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Abstract
The hybrid architecture of convolution neural net-
works (CNN) and Transformer has been the most
popular method for medical image segmentation.
However, the existing networks based on the hy-
brid architecture suffer from two problems. First,
although the CNN branch can capture image lo-
cal features by using convolution operation, the
vanilla convolution is unable to achieve adaptive
extraction of image features. Second, although the
Transformer branch can model the global infor-
mation of images, the conventional self-attention
only focuses on the spatial self-attention of images
and ignores the channel and cross-dimensional self-
attention leading to low segmentation accuracy for
medical images with complex backgrounds. To
solve these problems, we propose vision Trans-
former embrace convolutional neural networks for
medical image segmentation (TEC-Net). Our net-
work has two advantages. First, dynamic de-
formable convolution (DDConv) is designed in the
CNN branch, which not only overcomes the dif-
ficulty of adaptive feature extraction using fixed-
size convolution kernels, but also solves the de-
fect that different inputs share the same convolu-
tion kernel parameters, effectively improving the
feature expression ability of CNN branch. Sec-
ond, in the Transformer branch, a (shifted)-window
adaptive complementary attention module ((S)W-
ACAM) and compact convolutional projection are
designed to enable the network to fully learn the
cross-dimensional long-range dependency of med-
ical images with few parameters and calculations.
Experimental results show that the proposed TEC-
Net provides better medical image segmentation
results than SOTA methods including CNN and
Transformer networks. In addition, our TEC-Net
requires fewer parameters and computational costs
and does not rely on pre-training. The code is pub-
licly available at https://github.com/SR0920/TEC-
Net.

1 Introduction
image segmentation refers to dividing a medical image into
several specific regions with unique properties. Medical im-
age segmentation results can not only achieve abnormal de-
tection of human body regions but also be used to guide
clinicians. Therefore, accurate medical image segmenta-
tion has become a key component of computer-aided diag-
nosis and treatment, patient condition analysis, image-guided
surgery, tissue and organ reconstruction, and treatment plan-
ning. Compared with common RGB images, medical images
usually suffer from the problems such as high-density noise,
low contrast and blurred edges. So how to quickly and accu-
rately segment specific human organs and lesions from med-
ical images has always been a huge challenge in the field of
smart medicine.

The early traditional medical image segmentation algo-
rithms are based on manual features designed by medical ex-
perts using professional knowledge [Suetens, 2017]. These
methods have a strong mathematical basis and theoretical
support, but these algorithms have poor generalization abil-
ities for different organs or lesions of human body. Later,
inspired by the full convolutional networks (FCN) [Long et
al., 2015] and the idea of encoder-decoder, Ronnebreger et al.
designed U-Net [Ronneberger et al., 2015] network that was
first applied to medical image segmentation. After that the
U-shaped encoder-decoder structure receives widespread at-
tention. At the same time, due to the small number of param-
eters and the good segmentation effect of U-Net, deep learn-
ing has made a breakthrough in medical image segmentation.
Then a series of improved medical image segmentation net-
works are reported, such as 2D U-Net++ [Zhou et al., 2018],
ResDO-UNet [Liu et al., 2023], SGU-Net [Lei et al., 2023],
2.5D RIU-Net [Lv et al., 2022], 3D Unet [Çiçek et al., 2016]
and V-Net [Milletari et al., 2016]. The rapid development of
CNN in the field of medical image segmentation is largely
due to the scale invariance and inductive bias of convolution
operation. Although this fixed receptive field improves the
computational efficiency of CNN, it limits the ability of CNN
to capture the long-range dependency relationship.

Aiming at the shortcomings of CNN in obtaining global
features of images, Vaswani et al. [Vaswani et al., 2017] pro-
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posed the vision Transformer architecture for image classifi-
cation. The Transformer achieves a global representation of
image information through complex spatial transformations
and long-range dependency modeling, effectively solving the
problem of CNN being only able to obtain local features of
images. Currently, many methods based on Transformer have
been applied to medical image segmentation, representative
methods such as Swin-Unet [Cao et al., 2023], BAT [Wang
et al., 2021a], Swin UNETR [Tang et al., 2022], and UC-
TransNet [Wang et al., 2022]. These methods can be roughly
divided into the pure Transformer architecture and the hy-
brid architecture of CNN and Transformer. The pure Trans-
former architecture realizes the long-range dependency mod-
eling using self-attention. However, due to the lack of induc-
tive bias of the Transformer itself, the traditional Transformer
cannot be widely used on small-scale datasets like medical
images [Shamshad et al., 2023]. At the same time, the Trans-
former architecture is prone to ignore local detaile features,
which reduces the separability between the background and
the foreground of small lesions or objects with large-scale
shape changes in medical images. The hybrid architecture
of CNN and Transformer realizes both local and global in-
formation modeling of medical images by taking the comple-
mentary advantages of CNN and Transformer, thus achiev-
ing a better medical image segmentation effect. However,
these hybrid architectures still suffer from the following two
problems. First, these networks ignore the problems of or-
gan deformation and lesion irregularities when modeling lo-
cal features, resulting in weak local feature expression. Sec-
ond, these networks ignore the correlation between spacial
and channels when modeling the global feature, resulting in
inadequate expression of self-attention. To address the above
problems, our main contributions are as follows:

• A novel dynamic deformable convolution (DDConv) is
proposed. Through task adaptive learning, the DDConv
can flexibly change the weight coefficient and defor-
mation offset of convolution itself. The DDConv can
overcome the problems of fixation of the narrow recep-
tion field and non-adaptive convolution kernel parame-
ters existing in the vanilla convolution and its variants,
such as Atrous convolution and Involution, etc. The DD-
Conv can improve the ability to perceive tiny lesions and
targets with large-scale shape changes in medical im-
ages.

• A new (shifted)-window adaptive complementary atten-
tion module ((S)W-ACAM) is proposed. The (S)W-
ACAM realizes the cross-dimensional global modeling
of medical images through four parallel branches of
weight coefficient adaptive learning. Compared with
popular attention mechanisms, such as CBAM and Non-
Local, the (S)W-ACAM fully makes up for the defi-
ciency of the conventional attention mechanism in mod-
eling the cross-dimensional relationship between spa-
tial and channels, and thus enhances the separability be-
tween the segmented object and the background in med-
ical images.

• A new parallel network structure based on dynami-
cally adaptive CNN and cross-dimensional feature fu-

sion Transformer are proposed for medical image seg-
mentation, called TEC-Net. Compared with popular hy-
brid architectures of CNN and Transformer, like Swin-
Unet [Cao et al., 2023] and Swin UNETR [Tang et al.,
2022]. TEC-Net enhances representation learning by
tightly combining local and global features at different
resolutions through parallel interaction between CNN
and Transformer. However, TEC-Net not only aban-
dons pre-training but also requires fewer parameters and
fewer computational costs, which are 11.58 M and 4.53
GFLOPs respectively.

2 Related Work
Medical image segmentation plays a very important role in
the field of medical image processing, and is also one of the
core techniques of computer-aided diagnosis and treatment
systems. Because it’s tedious and complex to label manually
medical images, and also it’s difficult to guarantee the effi-
ciency and accuracy of manual labeling, the rapid and accu-
rate segmentation of medical images is of great significance
for clinical treatment. In recent years, with the rapid devel-
opment of deep learning techniques, researchers have con-
tinuously developed many deep network models for medical
image segmentation. These medical image segmentation net-
works can be coarsely divided into two categories: CNN and
Transformer networks.

2.1 CNN-based Methods
Different from traditional medical image segmentation al-
gorithms, the algorithms based on deep learning can learn
the high-dimensional feature information of medical images
through a multi-layer network structure. Among various
deep-learning networks related to medical image segmenta-
tion, CNN perform extremely well. CNN can effectively
learn from large-scale medical datasets to distinguish features
and extract the prior knowledge, making them an important
part of smart medical image analysis systems.

In 2015, Ronnebreger et al. were inspired by the
FCN [Long et al., 2015] network and designed the first end-
to-end network U-Net [Ronneberger et al., 2015] for medical
image segmentation in the ISBI cell tracking challenge. U-
Net adopts a symmetric encoder and decoder structure, which
can make full use of the local details of medical images and
reduce the dependence on training datasets. Therefore, on
the case of small datasets, U-Net can still achieve good med-
ical image segmentation results. Based on U-Net, Alom et
al. designed R2U-Net [Alom et al., 2018] by combining U-
Net, ResNet [Song et al., 2020], and recurrent neural net-
work (RCNN) [Girshick et al., 2014], which has achieved
good performance on multiple medical image segmentation
datasets such as blood vessels and retinas. To further improve
the performance of U-Net, Gu et al. introduced dynamic con-
volution [Chen et al., 2020] into U-Net and proposed CA-
Net [Gu et al., 2020]. Experiments on medical datasets show
that CA-Net can not only improve the segmentation accuracy
of medical images but also reduce the training time of the
network. Inspired by the idea of residual connection and de-
formable convolution [Dai et al., 2017], Yang et al. added



a residual deformable convolution to U-Net, and proposed
DCU-Net [Yang et al., 2022]. DCU-Net shows a more ad-
vanced segmentation effect than U-Net on DRIVE medical
dataset. Lei et al. designed SGU-Net [Lei et al., 2023] based
on U-Net, and proposed an ultralight convolution module and
additional adversarial shape-constraint that can significantly
improve the segmentation accuracy of abdominal medical im-
ages through self-supervised training. Although CNN have
made great progress in network structure, the main reason for
their success is due to the invariance in dealing with different
scales and the inductive bias in local modeling. Although this
fixed receptive field improves the computational efficiency of
CNN, it also limits the ability to capture the relationship be-
tween distant pixels in medical images and lacks the ability
to model medical images in a long-range.

2.2 Transformer-based Methods
In 2017, Vaswani et al. [Vaswani et al., 2017] proposed
the first Transformer network. Because of its unique struc-
ture, Transformer obtains the ability of processing indefinite-
length input, establishs long-range dependency relationship,
and captures global features of input data. Transformer’s suc-
cess is mainly attributed to the self-attention (SA) mechanism
because it can capture long-range dependency.

With the excellent performance of the Transformer in NLP
fields, ViT [Dosovitskiy et al., 2020] firstly applies Trans-
former to the field of image processing, capturing the global
context information of input images through multiple cas-
caded Transformer layers, making Transformer a great suc-
cess in image classification tasks. Then, Chen et al. pro-
posed TransUNet [Chen et al., 2021], which opened a new
era of Transformer in the field of medical image segmenta-
tion. As TransUNet directly uses the Transformer network
designed for NLP in the field of image segmentation, the
size of the input image block is fixed and the calculation is
massive. To solve this problem, Valanarasu et al. proposed
MedT [Valanarasu et al., 2021] for medical image segmen-
tation. It adds the gating mechanism to the network, and the
gating parameters can be automatically adjusted to obtain the
position embedding weight suitable for datasets of different
sizes. Since images are more diverse than text and have high
resolution, Cao et al. proposed a pure Transformer network
Swin-Unet [Cao et al., 2023] for medical image segmentation
by combining the shifted window multi-head self-attention
(SW-MSA) in Swin Transformer [Liu et al., 2021]. Swin-
Unet achieved the most advanced segmentation performance
at that time on Synapse and ACDC multi-organ segmentation
datasets. In order to better use Transformer to process dermo-
scopic image data, Wang et al. designed BAT [Wang et al.,
2021a] network based on the edge detection idea. The pro-
posed boundary-wise attention gate (BAG) can fully utilize
the prior knowledge of image boundaries to capture more de-
tails of medical images. BAT achieves amazing segmentation
Dice value on the skin lesion datasets and surpasses many of
the latest medical image segmentation networks.

Compared with the previous vanilla convolution [Ron-
neberger et al., 2015], dynamic convolution [Chen et al.,
2020] [Li et al., 2021] and deformable convolution [Dai et
al., 2017], our DDConv can not only adaptively change the

weight coefficient and deformation offset of the convolution
according to the medical image task, but also better adapt
to the shape of organs and small lesions with large-scale
changes in medical images, and additionally, it can improve
the local feature expression ability of the segmentation net-
work. Compared with the self-attention mechanism in ex-
isting Transformer architectures [Cao et al., 2023] [Wang et
al., 2021a], our (S)W-ACAM requires fewer parameters and
less computation while it is capable of capturing the global
cross-dimensional long-range dependency in the medical im-
ages, and improving the global feature expression ability of
the segmentation network. Our TEC-Net does not require a
large amount of labeled data for pre-training, but it can max-
imize the retention of local details and global semantic infor-
mation in medical images. It achieves the best segmentation
performance on dermoscopic images, liver datasets, and car-
diac multi-organ datasets.

3 Method
3.1 Overall Architecture
The fusion of local and global features are clearly helpful
for improving medical image segmentation. CNN capture
local features of medical images through convolution oper-
ation and hierarchical feature representation. In contrast, the
Transformer network realizes the extraction of global features
in medical images through the cascaded self-attention mech-
anism and the matrix operation with context interaction. In
order to make full use of local details and global semantic
features of medical images, we design a parallel interactive
network architecture TEC-Net. The overall architecture of
the network is shown in Fig. 1(a).

TEC-Net fully considers the complementary properties of
CNN and Transformer. During the forward propagation pro-
cess, TEC-Net continuously feeds the local details extracted
by the CNN branch to the decoder of the Transformer branch.
Similarly, TEC-Net also feeds the global long-range relation-
ships captured by the Transformer branch to the decoder of
the CNN branch. Obviously, the proposed TEC-Net provides
better local and global feature representation than pure CNN
or Transformer networks, and it shows great potential in the
field of medical image segmentation.

Specifically, TEC-Net consists of four components: a
patch embedding model, a dynamically adaptive CNN
branch, a cross-dimensional fusion Transformer branch, and
a feature fusion module. Among them, the dynamically adap-
tive CNN branch and the cross-dimensional fusion Trans-
former branch follow the design of U-Net and Swin-Unet,
respectively. The dynamically adaptive CNN branch consists
of seven main stages. By using the weight coefficient and de-
formation offset adaptive DDConv in each stage, the segmen-
tation network can better understand the local semantic fea-
tures of medical images, better perceives the subtle changes
of human organs or lesions, and improves the ability to extract
multi-scale change targets in medical images. Similarly, the
cross-dimensional fusion Transformer branch also consists of
seven main stages. By using (S)W-ACAM attention in each
stage, as shown in Fig. 1(b), the segmentation network can
better understand the global dependency of medical images



Figure 1: (a) The architecture of TEC-Net. TEC-Net consists of a dual-branch interaction between dynamically adaptive CNN and cross-
dimensional feature fusion Transformer. The DDConv in the CNN branch can adaptively change the weight coefficient and deformation
offset of the convolution itself, which improves the segmentation accuracy of irregular objects in medical images. The (S)W-ACAM in the
Transformer branch can capture the cross-dimensional long-range dependency in medical images, improving the separability of segmented
objects and backgrounds in medical images. The lightweight perceptron module (LPM) greatly reduces the parameters and calculations
of the original Transformer network by using the Ghost strategy. (b) Two successive Transformer blocks. W-ACAM and SW-ACAM are
cross-dimensional self-attention modules with shifted windows and compact convolutional projection configurations.

Figure 2: The module of the proposed DDConv. Compared with
the current popular convolution strategy, DDConv can dynamically
adjust the weight coefficient and deformation offset of the convo-
lution itself during the training process, which is conducive to the
feature capture and extraction of irregular targets in medical images.
α and β represent the different weight values of DDConv in different
states.

to capture the position information between different organs,
and improves the separability of segmented objects and the
background in medical images.

Although our TEC-Net can effectively improve the feature
representation of medical images, it requires a large num-
ber of training data and network parameters due to the dual-
branch structure. As the conventional Transformer network
contains a lot of multi-layer perceptron (MLP) layers, which
not only aggravates the training burden of the network but
also causes the number of model parameters rise sharply, re-
sulting in the slow training for the model. Inspired by the idea
of the Ghost network [Han et al., 2020], we redesign the MLP
layer in the original Transformer and proposed a lightweight
perceptron module (LPM). The LPM can help our TEC-Net
not only achieve better medical image segmentation results
than MLP but also greatly reduces the number of parameters
and computational costs, even the Transformer can achieve
good results without a lot of labeled data training. It is worth
mentioning that the dual-branch structure involves mutually
symmetric encoders and decoders so that the parallel interac-
tion network structure can maximize the preservation of local

features and global features in medical images.

3.2 Dynamic Deformable Convolution

Vanilla convolution has spatial invariance and channel speci-
ficity, so it has a limited ability to change different visual
modalities when dealing with different spatial locations. At
the same time, due to the limitations of the receptive field, it
is difficult for vanilla convolution to extract features of small
targets or targets with blurred edges. Therefore, vanilla con-
volution inevitably has poor adaptability and weak general-
ization ability for feature representation of complex medical
images. Although the existing deformable convolution [Dai
et al., 2017] and dynamic convolution [Chen et al., 2020] [Li
et al., 2021] outperforms vanilla convolution to a certain ex-
tent, they still face a problem of balancing the performance
and size of networks when dealing with medical image seg-
mentation.

In order to overcome the shortcomings of popular con-
volution operations, this paper proposes a new convolution
strategy namely DDConv, as shown in Fig. 2. It can be
seen that DDConv can adaptively learn the kernel deforma-
tion offset and weight coefficients according to the specific
task and data distribution, so as to realize the change of both
the shapes and the values of convolution kernels. It can effec-
tively deal with the problems of large data distribution differ-
ences and large target deformation in medical image segmen-
tation. Also, DDConv is plug-and-play and can be embedded
in any network structure.

The shape change of the convolutional kernel in DDConv
is based on the network learning of the deformation offsets.
The segmentation network first samples the input feature map
X using a square convolutional kernel S, and then performs a
weighted sum with a weight matrix M . The square convolu-
tion kernel S determines the range of the receptive field, e.g.,



a 3× 3 convolution kernel can be expressed as:

S = {(0, 0), (0, 1), (0, 2), ..., (2, 1), (2, 2)}, (1)

then the output feature map Y at the coordinate φn can be
expressed as:

Y (φn) =
∑
φm∈S

S (φm) ·X (φn + φm) , (2)

when the deformation offset △φm = {m = 1, 2, 3, . . . , N}
is introduced in the weight matrix M , N is the total length of
S. Thus the Equation (2) can be expressed as:

Y (φn) =
∑
φm∈S

S (φm) ·X (φn + φm +△φm) . (3)

Through network learning, an offset matrix with the same
size as the input feature map can be finally obtained, and the
matrix dimension is twice that of the input feature map.

To show the convolution kernel of DDConv is dynamic, we
first present the output feature map of vanilla convolution:

y = σ(W · x), (4)

where σ is the activation function, W is the convolutional ker-
nel weight matrix and y is the output feature map. In contrast,
the output of the feature map of DDConv is:

ŷ = σ ((α1 ·W1 + . . .+ αn ·Wn) · x) , (5)

where n is the number of weight coefficients, αn is the weight
coefficients with learnable parameters and ŷ is the output
feature map generated by DDConv. DDConv achieves dy-
namic adjustment of the convolution kernel weights by lin-
early combining different weight matrices according to the
corresponding weight coefficients before performing the con-
volution operation.

According to the above analysis, we can see that DDConv
realizes the dynamic adjustment of the shape and weights of
the convolution kernel. Compared with directly increasing
the number and size of convolution kernels, the DDConv is
simpler and more efficient. The proposed DDConv not only
solves the problem of poor adaptive feature extraction abil-
ity of fixed-size convolution kernels but also overcomes the
defect that different inputs share the same convolution ker-
nel parameters. Consequently, our DDConv can be used to
improve the segmentation accuracy of small targets and large
targets with blurred edges in medical images.

3.3 Shifted Window Adaptive Complementary
Attention Module

The self-attention mechanism is the core computing unit in
Transformer networks, which realizes the capture of long-
range dependency of feature maps by utilizing matrix oper-
ations. However, the self-attention mechanism only consid-
ers the dependency in the spatial dimension but not the cross-
dimensional dependency between spatial and channels [Hong
et al., 2021]. Therefore, when dealing with medical image
segmentation with low contrast and high-density noise, the
self-attention mechanism is easy to confuse segmentation tar-
gets with their background, resulting in poor segmentation
results.

Figure 3: The module of the proposed (S)W-ACAM. Unlike conven-
tional self-attention, (S)W-ACAM has the advantages of spatial and
channel attention, and can also capture long-distance correlation fea-
tures between spatial and channels. Through the shifted window op-
eration, the spatial resolution of images is significantly reduced, and
through the compact convolutional projection operation, the channel
dimension of images is also significantly reduced. Thus, the over-
all computational costs and complexity of our proposed network are
reduced. λ1, λ2, λ3 and λ4 are learnable weight parameters.

To solve the problems mentioned above, we propose a new
cross-dimensional self-attention module called (S)W-ACAM.
As shown in Fig. 3, (S)W-ACAM consists of four paral-
lel branches, the top two branches are the conventional dual
attention module and the bottom two branches are cross-
dimensional attention modules. Compared to popular self-
attention modules such as spatial self-attention, channel self-
attention, and dual self-attention, our proposed (S)W-ACAM
can not only fully extract the long-range dependency of both
spatial and channels, but also capture the cross-dimensional
long-range dependency between spatial and channels. These
four branches complement each other, provide richer long-
range dependency relationships, enhance the separability be-
tween the foreground and background, and thus improve the
segmentation results for medical images.

The standard Transformer architecture [Dosovitskiy et al.,
2020] uses the global self-attention method to calculate the
relationship between one token and all other tokens. This
calculation method is complex since the computational costs
will increase exponentially with the increase of image size.
In order to improve the calculation efficiency, we use the
shifted window calculation method similar to that in Swin
Transformer [Liu et al., 2021], which only calculates the self-
attention in the local window. However, in the face of our
(S)W-ACAM four branches module, using the shifted win-
dow method to calculate self-attention does not reduce the
overall computational complexity of the module. Therefore,
we also designed the compact convolutional projection. First,
we reduce the local size of the medical image through the
shifted window operation, then we compress the channel di-
mension of feature maps through the compact convolutional
projection, and finally calculate the self-attention. It is worth
mentioning that this method can not only better capture the
global information of medical images but also significantly
reduce the computational costs of the module.



Table 1: Performance comparison of the proposed method against the SOTA approaches on the ISIC2018 benchmarks. Red indicates the best
result, and blue displays the second-best.

Method DI↑ JA↑ SE↑ AC↑ SP↑ Para. (M) ↓ GFLOPs

CNN

U-Net [Ronneberger et al., 2015] 86.54 79.31 88.56 93.16 96.44 34.52 65.39
R2UNet [Alom et al., 2018] 87.92 80.28 90.92 93.38 96.33 39.09 152.82

Attention Unet [Oktay et al., 2018] 87.16 79.55 88.52 93.17 95.62 34.88 66.57
CENet [Gu et al., 2019] 87.61 81.18 90.71 94.03 96.35 29.02 11.79

CPFNet † [Feng et al., 2020] 90.18 82.92 91.66 94.68 96.63 30.65 9.15

Transformer

Swin-Unet † [Cao et al., 2023] 89.26 80.47 90.36 94.45 96.51 41.40 11.63
TransUNet † [Chen et al., 2021] 89.39 82.10 91.43 93.67 96.54 105.30 15.21

BAT † [Wang et al., 2021a] 90.21 83.49 91.59 94.85 96.57 45.56 13.38
CvT † [Wu et al., 2021] 88.23 80.21 87.60 93.68 96.28 21.51 20.53

PVT [Wang et al., 2021b] 87.31 79.99 87.74 93.10 96.21 28.86 14.92
CrossForm [Wang et al., 2021c] 87.44 80.06 88.25 93.39 96.40 38.66 13.57

TEC-Net-T (our) 90.72 84.59 92.54 95.21 96.83 11.58 4.53
TEC-Net-B (our) 91.23 84.76 92.68 95.56 98.21 21.24 13.29

† indicates the model is initialized with pre-trained weights on the ImageNet21K. “Para.” refers to the number of parameters. “GFLOPs”
is calculated under the input scale of 224 × 224. Since the dermoscopic images are 2D medical images, the comparison methods are all
2D networks.

Suppose an image contains h× w windows, each window
size is M ×M , then the complexity of the (S)W-ACAM, the
global MSA in the original Transformer, and the (S)W-MSA
in the Swin Transformer are compared as follows:

Ω (MSA) = 4hwC2 + 2(hw)2C, (6)

Ω ((S)W -MSA) = 4hwC2 + 2M2hwC, (7)

Ω ((S)W -ACAM) =
hwC2

4
+M2hwC, (8)

if the former term of each formula is a quadratic function of
the number of patches h · w, the latter term is linear when
M is fixed (the default is 7). Then the computational cost of
(S)W-ACAM is smaller than MSA and (S)W-MSA.

Among the four parallel branches of (S)W-ACAM, two
branches are used to capture channel correlation and spatial
correlation, respectively, and the remaining two branches are
used to capture the correlation between channel dimension
C and space dimension H and vice versa (between channel
dimension C and space dimension W ). After adopting the
shifted window partitioning method, as shown in Fig. 1(b),
the calculation process of continuous Transformer blocks is
as follows:

T̂ l = W -ACAM
(
LN

(
T l−1

))
+ T l−1, (9)

T l = LPM
(
LN

(
T̂ l
))

+ T̂ l, (10)

T̂ l+1 = SW -ACAM
(
LN

(
T l
))

+ T l, (11)

T l+1 = LPM
(
LN

(
T̂ l+1

))
+ T̂ l+1, (12)

where T̂ l and T l represent the output features of (S)W-
ACAM and LPM, respectively. W-ACAM represents win-
dow adaptive complementary attention, SW-ACAM repre-
sents shifted window adaptive complementary attention, and
LPM represents lightweight perceptron module. For the spe-
cific attention calculation process of each branch, we follow
the same principle in Swin Transformer as follows:

Attention (Q,K, V ) = SoftMax

(
QKT√
C/8

+B

)
V,

(13)

where relative position bias B ∈ RM2×M2

, Q,K, V ∈
RM2×C

8 are query, key, and value matrices respectively. C
8

represents the dimension of query/key, and M2 represents the
number of patches.

After obtaining Out1, Out2, Out3 and Out4, the final fea-
ture fusion output is:

Out = λ1 ·Out1+λ2 ·Out2+λ3 ·Out3+λ4 ·Out4, (14)

where λ1, λ2, λ3 and λ4 are learnable parameters that enable
adaptive control of the importance of each attention branch.

Different from other self-attention mechanisms, our pro-
posed (S)W-ACAM can fully capture the correlation between
spatial and channels, and reasonably use the context infor-
mation of medical images to achieve long-range dependency
modeling. Since our (S)W-ACAM effectively overcomes the
defect that the conventional self-attention only focuses on
the spatial self-attention of images and ignores the chan-
nel and cross-dimensional self-attention, it achieves better
feature representation for medical images with high-density
noise, low contrast and complex background.

3.4 Loss Function
In our task, three loss functions are used for model training,
namely, the overall loss LTEC of TEC-Net network, the loss
LCNN of CNN branch and the loss LTrans of Transformer
branch.

LTEC = LMSE

(
yTEC
i , ylabel

i

)
+ LDice

(
yTEC
i , ylabel

i

)
, (15)

LCNN = LMSE

(
yCNN
i , ylabel

i

)
+ LDice

(
yCNN
i , ylabel

i

)
,

(16)

LTrans = LMSE

(
yTrans
i , ylabel

i

)
+ LDice

(
yTrans
i , ylabel

i

)
,

(17)
where LMSE(•) represents mean squared error loss, and
LDice(•) represents Dice loss. yTEC

i , yCNN
i , yTrans

i and
ylabeli represent the final predicted image using our TEC-Net
network, the predicted image from the CNN branch output,
the predicted image from the Transformer branch output, and



Table 2: Performance comparison of the proposed method against the SOTA approaches on the LiTS-Liver benchmarks. Red indicates the
best result, and blue displays the second-best.

Method DI ↑ VOE ↓ RVD ↓ ASD ↓ RMSD ↓ Para. (M) ↓ GFLOPs

CNN

U-Net [Ronneberger et al., 2015] 93.99±1.23 11.13±2.47 3.22±0.20 5.79±0.53 123.57±6.28 34.52 65.39
R2UNet [Alom et al., 2018] 94.01±1.18 11.12±2.37 2.36±0.15 5.23±0.45 120.36±5.03 39.09 152.82

Attention Unet [Oktay et al., 2018] 94.08±1.21 10.95±2.36 3.02±0.18 4.95±0.48 118.67±5.31 34.88 66.57
CENet [Gu et al., 2019] 94.04±1.15 11.03±2.31 6.19±0.16 4.11±0.51 115.40±5.82 29.02 11.79

3D Unet [Çiçek et al., 2016] 94.10±1.06 11.13±2.23 1.42±0.13 2.61±0.45 36.43±5.38 40.32 66.45
V-Net [Milletari et al., 2016] 94.25±1.03 10.65±2.17 1.92±0.11 2.48±0.38 38.28±5.05 65.17 55.35

Transformer

Swin-Unet † [Cao et al., 2023] 95.62±1.32 9.73±2.16 2.78±0.21 2.35±0.35 38.85±5.42 41.40 11.63
TransUNet † [Chen et al., 2021] 95.79±1.09 9.82±2.10 1.98±0.15 2.33±0.41 37.22±5.23 105.30 15.21

CvT † [Wu et al., 2021] 95.81±1.25 9.66±2.31 1.77±0.16 2.34±0.29 36.71±5.09 21.51 20.53
PVT [Wang et al., 2021b] 94.56±1.15 9.75±2.19 1.69±0.12 2.42±0.34 37.35±5.16 28.86 14.92

CrossForm [Wang et al., 2021c] 94.63±1.24 9.72±2.24 1.65±0.15 2.39±0.31 37.21±5.32 38.66 13.57
TEC-Net-T (our) 96.48±1.05 9.53±2.11 1.45±0.12 2.29±0.33 36.21±4.97 11.58 4.53
TEC-Net-B (our) 96.82±1.22 9.46±2.33 1.38±0.13 2.21±0.35 36.08±4.88 21.24 13.29

† indicates the model initialized with pre-trained weights on ImageNet21K. “Para.” refers to the number of parameters. “GFLOPs” is calculated
under the input scale of 224 × 224. Compared with the comparison experiment on the ISIC2018 dataset, 3D Unet and V-Net are introduced
into the comparison experiment on the LiTS-Liver dataset.

the label, respectively. The total loss function of TEC-Net
network can be expressed as:

LTotal = λLTEC + ((1− λ) /2)LCNN + ((1− λ) /2)LTrans,
(18)

where λ = δe−5(1−k)2 , λ is a Gaussian ramp-up curve, k
represents the number of epochs.

3.5 Architecture Variants
We have built a TEC-Net-T as a base network with a model
size of 11.58 M and a computing capacity of 4.53 GFLOPs.
In addition, we built the TEC-Net-B network to make a fair
comparison with the latest networks such as CvT [Wu et al.,
2021] and PVT [Wang et al., 2021b]. The window size is set
to 7, and the input image size is 224 × 224. Other network
parameters are set as follows:

• TEC-Net-T: layer number = {2, 2, 6, 2, 6, 2, 2},
H = {3, 6, 12, 24, 12, 6, 3}, D = 96

• TEC-Net-B: layer number = {2, 2, 18, 2, 18, 2, 2},
H = {4, 8, 16, 32, 16, 8, 4}, D = 96

where D represents the number of image channels when
entering the first layer of the dynamically adaptive CNN
branch and the cross-dimensional fusion Transformer branch,
layer number represents the number of Transformer blocks
used in each stage, and H represents the number of multiple
heads in the Transformer branch.

4 Experiment and Results
4.1 Datasets
We conducted experiments on the skin lesion segmentation
dataset (ISIC2018) from the International Symposium on
Biomedical Imaging (ISBI) [Codella et al., 2019], the Liver
Tumor Segmentation Challenge dataset (LiTS) from the Med-
ical Image Computing and Computer Assisted Intervention
Society (MICCAI) [Bilic et al., 2023] and the Automated
Cardiac Diagnosis Challenge dataset (ACDC) from the Uni-
versity Hospital of Dijon (France) [Bernard et al., 2018].

These three datasets have different data types and data dis-
tributions. Among them, the ISIC2018 dataset is electron mi-
croscope images, which contain 2,594 dermoscopic images
for training, but the ground truth images of the testing set
have not been released, so we performed a five-fold cross-
validation on the training set for a fair comparison. The
LiTS dataset is a CT image of the human abdomen, con-
taining 131 3D CT liver scans, where 100 scans of which
are used for training, and the remaining 31 scans are used
for testing. The ACDC dataset is an MRI image of the hu-
man heart, which contains cardiac short-axis Cine MRI data
from 100 patients. The ACDC dataset includes healthy pa-
tients, patients with previous myocardial infarction, dilated
cardiomyopathy, hypertrophic cardiomyopathy, and abnor-
mal right ventricle, with 20 scans for each group. These data
are obtained over a 6 years period using two MRI scanners
of two magnetic strengths (1.5T and 3.0T). In addition, all
images are empirically resized to 224×224 for efficiency.

4.2 Implementation Details and Evaluation
Indicators

All the networks are implemented on NVIDIA GeForce RTX
3090 24GB and PyTorch 1.7. We utilized Adam with an
initial learning rate of 0.001 to optimize the networks. The
learning rate decreases in half when the loss on the validation
set has not dropped by 10 epochs. We used mean squared
error loss (MSE) and Dice loss as loss functions in our exper-
iment.

In the experiment on the ISIC2018 dataset, we conducted
an overall evaluation for SOTA networks and the proposed
TEC-Net using five indicators: Dice (DI), Jaccard (JA), Sen-
sitivity (SE), Accuracy (AC), and Specificity (SP) [Chang
et al., 2009]. In the experiment on the LiTS-Liver dataset,
we conducted an overall evaluation for SOTA networks and
the proposed TEC-Net using five indicators: DI, VOE, RVD,
ASD, and RMSD. In the experiment on the ACDC dataset,
we conducted an overall evaluation for SOTA networks and
the proposed TEC-Net using DI and 95HD [Taha and Han-
bury, 2015].

The values of DI, JA, AC, SE, and SP range from 0 to 100,



Table 3: Performance comparison of the proposed method against the SOTA approaches on the ACDC benchmarks. Red indicates the best
result, and blue displays the second-best.

Model RV MYO LV AVG
DI 95HD DI 95HD DI 95HD DI 95HD

CNN

U-Net [Ronneberger et al., 2015] 90.11±1.20 5.90±1.36 88.87±0.33 2.49±0.51 94.16±1.06 2.95±0.77 91.06±0.68 3.79±0.75
R2UNet [Alom et al., 2018] 90.03±1.19 6.92±2.30 89.15±0.42 2.46±0.32 94.33±1.04 2.85±0.46 91.21±0.72 4.06±0.77

Attention Unet [Oktay et al., 2018] 90.41±1.06 5.48±0.93 88.94±0.36 2.81±0.78 94.14±1.37 3.26±1.32 91.18±0.82 3.85±0.93
CENet [Gu et al., 2019] 89.77±0.28 5.32±0.29 88.95±0.23 2.53±0.28 94.16±1.33 2.93±1.12 91.29±0.22 3.69±0.81

3D Unet [Çiçek et al., 2016] 90.25±0.82 4.95±1.02 89.07±0.41 2.51±0.33 94.23±1.40 3.15±1.09 91.33±0.47 3.71±0.69
V-Net [Milletari et al., 2016] 90.01±0.76 5.05±0.88 89.00±0.29 2.47±0.46 94.13±1.31 3.24±1.43 91.30±0.72 3.64±0.83

Transformer

Swin-Unet † [Cao et al., 2023] 90.35±1.13 5.45±1.08 88.73±0.49 3.16±1.32 94.03±1.43 3.77±2.23 91.04±0.93 4.13±1.51
TransUNet † [Chen et al., 2021] 89.79±1.28 6.35±1.31 88.77±0.56 3.09±1.30 94.05±1.27 3.38±1.55 90.84±0.98 4.27±1.26

CvT † [Wu et al., 2021] 90.05±1.36 5.82±1.43 88.74±0.39 3.11±0.98 94.06±1.36 3.45±1.65 90.97±0.86 4.17±1.34
PVT [Wang et al., 2021b] 89.52±1.31 6.51±1.35 88.08±0.52 3.12±1.35 93.75±1.25 3.34±1.53 90.46±0.78 4.23±1.14

CrossForm [Wang et al., 2021c] 89.66±1.48 6.23±1.51 88.17±0.49 3.08±1.27 93.97±1.06 3.28±1.42 90.57±0.74 4.19±1.08
TEC-Net-T (our) 90.46±1.15 5.27±0.55 89.33±0.48 2.43±0.46 94.38±1.23 2.87±0.81 91.42±0.82 3.55±0.54
TEC-Net-B (our) 90.95±0.65 4.86±0.37 89.62±0.36 2.32±0.82 95.30±1.08 2.63±0.83 91.95±0.66 3.45±0.51

† indicates the model initialized with pre-trained weights on ImageNet21K.

and better segmentation results mean that the values of evalu-
ation indicators such as DI, JA, AC, SE, and SP will be higher,
while the values of evaluation indicators such as VOE, RVD,
ASD, RMSD, and 95HD will be lower [Li et al., 2020].The
95HD is defined as the 95th quantile of Hausdorff distances
(HD) instead of the maximum [Lei et al., 2022].

4.3 Evaluation and Results
In this paper, we selected popular SOTA networks for medi-
cal image segmentation networks U-Net [Ronneberger et al.,
2015], R2UNet [Alom et al., 2018], Attention Unet [Oktay
et al., 2018], CENet [Gu et al., 2019], 3D Unet [Çiçek et
al., 2016], V-Net [Milletari et al., 2016], Swin-Unet [Cao et
al., 2023], TransUNet [Chen et al., 2021], CvT [Wu et al.,
2021], PVT [Wang et al., 2021b], CrossForm [Wang et al.,
2021c] and the proposed TEC-Net to conduct a comprehen-
sive comparison of the three different modalities datasets, the
ISIC2018, the LiTS-Liver and the ACDC.

TABLE I shows the quantitative analysis results of the pro-
posed TEC-Net and the competitive CNN and Transformer
networks on the ISIC2018 dataset. From the experimental
results, we can conclude that our TEC-Net needs the min-
imum number of parameters and the lowest computational
costs, and can obtain the best segmentation effect on the der-
moscopic images without adding pre-training. Moreover, our
TEC-Net-T network requires only 11.58 M of parameters and
4.53 GFLOPs of computational costs, but still achieves the
second-best segmentation effect. Our TEC-Net-B network,
BAT, CvT, and CrossForm have similar parameters or compu-
tational costs, but on the ISIC2018 dataset, the division Dice
value of our TEC-Net-B is 1.02%, 3.00%, and 3.79% higher
than that of the BAT, CvT, and CrossForm network respec-
tively. In terms of other evaluation indicators, our TEC-Net-B
is also significantly better than other competitive networks.

TABLE II shows the quantitative analysis results of the
proposed TEC-Net and the competitive networks on the
LiTS-Liver dataset. It can be seen from the experimental
results that our TEC-Net shows great advantages in medi-
cal image segmentation, which further verifies the integrity
of TEC-Net in extracting local and global features for medi-

cal images. It is worth noting that the TEC-Net-B and TEC-
Net-T networks achieve good results in medical image seg-
mentation in the first and second place, with the least number
of model parameters and computational costs. The division
Dice value of our TEC-Net-B network without pre-training
is 1.20%, 1.03%, and 1.01% higher than that of the Swin-
Unet, TransUNet, and CvT network with pre-training. In
terms of other evaluation indicators, our TEC-Net-B is also
significantly better than other competitive networks.

Figure 4: Visualization effect display of TEC-Net network on
ISIC2018 dataset and LiTS-Liver dataset. (a) The predicted image
output by the CNN branch, (b) the predicted image output by the
Transformer branch, (c) the predicted image output by the TEC-Net
network, (d) the corresponding label, (e) the corresponding original
image.

TABLE III shows the quantitative analysis results of the



proposed TEC-Net and the competitive networks on the
ACDC dataset. From the experimental results, it can be seen
that the proposed TEC-Net still exhibits significant advan-
tages on MRI type multi-organ segmentation datasets. Both
TEC-Net-T and TEC-Net-B provide state-of-the-art segmen-
tation effects for the left ventricle (LV), right ventricle (RV),
and left ventricular myocardium (MYO). Among them, LV
provides the best segmentation effect, while MYO provides
a poor segmentation effect. Compared with the latest CvT,
PVT, and CrossForm, the average segmentation performance
of TEC-Net-B improves by 0.98%, 1.45%, and 1.38%, re-
spectively, while the average 95HD decreases by 0.72%,
0.78%, and 0.74%, respectively. It also proves that TEC-Net
has strong generalization performance on different datasets
and can be flexibly applied to medical image segmentation
tasks in different modalities and collection environments.

From the visualization in Fig. 4, it can be clearly seen
that the TEC-Net network can effectively extract local detail
features and global semantic features in medical images to
the maximum extent possible. Therefore, it provides accurate
segmentation results for segmentation targets with irregular
edges and large deformation scales. Fig. 4(a) shows the fi-
nal output result from the CNN branch, and Fig. 4(b) shows
the final output result from the Transformer branch. We can
find that the CNN branch captures more accurate local detail
information of segmented targets. However, due to the fact
that CNN branches mainly capture local features of images,
they are more susceptible to noise interference. However, the
Transformer branch captures more accurate position informa-
tion of segmented targets. Due to the fact that the Transformer
branch mainly captures the global features of the image, it is
easy to overlook the detailed information of the segmented
target. So, after integrating the CNN branch with the Trans-
former branch, the TEC-Net network fully inherits the struc-
tural and generalization advantages of CNN and Transformer,
providing better local and global feature representations for
medical images, demonstrating great potential in the field of
medical image segmentation.

4.4 Ablation Study
In order to fully prove the effectiveness of different modules
in our TEC-Net, we conducted a series of ablation experi-
ments on the ISIC2018 dataset. As shown in TABLE IV, we
can see that the DDConv and (S)W-ACAM proposed in this
paper show good performance, and the combination of these
two modules, TEC-Net shows the best medical image seg-
mentation effect.

4.5 Network Visualization
In order to better understand the TEC-Net network, we vi-
sualized the feature maps of each stage of the network, as
shown in Fig. 5. We used the linear interpolation method
to restore the deep feature map with the low spatial resolu-
tion to the same size as the input and output images. In the
visualization, red represents areas that the network is more
concerned about, while blue represents areas that the network
is less concerned about.

Through visualization images, we can clearly see the en-
tire process of feature extraction, feature fusion, and other

Table 4: Ablation experiments of DDConv, (S)W-ACAM and LPM
in TEC-Net on the ISIC2018 dataset.

Backbone DDConv (S)W-ACAM LPM Para. (M) DI (%) ↑
U-Net+Swin-Unet 46.92 87.45
U-Net+Swin-Unet

√
48.25 89.15

U-Net+Swin-Unet
√

30.26 89.62
U-Net+Swin-Unet

√
15.45 88.43

U-Net+Swin-Unet
√ √

32.16 90.88
U-Net+Swin-Unet

√ √
16.93 89.12

U-Net+Swin-Unet
√ √

9.67 89.46
U-Net+Swin-Unet

√
C-C

√
10.69 88.82

U-Net+Swin-Unet
√

C-H
√

10.24 89.05
U-Net+Swin-Unet

√
C-W

√
10.24 89.06

U-Net+Swin-Unet
√

H-W
√

10.05 88.95
TEC-Net-T (our)

√ √ √
11.58 90.72

stages that the image undergoes after being input into the net-
work. In the two branches of the encoder, the model can ana-
lyze and identify the semantic information of images. In the
two branches of the decoder, after skip connections and fea-
ture fusion operations, the model began to pay more attention
to the semantic features of target regions. During this pro-
cess, the information exchange and fusion between CNN and
Transformer branches play an important role in the accurate
segmentation of target regions.

As a whole structure, as the number of network layers con-
tinues to deepen, the TEC-Net network gradually refines the
localization and contour segmentation of semantic objects in
medical images, proving the effectiveness of our proposed
TEC-Net network for global information modeling and accu-
rate segmentation of medical images.

Figure 5: Visualization of results at each layer of TEC-Net (The
original image is from the ISIC2018 dataset).

5 Conclusion
In this study, we have proposed a new architecture TEC-
Net that combined dynamically adaptive CNN and cross-
dimensional fusion Transformer in parallel for medical im-
age segmentation. The proposed TEC-Net integrates the ad-
vantages of both CNN and Transformer, and retains the local
details and global semantic features of medical images us-
ing local relationship modeling and long-range dependency
modeling. The proposed DDConv overcomes the problems
of fixed receptive field and parameter sharing in vanilla con-
volution, enhances the ability to express local features, and
realizes adaptive extraction of spatial features. The proposed
(S)W-ACAM self-attention mechanism can fully capture the
cross-dimensional correlation between spatial and channels,
and adaptively learn the important information between spa-
tial and channels through network training. In addition, by



using the LPM to replace the MLP in the traditional Trans-
former, our TEC-Net significantly reduces the number of pa-
rameters, gets rid of the dependence of the network on pre-
training, avoids the challenge of lacking labeled medical im-
ages and easy suffering from over-fitting. Compared with
popular CNN and Transformer medical image segmentation
networks, our TEC-Net shows significant advantages in terms
of operational efficiency and segmentation effect.
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