
Sustainable Cities and Society 114 (2024) 105721

Available online 3 August 2024
2210-6707/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

A new methodology for reducing carbon emissions using multi-renewable
energy systems and artificial intelligence

Bilal Naji Alhasnawi a, Sabah Mohammed Mlkat Almutoki a, Firas Faeq K. Hussain b,c,
Ambe Harrison d, Bahamin Bazooyar e,*, Marek Zanker f, Vladimír Bureš f
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A B S T R A C T

Microgrid cost management is a significant difficulty because the energy generated by microgrids is typically
derived from a variety of renewable and non-renewable sources. Furthermore, in order to meet the requirements
of freed energy markets and secure load demand, a link between the microgrid and the national grid is always
preferred. For all of these reasons, in order to minimize operating expenses, it is imperative to design a smart
energy management unit to regulate various energy resources inside the microgrid. In this study, a smart unit
idea for multi-source microgrid operation and cost management is presented. The proposed unit utilizes the
Improved Artificial Rabbits Optimization Algorithm (IAROA) which is used to optimize the cost of operation
based on current load demand, energy prices and generation capacities. Also, a comparison between the opti-
mization outcomes obtained results is implemented using Honey Badger Algorithm (HBA), and Whale Optimi-
zation Algorithm (WOA). The results prove the applicability and feasibility of the proposed method for the
demand management system in SMG. The price after applying HBA is 6244.5783 (ID). But after applying the
Whale Optimization Algorithm, the cost is found 4283.9755 (ID), and after applying the Artificial Rabbits
Optimization Algorithm, the cost is found 1227.4482 (ID). By comparing the proposed method with conventional
method, the whale optimization algorithm saved 31.396 % per day, and the proposed artificial rabbit’s opti-
mization algorithm saved 80.3437 % per day. From the obtained results the proposed algorithm gives superior
performance.

1. Introduction

Customers can engage in wholesale electricity markets and make
money by purchasing their energy needs frommany suppliers and taking
part in demand response (DR) programs thanks to the widespread
adoption of smart energy technology at client locations. In reaction to
price swings, a prudent customer may lower their overall electricity
expenditures by proactively modifying and obtaining their energy con-
sumption profile from available resources. In addition to improving the
power network’s efficiency, efficient usage of consumption control
programs also makes the system more adaptable to a range of operating

situations. The ability of an electric power system to adapt to variations
in the supply and demand for electricity while preserving grid stability
and dependability is referred to as flexibility. It has a variety of features
and functionalities that allow the system to adjust to changing operating
environments, integrate renewable energy sources, and maximize
resource use (Sarsabahi et al., 2024).

Microgrids are compact power networks that consist of electrical
loads, energy storage devices, and distributed energy resources (DERs).
They can be used in both islanded and grid-connected modes. Numerous
advantages come from the extensive integration of microgrids into the
electrical system, including improved voltage profiles, increased system
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Table 1
Contributions and limitations of the greatest recent studies concerning demand-
side management systems.

Reference Contributions limitations

(Hussain et al.,
2023)

A multi-stage optimization
for energy management and
trading for smart homes was
given by the authors, taking
into account the operational
limitations of a distribution
network.

The best and most cost-
effective approach to operate
an IAROA-based energy
management system was not
explored by the authors, nor
was WOA.

(Cruz et al., 2024) Authors outlined and
analyzed datasets’
capabilities to leverage data-
driven decision-making for
more efficient deployments
of demand-side management
(DSM) systems.

IAROA for UC is not
considered.

(Abdelsalam et al.,
2021)

The authors presented a
metaheuristic Harris Hawk
optimization technique for
coordinating energy
management control in
microgrids with distributed
generation.

The best and most cost-
effective approach to operate
an IAROA-based energy
management system was not
explored by the authors, nor
was WOA.

(Čech et al., 2023) The authors introduced an
Architecture-Oriented Agent-
Based Simulations and
Machine Learning Solution

More computational time

(Ali et al., 2023) The authors presented a
reinforcement-learning-
based level controller for
separator drum unit in
refinery system

Peak to average ratio is not
taken into account.

(Asghar et al.,
2022)

A novel approach to
optimized energy
management systems
including an ac/dc hybrid
microgrid system for
industries was given by the
authors.

PAR is disregarded,
increasing system
complexity

(Bilal Naji
Alhasnawi et al.,
2022)

The authors presented a
method for achieving MPPT
for SCADA systems based on
photovoltaic systems.

The best and most cost-
effective approach to operate
an IAROA-based energy
management system was not
explored by the authors, nor
was WOA.

(Jasim et al., 2023) The authors introduced a
demand-side management
program based on effective
optimization techniques for
smart grid home load.

longer computing time

(Iqbal et al., 2019) In order to optimize the
scheduling of domestic
appliances in a grid exchange
context, the authors
introduced a hybrid grey
wolf genetic algorithm
optimizer that accounts for
energy storage and
stochastically modelled
photovoltaics.

The best and most cost-
effective approach to operate
an IAROA-based energy
management system was not
explored by the authors, nor
was WOA.

(Fayaz & Kim,
2018)

Authors described how they
used fuzzy logic and the bat
algorithm to optimize energy
use and manage user comfort
in residential buildings.

longer computing time

(Mateen et al.,
2023)

The authors suggested a
smart energy management
system that reduces
electricity prices and peak to
average ratios in residential
areas by using a hybrid
genetic flower pollination
algorithm.

The best and most cost-
effective approach to operate
an IAROA-based energy
management system was not
explored by the authors, nor
was WOA.

Table 1 (continued )

Reference Contributions limitations

(Bilal Naji
Alhasnawi et al.,
2020)

An introduction was given by
the authors. An inventive
cooperative microgrid
inverter controller for
intelligent hybrid AC/DC
microgrid

However, it was determined
that neither WOA nor IAROA
was the best, most cost-
effective way to operate an
energy management system.

(Khalid et al.,
2016)

The authors presented
Demand Side Management
Using Hybrid Bacterial
Foraging and Genetic
Algorithm Optimization
Techniques.

Consumers’ constraints for
load shifting was not
considered

(Khalid et al.,
2018)

The authors demonstrated
how to use multi-objective
energy optimization to
dynamically coordinate
household appliances for
demand side control in smart
buildings.

The AI-based DSMS
operation with the lowest
cost was disregarded.

(Khalid & Javaid,
2019)

The building’s game
theoretic energy
management system, based
on the as-service-over-fog
coalition, was introduced by
the authors.

Consumers’ constraints for
load shifting was not
considered

(Khalid et al.,
2019)

The authors used game
theory to enhance the time-
of-use electricity price rate.

Pollutant emissions are not
considered

(Rawa et al., 2023) The authors described
stochastic scheduling and
optimal operation of a
microgrid’s renewable
energy sources, together with
the best battery size selection
for cost-effectiveness.

Not compared with other
techniques

(Zeng et al., 2023) The authors presented day-
ahead interval scheduling for
power systems based on
enhanced adaptive diffusion
kernel density estimation.

Longer computing times due
to the intricate system

(Xu et al., 2023) Real-time multi-energy
demand responses for highly
renewable buildings were
provided by the authors.

depends for fewer
generations on a random
number

(Suresh et al.,
2023)

The authors described the
application of metaheuristic
optimization algorithms to
microgrid energy
management.

Peak to average ratio has
been disregarded, and
comfort issues have not been
addressed.

(Mansouri et al.,
2021)

The writers made a
presentation. A multifaceted
strategy for energy
management in smart homes
and microgrids

a rise in complexity

(Wang, 2023) The authors presented the
best scheduling plan for a
multi-energy microgrid that
takes integrated demand
response into account.

Reduced ESS capacity and
network loss

(J. Hu et al., 2019) The writers made a
presentation. Coordinated
management of PV-wind-
battery hybrid ac/dc
microgrids under varying
load and generation
circumstances

The cost of implementation
is not taken into account.

(Haq et al., 2022) The authors described how
they implemented a home
energy management system
based on reinforcement
learning.

Only passive appliances are
taken into consideration due
to UC compromise.

(Han et al., 2023) The concept, architecture,
and scheduling algorithms
for home energy
management systems were
provided by the authors.

Only passive appliances are
taken into consideration due
to UC compromise.

(continued on next page)
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Table 1 (continued )

Reference Contributions limitations

(B.N. Alhasnawi
et al., 2021)

Based on a consensus
algorithm, the authors
presented coalition game
theory as a demand
management strategy for
smart microgrids.

ratio of peak to average is
disregarded.

(Nasir et al., 2022) An optimal energy
management system for
residential and industrial
microgrids was provided by
the authors.

Cost-cutting measures
compromise UC.

(Ahmed, 2017) Based on critical peak
pricing, the authors proposed
an opportunistic home
energy management system
for demand response.

However, neither WOA nor
IAROA were examined as the
optimal, most economical
ways to run an energy
management system.

(Abbassi et al.,
2023)

Authors presented a
Dandelion Optimization
Algorithm-Based Accurate
Key Parameter Estimation of
PEMFC Models.

UC is compromised and only
passive appliances is
considered.

(Bilal Naji
Alhasnawi &
Jasim, 2020)

Authors introduced a new
coordinated control of hybrid
microgrids with renewable
energy resources under
variable loads and generation
conditions

Needs more accuracy.

(Mahmood et al.,
2023)

Using heuristic optimization
techniques, the authors
presented an efficient
scheduling method for a
home energy management
controller (HEMC).

Ignored UC

(Mansouri et al.,
2020)

The authors provided
stochastic energy hub
planning and operation while
taking demand response
programs into account using
the Benders decomposition
approach.

Increase operational cost

(Ma et al., 2023) The authors provided a two-
stage demand response
technique for a range of
scenarios, based on deviation
compensation.

Execution time is high

(Dey et al., 2022) An inventive metaheuristic
approach was presented by
the authors to measure the
financial impacts of grid
involvement on a microgrid
system.

Proper implementation is
not explored

(Kumar et al.,
2023)

The authors presented a
multi-objective control-based
home energy management
system that is equipped with
smart energy meters.

AWA (average waiting time)
is not included into account

(Coelho et al.,
2023)

The authors delivered a
presentation. Real-time
management of distributed
multi-energy resources in
multi-energy networks

Mechanism is highly
complex.

(Wahid et al.,
2020)

The authors described how
they optimize energy
consumption and maximize
user comfort in smart
buildings using a hybrid
Firefly and Genetic
Algorithm technique.

However, neither WOA nor
IAROA were examined as the
optimal, most economical
ways to run an energy
management system.

(Karimulla and,
Ravi)

The authors demonstrated
how to minimize energy costs
by using renewable energy
sources and the Fire-Fly
Algorithm.

Comfort of end users is
disregarded.

(Yousaf et al.,
2021)

The authors introduced a
brand-newmachine learning-
based price forecasting

UC is not considered

Table 1 (continued )

Reference Contributions limitations

method for energy
management systems.

(Ullah et al., 2021) The authors provided an
ideal energy management
system using the hybrid
Firefly Lion Algorithm (FLA)
for a university campus.

Only passive appliances are
taken into consideration due
to UC compromise.

(Li et al., 2023) The authors presented an
intelligent deep learning
approach for energy
management in microgrids
based on renewable energy
sources: A realistic example
of a digital twin

User comfort is
compromised

(Tostado-Véliz
et al., 2022)

Authors introduced EMS
while taking uncertainties
and efficient demand
response techniques into
account.

PAR, user comfort, and delay
are disregarded

(B. Alhasnawi
et al., 2021)

A novel internet of energy
based optimal multi-agent
control scheme for microgrid
including renewable energy
resources was presented by
the authors.

System intricacy rose.

(K. Ullah et al.,
2022)

The authors introduced the
demand side management
technique for multi-objective
day-ahead scheduling taking
wind energy into account in
smart grids.

There was no investigation
on the most efficient and
economical approach to run
an IAROA-based energy
management system.

(Yan et al., 2023) The writers offered a Effects
of renewable energy on
demand response-based
energy management in
microgrid environments

Cost went up as comfort level
rose.

(Zhang et al.,
2022)

The authors introduced an
expert knowledge-based
microgrid energy
management system based
on deep reinforcement
learning.

IAROA for UC is not
considered.

(Ngo et al., 2020) Writers gave an introduction
Model Predictive Control
Using Particle Swarm
Optimization for Microgrid
Energy Management

Privacy and user comfort
concerns

(Lokeshgupta &
Ravivarma,
2023)

The authors demonstrated
the coordinated smart house
energy sharing with
centralized neighborhood
energy management.

System complexity increased

(B.N. Alhasnawi
et al., 2021)

Writers showcased a novel
decentralized microgrid
control approach in the
internet of energy framework

IAROA for UC is not taken
into account

(Vardakas et al.,
2016)

Writers gave an introduction
Scenarios for power demand
control in smart grid
applications using a limited
quantity of appliances

System complexity increased

(Li et al., 2017) The authors presented an
efficient computation for
demand side management’s
sparse load shifting.

Real-time forecasting is not
considered

(Bilal Naji
Alhasnawi et al.,
2022)

The authors offered a novel
use of the internet of things-
based bald eagle search
optimization algorithm to
solve day-ahead scheduling
problems.

The authors did not use the
IAROA, and WOA to
minimize the cost.

(Vagdoda et al.,
2018)

The authors provided a
cloud-based multiagent
system platform for home
microgrids towards the smart
grid community.

Authors did not investigate
WOA or the optimal, most
economical way to run an
energy management system
based on IAROA.

(continued on next page)

B.N. Alhasnawi et al.



Sustainable Cities and Society 114 (2024) 105721

4

Table 1 (continued )

Reference Contributions limitations

(B. Alhasnawi
et al., 2021)

The authors introduced a
new and robust internet of
energy-based smart energy
management and demand
reduction for smart homes.

System complexity increased

(Wang et al., 2018) Green energy scheduling for
demand-side management in
the smart grid was provided
by the authors.

Calculation time is not
useful.

(Alhasnawi &
Jasim, 2018)

The authors presented a
Raspberry Pi3-powered
SCADA-controlled smart
house.

The user hasn’t ways of
handling the constraints

(Moghaddam &
Leon-Garcia,
2018)

The architecture for the fog-
based internet of energy for
transactive energy
management systems was
introduced by the writers.

Daily PAR increased

(B.N. Alhasnawi &
Jasim, 2020)

Writers showcased an
innovative on-grid/off-grid
energy management system
employing an adaptive
neuro-fuzzy inference system

Cost minimization is not
considered

(Hashmi et al.,
2020)

Authors presented an energy
management system based
on the Internet of Things and
cloud computing for
demand-side management in
smart grids.

Not applicable to different
types of buildings with more
appliances

(Mahapatra et al.,
2017)

The internet of things-based
energy management in smart
cities was given by authors.

More computational time

(Witharama et al.,
2024)

The authors introduced an
Advanced Genetic Algorithm
for Optimal Microgrid
Scheduling Considering Solar
and Load Forecasting, and
Demand Response Dynamics

The authors did not use the
IAROA, and WOA to
minimize the cost.

(B. Alhasnawi
et al., 2021)

The authors presented an
innovative use of the internet
of energy for real-time
electricity scheduling for
residential energy
management systems.

Disregarded the cost of
power and PAR

(Faruque &
Vatanparvar,
2016)

Authors demonstrated an
over fog computing platform
for energy management-as-a-
service.

System complexity increased

(Li et al., 2018) The writers developed an
Internet of Things (IoT) self-
learning home management
system (SHMS) for
Singapore.

An extensive system
considers several appliances,
which adds complexity to
the system.

(B.N. Alhasnawi
et al., 2020)

Writers gave an introduction
a novel and sturdy green
energy-powered hybrid
microgrid system
management and control
approach

They did not address the UC

(Zia Ullah et al.,
2022)

The authors described a real-
time monitoring interface-
based advanced energy
management technique for
microgrids.

More computational time

(Davarzani et al.,
2019)

Writers gave an introduction
application of a new multi-
agent system in low-voltage
distribution networks for
demand response
management

However, it was determined
that neither WOA nor IAROA
was the best, most cost-
effective way to operate an
energy management system.

(B.N. Alhasnawi &
Jasim, 2020)

Writers gave an introduction
a new hierarchical energy
management system for
multi-microgrid utilizing
optimization

costly for modestly sized
residential users

Table 1 (continued )

Reference Contributions limitations

(Cortes-Arcos,
2017)

The authors presented a
multi-objective demand
response to real-time prices
(RTP) using a task scheduling
system.

authors did not investigate
WOA or the optimal, most
economical way to run an
energy management system
based on IAROA.

(Khalid, 2018) The authors reported the
energy efficiency in smart
buildings via dynamic
coordination between homes
and appliances.

The authors did not use the
IAROA, and WOA to
minimize the cost.

(B.N. Alhasnawi &
Jasim, 2020)

An adaptive energy
management system for
smart hybrid microgrids was
presented by the authors.

Ignored the installation cost
of RES

(Al-Ali et al.,
2017)

The authors offered a big
data analytics and Internet of
Things strategy to create a
smart home energy
management system.

Daily PAR increased

(Alhasnawi &
Jasim, 2021)

Writers showcased A new
trust distributed demand side
management system made
possible by the internet of
things.

More computational time

(Ahmed et al.,
2017)

Using a novel binary
backtracking search method,
the authors demonstrated a
real-time optimal scheduling
controller for a home energy
management system.

Neglected the UC

(Ahmadipour
et al., 2022)

For an island power system
with distributed energy
resources, the authors
proposed an ideal load
shedding strategy based on
the grasshopper optimization
method.

depends for fewer
generations on a random
number

(Feroze, 2017) The authors provided
information on how to
improve demand side
management in smart grids
through evolutionary
methods.

The IAROA and WOA were
not utilized by the writers to
cut costs.

(Zafar Iqbal, 2018) The authors presented a
method for optimizing
energy consumption in smart
homes for demand side
management by combining
the operations of microgrids.

The writers didn’t look at
WOA or the best, most
affordable approach to
operate an IAROA-based
energy management system.

(B.N. Alhasnawi
et al., 2023)

The writers provided a
unique economic dispatch
employing an enhanced
butterfly optimization
method in the standalone
system

An energy management
system based on WOA and
IAROA was not examined by
the authors.

(Bui et al., 2018) The authors introduced
consensus negotiation-based
decision making for
networked appliances in
smart home management
systems.

UC is in jeopardy.

(B.N. Alhasnawi
et al., 2023)

Writers showcased a novel
mixed-integer linear
programming
communication platform for
smart EMS

Authors did not investigate
an energy management
system based on WOA and
IAROA.

(Waseem et al.,
2020)

The authors proposed
Optimal GWCSO-based
scheduling for household
appliances in order to
respond to demand while
taking user comfort into
account.

The IAROA method was not
employed by the writers to
cut costs.

(Nadeem et al.,
Jan, 2018)

The authors described an
evolutionary method for
demand-side control in real-

The best and most cost-
effective approach to operate
an IAROA-based energy

(continued on next page)
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dependability, less power loss, and a decrease in carbon emissions from
traditional centralized thermal power plants.

For the microgrid system to run profitably, an efficient Energy
Management Strategy (EMS) that meets various technical requirements
and effectively schedules distributed energy resources (DERs), storage
devices, exchanged power with the utility, and controllable loads based
on historical and current data is required. The EMS regulates the flow of
power within the Microgrid (MG) by providing reference profiles to the
controllers of the MG based on predefined goals. Shifting flexible loads
from times of high energy prices to times of low energy prices reduces
the cost of energy use (J. Hassaballah et al., 2024).

1.1. Literature review

Energy management has been studied in the past, with applications
ranging from cost reduction to demand-side issues, price-based sched-
uling, battery storage applications in regulated areas, and power reli-
ability. This research presents an effective technique for energy
management and decreasing the daily running cost of a grid-connected
MG based on two levels: optimal day-ahead scheduling and real-time
scheduling. In this study, the energy consumption of the load is main-
tained while the DSM mechanism, which is based on a load shifting
technique, is utilized to improve the EMS. Table 1 outlines the limita-
tions and contributions of recent studies on demand management sys-
tems in a smart grid.

2. Problem formulation

This article discusses the problem of energy management in a typical
micro-grid that includes renewable energy sources (RES) and energy
storage devices. The primary objective is to plan the microgrid’s power
supply for an entire day so that power may be supplied even in situations
where there is little to no solar or wind energy. The goal is to meet a
number of equity and inequality requirements, minimize operating
costs, reduce emissions, and optimize the microgrid’s performance
(Dixit et al., 2023). The microgrid’s operating expenses and emissions
are given the least weight in the study’s multi-objective optimization
problem. These two target functions are taken into consideration when
generation scheduling is done in two different scenarios. The first sce-
nario makes use of demand response mechanisms-aware responsive
loading algorithms to regulate electricity use. However, in the second
scenario, demand response strategies are not considered. By combining
several optimization approaches and taking into account various cir-
cumstances, the article aims to maximize the micro-grid’s performance
by minimizing running costs, cutting emissions, and ensuring the
compliance of multiple limitations. This study offers critical insights for
enhancing the efficiency and sustainability of microgrid systems, hence
advancing energy management strategies in microgrids that are com-
bined with energy storage and renewable energy sources (RES). The
fundamental system model architecture for controlling energy and
scheduling smart home appliances while taking the utility DR program
into account is shown in Fig. 1.

2.1. Objective function

Eq. (1) shows that the optimal microgrid operations planning in grid-
connected mode aims to minimize integrated costs, which comprise
pollution emissions and microgrid operating expenses.

minF = ω1⋅f1 + ω2⋅f2 (1)

If f1 is the cost function for operations, f2 is the cost function for
pollutant emissions, and F is the microgrid’s integrated cost. The
weighting coefficients ω1 and ω2, which indicate the optimization pri-
ority for each function, are identified. Eqs. (2) and (3) establish the
operating cost function f1. Eqs. (4) and (5) define the pollutant emissions
cost f2.

The costs associated with each DER’s operation as well as the
microgrid’s interactions with the main grid make up f1. Eqs. (2) and (3)
display their mathematical expressions (Liu et al., 2023):

f1 =
∑T

t

(
Cgrid(t)&+ CBE(t)+CWT(t)+CPV(t)+CDE(t)+CFC(t)) (2)

⎧
⎨

⎩

Cgrid(t) = Cbuy(t) + Csell (t)
Cbuy(t) = cb(t)Pb(t)
Csell(t) = cs(t)Ps(t)

(3)

where Pb(t) and Ps(t) represent the electricity that the microgrid buys

Table 1 (continued )

Reference Contributions limitations

time opportunistic energy-
efficient scheduling of home
appliances.

management system was not
explored by the authors, nor
was WOA.

(Jasim et al., 2022) the authors presented
Coordinated Control and
Load Shifting-Based Demand
Management of a Smart
Microgrid Adopting Energy
Internet

The IAROA and WOA were
not utilized by the writers to
cut costs.

(Balavignesh et al.,
2023)

An optimization-based
optimal energy management
system for smart homes in
smart grids was presented by
the authors.

The authors did not use the
IAROA, and WOA to
minimize the cost.

(Bilal Naji
Alhasnawi et al.,
2023)

writers provided an
introduction adopting the
intelligent optimization
approach for optimal load
scheduling

The authors did not use the
IAROA, and WOA to
minimize the cost.

The major
contributions of
the paper are:

1. To develop a novel
scheduling strategy with
optimal energy
management for smart
home devices in grid-
dependent HRES.

2. To design an optimization
algorithm called IAROA
that achieves notable
benefits for preserving
customer satisfaction in
energy management
while being more
effective than earlier
methods.

3. This work aimed to
reducing carbon
emissions, lower energy
costs, and enhance user
comfort.

4. Performance comparison
of the proposed Improved
Artificial Rabbits
Optimization Algorithm
(IAROA) algorithm over
the Honey Badger
Algorithm (HBA), and
Whale Optimization
Algorithm (WOA) in DSM
architecture.

5. An extensive analysis was
provided based on the
suggested study, and the
lowest value of generation
cost, which was thus
determined, was
contrasted with some of
the recently published
literature.

By utilizing the prosumer’s
adaptability, future research
can investigate the
transformer’s electrical and
thermal constraints, perhaps
enhancing its performance
within the distribution
network. Furthermore, the
thermal models of the home,
such as heat pumps and
thermal energy storage, are
not taken into account in this
work. These models can be
added in the future to
expand the suggested
framework by incorporating
demand-side flexibilities.

B.N. Alhasnawi et al.
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and sells to the main grid at each time t. The costs of the electricity that
the microgrid buys and sells to the larger grid at time t are denoted by
the variables Cbuy(t) and Csell(t), respectively. The prices of the electricity
that the microgrid buys and sells to the larger grid at time t are denoted
by cb(t) and cs(t), respectively. It was decided to create an MG cycle
dispatching model with incorporated charges and DER circumstances.

The expenses resulting from pollution of the environment yield f_2.
Microgrids powered by non-renewable energy sources produce specific
levels of pollutants from their generator units, such as CO2, SO2, CO, and
NOx. Eq. (4) provides a definition of f2. Eq. (5) gives the average cost of
all the pollutants that DEs and FCs emit.

f2 =
∑T

t
(CDE.en(t)+CFC.en(t)) (4)

⎧
⎪⎨

⎪⎩

CDE.en(t) =
(
EDECO + EDESO2 + EDENOx

+ EDECO
)

⋅PDE(t)

CFC.en(t) =
(
EFCC2 + EFCSO2 + EFCNOx

+ EFCCO
)

⋅PFC(t)
(5)

where CDE.en(t) denotes the expense of pollutant emissions from a DE at
time t and CDE.en(t) denotes the expense of pollutant emissions from an

FC at time t. PDE(t) and PFC(t) are the powers that the DE and the FC,
respectively, output at time t.

2.2. Constraints

The specifications of the equipment and other components have an
impact on the microgrid optimization model that each power generation
unit must follow in order to ensure that the system functions safely and
steadily when producing electricity.

For micro-grid to maintain regular system operation, it must satisfy
power balancing limitations that arise during operation. Eq. (6) displays
the constraint expression.

PLoad (t) = Pgrid (t) + PBE(t) + PWT(t) + PPV(t) + PDE(t) + PFC(t) (6)

where PLoad (t) is the microgrid’s load power at time t. Each DER in the
microgrid is limited in the amount of power it can produce by its upper
and lower bounds, which are given in Eq. (7):

Pmini ≤ Pi(t) ≤ Pmaxi (7)

where Pi(t) is the controlled generator’s output power at time t for the ith

Fig. 1. Proposed EMS model.
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generator. The ith controllable generator set’s output power has upper
and lower bounds, denoted as Pmaxi and Pmini , respectively.

There is a climbing constraint, or maximum power rise or decrease
rate, for each DER in the microgrid. This limitation is illustrated in Eq.
(8):

Pi(t) − Pi(t − 1) ≤ piΔt (8)

where pi is the ith controlled generator unit’s maximum climb rate. The
increase in operation time, or Δt. Eq. (9) illustrates the limitation that
governs the microgrid’s interaction with the larger grid.

Pmingrid ≤
⃒
⃒Pgrid (t)

⃒
⃒ ≤ Pmaxgrid (9)

where Pmaxgrid and Pmingrid denote the maximum and minimum power
thresholds for the microgrid-to-large grid interaction, respectively.

There are capacity constraints as well as power limitations for
charging and discharging during normal battery usage. Eq. (10) displays
these limitations:
{

PminBE ≤ PBE(t) ≤ PmaxBE

SOCmin(t) ≤ SOC(t) ≤ SOCmax(t)
(10)

where PminBE And PmaxBE stand for the battery’s lower and maximum limits,
respectively; a negative value denotes charging while a positive number
denotes draining. SOCmax(t) and SOCmin(t), respectively, represent the
battery’s capacity at time t’s upper and lower boundaries.

2.3. Deferrable appliances

According to this research, deferrable appliances are smart appli-
ances that can be shifted or interrupted during the day at any moment
based on the needs of the user. This class includes the dishwashing
machine, spin dryer, and washing machine. Let ad ϵAd represent each
appliance in the deferrable class, and let Ad represent the combination of
deferrable appliances. Eq. (11) uses λd to represent each appliance’s
power rating in this class. This exact formula displays the total elec-
tricity consumption (εd) of deferrable appliances during the day (Zafar
Iqbal, 2018):

εd =
∑T

t=1

(
∑

anioʹAnd
λd ×αd(t)

)

(11)

The hourly rate that the consumer pays overall for all deferrable
appliances is as follows:

σt
Ad =

∑

anioʹAnd
(λd × ρ(t)× αd(t)) (12)

In contrast to all deferrable appliances, the total daily electricity cost
that the client pays the utility is provided by the following equation:

δTotalAd
=
∑T

t=1

(
∑

anioʹAnd

(λd × ρ(t)×αd(t))

)

(13)

Here, OFF / ON status of deferrable devices is indicated by αd(t),
which can take the form of one or zero.

αd(t) =
{
1 If ad is ON
0 If ad is OFF

(14)

Eqs. (15) and (16) take into account the overall electricity usage and
cost for numerous houses in comparison to deferrable equipment
throughout a given day.

ϑd& =
∑μ

u=1
(εd) (15)

φTotal
Ai & =

∑μ

u=1

(
δTotalAi

)
(16)

Eq. (15) shows the daily electricity consumption as εd, and Eq. (16)
shows the daily cost for a single customer as δTotalAd

.

2.4. Non-deferrable appliances

When an appliance cannot be changed or stopped while it is oper-
ating, it is regarded as non-deferrable. This equipment’ requirements are
the ideal window of time for their execution to conclude. It is presumed
that the refrigerator and interior lighting are non-deferrable items. For
any appliance in the nondeferrable appliance class, let andϵAnd stand for
it. Each device has an electrical power rating of λnd, and the following
mathematical formula shows the overall energy usage εnd per day.

εnd =
∑T

t=1

(
∑

anioʹAnd
(λnd ×αnd(t))

)

(17)

Customers bear the highest expense because the utility charges more
for the requested slot of these appliances because of their non-shiftable
and uninterruptible behavior. The increase in PAR is the reason for the
high pricing. The utility levies higher rates to maintain perception of
balance between consumption and generation. Eq. (18) can be used to
get the daily electricity costs for any equipment in the nondeferrable
class.

δTotalAnd =
∑T

t=1

(
∑

andQʹAnd

(λnd × ρ(t)× αnd(t))

)

(18)

Similarly, Eq. (19) can be used to calculate the cost of non-deferrable
appliances over a specific time period.

σt
And =

∑

αmjdidnd
(λnd × ρ(t)×αnd(t)) (19)

In this case, OFF/ON state of non-deferrable devices is indicated by
αnd(t).

αnd(t) =
{
1 If and isON
0 If and isOFF

(20)

For a given number of users on a particular day, the total electricity
consumption and cost for non-deferrable appliances are calculated using
Eqs. (21) and (22), respectively.

ϑnd =
∑μ

u=1
(εnd) (21)

φTotal
And =

∑μ

u=1

(
δTotalAnd

)
(22)

3. Honey badger algorithm (HBA)

The day-ahead scheduling of sources is based on forecasts of PV
power generation, wind power output, and load demand. This stage uses
the meta-heuristic algorithm HBA to determine the optimal set-points of
the microgrid’s batteries and the Lagrange multiplier technique to get
the ideal set-point of the DG. The sophisticated meta-heuristic program
HBA simulates the foraging habits of honey badgers. The honey badger
tracks a honeyguide bird or uses its sense of smell to find its meal. The
honey badger uses its sense of smell to locate its prey. Once it has done
so, it circles the target to assess the optimal spot for burrowing and
hunting. HBA can maintain the proper ratio of exploration to exploita-
tion. It also has the advantage of having fewer settings to change. The
following stages can be used to summarize the HBA’s mathematical
model (E. Hassaballah et al., 2024):
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Step 1. Initializing the population: In a population of size n, the ith
honey badger’s (xi) position can be expressed as a dim-dimensional
solution vector as:

xi = [xil, xi2, xi3,…, xidim] (23)

dim represents the quantity of design variables.
The following equation is used to pick the initial positions of the

honey badgers at random, while the initial values (xil) of solution vector
(xi) are chosen based on:

Fig. 2. Flowchart of HBA.
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xij = LBj + r1
(
UBj − LBj

)
, j = 1,2, 3,……, dim (24)

where the lower and upper search space bounds are denoted, respec-
tively, by LBj and UBj. A random number in interval (0, 1) is denoted by
r1.

Step 2. Using n, get the fitness of each honey badger location xi.
Next, assign fitness to fprey and save the best position for xprey .

Step 3. Finding intensity: The cube of the distance between the prey
and the ith honey badger determines the inverse relationship between
the prey’s smell intensity (Ii), which can be computed as follows:

Ii =
r2S
4πd2i

(25)

where r2 is a randomly generated number in the range of 0 to 1.

S = (xi − xi+1)2 (26)

di =
(
xprey − xi

)
(27)

where di is distance between ith badger and prey, and S is source in-
tensity or concentration intensity (prey position).

Step 4. Updating density factor: Eq. (28) updates density factor (α)
over iterations to balance exploration and exploitation.

α = C × exp
(
− t
tmax

)

(28)

where tmax is the number of iterations and C is a constant number greater
than 1 (the usual value is 2).

Step 5. Changing the locations of the honey badgers: The two stages
of the HBA position update procedure (xnew ) are the digging phase and
the honeyguide phase.

Step 5–1. Phase of digging: During this stage, the honey badger
approaches its prey using the following formula:

xnew = xprey + F × β × I × xprey + F × r3 × α × di
×
⃒
⃒cos(2πr4)× [1 − cos(2πr5)]

⃒
⃒ (29)

where the prey’s best position to date is indicated by xprey . The honey
badger’s capacity to locate food is indicated by the constant β, which has
a default value of 6. There are three distinct random numbers in the
range [0, 1]: r3,r4, and r5. Eq. (30) determines the value of F, a flag that
alters the search direction to prevent getting trapped or stuck at the local
optimum value.

F =

{
1 r6 ≤ 0.5
− 1 otherwise (30)

where r6 is a chance value in the range of 0 and 1..
Step 5–2. Phase of the honeyguide: In this instance, honey badger

follows honeybird and advances in direction of the meal in line with Eq.
(23).

xnew = xprey + F × r7 × α × di (31)

where, respectively, xnew , and xprey indicate the prey’s location and the
honey badger’s new position. The random number r7 ranges from 0 to 1.
Eqs. (28) and (30) are utilized to compute α and F, respectively.

Step 6. Find the current position’s fitness value (fnew ), or xnew .
Update the honey badger’s position (xi) and fitness (fi) to be xnew and
fnew , respectively, if (fnew ≤ fi); if not, maintain the current values for xi
and fi. Additionally, if its fitness value exceeds that of xprey (fprey ), it
will take the prey position.

Step 7. Examine the termination criteria: the algorithm stops and
returns the best solution vector if the iteration number (t) reaches the
predetermined maximum number of iterations (tmax); if not, move on to
step 3. Fig. 2 shows the flowchart that explains the HBA’s computing
processes.

4. Whale optimization algorithm (WOA)

The spiral bubble-net feeding maneuver, encircling prey mathe-
matical model, and prey search are presented first in this section.

4.1. Encircling prey

Because they can detect their prey, humpback whales may circle
around it. The WOA algorithm assumes that the current best candidate
solution is either the target prey or extremely close to the optimum
because the position of the optimal design in the search space is un-
known a priori. The other search agents will attempt to realign them-
selves with respect to the top search agent after it has been determined.
The following equations represent this phenomenon (Mirjalili & Lewis,
2016):

D→=

⃒
⃒
⃒C
→⋅ X∗̅→(t) − X→(t)

⃒
⃒
⃒ (32)

Fig. 3. (a) 2D and (b) 3D position vectors together with potential future positions (X represents the best solution found thus far).
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X→(t+1) = X∗̅→(t) − A→⋅D→ (33)

where t is the current iteration, A and C are coefficient vectors, | | is the
absolute value, and ⋅is an element-by-element multiplication. X is the
position vector of the best solution discovered thus far. It is crucial to
remember that X∗ needs to be changed in each cycle whenever a better
option appears.

Vectors A→ and C→ are calculated as follows:

A→= 2 a→⋅ r→− a→ (34)

C→= 2⋅ r→ (35)

where r is a random vector in [0,1] and a→ is linearly decreasing from 2
to 0 during the length of iterations (in both the exploration and
exploitation phases).

Fig. 3(a) illustrates the logic underlying Eq. (33) for a 2D situation.
The location of the latest best record (X∗, Y∗) can be used to change a
search agent’s position (X, Y). It is feasible to reach multiple places
surrounding the optimal agent with respect to the current position by
changing the values of the A and C vectors.

Fig. 3(b) also shows the potential updated position of a search agent
in three dimensions. It should be mentioned that any position in the
search space between the key points in Fig. 3 can be reached by speci-
fying the random vector ( r→). Eq. (33) thus allows any search agent to
update its position in the area of the current optimal solution while
simulating the surrounding of the prey.

Applying the same concept to an n-dimensional search space will
cause the search agents to travel around the greatest solution so far
discovered in hyper-cubes. As was indicated in the previous section,
humpback whales use the bubble-net technique to assault their prey.
The following is the method’s mathematical formulation:

4.2. Bubble-net attacking method (exploitation phase)

Two methods are created in order to mathematically simulate
humpback whale bubble-net behavior:

Reducing the encircling mechanism: This action is accomplished by
lowering the value of an in Eq. (29). Observe that there is a corre-
sponding drop in A’s fluctuation range. Put another way, during the
period of iterations, an is reduced from 2 to 0 and A is a random value in
the interval [− a, a ]. The new position of a search agent can be defined
anywhere between the original position of the agent and the position of
the current best agent by setting random values for A in [− 1,1]. The

possible positions from (X, Y) towards (X∗ , Y∗) that can be attained by
0 ≤ A ≤ 1 in a 2D space are depicted in Fig. 4(a).

Two Spiral updating position: Using this method, which is illustrated
in Fig. 4(b), the distance between the whale at (X∗, Y∗) and the prey at
(X, Y) is first ascertained. Next, a spiral equation is created between the
location of the whale and its prey in order to mimic the helix-shaped
movement of humpback whales.

X→(t+1) = D
→́

⋅ebl⋅cos(2πl) + X∗̅→(t) (36)

where is an element-by-element multiplication, b is a constant used to
define the shape of the logarithmic spiral, and l is a random number in

[− 1,1. D
→́
represents the distance of the ith whale to the prey (best answer

found thus far).
It should be mentioned that humpback whales swim around their

prey in both a spiral and a decreasing circle. In order to represent this
concurrent behavior, in this paper used the assumption that there is a 50
% chance of selecting the spiral model or the shrinking encircling
mechanism to update the whales’ positions throughout optimization.
The following is the mathematical model:

X→(t+ 1) =

{
X∗̅→(t) − A→⋅D→ if p < 0.5

D
→́

⋅ebl⋅cos(2πl) + X∗̅→(t) if p ≥ 0.5
(37)

where p in [0,1] is a random number. Apart from using the bubble-net
technique, humpback whales also conduct haphazard searches for
food. The following is the search’s mathematical model.

4.3. Search for prey (exploration phase)

One can look for prey (exploration) by using the same technique that
involves changing the A→ vector. In actuality, humpback whales search
randomly while considering one another’s whereabouts. To push the
search agent to travel away from a reference whale, we employ A→with
random values larger than 1 or less than − 1. During the exploration
phase, as opposed to the exploitation phase, we update the position of a
search agent based on a randomly selected search agent rather than the
most effective search agent to date. In order to do a worldwide search,
this mechanism and |A→ | > 1 place an emphasis on exploration and low
the WOA algorithm. The mathematical model looks like this:

D→=

⃒
⃒
⃒C
→⋅Xrand
̅̅̅→

− X→
⃒
⃒
⃒ (38)

Fig. 4. The bubble-net search process used in WOA (X∗ is the best result found thus far) (a) The spiral updating position and (b) the diminishing encir-
cling mechanism.
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X→(t+1) = Xrand
̅̅̅→

− A→⋅D→ (39)

where a random position vector (a random whale) selected from the
present population is denoted by Xrand

̅̅̅→. Fig. 5 shows some of the po-
tential locations around a specific solution with A→ > 1.

The WOA algorithm uses an initial set of random solutions. At each
iteration, search agents shift their positions in relation to a randomly
chosen search agent or the best solution thus far. The exploration and
exploitation parameters are provided by reducing a parameter from 2 to
0. when |A→ | > 1, a random search agent is selected; when |A→ | < 1, the
optimal solution is chosen for updating the search agent positions. The
movement of WOA can be either spiral or circular, depending on the
value of p. When a termination requirement is satisfied, the WOA al-
gorithm comes to an end. Fig. 5 displays the WOA algorithm’s pseudo
code.

Because WOA can explore and exploit, it can be viewed as a global
optimizer from a theoretical perspective. Furthermore, other search
agents can take advantage of the current best record within the defined
search space that the suggested hyper-cube method defines around the
optimal solution. An adaptive adjustment of the search vector A allows
the WOA algorithm to switch between exploration and exploitation with
ease. By decreasing A, certain iterations are allocated to exploration (| A
| ≥1), and the remaining iterations are committed to exploitation (| A |
< 1). Surprisingly, WOA just has two primary internal settings that need
to be changed (A and C).

To fully replicate the behavior of humpback whales, mutation and
other evolutionary operations might have been included in the WOA
formulation. However, we chose to employ a very basic version of the
WOA algorithm by reducing the number of internal parameters and
rules.

5. Peak load constraint

Makes sure that the total load of the home hj is not greater than the

limit P̂
max
hj ,t , which is set by the local distribution companies (LDCs).

∑

i∈Ω
Pi,hj Si,hj ,t +

∑

z∈LI
PLIz,hj Lz,hj ,t +

∑

i∈{B,ESD}

PLDCi,hj ,t

−
∑

i∈{R,ESD}

PHDi,hj ,t − PHPV,hj ,t ≤ P̂
max
hj ,t ,∀hj ∈ H

(40)

The electricity required for appliances, energy storage devices (ESD),
and charging the PV panel batteries make up the residential load.

Included is the net power used to use the electricity generated by the
solar panel to power certain household loads.

P̂
max
hj ,t = Pmaxhj ,t − αhj ,tP

FLEX
j,t , ∀t ∈ T ;∀hj ∈ H ; ∀j ∈ N (41)

The flexibility index of the client as a percentage of the required
flexibility is represented by the LDC at bus j, which is j : αhj ,t. The source

of the current maximum demand in the home, P̂
max
hj ,t , is the maximum

authorized demand, Pmaxhj ,t . The reciprocal link between the HEMS and
local distribution corporations (LDCs) is depicted in Constraint (36)

5.1. Balance power

Guarantees that, as indicated below, the entire power requirement of
the household appliances is satisfied. This is accomplished by balancing
the electricity that the PV system produces, the power that the grid
provides, the power that the ESD and PV panel batteries discharge into
household, and total power consumption of domestic devices (Alrumayh
& Bhattacharya, 2019):
∑

i∈R

Pi,hj Si,hj ,t = PHLDC,hj ,t +
∑

q
PHDq,hj ,t

+ PHPV,hj ,t ,∀t ∈ T ;∀hj ∈ H (42)

Assuming that the ESD charge level was always known is irrational.
A schedule for charging and draining is shown below:

EESD,hj ,t = EESD,hj ,t− 1 + τ
[

PLCLDCESD,hj ,t
η1 −

(

PLDLDCESD,hj ,t

+ PHDESD,hy ,t

)/
η2
]
, ∀t ∈

{
tARhj , t

DEP
hy

}
;∀hj ∈ H (43)

EminESD,hj ≤ EESD,hj ,t ≤ EmaxESD,hj ,&∀t ∈
{
tARhj , t

DEP
hj

}
; ∀hj ∈ H (44)

PLDCCEW,hj ,t
≤ SCEW,hj ,t

PmaxCESD,hj
,&∀t ∈

{
tARhj , t

DEP
hj

}
; ∀hj ∈ H (45)

PLDCDESD,hj ,t
+ PHDESD,hj ,t ≤ SDESD,hy ,t P

max
DkD,hj

, ∀t ∈
{
tARhj , t

DEP
hj

}
;∀hj ∈ H (46)

SCEED,hj ,t + SDEED,hj ,t
≤ 1,∀t ∈

{
tARhj , t

DEP
hy

}
; ∀hj ∈ H (47)

EESD,hj ,t ≥ ωhj E
max
ESD ,∀t = tDEPhj ;∀hj ∈ H (48)

EESD,hj ,t = EARESD,∀t = tARhj ;∀hj ∈ H (49)

The power that the ESD draws and discharges to the grid and the
house has an impact on how the ESD’s energy level changes, as shown by
Eq. (43). Constraints (45) and (46) provide limits on the ESD’s charging
and discharging power, respectively. The constraint ensures that the
ESD energy level stays between the minimum and maximum bounds
(44). The charging and discharging processes cannot take place
concurrently due to a limitation (47). In addition to establishing energy
level inside device at the time of arrival, tARhj , Constraint (49) of the ESD
guarantees that stored energy in device is more than or equal to a pre-
determined minimum value.

5.2. Objective function

The goal of microgrid energy management is to keep running ex-
penses as low as possible within the planned time. This is the definition
of the objective function (Chen et, al.):

min
∑

t∈NT

cG1
(
pDGt
)2

+ cG2p
DG
t + λtpUGt + b

(
pUGt
)2 (50)

The costs of the three terms’ goal functions are as follows: The
objective is to lower the price of buying electricity from the external
grid. The price sensitivity coefficient is represented by b in the last term,

Fig. 5. Investigative technique used in WO.A
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where pDGt is the purchased power and λt is the energy sport price. The
first two phrases seek to reduce distributed generation’s (DGs’) energy
expenses. Here, NT is the set of scheduling periods, cG1 and cG2 are gen-
eration cost parameters, and pUGt is the DG generation.

5.3. Constraints of dg operation

pDG,mint ≤ pDGt ≤ pDG,maxt , ∀t ∈ NT (51)

{
pDG,drt ≤ pDGt − pDGt− 1 ≤ pDG,urt

pDG,drt1 ≤ pDGt1 − pDG0 ≤ pDG,urt1 ,
∀t ∈ NT (52)

Consisting of the maximum and minimum DG active power gener-
ation constraints, denoted as ppDG,maxt and pDG,mint , respectively, restric-
tion (51) reflects the DG capacity restriction. The upramping and
downramping constraints are given by the DG ramping constraint (52)
as pDG,urt and pDG,drt , respectively.

6. Artificial rabbits optimization

The artificial rabbits optimization (ARO) algorithm was created
recently and is incredibly successful. It is based on the survival tech-
niques employed by rabbits, such as random hiding and detour foraging.
To carry out the iterative searches, a mathematical model of the ARO’s

foraging mode is used. In this way, a rabbit tries to consume the grasses
and plants next to the burrows of other rabbits. By doing this, you may
be able to deceive predators and protect the rabbit burrow from harm.
Put another way, rabbits seek food in distant places and disregard the
easily accessible food that is close. The swarm population in the ARO
method is the number of rabbits. Each rabbit has an eating area with
some grass and plants, as well as a burrow. Each rabbit randomly raids
the burrows of other rabbits in an effort to get food. During this phase,
every rabbit tends to update its location in reference to the randomly
chosen person, causing interruptions. The following is a mathematical
representation of this foraging action (Rizk-Allah et al., 2023):

Δ→i(t+1) = z→j(t) + ρ⋅
(

z→i(t) − z→j(t)
)

+ round(0.5⋅(0.05+ g1))⋅n1, i, j

= 1, 2……,M and i ∕= j
(53)

ρ = E.c (54)

E =

⎛

⎜
⎜
⎝e − e

(
1− t
T

)2⎞

⎟
⎟
⎠⋅sin(2πg2) (55)

c(k) =
{
1 if k == h(u)
0 else , k=1,…, d&u=1,2,…, g3⋅d (56)

Fig. 6. Flowchart of ARO algorithm.
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h = randperm(d) (57)

n1 ∼ N(0, 1) (58)

where the following parameters are defined: rabbits population size ,
iterations total size, problem dimension, rounding to the nearest integer
value, random permutation function ranged from 1 to problem dimen-
sion, running length during foraging, and z→i(t),Δ→i(t + 1),M,T,d, round,
randperm, and E, respectively. Here, the uniform random numbers in-
side the interval [0, 1] are defined by g1, g2, g3, and n1 stands for the
normal distribution function. Eq. (58)’s perturbation aids ARO in con-
ducting a thorough search and avoiding local peaks and minima. Here, c
is a vector that is utilized in the search process to choose a number of
individuals, and ρ is a mathematical operator that simulates rabbit
movement. Consequently, ARO algorithm’s exploration and global
search capabilities are enhanced during this foraging stage. Rabbits
randomly hide in exploitation mode to evade being discovered by
predators. The rabbit digs a few tunnels near to its existing burrows. It
selects a burrow at random and hides there to trick predators. The for-
mula for the i th rabbit with the j th burrow is as follows.

BU→ij(t) = z→i(t) + H⋅h⋅ z→i(t), i = 1,2……,M and j = 1,2……, d (59)

H =
1 − t + T

T
g4 (60)

n2 ∼ N(0, 1) (61)

h(k) =
{
1 if k == j
0 else , k=1,…, d (62)

where H and d stand for the ability to hide and, respectively, created
burrows inside the rabbit’s territory. A bunny’s large region is mostly
where holes are made. When the number of iterations increases, the
neighborhood’s size decreases. The options for the random concealment
mode are as follows:

Δ→i(t+1) = z→i(t) + ρ⋅
(

g4⋅BUir(t) − z→i(t)
)

, i = 1,2,……M (63)

hr(k) =
{
1 if k ==

[
g5⋅d

]

0 else , k=1,…, d (64)

BUir(t) = z→i(t) + H⋅hr⋅ z→i(t) (65)

where g4 and g5 define random values inside the interval [0, 1], and
BUir(t) indicates the burrow that the rabbit chooses using the hiding
mode. Following either a random concealment procedure or a detour
foraging mode, the ith rabbit’s position is updated as follows.

z→s(t+ 1) =

{ z→s(t) f
(

z→s(t)
)

≤ f
(

Δ→s(t + 1)
)

Δ→s(t + 1) f
(

z→s(t)
)

> f
(

Δ→s(t + 1)
) (66)

Eq. (53) or Eq. (63) defines the candidate position, where the rabbit
stays after leaving its current location, if the candidate fitness of the sth
rabbit is greater than the position’s existing fitness. As iteration pro-
gresses, rabbits’ energy decreases, aiding in the shift from exploratory to
exploitative mode, which is expressed as follows:

EA(t) = 4
(
1 −

t
T

)
ln
(
1
α

)

(67)

where a random integer is defined by α. The method looks locally for the
solution (exploitation) when EA(t) ≤ 1, and globally for the solution
(exploration) when EA(t) > 1. Algorithm 2 presents the original ARO’s
pseudocode framework. Fig. 6 shows the flowchart of Artificial Rabbits

Optimization (ARO) algorithm (Wang et al., 2022).
Algorithm 2. The framework of the ARO.
Initialize a set of rabbits randomly
Evaluate the fitness of each rabbit and determine the best one
While the stopping criterion not met do
for i = 1 : M
Compute the energy of rabbit (EA) by Eq. (67)
if EA > 1
Select a rabbit randomly from the population
Obtain ρ by Eqs. (54)-(58)
Carry out the detour foraging phase by Eq. (53)
Evaluate the fitness of the rabbit
Update the rabbit’ position by Eq. (66)

else
Create d burrows and elicit one of them randomly as hiding position by Eq. (65)
Conduct random hiding by Eq. (63)
Evaluate the fitness of the rabbit
Update the rabbit’ position by Eq. (66)

End if
Update the best so far solution (zbest)

End for
End while

Output: Return zbest

6.1. The IARO algorithm

ARO can identify the top candidates in the search region by esti-
mating its evolution, all the while preserving the advantages of quick
convergence to workable solutions and simplicity of use. However, there
are still serious faults with the algorithm that could cause signatory
dilemmas and hinder it from balancing exploitative and exploratory
behaviors while tackling multimodal and complicated problems. First,
the rabbits carry out iterative process by randomly selecting a burrow;
while this strategy can quicken pattern of convergence, it may also cause
a decline in the diversity of possible solutions, trapping the rabbits in the
local optimal solution. First off, throughout the iterative search, the ARO
does not use any guidance strategies to approach the potential regions,
which could lower the quality of the final answer. It is therefore a good
task to figure out how to ensure that the new people can reach the
desired location. Stated differently, there exists a chance to enhance the
efficacy of the conventional ARO. Thus, this study proposes an enhanced
ARO, called IARO, based on experience-based perturbed learning (EPL)
method and adaptive local search (ALS) mechanism.

6.1.1. The EPL strategy’s future
In the exploration phase of the IARO algorithm, the rabbits follow

another rabbit in the population. This updating strategy may result in an
invasive diversification trend. In order to increase the exploration
search, EPL is implanted to find more potential regions inside the
feasible search space.

Specifically, EPL begins by computing the mean (Δit
mean ) and devi-

ation (Δit
dev ) of every randomly selected solution in relation to the best

solution to date (Δbest ).

Δit
mean =

(
zbest + zitI

)/
2 (68)

Δit
dev = abs

(
zbest − zitI

)
(69)

Δit
C = Δit

mean + rand1⋅Δit
dev (70)

zitnew = Δit
C + rand2⋅

(
zbest − Δit

C
)

+ 0.95it ⋅( rand 3 − 0.5)⋅abs
(
zmax ,j − zmin ,j

)
, zmax ,j (71)

= max
j

{
ziti
}
, zmin ,j = min

j

{
ziti
}
∀i (72)

where rand 1, rand 2, and rand 3 define three random numbers elicited
according to uniform distribution inside interval [0,1], andΔit

I stands for
any arbitrary solution chosen at random. In this case, the perturbed
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Fig. 7. IARO’s flowchart.
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solution must be performed inside the dynamic bounders (Δmax and
Δmin) using the third term of Eq. (71).

6.1.2. ALS approach
To minimize the loss of accuracy during the iterative process and

enhance the exploitation trend towards the promising space, an Adap-
tive Local Search (ALS) strategy is proposed as a guidance scheme based
on shared information among the elite group within the rabbits along
with their best individual (zbest ) and worst individual (zworst ). Specif-
ically, the method involves finding the poorest and best people in this
group (zP and zW) as well as elite group based on the fitness function.
The updating step is then carried out using three different sorts of
movements: pushing zW in the direction of zP, pushing zW in the direc-
tion of zbest , and pushing zW in the direction of the average of zPand
zbest . These exercises are done in a sequential fashion, and they come to
an end when a particular person achieves a higher level of fitness. This
strategy’s update phase can be stated as follows:

zit+1I =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

zALS1 = 2 × r1 ×
(
zP − zW

)
+ zWif f

(
zALS1

)
≤ f
(
zitI
)

zALS2 = 2 × r2 ×
(
zbest − zW

)
+ zWelse if f

(
zALS2

)
≤ f
(
zitI
)

zALS3 = 2 × r3 ×
( (
zP + zbest

)/
2 − zW

)
+ zWotherwise

(73)

And the current and updated solutions of i th solution inside the elite
class are represented by the variables zitI and zit+1I . The suggested IARO’s
framework is shown in Fig. 7.

7. Simulation results

The suggested HEMS simulation results are shown in this section.
Reducing the cost of electricity use, decreasing PAR, and raising User
Comfort (UC) by cutting down on waiting times are the primary objec-
tives of this effort. We suggest an ideal 24-hour schedule that achieves a
decent balance between these objectives.

The outcomes of the Improved Artificial Rabbits Optimization Al-
gorithm (IAROA) are compared with The Honey Badger Algorithm
(HBA) and Whale Optimization Algorithm (WOA) in order to verify the
accuracy of the system. The power of the recommended demand-side
control at home with the Honey Badger Algorithm (HBA) corrective
measure is displayed in Fig. 8. The Power of recommended home
demand-side control using the WOA technique is displayed in Fig. 9.
Fig. 10 illustrates the effectiveness of the AROAmethod’s recommended
residential demand-side control.

8. Discussion of results

Summertime is when renewable energy is generated at a higher rate
than wintertime, and without energy storage, more electricity is wasted.
As a result, an average summer day was examined. Users put the flexible
load’s working period in front of the electrical equipment’s permitted
working time when the load scheduling algorithm was not in operation.
Fig. 8 illustrates how there is little correlation between the amount of
power generated from renewable sources and the amount of electricity
consumed by the building load. Between 10:00am and 19:30pm, a large
amount of renewable energy power is wasted, and between 20:00pm
and 23:30pm, as well as between 0:00am and 9:30am, home electrical
equipment cannot use renewable energy generation to meet electricity
demand. The demand on buildings is significant, while the generation of
renewable energy is modest, especially at night. As a result, when the
demand for electricity from building electrical equipment is not met,
there must be an adequate supply of electricity from the grid. Iraqi Dinar
(ID) 6244.5783 can be used to compute the electricity purchase cost
when combined with the power grid’s current electricity pricing.

Fig. 11 illustrates the results of using the Whale Optimization Al-
gorithm (WOA). The cost of purchasing energy is 4283.9755 Iraqi Dinar
(ID).

Fig. 8. Results after applying Honey Badger Algorithm (HBA) in reference (E.
Hassaballah et al., 2024): (a) Comparison of renewable energy generation and
usage , (b) Abandoned electricity after applying HBA, (c) Electricity purchase
after applying HBA, (d) Cost of purchase after applying HBA
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The Improved Artificial Rabbits Optimization Algorithm (IAROA)
has resulted in a relocation of some of the building’s flexible electricity
usage to the hours of 10:00am – 11:30am and 15:00pm – 19:30pm, as
illustrated in Fig. 10. At the same time, during times when there is more
renewable energy output, such as between 11:00am and 5:00pm, elec-
tricity demand cannot be met due to limitations in specific electrical
equipment. When building load demands exceed the supply of renew-
able energy, building users must purchase electricity from the power
grid in order to close the supply and demand gap. The cost of purchasing
energy is 1227.4482 Iraqi Dinar (ID).

Fig. 9 shows the optimization outcomes of residences using load
scheduling and the whale optimization technique. There is a greater
match between building power use and renewable energy generation
than there would be if load scheduling wasn’t implemented. The

majority of electrical equipment is not used during the day, due to the
style of life of the locals. On the other hand, home electrical equipment
can be powered by renewable energy. However, a large number of
electrical devices running late into the night result in a significant power
load, and the electricity generated by renewable energy sources is
insufficient to supply the demand for electricity in buildings. In order to
increase the rate at which renewable energy is used, load scheduling
utilizing the whale optimization approach is employed in this instance to
shift certain electrical equipment to a time when there is sufficient
renewable energy available.

Fig. 10 shows the optimization outcomes of houses, using the
Improved Artificial Rabbits Optimization Algorithm (IAROA) and load
scheduling. There is a greater match between building power use and
renewable energy generation than there would be if load scheduling

Fig. 9. Results after applying Whale Optimization Algorithm (WOA) in reference (Mirjalili & Lewis, 2016) (a) Comparison of renewable energy generation and
usage, (b) Abandoned electricity after applying WOA, (c) Electricity purchase after applying WOA, (d) Cost of purchase after applying WOA, (e) The amount of
improvement after applying the WOA.
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wasn’t implemented. The majority of electrical equipment is not used
during the day, due to the style of life of the locals. On the other hand,
home electrical equipment can be powered by renewable energy.
However, a large number of electrical gadgets running late into the night
lead to a significant power load, and the amount of electricity generated
by renewable energy sources is not enough to supply the demand for
electricity in buildings. In order to increase the rate at which renewable
energy is used, load scheduling utilizing the whale optimization
approach is employed in this instance to shift certain electrical equip-
ment to a time when there is sufficient renewable energy available.

The building’s generation and consumption of renewable energy at
different times are compared to illustrate the residence’s rate of
renewable energy utilization prior to and following load dispatching.
Electricity-consuming machinery ran mostly at night before load
scheduling, as above figures shows. However, during night, less

renewable energy is generated. As a result, buildings might use all of the
power produced at night, but during the day, additional power produced
from renewable sources is wasted. The formula for the rate of renewable
energy use is shown in Eq. (62) (Huang et al., 2023).

ωRER =
Etot,u
Etot,g

(74)

where the total amount of renewable energy generated and used is
denoted by Etot,u and the rate at which renewable energy is utilized is
represented by ωRER.

Construction power use increases in the afternoon, whereas renew-
able energy output peaks at noon. Thus, at midday, the building’s
electricity usage can be met by the generation of renewable energy, but
not at night. Fig. 10 illustrates how actions scheduled within a specific
range might raise the pace at which renewable energy is used overall.

Fig. 10. (a) Comparison of renewable energy generation and usage after applying IAROA, (b) Abandoned electricity after applying IAROA, (c) Electricity purchase
after applying IAROA, (d) Cost of purchase after applying IAROA, (e) The amount of improvement after applying the IAROA.
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Battery energy storage system is integrated to HEMS in this section to
address previously listed problems. This enables the timely storing of
excess power produced during the noon peak hours of renewable energy
output. The additional electricity can then be used to boost the use of
renewable energy sources during the nighttime peak hours. Table 2
displays the general parameters of the battery storage system. Fig. 11
compares the daily total electricity bill for the HBA, WOA, and IAROA
algorithms.

The price after applying HBA optimization algorithm 6244.5783
(ID). But after applying the Whale Optimization Algorithm algorithm,
the cost is found 4283.9755 (ID), and after applying the Artificial Rab-
bits Optimization Algorithm, cost is found 1227.4482 (ID). By
comparing proposed method with conventional method, Whale Opti-
mization Algorithm algorithm saved 31.396 % per day, and the
Improved Artificial Rabbits Optimization Algorithm saved 80.3437 %
per day. Table 3 shows a cost comparison of price without the corrective
method, with Whale Optimization Algorithm (WOA) method and with
the Improved Artificial Rabbits Optimization Algorithm (IAROA)
method. Thus, the simulations suggest that HEMS, which is based on an
Improved Artificial Rabbits Optimization Algorithm optimal scheduling
scheme, performs well in finding solution that establishes the best trade-
off between target functions.

9. Conclusion

Optimizing power generation costs is one of the primary issues that
contemporary microgrids with varying energy resources and linkages
must deal with. This paper provides a detailed explanation of the gen-
eration cost optimization problem with all its limitations. An extensive
presentation of a novel optimization technique is made in an attempt to
solve the energy management optimization problem. By contrasting it
with the HBA and WOA scheduling scenario, the proposed system is
assessed. In comparison scheduling case, the Improved Artificial Rabbits
Optimization Algorithm decreased energy cost, PAR, and carbon emis-
sion. The price after applying HBA is 6244.5783 (ID). However after
applying the Whale Optimization Algorithm algorithm, cost is found
4283.9755 (ID), and after applying Artificial Rabbits Optimization Al-
gorithm, cost is found 1227.4482 (ID). By comparing the proposed

method with HBA, the Whale Optimization Algorithm saved 31.396 %
per day, and the proposed IAROA saved 80.3437 % per day. The created
Improved Artificial Rabbits Optimization Algorithm is good for both
utility and consumers, as evidenced by its superior performance in areas
of the targeted objectives compared to the Honey Badger Algorithm
(HBA) and Whale Optimization Algorithm scheduling example. The
findings demonstrate that implementing the suggested plan in smart
homes has a major influence on regulating energy use and containing
the rising demand for electricity.

By utilizing the prosumer’s adaptability, future research can inves-
tigate the transformer’s electrical and thermal constraints, perhaps
enhancing its performance within the distribution network. Further-
more, the thermal models of the home, such as heat pumps and thermal
energy storage, are not taken into account in this work. These models
can be added later to expand the suggested framework by incorporating
demand-side flexibilities.
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