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Abstract: Accurate segmentation of the left ventricle (LV) using echocardiogram (Echo) images
is essential for cardiovascular analysis. Conventional techniques are labor-intensive and exhibit
inter-observer variability. Deep learning has emerged as a powerful tool for automated medical
image segmentation, offering advantages in speed and potentially superior accuracy. This study
explores the efficacy of employing a YOLO (You Only Look Once) segmentation model for automated
LV segmentation in Echo images. YOLO, a cutting-edge object detection model, achieves exceptional
speed–accuracy balance through its well-designed architecture. It utilizes efficient dilated convolu-
tional layers and bottleneck blocks for feature extraction while incorporating innovations like path
aggregation and spatial attention mechanisms. These attributes make YOLO a compelling candi-
date for adaptation to LV segmentation in Echo images. We posit that by fine-tuning a pre-trained
YOLO-based model on a well-annotated Echo image dataset, we can leverage the model’s strengths in
real-time processing and precise object localization to achieve robust LV segmentation. The proposed
approach entails fine-tuning a pre-trained YOLO model on a rigorously labeled Echo image dataset.
Model performance has been evaluated using established metrics such as mean Average Precision
(mAP) at an Intersection over Union (IoU) threshold of 50% (mAP50) with 98.31% and across a range
of IoU thresholds from 50% to 95% (mAP50:95) with 75.27%. Successful implementation of YOLO
for LV segmentation has the potential to significantly expedite and standardize Echo image analysis.
This advancement could translate to improved clinical decision-making and enhanced patient care.

Keywords: left ventricle (LV); echocardiogram; deep learning; segmentation; feature extraction;
dilated convolution; YOLO

1. Introduction

Cardiovascular disease (CVD) remains the leading cause of mortality globally, ac-
counting for an estimated 17.9 million deaths annually [1]. Accurate assessment of cardiac
function is crucial for timely diagnosis, risk stratification, and guiding treatment deci-
sions in patients with CVD [2]. Echocardiography, a non-invasive ultrasound imaging
modality, plays a pivotal role in cardiac evaluation. Left ventricle (LV) segmentation, the
process of delineating the boundaries of the LV chamber in an echocardiographic image, is
a fundamental step in quantifying various cardiac parameters, including left ventricular
ejection fraction (LVEF), a key indicator of cardiac pumping efficiency [3,4]. Traditionally,
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LV segmentation is performed manually by trained cardiologists, a time-consuming and
subjective process prone to inter-observer variability [5].

The limitations of manual LV segmentation have fueled the exploration of automated
segmentation techniques using machine learning and, more recently, deep learning ap-
proaches [6]. Deep learning, particularly convolutional neural networks (CNNs), have
demonstrated remarkable success in various medical image analysis tasks, including LV
segmentation in echocardiography [7,8].

Despite the advancements in deep learning-based LV segmentation, several challenges
persist. Echocardiographic images exhibit significant variability in terms of image quality,
acquisition view (apical and parasternal), and patient characteristics, posing challenges for
models to generalize effectively [9]. Traditional CNN architectures with limited receptive
field sizes may struggle to capture long-range dependencies and contextual information
crucial for accurate segmentation, especially in cases where the LV occupies a significant
portion of the image [10].

The background region often dominates echocardiographic images compared to the
LV area [11]. This class imbalance can lead to models prioritizing background segmentation
over accurate LV delineation [12]. Real-world clinical applications necessitate fast and effi-
cient segmentation models to enable seamless integration into clinical workflows [13]. The
proposed work in this paper aims to address the limitations of existing left ventricular (LV)
segmentation methods by developing a robust, accurate, and efficient deep learning-based
approach. Current techniques struggle with handling anatomical variability, pathological
cases, image quality variations, and incorporating prior knowledge. The research gap lies
in leveraging deep learning to achieve accurate and generalizable LV segmentation while
balancing computational efficiency. The motivation is to provide a reliable and clinically
applicable solution that can improve diagnosis, treatment planning, and monitoring of car-
diovascular diseases. By overcoming the challenges of anatomical variability, pathological
cases, and image artifacts, the proposed method aims to enhance the accuracy, robustness,
and generalization capability of LV segmentation, ultimately contributing to better patient
care and clinical decision-making in cardiovascular imaging. This research aim is to investi-
gate the potential of YOLOv8 for automatic LV segmentation in echocardiography [14,15].
We hypothesize that by leveraging YOLOv8’s strengths, we can develop a model that offers
the following advantages:

• Improved Accuracy: Achieve high Dice similarity coefficient (DSC) and Intersection
over Union (IoU) metrics, indicating accurate LV delineation.

• Enhanced Generalizability: Demonstrate robust performance across diverse echocar-
diographic images with varying acquisition views and patient characteristics.

• Computational Efficiency: Maintain faster inference times compared to traditional
CNN-based segmentation models.

After reviewing the relevant literature in Section 2, we present technical details of
our approach in Section 3. The experimental evaluation comparing our method against
current state-of-the-art techniques is then described in Section 4. Finally, we discuss the
implications of our results and outline promising directions for future research in Section 5.

2. Related Work

Echocardiograms, ultrasound images of the heart, have become a cornerstone of car-
diovascular diagnosis and management [16]. Traditionally, analyzing these images has
relied on manual segmentation of anatomical structures, a time-consuming and subjec-
tive process [17]. However, the emergence of deep learning has ushered in a new era of
automated segmentation, offering the potential to revolutionize how we analyze echocar-
diograms [18,19].

Deep learning techniques have significantly improved the accuracy and efficiency of
echocardiogram analysis. Encoder–decoder networks augmented with attention mech-
anisms have allowed models to focus on critical regions within the image, leading to
improved segmentation accuracy for structures like the LV [20,21]. Advancements in archi-
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tectures, such as residual connections and dense blocks, have improved training efficiency
and potentially yielded better segmentation performance [22]. A key challenge in this
field is the limited availability of large, annotated datasets. Several approaches have been
developed to address this:

• Data Augmentation: Strategies like random flipping and scaling have been im-
plemented to increase training data variability and enhance model generalizabil-
ity [23–26].

• Weakly Supervised Learning: These techniques utilize less-laborious annotations (e.g.,
bounding boxes instead of pixel-wise masks) to reduce the annotation burden while
maintaining acceptable performance [27–29].

• Generative Adversarial Networks (GANs): GANs are being investigated for generat-
ing synthetic echocardiogram data to complement real data during training [30].

• Transfer Learning: Techniques for handling limited data and transfer learning from
related tasks are crucial areas of ongoing research [31,32].

LV segmentation serves as a prime example of advancements in this field. Notable
approaches include:

• Cascade CNN architectures and multi-scale attention networks, achieving high Dice
coefficients and IoU metrics [33–35].

• TCSEgNet: A two-chamber segmentation network leveraging temporal context [36].
• UniLVSeg: Investigating both 3D segmentation and 2D super image approaches using

weakly and self-supervised training [37].
• MFP-Unet: A novel architecture addressing shortcomings of traditional U-net models

in LV segmentation [38].
• EchoNet Dynamic: Designed for accurate and efficient LV segmentation [39].

Motion artifacts, particularly from respiration, pose significant challenges. The I2I-
cVAE method introduced a 3D image-to-image deep learning network with a conditional
variational autoencoder to account for respiratory motion in whole-heart reconstruc-
tions [40]. While deep learning offers immense potential, several challenges remain:

• Robustness to image quality variations: Models need to handle variations in image
quality due to acquisition protocols and patient factors [41,42].

• Interpretability and explainability: Understanding how models arrive at segmentation
results is crucial for clinical trust and adoption [43].

• Real-time segmentation: Optimizing models for faster inference while maintaining
accuracy could significantly improve clinical workflow efficiency [44,45].

• Clinical integration: Seamless integration into existing clinical software and workflows
is essential for practical adoption.

The potential benefits of deep learning-based segmentation in clinical practice are
significant, including more efficient and objective quantification of anatomical volumes,
improved diagnostic accuracy, guidance for minimally invasive procedures, and facilitation
of personalized treatment plans [46–50]. As research continues to address these challenges
and explore new avenues, we can expect further advancements in this field [51]. Deep
learning-based segmentation holds the potential to transform echocardiogram analysis,
leading to more efficient workflows, improved clinical decision-making, and ultimately,
better patient outcomes [52].

This work builds upon these advancements by YOLOv8n-seg, the latest in the YOLO
(You Only Look Once) family, which can be adapted for left ventricle (LV) segmentation in
echocardiograms. This approach combines YOLO’s speed and efficiency with instance seg-
mentation capabilities. YOLOv8n-seg uses a CSPDarknet backbone for feature extraction, a
feature pyramid network for multi-scale representation, and a segmentation head alongside
detection heads. This architecture is well-suited for real-time processing of echocardiogram
video streams and can handle varying LV sizes and orientations. Key advantages include
single-stage detection and segmentation, making it efficient for identifying and delineating
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the LV. However, adapting to echocardiogram-specific characteristics and handling image
quality variations remain challenges.

Training requires annotated echocardiogram datasets with LV segmentation masks.
Data augmentation and transfer learning from pre-trained weights are crucial due to limited
medical imaging datasets. Post-processing may involve refining segmentation masks and
integrating temporal information for video sequences. Evaluation typically uses IoU (Inter-
section over Union) and Dice coefficient metrics, with speed and computational efficiency
also being important factors. Clinical integration could enable real-time LV segmentation
during echocardiogram acquisition, potentially assisting in automated calculation of LV
volumes and ejection fraction.

Challenges include adapting to ultrasound-specific artifacts and ensuring consistent
performance across different echocardiogram views. However, this approach leverages
YOLOv8n-seg’s efficiency and accuracy for LV segmentation, offering a balance of speed
and precision suitable for clinical applications. This method represents a promising di-
rection in automating and improving the accuracy of LV analysis in echocardiograms,
potentially enhancing diagnostic capabilities and workflow efficiency in cardiology.

3. Materials and Methods
3.1. Dataset

The dataset used in this study comprised echocardiographic images obtained from
patients presented to the emergency department National Taiwan University Hospital,
Hsinchu branch, Taiwan (R.O.C.). Expert cardiologists meticulously annotated the left LV
boundaries in these images to serve as ground truth labels for training and evaluating deep
learning models for LV instance segmentation. The Institutional Review Board (IRB) has
granted approval for this study under reference number 110-069-E.

A total of 4781 echocardiographic image cases were selected and split into three
subsets: 3877 for training, 477 for validation, and 427 reserved for testing. The partitioning
into these mutually exclusive subsets was performed using a random sampling approach
to ensure an unbiased distribution across the training, validation, and testing data. The
images were acquired using a variety of echocardiographic modalities (2D, 3D, stress
Echo) and imaging planes, reflecting the diverse range of data encountered in real-world
clinical settings.

The dataset intentionally included cases with varying image quality, noise levels,
artifacts, and other inherent challenges typical of emergency echocardiography. For each
case, expert cardiologists manually delineated the endocardial borders of the LV cavity
throughout the full cardiac cycle, generating precise instance-level segmentation masks.
This labor-intensive annotation process leveraged decades of specialist experience to ensure
highly accurate ground truth labels. By rigorously annotating this large, multi-institutional
dataset, this study aimed to develop and validate deep learning algorithms capable of
providing robust, automated LV segmentation to aid cardiovascular imaging interpretation
and quantification in emergency settings.

3.2. YOLOv8’s Architecture

YOLOv8 was developed by Ultralytics [53] and utilizes a convolutional neural network
that can be divided into two main parts: the backbone and the head, as shown in Figure 1.
A modified version of the Cross Stage Partial (CSP) Darknet53 [54] architecture forms the
backbone of YOLOv8. This architecture consists of 53 convolutional layers and employs
cross-stage partial connections to improve information flow between the different layers.

The backbone is the base convolutional neural network (CNN) that extracts fea-
tures from the input image. The backbone takes the input image and produces a feature
map, which is a tensor containing high-level representations of the image at different
spatial locations.



Electronics 2024, 13, 2587 5 of 19

Electronics 2024, 13, x FOR PEER REVIEW 5 of 19 
 

 

 
Figure 1. Architecture of YOLOv8. 

The backbone is the base convolutional neural network (CNN) that extracts features 
from the input image. The backbone takes the input image and produces a feature map, 
which is a tensor containing high-level representations of the image at different spatial 
locations. 

The neck, also known as the feature pyramid network (FPN), is responsible for com-
bining features from different scales of the backbone’s output. The purpose of the neck is 
to capture both high-resolution and low-resolution information from the input image, 
which is essential for accurate segmentation. FPN consists of a top-down pathway and a 
bottom-up pathway. The top-down pathway takes the high-level semantic features from 
the backbone and up-samples them to higher resolutions, while the bottom-up pathway 
takes the low-level features and combines them with the up-sampled features. Compared 
to its predecessors, YOLOv8 introduces several improvements that make it particularly 
well-suited for medical image analysis tasks like left ventricle segmentation. 
• Multi-Scale Feature Extraction: The YOLOv8n-seg model employs a feature pyramid 

network (FPN) backbone that extracts feature maps at multiple scales from the input 
image, capturing both high-resolution and low-resolution information. 

• Fusion of Multi-Scale Features: The model’s decoder component fuses the multi-scale 
feature maps from the FPN backbone through a top-down and bottom-up pathway. 
This fusion process combines the high-resolution features, which capture fine-
grained details, with the low-resolution features, which encode global contextual in-
formation. 

• Benefits for Left Ventricle Segmentation: The fusion of multi-scale features is partic-
ularly beneficial for the left ventricle segmentation task. The high-resolution features 
help in accurately delineating the intricate boundaries and shape of the left ventricle, 
while the low-resolution features provide contextual information about the sur-
rounding anatomical structures, aiding in distinguishing the left ventricle from other 
cardiac structures. 
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The neck, also known as the feature pyramid network (FPN), is responsible for com-
bining features from different scales of the backbone’s output. The purpose of the neck
is to capture both high-resolution and low-resolution information from the input image,
which is essential for accurate segmentation. FPN consists of a top-down pathway and a
bottom-up pathway. The top-down pathway takes the high-level semantic features from
the backbone and up-samples them to higher resolutions, while the bottom-up pathway
takes the low-level features and combines them with the up-sampled features. Compared
to its predecessors, YOLOv8 introduces several improvements that make it particularly
well-suited for medical image analysis tasks like left ventricle segmentation.

• Multi-Scale Feature Extraction: The YOLOv8n-seg model employs a feature pyramid
network (FPN) backbone that extracts feature maps at multiple scales from the input
image, capturing both high-resolution and low-resolution information.

• Fusion of Multi-Scale Features: The model’s decoder component fuses the multi-scale
feature maps from the FPN backbone through a top-down and bottom-up pathway.
This fusion process combines the high-resolution features, which capture fine-grained
details, with the low-resolution features, which encode global contextual information.

• Benefits for Left Ventricle Segmentation: The fusion of multi-scale features is particu-
larly beneficial for the left ventricle segmentation task. The high-resolution features
help in accurately delineating the intricate boundaries and shape of the left ven-
tricle, while the low-resolution features provide contextual information about the
surrounding anatomical structures, aiding in distinguishing the left ventricle from
other cardiac structures.

This fusion of features from different scales helps the model better localize objects and
capture fine-grained details. The head is the final component of the YOLO segmentation
model, responsible for generating the segmentation masks. It takes the combined features
from the neck and applies a series of convolutional layers to produce the final segmentation
output. In the YOLOv8n-seg segmentation model, the head typically consists of multiple
branches, each responsible for predicting the segmentation masks at a different scale. This
multi-scale prediction allows the model to capture objects of varying sizes and resolutions.
Each branch in the head outputs a tensor with a specific number of channels, where each
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channel corresponds to a different class or object category. The values in these channels
represent the confidence scores or probabilities of each pixel belonging to a particular class.

3.3. Proposed Architecture

Our proposed architecture for instance segmentation utilizes several modules and
techniques to achieve accurate object detection and segmentation, as shown in Figure 2.
Among them, dilated convolution, c2f, SPPF, and segment modules play crucial roles. While
YOLOv8-seg demonstrates remarkable capabilities in object detection, it can encounter
difficulties when identifying specific boundaries within complex medical images. This is
particularly true for tasks like left ventricle segmentation, where accurately delineating
the border (inner lining of the left ventricle) is crucial. Here follows a breakdown of
the challenges:
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• Information loss during feature extraction: The process of extracting features from
an image can lead to the loss of crucial details, especially for intricate structures like
the endocardial border. As the network processes information at deeper layers, it
prioritizes prominent features, potentially neglecting the finer details that define the
endocardial border in complex images.

• Difficulties with overlapping structures: The endocardial border can be obscured or
overlapped by other structures within the left ventricle, such as papillary muscles or
trabeculae. This overlap makes it challenging for the network to accurately distinguish
and locate the precise boundary of the left ventricle.

These challenges can lead to inaccurate segmentation of the left ventricle, impacting
downstream medical applications. To address these challenges, we propose a novel seg-
mentation algorithm that significantly improves the segmentation of small structures like
the left ventricle while maintaining accuracy for larger ones. Here are the key components:

• Enhanced down-sampling: We introduce a new down-sampling module that utilizes
depth-wise separable convolution followed by a combination of MaxPooling and a
3×3 convolution with stride = 2. This concatenation approach effectively recovers
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information lost during the down-sampling process. Consequently, it preserves a
more complete picture of the context throughout feature extraction, leading to better
preservation of the left ventricle’s features.

• Improved feature fusion: The network incorporates an enhanced feature fusion
method. This method facilitates a better integration of shallow and deep information.
By combining low-level details with high-level semantic understanding, the network
retains more comprehensive information about the left ventricle. This improves seg-
mentation accuracy by reducing the issue of overlooking small structures due to the
dominance of larger features.

3.3.1. Dilated Convolution

Dilated convolution [55–58] is employed in CNNs for tasks such as image segmen-
tation and object detection. Unlike traditional convolution operations, where the kernel
weights are applied contiguously across the input, dilated convolution introduces strategi-
cally spaced gaps or holes between the kernel elements as shown in Figure 3. In YOLOv8n-
seg, they likely play a crucial role in improving LV segmentation performance by capturing
fine-grained details while maintaining spatial resolution. This approach allows the network
to effectively handle multi-scale features, enhancing object detection and segmentation
across various sizes. By employing dilated convolutions, YOLOv8n-seg can potentially
achieve a better balance between local and global context understanding, leading to more
accurate and detailed segmentation results.
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3.3.2. C2F (Class-to-Fortitude) Module

The C2F module is responsible for enhancing the model’s ability to distinguish be-
tween different object classes. It takes the class predictions (output of the classification
head) and the bounding box predictions (output of the regression head) as inputs. The
C2F module then applies a series of convolutions and up-sampling operations to generate
feature maps that are fused with the segmentation features. This fusion helps the segmen-
tation head better differentiate between object instances of different classes, leading to
improved instance segmentation performance.

3.3.3. Spatial Pyramid Pooling Fortitude Module

The SPPF module is an extension of the Spatial Pyramid Pooling Fortitude (SPPF)
technique, which has been widely used in object detection models like Faster R-CNN [59]
and YOLOv5 [53]. The SPPF module is designed to capture multi-scale features by applying
parallel pooling operations at different kernel sizes and strides. This allows the model to
effectively handle objects of varying scales and sizes within an image.

In the context of instance segmentation, the SPPF module takes the feature maps from
the backbone network and applies parallel pooling operations at different scales. The
resulting feature maps are then concatenated and passed through a series of convolutions
to generate enhanced feature representations. These multi-scale features are then fused
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with the segmentation features, aiding the model in detecting and segmenting objects at
various scales.

3.3.4. Segmentation Module

The segmentation module is responsible for generating instance segmentation masks
from the enhanced feature maps produced by the C2F and SPPF modules. It consists of a set
of parallel convolutional layers that generate a fixed number of prototype masks (typically
32 or 64). These prototype masks are then combined with the bounding box predictions
and segmentation predictions to produce instance-specific segmentation masks. The key
idea behind this module is to learn a set of mask representations during training. During
inference, these are adaptively combined and scaled based on the predicted bounding
boxes and classes to generate final instance segmentation masks. This approach allows the
model to generate high-quality segmentation masks without the need for explicit pixel-wise
labeling of instances during training, which can be time-consuming and laborious.

The Darknet Bottleneck module is a key component of the backbone network used in
YOLOv8n-seg. It is inspired by the Darknet-53 architecture, which was initially introduced
in the YOLOv3 object detection model. This module is designed to balance the trade-
off between computational efficiency and representational capacity, allowing for efficient
feature extraction while preserving important spatial and semantic information. The
Darknet Bottleneck module consists of the following components:

• Convolutional layer: The input feature maps are first processed by a convolutional
layer with a 1 × 1 kernel size. This layer serves as a dimensionality reduction step, re-
ducing the number of channels in the feature maps. This operation is computationally
efficient and helps reduce the overall computational complexity of the network.

• Batch normalization and activation: After the convolutional layer, batch normalization
is applied to stabilize the training process and improve convergence. This is followed
by an activation function, typically the leaky Rectified Linear Unit (ReLU), which
introduces non-linearity into the feature representations.

• Convolutional layer with bottleneck: The next step involves a convolutional layer with
a 3 × 3 kernel size, which is the main feature extraction component of the module.
However, instead of using the full number of channels, a bottleneck approach is
employed. The number of channels in this layer is typically set to a lower value (e.g.,
one-quarter or one-half of the input channels) to reduce computational complexity
while still capturing important spatial and semantic information.

The Darknet Bottleneck module is repeated multiple times within the backbone
network, with the number of repetitions determined by the specific architecture (e.g.,
Darknet-53 in YOLOv8). This modular design allows for efficient feature extraction while
maintaining a balance between computational complexity and representational capacity.

By incorporating the Darknet Bottleneck module into the YOLOv8-seg backbone
network, the model can efficiently extract rich feature representations from the input im-
ages, which are then used by the subsequent modules for accurate instance segmentation.
For medical image segmentation tasks, a combination of Robust TLoss [60] (Truncated
L1 Loss) and Dice Loss [61] can be used as the loss function. This combined loss func-
tion [62] aims to leverage the strengths of both loss functions: Robust TLoss for handling
outliers and Dice Loss for optimizing the overlap between the predicted and ground truth
segmentation masks.

Equation (1) for the combined loss function can be written as follows:

TSeg = α × Robust TLoss(X, Y) + β × Dice Loss(X, Y) (1)

where

− ‘X’ is the ground truth segmentation mask;
− ‘Y’ is the predicted segmentation mask;
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− ‘Robust TLoss(X, Y)’ is the Robust Truncated L1 Loss between the ground truth and
predicted masks;

− ‘Dice Loss(X, Y)’ is the Dice Loss between the ground truth and predicted masks; and
− ‘α’ and ‘β’ are weights that control the relative importance of the two loss terms.

The Robust TLoss term is calculated using Equation (2):

Robust TLoss(X, Y) =


(

1
2

)
× (X − Y)2 i f |X − Y| < 1

|X − Y| −
(

1
2

)
otherwise

(2)

This term helps to handle outliers and large errors in the segmentation masks, while
still being differentiable for small errors.

The Dice Loss term is calculated using Equation (3):

Dice Loss(X, Y) = 1 − (2×|X ∩ Y|+ε)/(|X|+|Y|+ε) (3)

where ‘ε’ is a small constant value (e.g., 1 × 10−5) added for numerical stability.
By combining these two loss terms, the overall loss function aims to achieve a bal-

ance between handling outliers and optimizing the overlap between the predicted and
ground truth segmentation masks. The weights ‘α’ and ‘β’ are tuned based on the LV
segmentation task and the characteristics of the dataset. The weight selection process often
involves hyperparameter tuning and empirical evaluation. Common strategies include grid
search, random search, or more advanced techniques like Bayesian optimization. Bayesian
optimization provides a powerful and sample-efficient approach for tuning the α and β

weights in the combined loss function for LV segmentation, especially when computational
resources are limited or the hyperparameter space is complex.

It is important to note that the optimal weight selection may depend on factors such as
the dataset, task, and model architecture. Experimentation and validation on held-out data
are crucial to ensure that the combined loss function effectively leverages the strengths of
both loss functions and leads to improved model performance.

This combined loss function has been used in various medical image segmentation
applications, such as tumor segmentation, organ segmentation, and lesion detection, and
has shown improved performance compared to using either loss function alone.

YOLOv8n-seg’s ability to perform detections in real-time is crucial for potential clinical
applications where fast segmentation results are essential for diagnosis and treatment
decisions. YOLO is a well-known architecture with a large user base. This provides access
to readily available implementation resources and facilitates troubleshooting if needed.
YOLOv8n-seg offers multiple versions catering to different needs. This allows for choosing
a configuration that balances accuracy and resource requirements for deployment in clinical
settings. The hyperparameters of YOLOv8n-seg are listed in Table 1.

Table 1. Hyperparameters of Yolov8n-seg model.

Hyperparameter Value Description

model yolov8n-seg.pt Pre-trained YOLOv8n segmentation model.
data coco128.yaml Data configuration file for the COCO dataset.

epochs 200 Number of training epochs.
batch 16 Batch size for training.
imgsz 640 Input image size.

optimizer SGD Optimization algorithm (Stochastic Gradient Descent).
lr0 0.01 Initial learning rate.
lrf 0.01 Final learning rate.

momentum 0.937 Momentum value for the optimizer.
weight_decay 0.0005 Weight decay regularization value.
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Table 1. Cont.

Hyperparameter Value Description

warmup_epochs 3.0 Number of warmup epochs.
warmup_momentum 0.8 Momentum value during warmup.

cosine True Whether to use cosine annealing for the learning rate scheduler.
box 7.5 Box loss weight.
cls 0.5 Classification loss weight.

mask 2.0 Mask (segmentation) loss weight.

3.4. Evaluation Metric
3.4.1. Dice Similarity Coefficient (DSC):

In medical image analysis and computer vision, DSC is widely used to evaluate the
performance of segmentation algorithms. It helps to assess how well an algorithm can
delineate a specific region of interest (ROI) in an image, such as the left ventricle.

Equation (4) is as follows:

DSC =
2 × |A ∩ B|
|A|+ |B| (4)

where A represents the predicted area of the mask and B represents the ground truth
containing the object. A higher DSC value signifies a greater similarity between the two
sets being compared. In image segmentation tasks, a high DSC indicates that the algorithm
successfully segmented the target region with minimal errors (omission or inclusion of
unnecessary pixels).

3.4.2. Intersection over Union

IoU is a classical metric for evaluating the performance of the model for object de-
tection. It calculates the ratio of the overlap and union between the predicted bounding
box and the ground truth bounding box, which measures the intersection of these two
bounding boxes. The IoU is represented by Equation (5):

IoU(A, B) =
|A ∩ B|
|A ∪ B| (5)

where A represents the predicted area of the mask and B represents the ground truth
containing the object. The performance of the model improves as the IoU value increases,
with higher IoU values indicating less difference between the generated candidate and
ground truth bounding boxes.

3.4.3. Mean Average Precision (mAP)

Mean Average Precision (mAP) considers both precision (correctly identified objects)
and recall (detecting all true positives) across different IoU thresholds. It provides a
comprehensive overview of the model’s detection performance. The mAP@50 metric
specifically refers to the mAP calculated using an IoU threshold of 0.5. In simpler terms,
it represents the average precision of detections where the predicted bounding box or
segmentation mask overlaps with the ground truth by at least 50%. This is a commonly
used threshold for evaluating object detection models. The mAP@0.5:0.95 metric represents
the mean average precision across a range of IoU thresholds, typically from 0.5 to 0.95 with
increments of 0.05. It provides a more in-depth analysis of the model’s performance under
varying degrees of overlap between predictions and ground truth. A higher average mAP
across this range suggests the model performs well even with less perfect overlaps.

3.4.4. Precision-Recall Curve

Precision-Recall Curve (P-R Curve) is a curve with recall as the x-axis and precision
as the y-axis. Each point represents a different threshold value, and all points are con-
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nected as a curve. The recall I and precision (P) are calculated according to the following
Equations (6) and (7):

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

where True Positive (TP) denotes a prediction result as a positive class that is judged to be
true; False Positive (FP) denotes a prediction result as a positive class that is judged to be
false, and False Negative (FN) denotes a prediction result as a negative class that is judged
to be false.

4. Results and Discussion

In this study, the training and testing for the network were conducted on a workstation
with an Intel Core i7-11700K @3.6 GHZ, NVIDIA GeForce RTX 4090 24G GPU, and Windows
11 operating system. A pre-trained YOLOv8 model was used in the training process from
MS COCO [63] (Microsoft Common Objects in Context) val2017.

Table 2 compares five YOLOv8-seg models (likely denoted by size—n, s, m, l, and
x—signifying increasing complexity) across various metrics. These models are evaluated
on their ability to identify the LV in medical images. Precision and recall measure the
models’ effectiveness in correctly classifying pixels, while mAP50 and mAP50-95 assess
overall detection accuracy with varying strictness (Intersection over Union thresholds).

Table 2. Performance comparison of various YOLO models.

Model Size (Pixels) Precision Recall mAP50 mAP50-95 Params (M) FLOPs (B)

YOLOv8n-seg 416 0.97247 0.95840 0.96064 0.75742 3.4 12.6
YOLOv8s-seg 416 0.97306 0.96771 0.97887 0.75604 11.8 42.6
YOLOv8m-seg 416 0.97363 0.97692 0.97957 0.75818 27.3 110.2
YOLOv8l-seg 416 0.97338 0.97899 0.97964 0.75626 46 220.5
YOLOv8x-seg 416 0.97572 0.97907 0.98005 0.75784 71.8 344.1
YOLOv8n-seg 640 0.97448 0.97456 0.97973 0.75875 3.4 12.6
YOLOv8s-seg 640 0.97651 0.97571 0.98164 0.76066 11.8 42.6
YOLOv8m-seg 640 0.9768 0.97894 0.98271 0.75816 27.3 110.2
YOLOv8l-seg 640 0.97583 0.97770 0.98263 0.75821 46 220.5
YOLOv8x-seg 640 0.97654 0.97921 0.98269 0.75852 71.8 344.1
YOLOv8n-seg 1280 0.97651 0.97907 0.98154 0.75671 3.4 12.6
YOLOv8s-seg 1280 0.97654 0.97907 0.97932 0.75164 11.8 42.6
YOLOv8m-seg 1280 0.97657 0.97907 0.98108 0.75491 27.3 110.2
YOLOv8l-seg 1280 0.9766 0.97907 0.98126 0.75542 46 220.5
YOLOv8x-seg 1280 0.97661 0.97907 0.98071 0.75409 71.8 344.1

A crucial aspect of the table is the inclusion of model complexity parameters. The
number of trainable parameters (millions) and FLOPs (floating-point operations) required
per image indicate the model’s computational burden. Generally, larger models with
more parameters (l, x) tend to achieve higher mAP scores, signifying better segmentation
accuracy. However, this comes at the cost of increased computational demand, reflected in
higher FLOPs.

Table 2 also explores the impact of input image size. By comparing models trained
on different resolutions (416, 640, and 1280 pixels), we can observe that for some models,
increasing the resolution can lead to marginal improvements in segmentation accuracy.
This is likely because higher resolution images provide more detailed information about
the LV structure.

The key takeaway from this analysis is the interplay between model complexity and
computational efficiency. While larger models consistently outperform smaller ones in
terms of mAP scores, this comes at a significant cost. Their increased number of parameters
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translates to higher computational demands, making them less suitable for real-time
applications or deployment on devices with limited resources.

For instance, YOLOv8x-seg achieves the highest mAP scores across all resolutions
but requires over 71 million parameters and 344 billion FLOPs per image. Conversely,
YOLOv8n-seg, with only 3.4 million parameters and 12.6 billion FLOPs, offers a faster and
more resource-friendly solution, albeit with a slight decrease in segmentation accuracy.
If prioritizing the highest segmentation accuracy is paramount, a larger model (l or x)
might be preferable despite its computational demands. This scenario could be relevant in
research settings where precise LV measurements are critical.

However, for real-time applications or deployment on mobile devices, computa-
tional efficiency becomes a major concern. In such cases, a smaller model (n or s) might
be a more suitable choice. While sacrificing some accuracy, these models offer faster
processing speeds and lower memory requirements, making them ideal for resource-
constrained environments.

Beyond the metrics presented in Table 2, several other factors influence model selec-
tion. The available computational resources and memory constraints of the deployment
environment play a crucial role. Additionally, the quality and quantity of training data
can significantly impact model performance. Following the training, a confusion matrix
was generated by analyzing the results matrix, as shown in Figure 4. Based on the con-
fusion matrix, the classification model appears to be performing reasonably well for the
positive class, but there is one instance misclassified as a false positive and one instance
misclassified as a false negative. Henceforth, while the model seems to be doing a decent
job, especially for the majority LV class, there are a few misclassified instances for both
classes that could potentially be improved upon by further tuning or adjusting the model’s
parameters or features.
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The recall and precision are of paramount importance, and the pursuit of enhanced
performance is a constant endeavor. Table 3 presents a comprehensive ablation of four
models: Yolov8n-seg, RobustTLoss, DiceLoss, and the proposed model, each vying for
superiority across the metrics of precision, recall, mAP50, and mAP50-95.

The Yolov8n model serves as the baseline, with respectable scores of 0.93532 for
precision, 0.94171 for recall, 0.95777 for mAP50, and 0.62485 for mAP50-95. However,
the introduction of the RobustTLoss and DiceLoss functions demonstrates the potential
for improvement. The RobustTLoss model outperforms the baseline across all metrics,
boasting a precision of 0.95284, recall of 0.95581, mAP50 of 0.96487, and mAP50-95 of



Electronics 2024, 13, 2587 13 of 19

0.61742. Similarly, the DiceLoss model exhibits superior precision (0.94971) and mAP50
(0.96788) compared to baseline, although its recall (0.93488) and mAP50-95 (0.60437) trail
slightly behind. While both the RobustTLoss and DiceLoss models demonstrate their
prowess, the true standout is the proposed model. With a remarkable precision of 0.98359,
recall of 0.97561, mAP50 of 0.9831, and a staggering mAP50-95 of 0.7527, this model sets a
new benchmark for object detection performance. Its ability to strike an exquisite balance
between precision and recall, coupled with its exceptional mAP50 and mAP50-95 scores, is
a testament to the innovative techniques employed in its development.

Table 3. Comparison of proposed model with various loss functions.

Model Precision Recall mAP50 mAP50-95

Yolov8n-Seg 0.93532 0.94171 0.95777 0.62485
Yolov8n-Seg +RobustTLoss [60] 0.95284 0.95581 0.96487 0.61742

Yolov8n-Seg +DiceLoss [61] 0.94971 0.93488 0.96788 0.60437
Ours 0.98359 0.97561 0.9831 0.7527

The proposed model’s superiority is particularly evident in the mAP50-95 metric,
which evaluates the model’s performance across various IoU thresholds. Its score of
0.75876 is a significant improvement over the baseline and the other models, indicating
robust and consistent object detection capabilities across a wide range of scenarios. In
Figure 5, the mAP50 (mean Average Precision at IoU = 0.5) metric evaluates how well the
model’s predicted segmentation masks overlap with the ground truth masks, considering
an IoU threshold of 0.5. mAP50-95 assesses this overlap across a range of IoU thresholds
from 0.5 to 0.95, providing a more comprehensive evaluation of segmentation quality. In
this context, the consistent and high performance of the (B) model across precision, recall,
mAP50, and mAP50-95 suggests that it is a reliable and accurate approach for left ventricle
segmentation. However, model M, while competitive in some metrics like precision and
mAP50, exhibits more variability and lower performance in recall and mAP50-95, indicating
potential challenges in capturing all relevant left ventricle regions or handling different
IoU thresholds.
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In this work, Table 4 compares the performance of the proposed deep learning model
for left ventricular (LV) segmentation against several state-of-the-art (SOTA) methods,
including SegNet [64], DeepLabv3 [65], MFP-UNet (2019), Echonet (2020), SegAN (2021),
and TC-SegNet (2023). We evaluate these models with in-house test set, which exhibits
significant variations in image quality, anatomical structures, and pathological conditions.
To quantitatively evaluate the performance of our model against the SOTA models, we
report the mean Dice similarity coefficient (DSC) and Intersection over Union (IoU) on
our test set. Our proposed model achieves a mean DSC of 0.9800 and an IoU of 0.7600,
outperforming SegNet (DSC: 0.7651, IoU:0.6195), DeepLabv3 (DSC: 0.7890, IoU:0.7200),
MFP-Unet (DSC: 0.7832, IoU:0.7390), EchoNet (DSC: 0.9200), SegAN (2021) (DSC: 0.8566,
IoU:0.8122), and TC-SegNet (2023) (DSC: 0.9559, IoU:0.8882). Our qualitative results further
demonstrate the robustness and accuracy of our model in handling challenging cases, such
as poor image quality, anatomical variations, and pathological conditions. In contrast,
SegNet, DeepLabv3, and EchoNet often struggle with these challenging scenarios, leading
to inaccurate or incomplete segmentations. Deep learning architectures for left ventricle
(LV) segmentation in echocardiograms have evolved significantly, with a trend towards
efficiency and reduced parameter counts. SegNet, an early encoder–decoder network,
contains approximately 29.5 million parameters. The MFP-UNet (2019) reduced this to
about 7.8 million using a multi-scale feature pyramid design. EchoNet (2020), developed
specifically for echocardiogram analysis, was further optimized to around 6.5 million pa-
rameters. SegAN, a GAN-based approach from 2021, typically has 8–10 million parameters,
varying with architectural choices. DeepLabv3, while not exclusive to echocardiograms, is
a powerful semantic segmentation model with 40–60 million parameters, depending on
its backbone. The recent TC-SegNet (2023) demonstrates impressive efficiency with only
about 5.2 million parameters. For comparison, YOLOv8n-seg adapted for segmentation
has around 3.2 million parameters, showcasing potential for even lighter models. This evo-
lution reflects a shift towards balancing high accuracy with lower computational demands,
which is particularly vital in medical imaging. The progression of these architectures
underscores the field’s commitment to developing powerful yet resource-efficient solutions
for echocardiogram analysis, potentially improving real-time performance and broader
applicability in clinical practice.

Table 4. Performance comparison of SOTA methods.

Model Number of Parameters (in Millions) DSC IoU

Deeplabv3 40 0.7890 0.7200
SegNet 29.5 0.7651 0.6195

MFP-UNet (2019) 7.8 0.7832 0.7390
Echonet (2020) 6.5 0.9200 -
SegAN (2021) 9.5 0.8566 0.8122

TC-SegNet (2023) 5.2 0.9559 0.8882
Ours 3.2 0.9800 0.7600

In Figure 6, it can be evidently seen that the proposed model has outperformed on
different kinds of shapes and contours for left ventricle segmentation. Accurate and robust
left ventricular segmentation from Echo images is crucial for various clinical applications,
such as assessing cardiac function, monitoring disease progression, and guiding treatment
decisions. Continued refinement and validation of automated segmentation algorithms are
essential to ensure reliable and clinically meaningful results.
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5. Conclusions

Accurate and reliable left ventricle segmentation from echocardiogram images is a
crucial task in cardiovascular imaging and diagnosis. This study demonstrates the potential
of automated segmentation models to capture the overall shape and location of the left
ventricular cavity with a highest mAP50 of 98.31% and mAP50:95 of 75.27%. However,
some instances of misalignment or inaccuracies highlight the need for further refinement
and validation of these algorithms.

Precise delineation of the left ventricular boundaries is essential for quantitative
assessments, such as measuring volumes, ejection fraction, and regional wall motion abnor-
malities. These measurements play a vital role in diagnosing and monitoring various cardio-
vascular conditions, including heart failure, valvular diseases, and myocardial infarctions.

To advance the field of left ventricle echocardiogram segmentation, several areas of
future work can be explored:

• Larger and more diverse datasets: Training segmentation models on larger and more
diverse datasets, encompassing various pathologies, imaging modalities, and acquisi-
tion protocols, can enhance their generalization capabilities and robustness.

• Incorporation of temporal information: Echocardiograms capture dynamic cardiac
cycles. Leveraging temporal information by integrating recurrent neural networks or
temporal modeling techniques could improve segmentation accuracy and consistency
across frames.

• Uncertainty quantification: Developing methods to quantify the uncertainty or confi-
dence of segmentation predictions can provide valuable insights for clinicians and aid
in decision-making processes.

This work has demonstrated YOLOv8n-seg’s effectiveness for left ventricle segmenta-
tion from echocardiograms. However, ethical risks must be considered. Potential model
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bias from unrepresentative training data could lead to errors and discrimination. Robust
de-identification and security are crucial to protect patients’ private health data. Clear
policies governing appropriate use are needed to prevent misuse, such as unauthorized
surveillance. As a powerful anatomical mapping tool, safeguards against weaponization or
exploiting individuals are required. While promising, the development and deployment of
such medical AI must involve multistakeholder collaboration to implement governance
mitigating ethical risks. Only then can its benefits be fully realized while protecting
against misuse. By addressing these challenges and opportunities, the field of left ventricle
echocardiogram segmentation can advance towards more accurate, reliable, and clinically
applicable solutions, ultimately improving cardiovascular care and patient outcomes.
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