑
l=1

αd
ilar (ϑ

r
il)at

(
υtil

)H
, (47)

where αd
il ∼ CN (0, 1) is the corresponding path gain of the

(i, l)th link. ar (ϑ
r
il) and at (φ

t
il) represent the receive and

transmit array response vectors corresponding to the (i, l)th
path, respectively, with ϑril(φ

t
il) being the AoA/AoD. The

array response vector corresponds to the ULA at the UE is
in the same way as that modeled in (45). Analogously, we
denote the UE-RIS channel by

G =

√
NNr

NclNp

Ncl∑
i=1

Np∑
l=1

βilaI(ψ
a
il, ψ

e
il)aU(υ

r
il)

H
, (48)

where αr
il ∼ CN (0, 1) is the corresponding complex Gaussian

gain of the (i, l)th path. ψa
il and ψe

il are the azimuth and
elevation AOAs at the RIS, while υril denotes the AOD at
the UE, respectively.

We first test the convergence behavior of Algorithm 1 and
Algorithm 2 for different system setups. It is observed that
both Algorithm 1 and Algorithm 2 converge monotonically,
which verifies Proposition 1. Although as the number of the
reflecting elements N grows the convergence speed becomes
slower, the average number of external iterations needed to
achieve a relatively good performance is only within 100
times even for a large N , i.e., N = 256. Note that while
the two algorithms seem to overlap, this does not mean they
enjoy the same convergence rate. This only indicates that
the number of outer iterations the two algorithms need is
similar, and is reasonable since the speed of outer iteration
depends on all the four variables, three of which are the
same for the two algorithms. As previously stated, the SDR
method involves extremely high computational complexity due
to a large number of randomization trials while the SCF
method enjoys a much lower complexity. Therefore, the time
to obtain the optimal θ for the two methods are totally
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Fig. 2. Convergence behavior of Algorithm 1 and Algorithm
2.
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Fig. 3. Achievable rate performance of different schemes
versus SNR.

different. In other words, while Algorithm 1 and Algorithm
2 have similar number of outer iterations, the convergence
time for each iteration is different and thus Algorithm 2 still
converges faster and has lower computational complexity than
Algorithm 1. In other words, Algorithm 2 is capable of striking
a satisfactory balance between the system performance and the
computational complexity.

We compare the proposed Algorithm 1 and Algorithm 2
with the following baseline schemes:

• Without RIS: Set Heq = Hd, calculate Ws according to
(13).

• Random RIS: Randomly generate RIS phase shift and set
Heq, calculate (13) according to (13).

• Benchmark 1: An element-wise locally optimal algorithm
proposed in [23].

• Benchmark 2: A low-complexity sum-path-gain maxi-
mization algorithm proposed in [24].
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Fig. 4. NMSE performance versus SNR.

In Fig. 3 the achievable rate of different schemes as a
function of signal-to-noise ratio (SNR) is illustrated. The
related parameters are set as Nt = 16, Nr = 16, Ns = 16,
and N = 120. First, it can be seen clearly from that all
the schemes with RIS outperform that without RIS, even the
random RIS beamformig design is much better than the no-RIS
case. This is understandable because the channel total gain is
significantly improved through RIS, which will be certificated
later. Second, the optimized RIS designs, i.e., Benchmark 1,
Benchmark 2, Algorithm 1 and Algorithm 2, outperform the
random RIS design. Moreover, our proposed algorithms enjoy
better performance than Benchmark 1 and Benchmark 2 in all
SNRs. This can be illustrated by two reasons. On the one hand,
the reformulated problem is equivalent to the original capacity
maximization problem in our paper, while in Benchmark 1
and Benchmark 2, the corresponding reformulation is just an
approximation on the high SNR region. The two benchmarks
perform worse than our proposed algorithms even in high
SNR region. On the other hand, our paper has theoretically
proven the first-order optimality of our proposed algorithm
while Benchmark 1 and Benchmark 2 not. To sum up, our
proposed algorithms can better reconfigure the equivalent
MIMO channel for transmission by properly adjusting the RIS
reflection.

NMSE is another important optimization objective for mas-
sive MIMO design problems apart from rate. Fig. 4 illustrates
the NMSE curves of various benchmark schemes as a function
of SNR. The related parameters used in Fig. 3 are identical
to that in Fig. 2. Similar trends can be observed as in Fig. 2
that the two proposed algorithms achieve lower NMSE than
other benchmarks, which demonstrates the effectiveness of our
proposed algorithms. Besides, it is noted that set the weight
matrix W = INs

will result in the generalized minimum mean
squared error design.

We show in Fig. 5 the achievable rate with regard to the
number of RIS reflecting elements N at 0dB with Nt =
4, Nr = 4. The figure shows that the superiority achieved by
the proposed designs in comparison to other baseline schemes
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Fig. 5. Achievable rate versus the number of reflecting ele-
ments.
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gradually increases with a growing number of N . This is
because the joint transceiver and RIS reflector design gains
enhanced flexibility in leveraging the spatial degrees of free-
dom (DoF) introduced by the RIS as N grows, highlighting
the advantages of a well-thought-out RIS design strategy.

In Fig. 6, the channel total power is plotted as a function of
the number of RIS reflecting elements N with Nt = 4, Nr = 4
and SNR= 20dB. It is observed that by deploying and optimiz-
ing RIS, the power of the channel is greatly improved. Besides,
it is not surprised that Benchmark 1 and Benchmark 2, whose
optimization objective are exactly the maximization of channel
total power ∥Heq∥2F beat the other schemes. Furthermore, the
channel total powers between the proposed algorithms and
the two benchmarks is indistinguishable. On the one hand,
it illustrates that the proposed algorithms enjoy a satisfactory
performance in terms of the channel energy improvement. On
the other hand, it also verifies the feasibility of substituting
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the channel total power as one alternative design objective in
high-SNR region.

Fig. 7 compares the rate performance of different schemes
for different number of transmit antennas Nt with Nr =
8, N = 64 and SNR= 0dB. It can be observed clearly that
when the number of transmit antennas increases, the perfor-
mance of all schemes improves. This is expected since the
transmit beamforming gain increases as the number of transmit
antennas increases. Compared with Fig. 5, it is also observed
that the rate improvement caused by increasing the number
of transmit antennas is minor compared with increasing the
number of reflecting elements. Hence, it is more suggested
to deploy RIS to assist the MIMO channel communication
performance as an energy-efficient substitute of antenna.

Fig. 8 plots the achievable rate comparison of various
methods as a function of the number transmit streams Ns with
Nt = 16, Nr = 16, N = 120 and SNR= −10dB. It can be
clearly found that system performance improves as the number
of transmit streams Ns grows at first, but when Ns is larger
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Fig. 10. Rate comparison for Algorithm 2 and its quantized
version.

enough, the system performance will saturate. Furthermore,
the figure also shows that the performance gap between the
proposed algorithms and other RIS design schemes increases
as the number of transmit streams increases. This is because
when the communication demand is not strong, i.e., Ns is
small, the performances gain of the two benchmarks are
enough to support the communication requirement, while
when the communication demand is intense, the proposed
designs that can better extract the DoF promised by RIS are
recommended.

Considering the high hardware cost and limited manufactur-
ing capabilities, RIS employs discrete reflections rather than
continuous ones in practical systems2. Therefore, to assess the

2Another effective solution to the hardware cost and energy consumption
of massive MIMO is hybrid precoding technique. One efficient way to com-
bine RIS and hybrid precoding is approximating the optimal unconstrained
transceiver obtained from the proposed algorithms by using the principle of
basis pursuit as in [32].
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Fig. 11. NMSE comparison for Algorithm 1 and its quantized
version.
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effectiveness of our proposed algorithms under these circum-
stances, we quantize each continuous reflection coefficient to
its closest discrete value according to the nearest Euclidean
distance. Consequently, the resulting reflection coefficient is
θ̂ = ej

2πm̂

2B , with B being the quantization precision and

m̂ = arg min
m∈{0,1,··· ,2B−1}

∣∣∣∣φ− 2πm

2B

∣∣∣∣ , (49)

with φ being the optimal continuous reflection coefficient
calculated in Section III-C.

Next, we show the effect of quantized RIS phase for the
proposed algorithms in terms of both rate and NMSE in
Fig 9–Fig. 12. The related system parameters are set as
Nt = Nr = 16 and N = 120. For both Algorithm 1
and Algorithm 2, the system rate increases and the NMSE
decreases when the quantization precision bit B increases.
Furthermore, the proposed algorithms achieve significant per-
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formance gain compared with the two benchmarks even with
severe hardware impairments, i.e., B = 2, which validates
its effectiveness. Moreover, it can be observed that 1 bits of
quantization precision is enough at high SNR-regime, which
indicates that the quantization precision of RIS should be
properly chosen according to the specific system parameters to
realize a satisfactory balance between the system performance
and the hardware implementation since the power consumption
and cost of RIS increase with quantization level growth.

V. CONCLUSION

In this paper, joint transceiver and reflection optimization
for a RIS-assisted massive MIMO system is investigated.
Specifically, we jointly optimize the transmit precoding matrix
at the BS, the receive combining matrix at the UE, and the
reflection matrix at the RIS to maximize the achievable rate. In
order to facilitate the mathematical tractability, the non-trivial
achievable rate maximization problem was first reformulated
into a comparable one, i.e., weighted mean squared error
minimization problem. By utilizing the alternating optimiza-
tion technique, the optimal transmit precoding matrix and the
receive combining matrix were derived in closed forms, and
two computationally efficient methods were advocated for the
nonconvex RIS reflection optimization problem based on SDR
and SCF methods, respectively. The convergence is guaranteed
for both SDR-based and SCF-based algorithms. In particular,
the SCF-based algorithm is proven to converge to a KKT point
of the weighted mean squared error minimization problem.
Numerical simulation results validate the superior performance
of our proposed algorithms in terms of the achievable rate, the
NMSE, and the channel total power.

APPENDIX A
PROOF OF LEMMA 1

Denote Wd = C−1HeqWs where C ≜ σ2INr +
HeqWsW

H
s HH

eq . Then by substituting this into (3), we have

R = log2

(∣∣∣∣INs
+

1

σ2

(
WH

s HH
eqC

−1C−1HeqWs

)−1

×WH
s HH

eqC
−1HeqWsW

H
s HH

eqC
−1HeqWs

∣∣)
(a)
= log2

(∣∣∣∣INs
+

1

σ2
QV−1QH

∣∣∣∣) , (50)

where (a) utilizes log2|I + AB| = log2|I + BA|, and Q ≜
WH

s HH
eqC

−1HeqWs,V ≜ WH
s HH

eqC
−2HeqWs.

Besides, it is not difficult to obtain the following relationship

QHQ = WH
s HH

eqC
−1HeqWsW

H
s HH

eqC
−1HeqWs

= WH
s HH

eqC
−1(C− σ2INr )C

−1HeqWs

= WH
s HH

eqC
−1HeqWs − σ2WH

s HH
eqC

−2HeqWs

= Q− σ2V. (51)

According to (51), we have V = Q−QHQ
σ2 . By plugging

this into (50), it yields

R = log2
(∣∣∣INs

+Q
(
Q−QHQ

)−1
QH

∣∣∣)
(a)
= log2

(∣∣∣(INs
−QH

)−1
∣∣∣)

= log2
∣∣E−1

∣∣ , (52)

where (a) is obtained by using the matrix inversion lemma.
Equipped with (52), Lemma 1 is then proven by following

similar derivations as in [34].

APPENDIX B
PROOF OF LEMMA 2

Denote the objective function and feasible set of
(QP(i)) by q(x(i)) and Fi−1, respectively. Let x(i−1) =[
Re{θ(i−1)}T , Im{θ(i−1)}T , 1

]T
. Since problem (QP(i)) is

convex and x(i−1) ∈ Fi, then we have

q(x(i−1)) ≥ q(x(i)). (53)

Define

t(θ) = θH
(
AH

r Ar + λI2N+1

)
θ−2Re

{
θHAH

r ar

}
+ aH

r ar + λ.

(54)
Since t(θ) can be regarded as the equivalent complex-

valued form of q(x), it is not difficult to obtain the following
relationship according to (53)

t(θ(i−1)) ≥ t(θ(i)). (55)

Recall that θ(i) is the unit-modulus version of θ(i), we can
decompose θ(i) as

θ(i) = θ(i) +Mθ(i), (56)

where M = diag[m1,m2, · · · ,mN ] and mn = |θ(i)n | − 1 ≥ 0

with θ
(i)
n being the nth element of θ(i). Here we utilize the

fact that |θ(i)n | ≥ 1,∀n ∈ {1, 2, · · · , N}. Then we have

t
(
θ(i)

)
− t

(
θ(i)

)
(a)
=2λθH

(i)Mθ(i)+θH
(i)

(
AH

r ArM+MAH
r Ar

)
θ(i)−θH

(i)MAH
r ar

+ θH
(i)M

(
AH

r Ar + λI2N+1

)
Mθ(i) − aHr ArMθ(i)

≥ 2λθH
(i)Mθ(i) + θH

(i)

(
AH

r ArM+MAH
r Ar

)
θ(i)

− aHr ArMθ(i) − θH
(i)MAH

r ar
(b)
= 2λ

∥∥Mθ(i)
∥∥
1
+ θH

(i)

(
AH

r ArM+MAH
r Ar

)
θ(i)

− aHr ArMθ(i) − θH
(i)MAH

r ar, (57)

where (a) holds since AH
r Ar + λI2N+1 is positive defi-

nite and (b) holds because θH
(i)Mθ(i) =

N∑
n=1

mn|θn(i)|2 =

N∑
n=1
|mnθn(i)| =

∥∥Mθ(i)
∥∥
1
. Based on [ [35], Theorem 7.5],

we further obtain

θH
(i)

(
AH

r ArM+MAH
r Ar

)
θ(i) ≥ −

N

4
λmax(A

H
r Ar)λmax(M)

(a)
= −N

4
λmax(A

H
r Ar)

∥∥Mθ(i)
∥∥
∞ , (58)
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where (a) is obtained by utilizing the fact that
∥∥Mθ(i)

∥∥
∞ =

maxn|mnθn(i)| = λmax(M). By substituting (58) into (57), it
yields

t
(
θ(i)

)
− t

(
θ(i)

)
≥ 2λ

∥∥Mθ(i)

∥∥
1
− N

4
λmax(A

H
r Ar)

∥∥Mθ(i)

∥∥
∞

− aH
r ArMθ(i) − θH

(i)MAH
r ar

≥ 2λ
∥∥Mθ(i)

∥∥
1
− N

4
λmax(A

H
r Ar)

∥∥Mθ(i)

∥∥
1

− aH
r ArMθ(i) − θH

(i)MAH
r ar

≥ 2λ
∥∥Mθ(i)

∥∥
1
−N

4
λmax(A

H
r Ar)

∥∥Mθ(i)

∥∥
1
−2

∥∥∥AH
r ar

∥∥∥
2

∥∥Mθ(i)

∥∥
2

≥ 2λ
∥∥Mθ(i)

∥∥
1
−

(
N

4
λmax(A

H
r Ar) + 2

∥∥∥AH
r ar

∥∥∥
2

)∥∥Mθ(i)

∥∥
1

≥ 0, (59)

where
∥∥Mθ(i)

∥∥
1
≥

∥∥Mθ(i)
∥∥
∞ ,

∥∥AH
r ar

∥∥
2

∥∥Mθ(i)
∥∥
2
≥

θH
(i)MAH

r ar,
∥∥Mθ(i)

∥∥
1

≥
∥∥Mθ(i)

∥∥
2

and λ ≥
N
8 λmax(A

H
r Ar) + ∥AH

r ar∥2 are respectively utilized in
deriving the last four inequalities.

Combining (59) and (55), it gives

t(θ(i−1)) ≥ t(θ(i)) (60)

Denote the objective function of (27) as h(θ). Since θH
(i)θ(i) =

θH
(i−1)θ(i−1) = N , it is easy to obtain

h(θ(i−1))− h(θ(i)) = t(θ(i−1))− t(θ(i)) ≥ 0. (61)

Consequently, the sequences {h(θ(i))}∞i=0 is non-increasing.
On the other hand, since the objective of (27) has a finite
lower bound, e.g., h(θ) ≥ 0. Therefore, it finally converges to
a finite value.

Assume that the SCF mathod converges at the Ith iteration,
then we prove that |θ(i)n | = 1,∀n ∈ {1, 2, · · · , N} holds when
i ≥ I . Obviously, we can obtain the following expression upon
convergence

h(θ(i−1))− h(θ(i)) = t(θ(i−1))− t(θ(i)) ≈ 0. (62)

Combining (59) and (57), it can be readily proven that

2λθH
(i)Mθ(i) + θH

(i)

(
AH

r ArM+MAH
r Ar

)
θ(i)

− aHr ArMθ(i) − θH
(i)MAH

r ar ≥ 0, (63)

when λ ≥ N
8 λmax(A

H
r Ar) + ∥AH

r ar∥2. Then we have

0 = t
(
θ(i)

)
− t

(
θ(i)

)
= 2λθH

(i)Mθ(i) + θH
(i)

(
AH

r ArM+MAH
r Ar

)
θ(i)

+ θH
(i)M

(
AH

r Ar+λI2N+1

)
Mθ(i)−aHr ArMθ(i)−θH

(i)MAH
r ar

(a)
≥ θH

(i)M
(
AH

r Ar + λI2N+1

)
Mθ(i)

≥ λθH
(i)M

2θ(i)

= λ
N∑

n=1

m2
n, (64)

where (a) is obtained by utilizing (63). Recall the definition
of θ(i) in (56), since λ ≥ 0, so (64) holds if and only if
M = 0, which further indicates that θ(i) satisfies the unit-

modulus constraint.
Considering the proof of the optimality condition for (27),

since (34) is the real-valued version of (27), it is sufficient to
prove that x(i) meets the KKT conditions for (27). The KKT
conditions for problem (34) are listed as follows

2(R+ λI2N+1)x+
N+1∑
n=1

2ηnEnx = 0,

xTEnx = 1, n ∈ {1, 2, · · · , N + 1} (65)

where η is the corresponding Lagrange multiplier of (34) and
ηn is the nth element of η.

Recall that x(i) is the global optimal solution for the convex
problem (QP(i)), it must satisfies the KKT conditions for
(QP(i)), which gives

2(R+ λI2N+1)x
(i) +B(i)Tη(i) = 0,

B(i)x(i) = 1, (66)

where η(i) is the Lagrange multiplier of (QP(i)).
The second equation in (66) yields

cos
(

arg
{
θ(i−1)
n

})
Re

{
θ(i)n

}
+

sin
(

arg
{
θ(i−1)
n

})
Im

{
θ(i)n

}
=1,∀n ∈ {1, 2, · · · , N} (67)

Since θ(i) is the unit-modulus solution, (67) is rewritten as

cos
(

arg
{
θ(i−1)
n

}
−arg

{
θ(i)n

})
= 1,∀n ∈ {1, 2, · · · , N} (68)

which indicates that

θ(i)n = earg{θ(i−1)
n }. ∀n ∈ {1, 2, · · · , N} (69)

Therefore, it is easy to obtain

Enx
(i) = b(i)

n , (70)

x(i)TEnx
(i) = 1, n ∈ {1, 2, · · · , N + 1} (71)

where b
(i)
n is the nth column of B(i)T .

Substituting (70) into (65), we have

2(R+ λI2N+1)x
(i) +

N+1∑
n=1

η(i)n Enx
(i) = 0,

x(i)TEnx
(i) = 1, n ∈ {1, 2, · · · , N + 1} (72)

where η(i)n is the nth element of η(i). Comparing (72) with
(65), it can be found that the converged solution to problem
QP(i), i.e., x(i) exactly satisfies the KKT conditions of
problem (34) with η = 1

2η
(i).

Together, Lemma 2 is proven that the SCF-based RIS
solution is able to converge to a KKT point of the optimization
problem (34).
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