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Abstract—The rapid development of the Large Language
Model (LLM) presents huge opportunities for 6G communica-
tions, e.g., network optimization and management by allowing
users to input task requirements to LLMs by nature language.
However, directly applying native LLMs in 6G encounters various
challenges, such as a lack of private communication data and
knowledge, limited logical reasoning, evaluation, and refinement
abilities. Integrating LLMs with the capabilities of retrieval,
planning, memory, evaluation and reflection in agents can greatly
enhance the potential of LLMs for 6G communications. To
this end, we propose a multi-agent system with customized
communication knowledge and tools for solving communication
related tasks using natural language, comprising three compo-
nents: (1) Multi-agent Data Retrieval (MDR), which employs
the condensate and inference agents to refine and summarize
communication knowledge from the knowledge base, expanding
the knowledge boundaries of LLMs in 6G communications;
(2) Multi-agent Collaborative Planning (MCP), which utilizes
multiple planning agents to generate feasible solutions for the
communication related task from different perspectives based
on the retrieved knowledge; (3) Multi-agent Evaluation and
Reflecxion (MER), which utilizes the evaluation agent to assess
the solutions, and applies the reflexion agent and refinement agent
to provide improvement suggestions for current solutions. Finally,
we validate the effectiveness of the proposed multi-agent system
by designing a semantic communication system, as a case study
of 6G communications.

Index Terms—Large language model, Multi-agent system,
Semantic communications, GPT, 6G communications.

I. INTRODUCTION

The future generation of wireless communication, e.g., 6G,
is anticipated to provide exceptional data rates, ultra-low
latency, and significantly enhanced capacity to accommodate a
massive number of user devices. To support the above vision,
several innovative techniques such as edge intelligence and
Semantic Communication (SC) have been proposed, where
Artificial Intelligence (AI)/Machine Learning (ML) has been
applied as a key enabling technology. However, the current
intelligent communication system design is mainly based on
the traditional AI/ML that can be seen as a discriminative AI
technique that faces the following challenges, when applied in
6G communications.

A. Challenges of discriminative AI for 6G

1) For dynamic environments: Future communication sys-
tems are expected to operate in rapidly changing environments,
due to a variety of factors, such as the movement of devices
and network traffic fluctuations. However, the traditional dis-
criminative AI/ML mainly relies on learning local features,

leading to trapping local extreme values or having difficulties
in learning the long-term dependency of the dynamic network
as well as achieving stable operation in a scalable way. Large
AI Models (LAMs), as state-of-the-art pretrained foundation
models, utilizing multi-head attention mechanisms with even
trillions of parameters, enable capturing of a large number of
features from a global perspective, which allows the system
to achieve a global optimal solution effectively, regardless of
how the system changes.

2) For heterogeneous devices: Future communication sys-
tems will support a variety of devices, e.g., Internet of Things
(IoT) or Unnamed Aerial Vehicles (UAVs), as well as pro-
vide various management strategies, like beamforming design,
user association, and edge resource allocation. However, the
traditional discriminative AI/ML is mainly based on learning
task specific features, e.g., only focusing on one type of task.
However, LAMs, on the other hand, trained on various types
of data and tasks, can be seen as universal models, allowing
the same trained model to address different kinds of tasks,
e.g., through prompting or fine-tuning processes.

3) For different applications: Future communication sys-
tems need to provide customized solutions for different appli-
cation scenarios, such as Virtual Reality (VR) and Augmented
Reality (AR). For example, in autonomous driving services,
the system requires extremely low latency and high reliability
transmission, whereas in IoT applications, it must support
a massive number of connections. Traditional discriminative
AI/ML consists of small models trained for specific appli-
cation scenarios, limiting them to those particular contexts.
In contrast, LAMs possess astounding understanding and
creativity and can comprehend and adapt to various application
scenarios, allowing them to provide personalized services for
different applications.

B. Opportunities of generative AI for 6G

LAMs offer an entirely new paradigm for solving the
above-mentioned challenges [1]. LAMs represent a significant
advancement in generative AI, leveraging their immense size,
extensive computational requirements, and vast amounts of
training data to achieve state-of-the-art performance in various
tasks. Their ability to understand intent and generate solutions
opens up new possibilities for improving a wide range of ap-
plications for 6G communications. LAMs have the potential to
revolutionize how we interact with and utilize AI in networks.
The main features of LAMs are as follows:
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1) Multi-head self-attention: Multi-head self-attention al-
lows LAMs to focus on the global perspective and it can
analyze and capture spatio-temporal dependencies in changing
environments at different scales. This mechanism enables
the LAM to generate stable and timely responses, unlike
traditional recurrent neural networks that require retraining to
adapt to environmental changes. For example, the multi-head
attention enables comprehensive learning of dynamic factors
in the network, such as user mobility and traffic fluctuations.
This mechanism avoids the long-term forgetting effect caused
by dynamic environments, leading to accurate traffic prediction
and optimal resource allocation.

2) Universal task model: LAMs typically have an extensive
number of parameters, which can range from tens of billions
to trillions. The large number of parameters allows LAMs
to capture intricate network patterns and nuances between
heterogeneous devices and imbalance data during training. For
example, by learning the Channel State Information (CSI),
the constraints for computation, communication, and storage
resources of various edge devices and edge servers, it is
possible to design a universal offloading model that achieves
offloading optimization and resource scheduling for different
system models or optimization objectives using prompts, with-
out the need for retraining the model.

3) Astounding understanding and creativity: LAMs have
demonstrated remarkable abilities that go beyond analyzing
and generating human language. These abilities stem from the
vast amount of knowledge and patterns they acquire during
training. Based on its exceptional understanding capabilities,
LAM can proactively analyze user demands and preferences
in 6G networks, enabling the provision of personalized com-
puting and communication services. Leveraging its astonishing
creativity, LAM can dynamically plan, configure, and optimize
the future communication network through self-learning and
self-adaptation abilities.

C. Contributions
In the article, we describe the possible roles of Large

Language Models (LLMs) and how to unleash their potential
in future communication networks. To overcome the current
challenges of applying LLMs to 6G, we propose an LLM-
enhanced multi-agent system with customized communication
knowledge and tools, which leverages collaboration and in-
teraction among multiple agents to optimize the task-solving
capabilities in 6G networks. Specifically, users express their
task requirements by natural language firstly. Then, the Multi-
agent Data Retrieval (MDR) is proposed to query and summa-
rize domain-specific knowledge in 6G communications from
private data. Next, a novel Multi-agent Collaborative Plan-
ning (MCP) decomposes the original task based on retrieved
communication knowledge, generates multiple feasible sub-
task chains, and solves them. Subsequently, the Multi-agent
Evaluation and Reflexion (MER) is proposed to evaluate,
reflect, and improve the current feasible solutions. As a whole,
these form a self-learning and adaptive multi-agent system for
solving communication-related problems by natural language.
Finally, we validate the effectiveness of the multi-agent system
through a case study.

II. HOW LLMS SUPPORT 6G COMMUNICATIONS

LLMs constitute the most significant category of LAMs. On
one hand, LLMs exhibit stronger comprehension, decision-
making, and robustness compared to traditional ML models
widely used in wireless networks. This higher level of intel-
ligence brings new opportunities for sensor, communication,
and computation in 6G wireless networks, enabling efficient
and scalable general-purpose wireless intelligence. On the
other hand, the massive and diverse wireless data, along with
ubiquitous wireless devices in 6G wireless networks, provide
powerful support in terms of data and computational resources
for LLMs [1]. Therefore, the application of LLMs to enhance
the intrinsic intelligence of 6G networks holds significant
importance.

A. The roles of LLMs in 6G communications

In 6G communications, LLMs can play the following roles
and fulfill functions as:

1) Data generator: LLM is a powerful generative AI,
which can generate specific types of data based on their
domain knowledge. Some novel generative structures (e.g.,
autoregression decoder and diffusion model) are introduced
to LLMs for creating data efficiently. For instance, LLMs
can generate high-quality synthetic CSI data without identi-
fication information for network optimization, encompassing
aspects such as positioning, bandwidth allocation, and network
architecture design. This data can assist operators in more
effectively planning and developing their 6G networks without
violating privacy.

2) Knowledge organizer: LLMs can reprocess or mine raw
data for knowledge extraction and analysis, which take both
user requirements and raw data processed as input and utilize
the extensive domain knowledge of LLMs to deduce new
information. For example, LLMs can be introduced as the
knowledge base to assist the encoder of SC and can reduce
ambiguity and enhance semantic understandings [2].

3) Task scheduler: LLMs can understand instructions and
schedule algorithms or protocols to collectively address com-
plicated communication tasks. By using LLMs as a bridge
between communication requirement and solutions, LLMs can
manage and invoke proper algorithms, and collaboratively
fulfill task requirements while producing results. For instance,
LLMs can autonomously allocate service areas to different
UAVs, plan their trajectories, guide UAVs to avoid obstacles,
and provide critical communication links and computational
resources in emergency environment [3].

4) System designer: LLMs possess powerful natural lan-
guage understanding and deduction capabilities, enabling them
to design communication systems based on given system
requirements. They exhibit strong multi-task processing and
multi-module design capabilities within the boundaries of
various training data. For instance, utilizing its intrinsic AI
knowledge, LLMs can automatically design a federated learn-
ing system based on a given functional description of fedavg
algorithm, and continuously optimize the system through
prompt engineering [4].
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B. How to unleash the LLM potential for 6G communications

We can unleash the potential of LLMs in 6G communica-
tions by the prompt engineering which employs the following
approaches:

1) In-context learning: In-Context Learning (ICL) is a form
of analogical learning that incorporates explicit examples in
the prompt to assist LLMs in making decisions [5]. It enables
the LLM to generate accurate expected results for a new task
based on one provided example (i.e., one shot learning) or
few similar examples (i.e., few shot learning) without the
need for fine-tuning model weights. For instance, ICL can be
applied to anomaly detection in industrial IoT. By providing
few anomaly examples in the prompt, the LLM can learn
and adapt to unique patterns and behaviors of edge devices,
enabling real-time detection of anomalies and potential faults
without relying on model training.

2) Chain-of-Thought: Chain-of-Thought (CoT) is a form of
discrete prompt learning that goes beyond providing examples
with input-output pairs [6]. It also includes the thought process
and steps leading to the desired output when presenting the
examples. This approach guides the LLMs’ way of thinking
in their reasoning process step-by-step, thereby enhancing the
logical reasoning capabilities of the LLMs. For instance, in
trajectory planning of UAVs for 6G communications, CoT can
be used to break down the trajectory planning process into
multiple stages. Each stage focuses on a specific aspect, such
as path generation, obstacle avoidance, or mission objectives.
The outputs from one stage serve as inputs to the next,
ensuring a coherent and sequential planning process.

C. Challenges of applying LLM in 6G communications

Challenges arise when applying LLMs to 6G, and they can
be categorized as follows:

1) Untimely and covertly private data: LLMs are typi-
cally trained on static datasets, while data and information
in 6G communication may constantly change. Especially, a
vast amount of data can be generated daily at the edge,
and a significant portion of this data comprises private and
confidential information, rendering it inaccessible for public
training purposes. As a result, the LLMs may not capture the
latest data and concepts, emerging protocols and standards in
a timely manner. This can lead to outputs that are less accurate
or not fully aligned with the current communication system.

2) Lack of domain knowledge: 6G communication has
specific technical requirements and constraints, such as ex-
tremely low latency and very high data rate. However, LLMs
may be trained on general data sets, which lack an in-depth
understanding of domain-specific expertise. For example, the
latest GPT-3.5 does not have an inherent understanding of what
the SC system is and its structure. Instead, it interprets the
SC system as a mode of semantic interaction employed by
humans. This can result in degraded performance of the LLM
in communications, as it may struggle to accurately predict and
optimize specific task parameters and system performance.

3) Insufficient logical reasoning ability: 6G communica-
tion involves complex signal processing, optimization, and
decision-making tasks. Although LLMs excel in language

generation and comprehension, they have limitations in logical
reasoning and inferential capabilities. For instance, tasks like
wireless channel estimation or resource scheduling require
intricate reasoning and decision-making abilities, where LLMs
may struggle to perform accurately. This may result in logical
errors, or lack understanding of causal relationships, which is
common in optimization tasks in 6G communications.

4) Inadequate evaluation and refinement: The evaluation of
outputs from LLMs by the single-instance result can be chal-
lenging due to the complexity and diversity of wireless com-
munication environments. Assessing the LLM’s performance
and effectiveness in real-world scenarios requires considering
multiple factors, such as channel conditions, user require-
ments, and mobility. Therefore, evaluating LLMs necessitates
adopting multiple perspectives, considering various factors,
and providing feedback to continuously refine the performance
of LLMs to ensure reliability and usability.

Hence, we could improve the performance of LLMs in 6G
communications by training on up-to-date datasets, incorpo-
rating communication knowledge and reasoning capabilities,
and developing more comprehensive evaluation and refinement
methods.

III. LLM ENHANCED MULTI-AGENT SYSTEMS

A. LLM enhanced agent system

AI agents can address the above challenges, and they are
computational entities designed to simulate or mimic intelli-
gent behavior, possessing traits such as autonomy, reactivity,
and communication capacity. Due to their versatile and re-
markable capabilities, LLMs are regarded as powerful tools
for constructing AI agents. In the paper, we define a typical
LLM enhanced agent system in Fig. 1, which has the following
components:

• Knowledge base represents the component that stores
the latest private data, consisting of communication stan-
dards, documents, and papers that can be connected to
the agent, and provides a way to index, query, and update
domain-specific knowledge in 6G communications.

• Tools are interfaces that an agent can use to process
tasks. They can be generic utilities (such as Bing search
and file system tools), endogenous intelligence in the
LLM (such as AI model), or customized communication
models (such as the wireless channel model). Tools can
also be defined by the user, or integrated from external
sources.

• Memory is the component that stores the intermediate
and final outputs of agents for evaluation and reflexion,
providing a way to manage, retrieve, and modify these
historical outputs.

• Model is introduced to comprehend and interpret human
language inputs, extracting meaning, intent, and context.
Agent system supports different LLMs such as OpenAI’s
GPT, Meta’s LLaMA and Anthropic’s Claude.

• Agent represents the entity that interacts with LLMs,
memories, tools and knowledge base, providing a way
to plan, control, introspect and communicate with other
agents using LLM with a profile. The profile defines and
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manages the characteristics and behaviors of an agent
by specific prompt. It encompasses a set of parameters
and rules that describe various attributes of the agent,
including its role, goals, capabilities, knowledge, and
behavioral patterns.

Fig. 1: LLM enhanced agent system.

B. Overview of the proposed multi-agent system
We design an LLM enhanced multi-agent system for 6G

communications, which constructs a specialized knowledge
base and tools for 6G communications, and possesses plan-
ning, memory, tool utilization and introspection capabilities
beyond protogenetic LLMs. Here, an agent serves as the core
of this system, which can engage in planning and reflexion
based on LLMs, acquire specialized knowledge and tools,
and leverage their combination for autonomous learning and
adaptive enhancement [7]. Moreover, to avoid biases and
hallucinations caused by a single agent, we introduce the
multi-agent collaboration, which involves designing multiple
agents to engage in multi-round cooperation. By combining
their individual opinions and knowledge, this system enhances
the problem-solving capabilities in complex communication
tasks and fully unleashes the cognitive synergy potential of
the LLM.

As depicted in Fig. 2, the process begins with the MDR
module querying communication knowledge from external
data sources based on user requirements by natural language.
This step involves several agents, including a secure agent, a
condensate agent, and an inference agent. Once the commu-
nication knowledge is obtained along with task requirements,
they are fed into the MCP module. Then, multiple planning
agents and sub-task chains are employed to formulate solutions
for the given task and retrieved knowledge. With assistance
from the tools, we can derive the final results based on solving
the sub-task chain. Subsequently, the MER module introduces
an evaluation agent that assesses the final results of each sub-
task chain and assigns corresponding rewards. Furthermore, it
uses a reflexion agent and a refinement agent to provide refined
suggestions. Finally, these suggestions are looped back to the
MER module, guiding it to re-plan and generate new sub-
task chains and results. By iterating through this process, we
eventually reach an optimal solution that is then delivered to
the user by natural language.

C. Multi-agent data retrieval

MDR enables LLMs to extract and summarize knowledge
from external privacy data sources regarding the 6G commu-
nications. MDR can also use the LLM as a reasoning engine
over new domain knowledge provided in the knowledge base.
The steps of MDR are as follows:

1) Document segmentation: External domain data, includ-
ing latest communication standards, documents, and papers
in various formats, can be loaded and then segmented to
improve the efficiency of data retrieval. The segmentation
process involves dividing the documents into multiple coherent
and meaningful fragments while maintaining the semantic
coherence and integrity.

2) Knowledge base construction: The segmented document
fragments are transformed into numerical vectors using em-
bedding neural networks. Document fragments with similar
semantic content will have similar vectors in the numerical
space. By comparing these vectors, we can identify similar
text fragments. The segmented document fragments and their
corresponding embeddings are stored in vector format to
construct a knowledge base, facilitating subsequent retrievals.

3) Document retrieval: A secure agent is employed to scru-
tinize user requirements, thereby preventing any unauthorized
requests or potential injection attacks [8]. Once validated, these
legal requirements are transformed into vectors through the
use of embedding networks. These requirement vectors are
then compared with document vectors already stored in the
knowledge base, and the most closely matching vectors along
with their corresponding document fragments are selected. To
increase retrieval diversity and minimize redundancy during
this querying process in the knowledge base, we employ
the Maximum Marginal Relevance (MMR) [9] for selecting
document fragments.

4) Compression and summarization: To reduce irrelevant
information in the documents, a condensate agent is utilized
to compress the documents, resulting in more accurate and
focused results [8]. The selected fragments, along with the
query, are then inputted into an inference agent to obtain
specialized communication knowledge corresponding to the
user’s requirements by natural language [6].

D. Multi-agent collaborative planning

MCP generates multiple feasible sub-task chains by con-
structing multiple planning agents. By combining their indi-
vidual knowledge and planning capabilities from different per-
spectives, the quality of response in solving complex problems
is enhanced. The steps of MCP are as follows:

1) Task planning: Based on the current task requirements
and retrieved communication knowledge, multiple planning
agents are initialized. Each agent employs either the CoT or
Plan-and-Solve approach [10] to decompose the original task
into a series of sub-tasks.

2) Sub-task chain construction: Considering the order and
dependency relationships of all sub-tasks, a sub-task chain
is constructed by connecting the individual sub-tasks in a
sequential or parallel manner, ensuring the coherence and
uniformity of all sub-tasks.
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Fig. 2: The proposed LLM enhanced multi-agent system.

3) Solving sub-task chains: Each sub-task chain is then
solved by invoking either the intrinsic general-purpose tools
or external custom tools to address each sub-task separately,
until the final result of the sub-task chain is obtained.

E. Multi-agent evaluation and reflecxion

MER is used to evaluate the quality of the results generated
by MCP and then to reflect on the planning results by
memory, thereby facilitating automatic learning, continuous
improvement, and self-refinement. The steps of MER are as
follows:

1) Result Evaluation: All sub-task chains and their results
from MCP are collected and the rewards of all planning results
are calculated using an evaluation agent.

2) Memory Storage: A comparison is made between the
current sub-task chain and historical sub-task chains. Task
chains with significant differences in semantic space are stored
in the long-term memory, while task chains with similar
semantics are stored in the short-term memory, along with
their corresponding results and rewards.

3) Introspection: A reflexion agent is employed to extract
the fine-grained information from the short-term memory,
similar to how humans can recall recent details [11]. It allows
for contemplating the performance of the current sub-task
chains across historical schemes, providing valuable small-
scale feedback for refinement.

4) Refinement: A refinement agent is utilized to reference
coarse-grained information from the long-term memory, sim-
ilar to how humans extract important experiences from long-
term decisions [12]. It involves contemplating the performance
of the current sub-task chains from a global perspective and
providing large-scale feedback for improving the sub-task
chains.

The introspection and refinement enable us to examine the
contents of sub-task chains from different scales, gaining an
in-depth understanding of the effectiveness and applicability
of each sub-task. Based on the feedback of the suggestions

proposed by introspection and refinement, the MCP is re-
driven to generate new sub-task chains, which are then eval-
uated through MER. This iterative process continues until the
optimal scheme is obtained. All agents used in the system are
summarized in Table I.

TABLE I: Summary of agents.

Agent Function Ref.

Secure agent Prevents any unauthorized requests or
potential injection attacks

[8]

Condensate
agent

Compresses retrieved documents for more
accurate and focused results

[8]

Inference agent Concludes specialized domain knowledge
corresponding to user’s requirements

[6]

Planning agent Decomposes the original task into a series
of sub-tasks [10]

Evaluation
agent

Evaluates results of sub-task chains and
calculate the rewards of planning agents

-

Reflexion
agent

Extracts the fine-grained information from
the short-term memory [11]

Refinement
agent

References coarse-grained information
from the long-term memory [12]

IV. CASE STUDY

In this section, we introduce a case study in 6G communi-
cations, i.e., LLM for SC, which is expected to become the
key applications of next generation intelligent communication
paradigms. Specifically, we utilize the proposed multi-agent
system to automatically generate an SC model based on user
requirements and resource constraints.

A. SC model designed by the multi-agent system

As illustrated in Fig. 3, we apply the multi-agent system
to construct the SC model. In this study, we chose GPT-
3.5 as our LLM. The input content is expressed in natural
language, encompassing user requirements, design objectives
and constraints, as well as evaluation metrics as follows:
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Fig. 3: The illustration of implementing the SC model based on the LLM-enhanced multi-agent system.

Input: Please produce Python code that implements an
SC model for text transmission. The Additive Gaussian White
Noise (AWGN) can serve as the physical channel. The bilin-
gual evaluation understudy (BLEU) score is adopted as the
metric that evaluates the SC model. We expect that the
generated SC model achieves no less than a 0.6 BLEU score
when the Signal-to-Noise Ratio (SNR) is 10 dB. The total
number of model parameters does not exceed 2,000,000 for
the resource constraints of devices.

It is worth noting that the current multi-agent system lacks
any knowledge about the SC system beyond the input, as the
native GPT-3.5 does not understand the structure and function-
ality of SC. The multi-agent system needs to autonomously
learn from the knowledge base and address these issues. The
output is the outline and implementation code for this SC
model. In this study, the specific contents of the outline part
are listed as follows:

Output: The Python-based SC model has been success-
fully implemented, incorporating all necessary modules. The
semantic encoder and decoder are realized using Long Short-
Term Memory (LSTM) networks. The channel encoder and
decoder are constructed based on the Multilayer Perceptron
(MLP) architecture. The final SC model can achieve a 0.68
BLEU score when SNR is 10 dB, which meets expectations. In
addition, the total number of model parameters is 1,826,762.

We have gathered a selection of research papers from arxiv
that are relevant to 6G communications to build a basic
communication knowledge base. In addition, we have included
essential communication models, such as channel models, as
specialized communication tools. Next, the specific progress
of applying the multi-agent system to design the SC model is
as follows:

1) The secure agent is utilized to validate the legitimacy of
the input, while the relevant arxiv papers (e.g., [13]) in

the knowledge base are retrieved. Then, the condensate
agent is applied to refine the retrieved SC knowledge
in papers. Next, the inference agent amalgamates user
input and SC knowledge to distill relevant SC knowledge
for constructing the SC model, which includes the
definitions and functions of each module in the SC.

2) Once the necessary SC knowledge is obtained, each
planning agent formulates a specific sub-task chain for
the SC model. This chain delineates the architecture of
each module in the SC model, including their respective
inputs and outputs, network structure, as well as training
settings (e.g., loss function and optimizer).

3) Sub-task chains are then handled by the endogenous AI
code generation tool of the LLM. Each sub-task chain
manages one feasible scheme of the SC model including
semantic encoder/decoder, channel encoder/decoder, and
other codes (e.g., data processing, feedforward and back
propagation). The wireless channel code is generated
by the predefined communication tools (e.g., channel
models). This results in obtaining precisely Python code.

4) The evaluation agent subsequently assesses the quality
of generated codes. The evaluative score encompasses
three components: the quality of the generated code,
the value of the objective function, and the penalty for
constraint violations. The value of the objective function
is defined as the BLEU score of the designed SC model.

5) Based on these evaluation results, the reflexion agent
gives fine-grained introspective comments (e.g., syntax
errors of codes and parameter adjustments of modules),
and the refinement agent gives coarse-gained reinforced
comments (e.g., logic errors of codes and structural ad-
justments of modules) taking into account both strengths
and weaknesses of the current SC model.

6) These proposed improvement suggestions are then fed
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back into the planning agent for introspection and
refinement purposes. This process undergoes iterative
optimization until satisfactory results are obtained.

B. Simulation results
All schemes and experimental codes are generated by GPT-

3.5, and all parameter optimizations are performed automati-
cally by the multi-agent system. We only assign two planning
agents in the multi-agent system. This implies that two in-
dependent SC models, each based on a unique scheme, are
concurrently generated. We also set the number of iterations
to four. Fig. 5 presents simulation results for the SC model
with different structures. It displays evaluative scores for both
schemes. Notably, as the iterations advance, there is a distinct
enhancement in evaluative scores. Initially, Scheme 2 trailed
behind Scheme 1 in terms of evaluation scores. However, in
the second iteration, the semantic encoder-decoder of Scheme
2 underwent coarse-gained refinement and transformed to the
LSTM structure. As a result, Scheme 2 eventually caught up
and surpassed Scheme 1. The adopted network architectures
in the final SC models of the two schemes are described as
follows:

• Scheme 1: An MLP with 3 layers is employed as the
semantic encoder and decoder. The MLP with 2 layers is
integrated into the channel encoder and decoder. The SC
model is trained using the SGD optimizer.

• Scheme 2: An LSTM with 4 layers is utilized for the
semantic encoder and decoder. Similarly, the MLP with
2 layers is used for both channel encoding and decod-
ing. Training of this SC model is based on the Adam
optimizer.

In summary, this simulation demonstrates the proposed
multi-agent system’s ability to autonomously generate an SC
model while iteratively refining it through self-introspection
and refinement.

Fig. 4: Evaluative score versus iteration number.

To assess the effectiveness of the generated SC model
by Scheme 2, we utilize the Cornell Movie-Dialogs Corpus

dataset [14], a collection of dialogues from 617 film scripts,
to train the SC model. Specifically, we use 8,000 dialogues for
training and reserve 2,000 dialogues for testing. The training
epoch is set at 50. As for the evaluation metric, we employ
a BERT-based semantic evaluation method complemented by
cosine similarity [15]. Subsequently, we compute the cosine
similarity between these text encodings from raw and recov-
ered text data. Fig. 5 depicts the semantic similarity results
of our SC model on the test set while varying the SNR.
The figure clearly illustrates that the performance of our SC
model improves as the SNR increases. These findings not
only showcase the functionalities, but also underscore the
effectiveness of the SC model generated through the proposed
multi-agent system.

Fig. 5: Cosine similarity versus SNR.

V. OPEN ISSUES

1) Limited Resources: The multi-agent system relies heav-
ily on the availability of LLMs and the private communi-
cation data at the edge. However, edge devices often have
limited computing, storage and energy resources compared to
powerful cloud servers. LLMs are resource-intensive models
that may exceed the processing capabilities of edge devices,
making it challenging to deploy multi-agent systems on the
edge.

2) Cooperation and competition: The proposed multi-agent
system adopts a cooperative approach for all agents to accom-
plish the design of the SC system. The interaction mode among
agents is important for the multi-agent system and LLMs
facilitate diverse modes of interaction among agents. Exploring
alternative modes of interaction, such as competition, and their
application in 6G communications would be an intriguing
research direction.

3) Real-time interaction: LLMs often suffer from slow
response times, making them impractical for real-time, inter-
active 6G applications. Developing efficient and faster infer-
ence methods to enable real-time interaction with LLM-based
agents is an ongoing challenge.
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VI. CONCLUSION

In this paper, we proposed a multi-agent system that utilized
natural language to design solutions for 6G communications
and provided the case study in SC tasks. The system leveraged
multiple LLM-enhanced agents to collaborate, self-learn, self-
improve, and effectively solve defined problems in 6G com-
munications. Specifically, we first employed the MDR to query
private data in the system and extracted communication knowl-
edge relevant to the task requirements. Next, we utilized the
MCP to generate feasible solutions from different perspectives.
Subsequently, we employed the MER to evaluate and reflect on
the current solutions, provide improvement suggestions, and
guide MCP in enhancing the solutions. Through iterations, an
optimal solution was obtained. Finally, we demonstrated and
validated the effectiveness of the proposed multi-agent system
through the SC case study.
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